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ABSTRACT

The robust principal component analysis (PCA) method has
shown very promising results in seismic ambient noise atten-
uation when dealing with outliers in the data. However, the
model assumes a general Gaussian distribution plus sparse
outliers for the noise. In seismic data however, the noise
standard variation could vary from one place to another lead-
ing to a more heavy-tailed noise distribution. In this paper,
we present a new method which solves a convex minimisa-
tion problem of the robust PCA method with an M-estimate
penalty function. Our empirical results show that the pro-
posed method can outperform the robust PCA method.

Index Terms— Robust PCA, M-Estimate, Seismic Noise
Attenuation, Convex Optimisation, ADMM

1. INTRODUCTION

Robust statistical methods combined with recent advance-
ments in convex optimisation techniques have a great poten-
tial to rejuvenate some of the conventional noise attenuation
techniques [1, 2, 3, 4, 5]. In particular, seismology has very
recently recieved interest from robust statistical methods with
convex optimisation [6, 5]. In a seismic acquisition system,
a controlled seismic source excites the earth and generates
acoustic waves that travel through the Earth layers. Seismic
waves are recorded by the receivers (usually in the order of
thousands) where the recorded reflected and refracted waves
are used to study oil and gas reservoirs, minerals, faults or
other scientific investigations [7].

One of the major challenges in seismic acquisition is how
to maximise the signal-to-noise-ratio (SNR), given a fixed
number of sources used and receivers deployed. Ideally one
wants to keep the incoming reflections (signal) and disregard
any other unwanted signal (noise). Noise in the seismic data
are generally divided into two subcategories, coherent noise
and incoherent noise. Coherent noise are unwanted signals
that are locally coherent (correlated) from trace to trace. Ex-
amples are ground-roll, multiples and air waves. Incoherent
noise or ambient noise are unwanted signals that are random
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and not correlated. Some examples are wind, land/marine an-
imal activity and rain. Conventionally, random noise in seis-
mic data are assumed to have a Gaussian distribution, with
SNR related to

√
N where N is the number of sensors.

Assuming noise with Gaussian distribution, rank reduc-
tion based methods work pretty well for denoising data [8,
9, 10, 11]. Rank reduction methods work on the assumption
that within a small spatio-temporal seismic window, seismic
reflections are linear events with different dips (gradients). In
these methods [8, 9, 10, 11], data are first transformed to the
Fourier domain in the temporal direction (also known as Fx
transform [7]) and then for every frequency slice, rank re-
duction is applied on the Hankel matrix to remove incoherent
signals. Cadzow's algorithm [12], popular in array process-
ing, can also be applied for further noise reduction [9]. While
these methods perform well under Gaussian noise assump-
tion, the results are highly degraded when there are outliers
in the data. This is because principal components analysis,
which is the principal tool for rank reduction methods, is only
optimal when the noise is Gaussian. Any outlier in data would
seriously degrade the results. Due to erratic noise in the seis-
mic data and variable standard deviations, experiments have
shown that the Gaussian distribution does not model the am-
bient noise well. This has led to many recent robust denoising
techniques, based on the rank reduction method [13, 5].

In [13, 5], M-estimate penalty functions (Bisquare and
Huber respectively) were proposed to deal with the out-
liers. M-estimate function are functions [14] that combine
quadratic cost function with another cost function that is
more robust to outliers. These methods involve a rank mini-
mization process (non-convex), usually utilizing the iterative-
least-squares-minimization (IRLS) method. More recently,
Chen et al. [5] proposed using the Robust PCA [1] method
for seismic ambient noise attenuation. Robust PCA method
involves a nuclear norm minimization (convex) which has
shown its potential in many fields [15, 1, 2, 3, 4]. However,
the model still assumes a general Gaussian noise model with
sparse outliers.

In this paper we present a novel method that combines the
robust PCA framework with M-estimation penalty function.
We show that the corresponding objective can be phrased as
a convex optimisation problem. We show that the flexibility
on the penalty function gives rise to results with enhanced



robustness to heavy-tailed noise distribution. The rest of
the paper is as follows. In Section 2 necessary background
on seismic parametric denoising is presented. In Section 3
we first describe the robust PCA method and then present
the proposed algorithm to combine robust PCA with an M-
estimation penalty function. In Section 4, we present syn-
thetic and field data results and demonstrate the superiority
of our method over the robust PCA for seismic ambient noise
removal. In Section 5, we offer conclusions and ideas for
possible future directions.

2. BACKGROUND

Within a small spatio-temporal seismic window, linear events
in time-offset domain can be described as [7, 5]:

d(t, x) = a(t− px), (1)

where t is an index for time samples recorded in the sensors, x
is the index for spatial samples, a is the reflected wavelet, and
p is the ray parameter (dip or slope of the event). If we we
apply the Fourier transform in the temporal domain (known
as Fx transform in the seismic community) and assuming we
have regular spatial intervals (spacing between sensors), that
is x = j∆x, we obtain:

D(ω, j) = A(ω)e−iωpj∆x. (2)

In the case of multiple events, we obtain a sum of exponentials
with frequency-varying amplitudes:

D(ω, j) =

K∑
k=1

Ak(ω)e−iωpkj∆x. (3)

Under noise-less conditions, the Hankel matrix1 of sum of
exponentials with regular sampling and frequency-constant
amplitudes has rank equal to K where K is the number of
events. Under noisy conditions however, the Hankel matrix
will be full rank. Assuming noise follows a Gaussian distri-
bution, we can obtain an optimal solution by keeping only the
first K principal components (or singular values) of the Han-
kel matrix. Given the model, we can achieve this property by
applying the rank reduction process for every frequency slice,
that is:

D̂ωi(j) = A(RK(H(Dωi(j)))), (4)

where Dωi(j) =
∑K
k=1 Ãke

−iωpkj∆x, and Ãk = Ak(ωi)
and i is an index to cover the frequency range of the data.
HereH(Dωi(j)) computes the Hankel matrix of the vector of
components of the frequency slice,RK computes the K rank
approximation UK × ΣK × V HK , where ΣK is the diagonal
matrix containing the singular values up to K, and A com-
putes the Cadzow's algorithm which is simply anti-diagonal
averaging of the Hankel matrix [12]. Although both mathe-
matically elegant and popular with practitioners, this method

1Hankel matrix is directly related to Toeplitz matrix. The Hankel matrix
of a vector h0, h1, . . . , hn is Hi,j = hi+j−2

is extremely sensitive to outliers. Even one outlier has a mas-
sive effect on the performance of the method.

3. M-ESTIMATE ROBUST PCA

Robust PCA method, recently introduced to the community
by Candes et al. [1], is a robust technique which involves nu-
clear norm minimization. One of the benefits of this method
is the replacement of non-convex low rank minimisation with
the convex problem of nuclear norm minimisation, therefore
allowing usage of convex optimisation methods [16]. Nuclear
norm, denoted by ||L||∗ measures the sum of the singular val-
ues of L, that is ||L||∗ =

∑
i σi(L), where σi are the singular

values of L. When applied to seismic data in the Fx domain,
the technique can be described as follows:

Let us denote H to be the Hankel matrix of a frequency
slice of a small spatio-temporal seismic window. The Hankel
matrix H can be modelled as:

H = L+ S +N, (5)

where L is the low rank matrix that includes all the events,
S is a sparse matrix that contains the outliers and N contains
the Gaussian noise. H can be minimised with respect to L, S
and N in a convex optimisation methodology, that is:

min
L,S
||L||∗ + λ1||S||1 + ||H − L− S||2F . (6)

Here ||S||1 is used to impose sparsity on S to capture the out-
liers and ||H−L−S||2F minimises the difference matrix with
quadratic cost function, optimal when noise is Gaussian dis-
tributed. The assumption that matrix N = H − L − S is
Gaussian distributed can be challenged, specially when deal-
ing with seismic data. For example, noise variance could vary
from one section to another or the noise distribution of N is
close to heavy-tailed distribution. To alleviate this deficiency,
we propose to use M-estimators combined with robust PCA
to tackle these issues. There are two ways to approach this
problem, either the minimisation can be done using:

min
L,S
||L||∗ + λ1||S||1 + ρ(H − L− S), (7)

or using:
min
L,S
||L||∗ + ρ(H − L), (8)

where ρ(X) in both cases is an M-estimator penalty func-
tion. Our empirical results show that the former approach is
more robust and less sensitive to parameter change. More-
over, equation 7 is a natural extension of equation 6, where
in the case ρ(X) is Gaussian likelihood, equation 7 collapses
down to 6. In this paper we consider the Huber function [17]
as the the M-estimator but other cost functions can also be
considered. Huber function is generally described as as:

ργ(X) =

{
1
2 ||X||

2
2 |X| < γ

γ||X||1 − γ2

2 |X| ≥ γ.



The minimisation problem can be solved with any convex
optimisation technique [16]. One technique which is popular
for its simplicity and its fast convergence is the alternating
direction method of multipliers (ADMM) [18]. The ADMM
method, an augmented Lagrangian method, can solve uncon-
strained/constrained convex minimisation problems. Given
the minimisation problem above, we can re-write the problem
as a constrained problem as follows:

min
L,S,Z

||L||∗ + λ1||S||1 +
1

µ
ρ(Z),

subject to H − L− S = Z.

(9)

Th augmented Lagrangian function of the above problem is
therefore:

L(L, S, Z, Y ) = ||L||∗ + λ1||S||1 +
1

µ
ρ(Z)+

Y T (H − L− S − Z) + β

2
||H − L− S − Z||2F , (10)

where Y is the called the Lagrangian multiplier. Minimiz-
ing with respect to L, S and Z yields the ADMM’s variable
updates for this problem:

ZK+1 =min
Z

1

µ
ρ(Z)− Y KZ +

β

2
||H − LK − SK − Z||2F .

LK+1 =min
L
||L||∗ − Y KL+

β

2
||H − L− SK − ZK ||2F .

SK+1 =min
S
λ1||S||1 − Y KS +

β

2
||H − LK − S − ZK ||2F .

(11)
By applying the minimisations, we reach the state update
equations, described in Algorithm I. Here, S denotes element-
wise soft-thresholding andD denotes soft-thresholding on the
singular values. It is important to mentioned that, given the
separable structure of the minimisation model, Algorithm I
can be also implemented in a parallel framework.

Algorithm 1 ADMM steps for M-estimate Robust PCA
1: Initializations: Z = 0, L = 0, S = 0; Y = 0; k = 0, iter =

250.
2: while not converged & k ≤ iter do:
3: TK = 1

β
Y K +H − LK − SK

4: ZK+1 =


µβ

1+µβ
× TKi,j |TKi,j | < γ

Sγ+ γ
µβ

(TKi,j) |TKi,j | ≥ γ

5: LK+1 = D 1
β
( 1
β
Y K +H − SK − ZK)

6: SK+1 = Sλ1
β

( 1
β
Y K +H − LK − ZK)

7: Y K+1 = Y K + β(H − LK − SK − ZK)

8: END LOOP if:

9:
||LK+1−LK ||2F
||LK ||2

F
< ε &

10:
||SK+1−SK ||2F
||SK ||2

F
< ε

11: k = k + 1

3.1. Parameter Selection

In [1, 2] it is shown that λ1 = 1/
√

max(M,N) can guarantee
good recovery results, where M and N are the dimensions
of the matrix. In [1, 2], it is also recommended to choose

µ = 1
10

√
min(M,N) +

√
8 min(M,N)σ, where σ is the

standard deviation of the Gaussian noise and β = ηM×N||H||1 ,
where η is related to the percentage of outliers in the data.
The stopping criterion parameter ε depends on the data and
can be tunable (generally 10−5 works fine for most cases).
The Huber parameter γ is tunable, depending on the data.

4. RESULTS

4.1. Synthetic Data

In this section we compare our proposed method with the
robust PCA and also the standard PCA on a synthetic data.
The synthetic data we have produced (Figure 1a) consists
of three separate events with different dips generated using
Ricker wavelet with max frequency at around 100Hz. The
data is about 0.4s long with sampling interval of 0.001s. We
take 50 traces which describes our spatial window. We add
three major outliers to the data and add Gaussian noise, with
variable standard deviation, to each trace (Figure 1b). As
can be observed from denoised data in Figure 1c and the
difference in 1d, the standard PCA heavily degrades the re-
sults largely due to the outliers in the data. Figure 1e and 1f
show the results we obtain for robust PCA. The results have
dramatically improved compared to the standard PCA. Fig-
ures 1g and 1h show the results for M-estimate Robust PCA.
Comparing Robust PCA and M-estimate robust PCA, we can
observe that both methods dramatically improve the results,
however, robust PCA method suffers from signal leakage (all
colour-scales are the same). The M-estimate robust PCA out-
performs the robust PCA method by almost 2dB in this exam-
ple. SNR was calculated as 10 log10

||G||22
||G−Ĝ||22

, where G is the

clean signal and Ĝ is the denoised signal. All parameters are
selected according Section 3.1, the Huber parameter was set
at 5 and η was set at 0.15.

4.2. Field Data

We acquired some post-stack 2D marine seismic data from
U.S. Geological Survey [19], available for anyone to use. The
sampling interval for this acquisition was 0.004s. We applied
both the robust PCA and M-estimate robust PCA methods on
small overlapping spatio-temporal windows of 240ms by 60
traces in the spatial direction. The overlapping size between
the windows was chosen to be 1

2 with cosine tapered win-
dows. The chosen section of the data has two visible outliers.
Figure 2 shows the results for both scenarios. As can be ob-
served both methods deal well with the outliers in the data.



However, the M-estimate robust PCA method has less sig-
nal leakage when compared to the robust PCA method. All
parameters are selected according Section 3.1. The noise es-
timate used for the µ parameter was calculated based on a
noise snapshot captured from the data. The Huber parame-
ter was set at 0.5 and η was set at 0.15. From the two sets
of examples shown, we can see that the M-estimate robust
PCA can outperform the robust PCA method and add further
robustness to the denoised results.
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M-estimate Robust PCA (g)
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Fig. 1. Comparison of different denoising methods on synthetic
data. (a) Original Synthetic Data. (b) Data with noise. (c) Standard
PCA. (d) Standard PCA result’s difference with the original data.
(e) Robust PCA. (f) Robust PCA result’s difference with the original
data. (g) M-estimate robust PCA. (h) M-estimate robust PCA result’s
difference with the original data.
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M-estimate Robust PCA (d)
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M-estimate Robust PCA (d)
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Fig. 2. Comparison of different denoising methods on sample field
data. (a) Original Data. (b) Robust PCA. (c) Robust PCA result’s
difference with the original data. (d) M-estimate robust PCA. (e) M-
estimate robust PCA result’s difference with the original data. All
figures have the same colour-scales.

5. CONCLUSIONS

In this paper we proposed a novel seismic noise attenuation
method that can be more robust to non-Gaussian noise distri-
bution, compared to the state-of-the-art methods. We showed
that the proposed M-estimate robust PCA method can out-
perform the robust PCA method. One of the advantages of
this method is that it can be readily turned into a robust PCA
method. One possible future work is to devise a close-form
equation for the γ parameter that guarantees good recovery.
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