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Although our main motivation is in discrete graphical models, the proposed
methodology can be applied more broadly for model-based change-point estimation.
With this in mind, we shall prove a more general result that can be useful with other
high-dimensional change-point estimation problems. Theorem 1 follows as a special

case.

S1. High-dimensional model-based change-point detection

Let {X® 1 <t < T} be a sequence of RP-valued independent random variables.

Let ® C R? be an open, non-empty convex parameter space equipped with the

Euclidean inner product (-, -), and norm|| - ||2. We will also use the /!-norm ||6||; -

2?21 6], and the ¢>°-norm |6~ &f maxi<j<q |0;|. We assume that there exists
a change point 7, € {1,...,T — 1}, parameters 99,99 € O, such that for t =
1o, X ~ gé?l), and for t =7, +1,...,T, X ~ gé?), where gé?l) and gétil)
are probability densities on RP. The goal is to estimate T, 0&1), 0&2). This setting

includes the Markov random field setting (our main motivation), where gg?l) and
(1 )

9y does not depend ¢. It also includes regression models where the index ¢ in the
. (1 (1)
0&1) 05(2)
Fort=1...,T,let (0,x) — ¢¢(0,x) be jointly measurable functions on © x RP,

distributions ¢, and g4, accounts for the covariates of subject .
such that 6 — ¢4(0, x) is convex and continuously differentiable for all z € RP. We
define
T T
o 00,02) 3 0u(01,XO) + D u(0, X,
t=1 t=7+1
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and we consider the change-point estimator 7, given by

7 = Argmin {p(T; 5177, 52,7), (S1)
TET
for a non-empty search domain 7 C {1,...,T}, where for each 7 € T, 5177 and 5277

are defined as

§1T%nggrgm[ Zéf)t 0, x1) +>\17H9||1]a
€

and

~  def 1 «

B2 = Argmin | = Y (0, XD) + Ao [16]]1 | ,

pco |14
t=7+1
for some positive penalty parameters A\; -, A2 r. Note that by allowing the use of
user-defined learning functions ¢, our framework can be used to analyze maximum
likelihood and maximum pseudo-likelihood change-point estimators.
For r € {1,...,T — 1}, we set

. T
G S Va0, X0), and 2 ST ve?, x1),
t=1

t=7+1

where V¢.(6,x) denotes the partial derivative of u — ¢:(u,x) at 6. Also for 7 €
{1,...,T — 1}, and for 6 € ©, we define,

der 1 (®) (1) (b e
L1(7,0) = Ttl[qbt(eX ) — e (0, x®) — <V¢t(9* L X),6— 6 >}
T
and  Lo(T,0) déf% Z [¢t(9 X ) ¢t(9(2 t)) B <V¢t(0£2),X(t)),9— Qﬁz)ﬂ .
t=7+1

def

For j = 1,2, define A; = {1§k§d:0g€)7é0},sj:],4j|,and

def j j
C;Eq0e0: S 071 <33 100 ;. (S2)
keAs keA;

The curvature of the function £; ( -) is not always best described with the
usual quadratic function 6 — || — oY H2 We will need a more flexible framework,
in order to handle £;(7,-) in the case of discrete Markov random fields. Let r :

[0,00) — [0,00) be continuous function such that = + r(x)/z is strictly increasing
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and limg o r(z)/z = 0. We call r a rate function, and for a > 0, we define ¥,(a) def
inf{z > 0: r(z)/z > a} (inf = +o0). For 7 € {1,...,7 — 1}, A > 0, a rate

function r, ¢ > 0, and for j = 1,2 we work with the event

j i 0

&1 (009Gl < 2, e Lm0 T

2 9#9(7) 9 9(7)€(C r(He 0(] H2> T

sup LT(H)) <rel
0209, 0—oDec, |0 — 02~ T2
Define
(8) def E | (62, X0) — g, (00, X D) ift < 7,
’ E [¢:(6), XO) — 6,02, x0)| it >,

and X t

70 ) def ¢t( 7 )) 0N (9£),X(t))—/€é) ift<r,

th( * ,X(t)) ¢t( * 7 t))—liét) ift>7'* .

We make the following assumption.
A 1. There exist finite constants oo > 0 such that
E (el‘U(t)> S eIzacz)tHGi2)—6£1)llg/2, for all x > 0

Furthermore, there exist By > 0, 6(2) > 0, Ko > 0 such that for all integer k > By,

T T« +k
. 1 t 1 t _ 2 1
min (k S S Kg))) > roll0S) — 0V|3, (3)
t=7,—k+1 t=T.+1
and
1 = 2 1 R 2 =2
max % Z Uoug Z oo | < 0p- (S4)
t=T,—k+1 t=7,+1

THEOREM S1. Assume A1, and 9 7é 05 @ Suppose that T is defined over a
search domain T > T, and with penalty ;. > 0 (for j = 1,2). For j = 1,2,
take a rate function rj, constant c¢; > 0, and define € def Nre7EL (A7, F1yc1) N
E2(\ar, 1oy ca). Set

5(7’) déf \Ijrl (6 <T> 1/2)\1 T> |:2S}/2T)\1,7— + T\Ilrl <6 <T> 1/2A1 7‘>:|
T T
T 1/2 1/2 T 1/2
M (6 (T = r) i AQ“) [ e + (T =D)L <6 (T - T) o AQ“)] |
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5%t sup,c7 6(7), and B Y max <B0, W), with By as in A1. Then
4exp< U‘j)
P (|7 — 7| > B) < 2P(£°) + . . (S5)

R2 95(2)79&1) 2
1~ oup (L

PrRoOOF. The starting point of the proof is the following variant of a result due
to Neghaban et al. (2010).

~

LEMMA 1. Fiz T € {1,2, R 1}. On g,} ()\1’7—, I’1,Cl) N 53 ()\277—, I'Q,Cg), 9]’,7 -
Gij) € C;, (j =1,2), where C;j is defined in (52), and

T
H91T—9 ||2<‘I’r <6<T> 1/2)\”)7
and [for — 02y < 0, (6 ——) s\ ). (S6)
: T—-71

ProOOF. We prove the first inequality. The second follows similarly. We set

1 T
(15 it 300 01000

t=1

) 1560, X)
t=1

Since 6 , = Argming.g (37, 6¢(0, X®) + A1 £]|0]1], and using the convexity of

the functions ¢; we have

0> U(br) > (G0 — 00 ) + A (11— 162711) -
On &L (A17,11,¢1), ||GEoo < A1+/2. Using this and some easy algebra as in Negha-
ban et al. (2010), shows that HALT — 99) € Cy. Set b =T, (6 (—) 1/2)\1 T) We
will show that for all # € R? such that 6 — 6 € Cy, and ||6 — 6{"||5 > b, we have
U(9) > 0. Since U(f,,) < 0, and 8, , — o) e Cy, the claim that ||6 — 99)”2 <b
follows. On the event £ (A1 +,r1,¢1), and for 6 — 09) € Cq, we have

ue) = «ae—w§+£u7m+hﬁwmrwéwm

Vv

*r (16— 07112) —

T{n(w 0:12) - ( ) 1/2A17|19 o HQ],

Using the definition of ¥, , we then see that ¢/ (6) > 0 for ||§ — s Hg > b. This ends
the proof. O

v

The next result follows easily.
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LEMMA 2. Fiz 7€ {1,2,...,T —1}. On & (M\i7,n,¢1) NE2 (Nar, 12, C2),

) )
‘ET(T’ 91,7’5 02,7’) - ET(T7 95})7 95(2))‘ S (jz—)’

where

5(r) €, (6 <T> s}/QAl,T> [%}”TALT + Xy, <6 <T> s}/QAl,Tﬂ
T 2 T
T 1/2 1/2 (T —T)co T 1/2
+\I’r2 <6 <z_,_7_> )\2 7—> |: T)\Q T #\Ilrz 6 Ti—T So )\2’7 .

PROOF.

T

(7017, 27) = (00,08 = 23 (6101 X) = 00087, X )

t—l1 . A
T D [0l XO) = 0167, X))
t=7+1

From the definition
- Z 00017, XD) = 008, XO)] = (G101 = 0) + L1(7, B1.0),

On &! (A1 +,1,c1), and using Lemma 1, we have

i . T
’<Gi,9177 - 0£1)>’ Al ||91 e ”1 < 281/2)\1,7‘1%1 <6 (7_) 81/2>\1,7) ;

and

2
N T Cl A (1) 2 TC1 T 1/2
< —— — < —
£1(T7 0177_) — T 2 ”9177— 9* H2 — 2T l:[lrl (6 <7—> S]. )\177—)

T

=3 [0l XO) — 660, x)] |

t=1
1 T T
<-0, (6 s20 ) (22T + e, (6 s )]
T T ’ 2 T

A similar bound holds for the second term, and the lemma follows easily. O

We are now in position to prove Theorem S1. We have

P(|t =7 >B)=P(7>7+B)+P(7 <7 —B).
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We bound the first term P (7 > 7. + B). The second term follows similarly by

working with the reversed sequence X(™), ... X1,

For 7 > 7,, we shall use /7 (7) instead of ¢r (7’; éLT, é277> for notational conve-

nience, and we define rp (7) def bp(T) — Cp (7’, 99), 99)). We have

tr(r) = br (T, o1, 9&”) +rp(r),
_ [zT (T, o0 09)) s (T*, o 9&2))} s (T*, el 9&2)) +ro(r).

Hence
r(r) — br(ry) = [zT (T, el 9&2)) — (T*, o 9&”)} Frp(r) = rp(r). (ST)

It is straightforward to check that for 7 > 7,

tr (7,600,062 — by (r,00,6%) = > (#0627, X9) = 916, X0)).

=T

Therefore, and using the definition of U®) and mgt), (S7) becomes

T

eT(T)—eT(T*):% 3 %M% ST UO () - rr(n). (S8)

t=7,+1 t=7,+1
We conclude from Lemma 2 that on the event &,

T

1 1 O
o)~ o) =2 > m + 5 Ut en(),

t=7,+1 t=7,+1
2 s 26
where |ep(7)] < W =5 (89)
Therefore,
P (7 > 7+ B) < P(E°) + > P&, 7 =7+ [B] +).

Jj>0, 7.+ [Bl+jeT

Using (S9), we have

P&, 7=n+[Bl+j) < P lr(n+[Bl+j) <lr(n))

T+ [Bl+j To+[Bl+j
Pl > v®> Y &) -2].
t=7,.+1 t=7,+1

IN
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However, since B > By, by Assumption Al,

o 1 N\
S0 w202 (1B]+3)moll 2 — 02713 — 26 > 5 ([B] + ) Roll 627 — 073,
t=7,+1

The first part of Al implies that the random variables Z(®) are sub-Gaussian, and

by standard exponential bounds for sub-Gaussian random variables, we then have

([B] + ) &30 — 01|14 )

2 1 T B 1
81608 — o2 o B 62

N =2119(2) _ p(1)12
2 exp (_((BW +j) Rgll0: — 0x Hz) ,

P&, br(te+ [B]+7) <lp(r)] < 2exp <—

IN

852
where the last inequality uses (S4). We can conclude that

N 2 1
([B] + ) r2)165” — 6|13
852

Pt >7+B] < IP’(EC)—I—2Zexp<—
Jj=0

Br3|16 04" |13
¢ P\ s
< ]P)(g )+ 2 R2H9(2)_9(1>”2 ’ (SlO)
80
as claimed. O

S2. Proof of Theorem 1

We will deduce Theorem 1 from Theorem S1. We take © as M, the set of all p x p
real symmetric matrices, equipped with the (modified) Frobenius inner product
(0,9 of > k<;jUikVjk, and the associated norm |0 def \/(0,60). With this inner
product, we identify M, with the Euclidean space R?, with d = p(p + 1)/2. This
puts us in the setting of Theorem S1.

We will use the following notation. If u € RY, for some integer ¢ > 1, and
A is an ordered subset of {1,...,q}, we define uzy o (uj, j € A), and u_; is a
shorteut for ugy . o5 We define the function Bji(7,y) = Bo(z) if j = k, and
Bji(z,y) = B(z,y) if j # k.

In the present case, the function ¢ is ¢ as given in (5), and does not depend on t.
The following properties of the conditional distribution (3) will be used below. It is
well known (and easy to prove using Fisher’s identity) that the function 6 — ¢(0, z)
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is Lispchitz and

(0, 2) — (9,2)] < 26010 — V1, 6,9 € My, x € X, (S11)

where ¢g is as in (9). From the expression (3) of the conditional densities, using
straightforward algebra, it is easy to show that the negative log-pseudo-likelihood
function ¢(6, z) satisfies the following. For all §, A € M, and x € X?,

¢(9 + Aa l’) - ¢(9’ l’) - <V9¢(97 l’), A>F

P
_ () o ()
jzl logZeﬂrA( ) — logZ gAjkae logZ (x) (S12)
Furthermore by Taylor expansion, we have
0
logZéi)A( ) — logZ ZAJ’“@Q logZ()( )
k=1
1 P 2 (& 2
:/ (1 —t)Varga (Z AjkBjk(Xj,Xk)ij> dt < 50 <Z|Ajk|> . (S13)
0 k=1 k=1
By the self-concordant bound derived in Atchadé (2014) Lemma A2, we have
0
logZéQA( ) — logZ ZAJk@H IogZ( )( )
k=1

1
= Var A Ban(X;, X)) | X_i | . (S14
T 2o Al (; # B (X X )| J) (S14)

PROOF (PROOF OF THEOREM 1). Let us first show that under assumption H3
of Theorem 1, A1 holds. Since in this case ¢; does not actually depend on t, we can
take By = 1 in Al, and (S3) follows automatically from H3 with xo = H/||9£2)
0V||2. Also, (S11) implies that |[U®] < 4eol|0? — 0|y < 4eost/2[02) — oY),

where s denotes the number of non-zero entries of 6(2) — 09). Hence for all x > 0,
E (exU(”) < exp (835%33“99 — 0&””%) .

This establishes the sub-Gaussian condition of A1, and (S4) holds with 62 = 16¢2s.

For j = 1,2, let A1, Ao as in (8). We will apply Theorem S1 with ¢; =

64cpsj, the rate function rj(z) = %5’71/2, r > 0, and with the event & =
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Nrer [571 (A7 r1,c1) N £2 (A2,7, T2, 02)], where the search domain 7 satisfies (15),

(16), and (18). Notice that if r(z) = px?/(2 + bx), p,b > 0, is a rate function, then
= r(z) > ax} < 4a/p, provided that 2ba < p. Hence

for a > 0, ¥,(a) aef inf{x >0:
1/2
T 4 T log(dT
v, <6< ) WAIT) <26 () sY2AL, = 24 x 3267 \/M,
T P1 T P1 T
2
provided that 7 > (48 x 32)2c2 (;—1) log(dT"). Therefore, given that all 7 € T
satisfies (18), with some simple algebra we see that there exists a universal constant

a that we can take as a = (24 x 32 x 64)2, such that for all 7 € T,
§(1) < 6 = aciM log(dT),

where

[ 3 oed)]
P1 P1 P2 P2
Therefore in Theorem S1, we can take B = M}iog(dT)
Theorem S1,

, and by the conclusion of

5 K ’
4 exp (‘32cgs (||9£2)—9i”||§> >
P[|7 — 74| > B] < 2P(£°) + ‘

2
1= exp (gt
27c3s)|0% —0V||3

We show in Lemma 3 and Lemma 4 below that P(£¢) < 8/d, and this ends the
proof.

|

LEMMA 3. Let A1 7, A2+ be as in equation (8). Suppose that the search domain
T is such that (15)-(16) hold. Then

1 2 1
P |max X2 |2 ]gd, and ]P’[meax/\QTHG2H <
where d =p(p+1)/2.

ProOOF. We carry the details for the first bound. The second is done similarly
by working with the reversed sequence x@ oo x@),

Fix1<j<i<p teT,
and define V( ) def 8 ¢(

(1)), We calculate that

S0 _ ~Bo(X{") + Egon (Bo(X:| X)) if § = j
iy

~2B(X", x{") + Byo (B, X)X + By (B, XDIXY) it <
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In the above display the notation Eu) (B(Xi7 XJ@))\XS?) is defined as the function
z > Epo (B(Xi, 2j)| X—i = 2—;) evaluated on X®. Since X (1) #4! Gy, it follows

that E(Vlgt)) =0fort =1,...,7 We set dof E(V(T*H)) IE(V( )) for t =

ij
T+ 1,...,T. We also set ‘_/Zg) dof V( )_E (V(?)). It is easy to see that |VZ§)] < 4y,

ij
where ¢ is defined in (9) . With these notations, for 7 € T, we can write
1 0, (7= 7)1 pij
Gy =% z 7 + LTy

where a4 e max(a,0). For ¢ > 7,, Lemma 5 can be used to write

[ [Bx.x(%) - By (B, X[)1xY)]|

E[/XB(U,X(t ) fy (ul X" )du—/

X

B(U,X§t))f9g1>(U|X(_?)du]

<COZ|0*ZJ *U| <b007

where b is as in (17). Hence

pij] < 2 max ‘EW,) [B(X}”,XJ@) ~E,m (B(XZ.(”,XJ(“)\XY;)] ( < 2be2.

Set A, % (A\/T/T), where

A% 326, log(dT').

By a union-bound argument,

P | max 201 > 1}

< e

T€T i,j

2bco T—Te)+ _ 1

AVr > 2] . (S15)

Since A = 32¢p+/log(dT"), for 7 € T, and using (15) we see that max,e7 % =
1/4. Hence

[ N D 3D s
TET 1,j
2
< 2ZZexp< 830(2)> < 7
TET 1]

where the second inequality uses Hoeffding’s inequality. O
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REMARK 1. The log(dT) term that appears in the convergence rate of Theorem
1 follows from the union bound and the exponential bound used in (S15), and (S16)

respectively. Alternatively, it is easy to see that one could also write
T

S| A
ZVU > 4] :
t:l

Hence whether one can remote the log(T ) term hinges on the existence of an ex-

max

P TG > 1 P
{glea%( Gzl > ] Z reT

ponential bound for the term max,c1 ‘7'_1/2 iy Vigt) . Unfortunately we are not
aware of any such result in the litemture The closest results available deal with the
unweighted sums: max,cT ‘Zt 1 ‘ (see for instance pinelis (2006) for some of

the best bounds available).

LEMMA 4. Assume H1 and H2. Let \i, and X2, as in Equation (8), and let
the search domain T be such that Equations (15)-(16) hold. Take c¢i = 64cpsq,
co = 64cpsy and

2 2

p1T pP2x
6 4. J1/2 0 and £y(z) = o A /2
2+4cos) " x 2+4cpsy "

Then the event ()t [ (A7 n,c1)N £2 (A2.7, 12, cz)] holds with probability at least
1- 8.
d

r(x) = , ©>0.

PROOF. We have seen in Lemma 3 that with A; ; and Ao, as in equation (8),
the event Nrer [{[|GElloo < A1r/2} N{||GL]|oo < A2,7/2}] holds with probability at
least 1 —2/d. We have

L1(r,0) = ; [6(0, X0) — (6", X ) — (Vo(o™, x0),0 - o]

(S13) then implies that for all 7 € 7, and 8 — 6" € C;,

T 646051

4 2
£1(r,0) < 0]l — 67|} < ~

lo — 6713

A similar bound holds for j = 2. Hence ﬂreTﬁj I{SUPQ;AGW 0-09)ec, oo E;T“?\)\ < %

o8

|

holds with probability one.
Using (S14), we have
T 1
T9 4 dest )6 — 61,

1 T p p
X ; szareg) (Z Bk](XJ(t),X]gt)) (Hk] — 9’((}’1]) |X(tj)) . (817)

t=1 j=1 k=1

Ly(T,0) >
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We will now show that for all 7 € 7, and all § — 09) € Cq, with probability at least
1 —2/d, we have

,ZZVarem (ZB . x0) (05— 000, ) 1X ¢ )zfnne—eﬁ”n%-

t=1 j=1

Given (S17), this assertion will implies that Li(7,0) > Fri(||0 — S H ) for all
9 — 0" € C; with probability at least 1 — 2/d, where ri(z) = p122/(2 + 40081/2.%).
The lemma will then follow easily.

For A € M,,, we define

T p

p
ZVare(l) <Z (X(t) X ]‘X(t >
1 j=1

1
1 Ef
VI (r,8) %

t= k=1

and

def
Wi & Covya (B(X;ﬂ,x,g”),B(X§t>,x,g€>>yx<f;)

_E{Covaim (B(X](qxlgt))’ B(x® x{)x" )}

Then for A € Cy \ {0},

T P p

VirA) = LYY Y auanE [Cov (BOX. X, B, X)X )] .
t=1 j=1k,k'=1
T P p

1
7 D Al Wi (518)
t=1 j=1k,k'=1
Using H1, we deduce that

Vi(r,A) > 2p1||A]3 + ZZ Z Ajr Wi

T3 = k=1

P p
T —T,
+ (T*)"' ZE9£2) Val’g(*l) (Z Ajk‘Bik‘(Xja Xk)|XJ>]
j=1 k=1

p p
_ (7—7_7_*)+ZE9§1) Var9£l> (Z Agk:sz Xk)|X]>] . (819)
k=1

Jj=1
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By the comparison Lemma 5

p
Val’eim <Z AjkBik(Xj7 ’X ])

k=1

By Ey

p
Varo (Z AjiBir(X;, Xk)|X—j>] ‘

k=1

(Z A, u) > 055 — 053] < cib (Z |Ajk|>2

k=1 k=1 k=1

which implies that

64
Vi 8) 2 (200 - Sr = ) sice) I + 1 LSS anannl.

T == 1kk'=1

Given that on T, 128(7 — 74)s1cgb < p17, it follows that for all 7 € T,

V! (r,4) = Pl ’AHz ZZ Z Ajrlje W gk:k/ (520)
T =1 =1 kb=
Set Z7;. e %Z W/j(,i)k We conclude from equation (S20) that if for some A €
t=1

Cy\ {0}, and for some 7 € T,
Vi(r,A) < prl|A]I3 (S21)

then
p

L1 2
Z Z JkAJk’ ]kk’ = _?HAHQ'

j=1kk=1

But on the other hand, using the fact that A € Cq,

p P p P 2
SN sz, > - (Sup! jkk’) (ZZ! m!)
k,k'=1

J=1kk'= Jok.k! i=1 k=1

> - (sup Z kk/l> al|a|?
Jsksk

S VP (s}tjp \Zj(zk/o A3
j7 9

Therefore if there exists a non-zero A € C; and 7 € 7 such that equation (S21)

holds then (sup |Z kkJ) > (p1/s1)(1/128). But by Hoeffding’s inequality and a
]7 k)
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union-sum bound,

~ 128s; 29¢5sq

vy

2
T p1 TP 2
P lsug/ |ZJ(,€,)f > ] < 2exp <3logp - 212> < .
since for r € T, 7 > 21lc%s%pf2 log p. O

LEMMA 5. Let (Y, A,v) be a measure space where v is a finite measure. Let
91,92, f1, f2 : Y = R be bounded measurable functions. Set Z,, def fyegi(y)l/(dy),

i€{1,2}. Then

Zlgl [ nwerivay) - Zl / f2<y>egz<y>u<dy>\

< 1f2 ~ fulle + 50SC(g2 — 1) (056(12) + 056 2)).

where || fllooc = sup,ey |f(z)|, and osc(f) & sup, ey |f(x) — f(y)| is the oscillation
of f.

PROOF. The proof follows from Atchadé (2014) Lemma 3.4.

S3. Different Methods of Missing Data Imputation for the Real Data Appli-
cation

In the main paper we replaced the missing votes by the value (yes/no) of that
member’s party majority position on that particular vote. Here we employed two
other missing data imputation techniques viz. (i) replacing all missing values by
the value (yes/no) representing the winning majority on that bill and (ii) replacing
the missing value of a Senator by the value that the majority of the opposite party
voted on that particular bill. The estimated change-point obtained following these
two imputation methods are not much different . The imputation technique (i)
results in a estimated change-point at January 19, 1995 and the technique (ii)
yields estimated change-point at January 17, 1995 respectively. The change-point
estimate we obtained in the main paper was January 17, 1995. Clearly there is
not much difference between the different imputation techniques and Fig. S1 also

conveys the same message.
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Fig. S1: Estimated Change-points via imputation technique (i) and (ii) respectively
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