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 

Abstract—This paper reports on down-sampling based 

techniques to achieve low power consumption and fast 

readout for capacitive touch screen panels (TSPs). Here, 

touch interactivity is processed as an image, which is 

down-sampled and reconstructed to estimate the touch 

position. After the reconstruction, a regional scan is 

performed around the reconstructed touch location to 

retrieve accurate touch information. Based on 

experimental and simulation results, we successfully 

decreased readout time and power consumption by 11.3 ms 

(68%) and 8.79 mW (68.7%), respectively, when only 25% 

sensors were selected. The presented technique yields 

higher responsivity and lower power consumption while 

maintaining detection accuracy.  

 

Index Terms—down-sampling, capacitive touch screen 

panel, fast readout, low power consumption. 

I. INTRODUCTION 

APACITIVE based touch sensing has become an 

ubiquitous technology in displays [1]. To design a 

capacitive touch screen panel (TSP), many factors need to be 

taken into consideration, such as power consumption, readout 

speed and detection accuracy. Current commercial TSPs in 

personal digital assistants (PDAs) can provide good accuracy 

and responsivity. However, short battery lifetime caused by 

high power consumption brings inconvenience to users, leading 

to the popularity of mobile power pack in market. Here, power 

consumption is attributed to noise and number of scanned touch 

sensors (in this paper, “sensor” refers to an electrode pad in 

multi-pad architecture and electrode intersections in 

rows-and-columns architecture). The noise can lead to 

mis-registration (in terms of presence and position of the touch 

signal), thus high excitation voltage is normally used, resulting 

in high power consumption. The latter has a positive linear 

correlation with power consumption. Hence, the power 

consumption can be reduced by removing noise and/or 

down-sampling the touch sensors (e.g. from 80×80 to 40×40). 

However, it should be noted that, directly reducing the number 

of scanned sensors adversely affects detection accuracy.  

In our previous work, touch event related frames are 

processed as images [2]-[21], and the noise is eliminated by 

correlated double sampling (CDS) and spatial low-pass 

filtering related techniques [22][23]. In this paper, by 

 
 

employing the sparse and low spatial frequency property of 

touch signal, compressive sensing [24]-[41] and averaging 

based down-sampling techniques are presented to reduce power 

consumption while maintaining detection accuracy. 

Furthermore, as the number of scanned touch sensors is 

reduced, the touch panel’s readout speed is also boosted. As 

illustrated in Fig. 1, instead of scanning all the sensors, only a 

portion of them are selected with a random or fixed pattern. A 

compressive sensing or low-pass spatial filtering reconstruction 

algorithm is then applied to the down-sampled signal, 

depending on the down-sampling pattern. However, after 

interpretation of the signal, the detected touch position may 

differ from the original one, thus requiring a suitable regional 

scan around the reconstructed touch position to retrieve 

accurate touch information. The regional scan range is 

determined by the reconstruction quality, which mainly 

depends on the percentage of the sampled sensors and the touch 

signal property. Through this method fewer sensors are 

scanned, therefore the readout speed is boosted and power 

consumption lowered.  

This paper is structured as follows: in Section II, the 

parameters of the test bed are provided and the down-sampling 

based algorithms are explained in detail. Experimental and 

simulation results with corresponding discussions can be found 

in Section III.  

 

II. EXPERIMENTAL TEST BED AND ALGORITHM DESCRIPTION 

Test Bed Description 

The experiments were carried out on an 80×80 touch screen 

panel. Details of the test bed are provided in Table I. 

 
TABLE I 

PARAMETERS OF TEST BED 

Parameter Unit Value 

Diagonal Inch 10.1 

Aspect Ratio None 16/9 

Excitation Voltage Volt 10 

Display Pixel Size (Micrometer)2  56×56 

TX Electrode Size Millimeter 3 
RX Electrode Size Micrometer 449 

Refresh rate Hertz 60  

Sensing Array Size (Millimeter)2 3×3 
Sensing Array Spacing Millimeter 2 

*Note: TX and RX represent transmitter and receiver respectively. 
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Algorithm Description 

    Instead of scanning all electrode pads or intersections, only a 

small portion (e.g. 25%) were selected and measured, and then 

the collected data was processed by the reconstruction 

algorithms to recover the touch event related image. However, 

the touch location of the reconstructed signal may differ from 

the original one. The shifted distance mainly depends on both 

the percentage of the electrode pads sensed by the processor 

and the reconstruction algorithm. A pixel is defined as the unit 

of distance as shown in Fig. 2 (a). Thus, considering the 

changed distance, a regional scan within a certain range is 

performed to acquire the accurate touch location and relevant 

information. For example, if the changed distance is d, then the 

regional scan range will be a square centered at the 

reconstructed touch position, with a side length of 2d. This is 

illustrated in Fig. 2 (b). In this case, the side length is 2, and the 

square covers 9 electrode pads, which indicates that these 9 

electrode pads will be scanned after the reconstruction to obtain 

accurate touch information. 

The flowchart of the algorithm is described in Fig. 3. After 

selecting a portion of sensors, the scanned frame (fscan) is 

applied with reconstruction (e.g. minimum1 norm) method, 

 
yielding the frame freconstruction. The reconstructed frame is then 

sent into the touch decision function to determine if a touch 

happens or not. On a positive determination, a regional scan is 

performed to obtain the accurate touch location and relevant 

touch information.   

 

 
Fig. 1. Merits and drawbacks of the down-sampled signal, and compressive sensing based fast readout technique.   

 
                            (a)                                                       (b) 
Fig. 2. (a) The distance from one pixel (i,j) to other pixels (e.g. (i+1, j+1) )can 

be expressed by Euclidean distance. The unit of the distance is pixel. (b) 

Regional scan method for the multi-pad capacitance TSP. Red pads will be 
scanned rapidly after the reconstruction. The yellow point is the reconstructed 

touch position.  

 

 

 
Fig. 3. Flowchart of the down-sampling based fast readout technique. 
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III. RESULTS AND DISCUSSION 

A. Experimental and Simulation Results by Random Pattern 

Down-sampling 

Three sets of simulations were investigated by randomly 

collecting 10%, 30%, and 50% of the original electrode pads. 

The Monte Carlo method was applied to have the distribution 

of the estimated touch positions. Each set had 1000 simulations. 

Three reconstruction results are depicted in Fig. 4 as examples. 

As expected, the least sampled data offered the highest 

probability of poor reconstruction result. The reconstructed 

touch positions followed a Gaussian distribution, and the 

distribution of the 10% sampled set is shown in Fig. 5 (a). 

Taking the cross-section of the direction with the largest 

variance (Fig. 5 (b)), we analyze the probability of the changed 

distance modeled as: 

 

                                                                                           (6) 

 

Here d is the distance between the reconstructed touch position 

and the original touch position. We assume that the 

reconstructed results out of [μ-3σ, μ+3σ] (μ and σ are the mean 

and variance of the Gaussian distribution) [42] rarely happens, 

thus the maximum changed distance is 5 pixels. Under the same 

analysis, the maximum changed distances of 30% and 50% 

sampled data sets in our simulations were 4 and 3 pixels, 

respectively. To ensure the regional scan range can cover the 

original touch location, the scan side length is determined to be 

twice the maximum changed distance. The number of actual 

covered sensors within the square is expressed as: 

 

                                       ;                                                        (7) 

 

where NRegional-scan is the number of measured sensors at the 

regional scan stage. Increasing the percentage of the sensed 

sensors gives rise to a higher probability of maintaining the 

touch location. 

For example, Taking 10% sampled data to acquire the 

accurate single touch position, only 121 electrode pads centered 

at the peak touch value location are required to be regionally 

scanned. The number of totally measured sensors is 761. In 

contrast, 6400 sensors are needed to be read using the 

traditional method. When multi-touch occurs, the number of 

measured sensors is expressed as: 

 

                                                                                ;  

 

                                                                 ;                                 (8) 

 

where NTotal denotes the total number of measured sensors and 

NDown-sampled is the number of randomly selected sensors. 

PDown-sampled and Nsensor are the percentage of sampled sensors 

and total number of sensors in a touch panel, respectively, and 

MTouch is the number of touch events. The relationship between 

PDown-sampled, NRegional-scan and NDown-sampled in this work is 

illustrated in Table II.  

 

 

 

   
                             (a)                                                       (b) 

   
                             (c)                                                       (d) 

Fig. 4. (a) Original signal; (b), (c) and (d) are reconstructed signals with 

50%, 30% and 10% of original electrode pads. 

 

 

 

 
(a) 

(b) 
 

Fig. 5. (a) Distribution of the reconstructed touch positions; X-Y coordinates 

indicate the distance between the reconstructed touch position and original 

touch position. (b) The cross-section with the largest variance of (a).   
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TABLE II 

MULTI-PAD TSP 

PDown-sampled NDown-sampled NRegional-scan 

10% 640 121 
30% 1920 81 

50% 3200 49 

 
It is observed that the presented algorithm is more suited to 

large-scale touch panels. For example, for a small-scale touch 

panel there are 320 (20×16) touch sensors and 50% sensors are 

randomly selected, if greater than 4 touch events happen NTotal 

may be bigger than NSensor. It is possible that a noise spike is 

sampled and remained in the reconstructed touch signal. 

However this will not affect touch detection accuracy, as in 

touch decision function, noise reduction methods are normally 

applied, thus this will not contribute to additional regional scan 

and cause further cost.  

B. Experimental and Simulation Results for Fixed Pattern 

Down-sampling 

    By analyzing the characteristic of the frame after 

zero-insertion (fzero-insertion), the filter size has to be (2n+3) × 

(2n+3), where n is a positive odd integer. In this paper, a 5×5 

average filter is employed.  

A swipe touch frame is illustrated in Fig. 6 with the 

corresponding reconstructed frames using a low-pass spatial 

filter as an example, based on which it can be observed that the 

touch event’s low frequency spatial property is reconstructed. 

After applying the spatial low-pass filter, an additional benefit 

is the boost in ratio between the touch signal to the peak noise 

spike, which in our experiments is 5.4 dB on average. The 

regional scan range is determined by the reconstruction quality, 

which is related with the touch signal properties (shape and 

position) and the size of spatial LPF. In the above, the  

determined filter size to smooth the noise spikes is 5×5, based 

on which the distribution of the estimated touch positions are 

shown in Fig. 7. It can be observed that the distribution shape 

follows a Gaussian (Fig. 7 (a)).  Taking the cross-section of the 

direction with the largest variance (Fig. 7 (b)), we analyze the 

probability of the changed distance, which can be modeled as 

 

 

                                                             ;                              (6) 

 

 where d is the distance between the reconstructed touch 

position and the original touch position. Align to the 

assumption made above, the maximum changed distance is 2. 

From Eq. 7, it can be shown that to acquire the accurate single 

touch position, only 49 electrode pads centered at the peak 

touch value location are required to be regionally scanned. The 

number of totally measured sensors is 1649. In contrast, 6400 

sensors need to be read previously. The analysis of the number 

of measured sensors for multi-touch events is the same as 

discussed in random pattern down-sampling section.    

C. Algorithm Time and Energy Budget 

If the minimum 1 norm reconstruction algorithm is 

employed, the computation complexity is O(Nlog2N) [28], 

     
                             (a)                                                          (b) 

     
(c)                                                          (d) 

Fig. 6. (a) original swipe touch based frame, (b) down-sampled touch signal, 

(c) reconstructed touch signal by using low-pass spatial filtering, (d) regional 

scanned touch signal.  

 

 

 

 
(a) 

(b) 

Fig. 7. (a) Distribution of the reconstructed touch positions; X-Y coordinates 

indicate the distance between the reconstructed touch position and original 

touch position. (b) The cross-section with the largest variance of (a). 
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which indicates that approximately 80K multiplications are 

needed to reconstruct the signal. For a GHz range processor, the 

calculation time is about 80 µs. Compared to the duration of a 

touch event, which is assumed to be 0.1 s, and the scanning 

interval (17 ms), the calculation time is negligible. Commercial 

embedded processors achieve a power efficiency of over 

20 MIPS/mW [43], which means that the power consumption is 

around 25 μW. The energy required for measuring one sensor is 

approximately 1/30 μJ [28]. For the experiment test-bed, the 

power consumption is around 12.8 mW. Therefore, the power 

consumption of the compressive sensing reconstruction is 

insignificant. If only 30% of the electrodes are measured, then 

around 8.79 mW can be saved.   

If touch information is the most important consideration then 

iterations of regional scans can be performed to obtain more 

detailed information. For example, our experiment was carried 

out on an 80×80 touch screen panel with a scan rate of 60 Hz, 

thus around 2.6 μs was required to read one sensor. If in the 

down-sampled stage 50% of the sensors are measured, roughly 

8.4 ms is needed to use the reconstruction algorithm, after 

which the rest of the time can be used for a regional scan. One 

regional scan takes about 0.2 ms, thus during one touch event 

approximately 40 regional scans can be performed. As more 

time is used to read the sensors, noise can be averaged. The 

above relationship can be expressed as: 

 

                                                                                        ;   (9) 

 

where TFrame is the time to scan the original frame (e.g. 16.7 ms 

in this paper), TDown-sampled the time to read the down-sampled 

sensors and TSensor the time to measure one sensor.   

    It should be noted that stylus touches were used in our 

experiments (multi-pad and rows-and-columns), which cover 

more sensors than a typical finger touch (e.g. 3×3). The radius 

of the regional scan area for a finger touch can be limited to 1 

pixel. Details of this are currently being investigated.   

IV. CONCLUSION 

    This paper presents a down-sampling based fast readout 

technique for multi-pad and rows-and-columns capacitance 

TSPs so to achieve fast readout and low power consumption. 

By down-sampling the touch sensors and reconstructing the 

touch related frame, a possible touch position is estimated. To 

acquire accurate touch information, a regional scan is then 

conducted around the estimated touch position. Through the 

presented technique, the savings in power consumption is 

8.79 mW (68.7%) and the readout speed is boosted by 11.3 ms 

(68%) without compromising detection accuracy. 
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