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Future advances in surgical care increasingly require a close partnership between 
caregivers, patients, technology, and information systems. As part of the move 
towards personalized medicine, interventional care will more and more transform from 
an artisanal craft based on physicians’ individual experiences, preferences and 
traditions to a discipline that relies on objective decision-making based on large-scale 
data from heterogeneous sources. 

Data science is an emerging interdisciplinary field that deals with the extraction of knowledge 

from data. Despite the tremendous progress in the field of data science made over the past 

decade, the introduction of large-scale data science into interventional medicine (e.g. 

surgery, interventional radiology, gastroenterology, radiotherapy) is lagging. This delay in 

adoption can partly be attributed to the fact that, today, only a fraction of patient-related data 

and information is digitized and stored in a structured and standardized manner, e.g. in 

registries (1,2). Furthermore, diversity in caregiver training, experience and routine 

institutional practices have driven variation in perioperative care. Without data to provide a 

lens on actual practice, disparity in outcomes is an inevitable consequence.   

This paper introduces Surgical Data Science as an emerging scientific discipline. Key 

perspectives are based on discussions during an intensive two-day international interactive 

workshop1 that brought together leading researchers working in the related field of computer 

and robot assisted interventions. Our consensus opinion is that increasing access to large 

amounts of complex data, at scale, throughout the patient care process, complemented by 

advances in data science and machine learning techniques, has set the stage for a new 

generation of analytics that will support decision-making and quality improvement in 

interventional medicine. In the remainder of this article, we provide a consensus definition for 

Surgical Data Science, identify associated challenges and opportunities and provide a 

roadmap for advancing the field.  

                                                
1
 www.surgical-data-science.org/workshop2016 

Figure 1: OR 2030. The operating room of the future will seamlessly synchronize with the surgical 
procedure to provide the right assistance at the right time. 

file:///C:/Users/maierl/Dropbox/docs/Conferences-Workshops-etc/Surgical-data-science-workshop/Paper/downloaded/www.surgical-data-science.org/workshop2016


Evolution of surgical practice 

“Surgery is a profession defined by its authority to cure by means of bodily invasion” (3). 

Despite increased expectation about outcomes and safety from patients, hospitals and 

insurers, studies estimate that 9 million (4) of an estimated 300 million surgical procedures 

per year worldwide (5) will encounter major complications.  

Surgical practice has significantly evolved across time (cf. Fig. 2). It underwent revolutionary 

changes with the introduction of anesthesia and antisepsis in the 19th century.  During this 

time, surgeons typically relied on minimal instrumentation as well as their own knowledge 

and clinical experience, which was to some extent augmented by learning from peers and 

few available medical books. In the 20th century, advances in surgery centered around 

professionalization, systematic measurement of outcomes of care, and minimally invasive 

access to surgical sites. Surgery was further transformed with the introduction of multimodal 

medical imaging (6), the development of surgical microscopes and endoscopes and 

ultimately the emergence of computer and robot assisted interventions (7).  Despite rapid 

advances, the seamless integration of computer-aids in the surgical environment allowing 

situation awareness, ergonomics and minimization of cognitive workload has not been 

achieved yet. Furthermore, the internet revolution has brought access to a nearly unlimited 

amount of electronic patient records, but this avalanche of data is typically unstructured with 

limited quality control and almost no direct integration with computer-assisted surgical 

systems.  

Future advances in surgery will continue to be motivated by safety, effectiveness, and 

efficiency of care. The next paradigm shift will be from implicit to explicit models, from 

subjective to objective decision-making, and from qualitative to quantitative assessment. This 

will enable personalized treatment and will place patients and caregivers into the focus of 

future evolution. Within this future vision, Surgical Data Science will evolve to observe 

everything happening within and around the treatment process. It will provide the surgeon 

with quantitative support to aid decision-making and surgical actions and - importantly - will 

link decisions to patient outcomes. For the patient, this will mean having access to the best 

surgical care with less variability arising from unique patient characteristics rather than the 

choice of surgeon or care facility. Ultimately, Surgical Data Science will offer the opportunity 

to create “superhuman” surgery by moving beyond the data associations that individuals are 

able to perceive, detect and maintain, into the realm of vast data types and sizes that can 

only be exploited through modern computing solutions. 

What is Surgical Data Science? 

While Surgical Data Science is related to the field of Biomedical Data Science its unique 

characteristic is the focus on procedural data. It pertains to (i) the patient, (ii) effectors 

involved in the manipulation of the patient including physicians, anesthesia team, nurses and 

devices, including robots, (iii) sensors for perceiving patient- and procedure-related data 

such as images, vital signs, medical device data and motion data as well as (iv) domain 

knowledge, including factual knowledge, such as (hospital-specific) standards related to the 

clinical workflow, previous findings from studies or clinical guidelines as well as practical 

knowledge from previous procedures.  

 



 

 

Consensus definition: Surgical Data Science is an emerging scientific field with the objective 

of improving the quality of interventional healthcare and its value through capture, 

organization, analysis, and modeling of data. It encompasses all clinical disciplines in which 

patient care involves intervention to manipulate anatomical structures with a diagnostic, 

prognostic, or therapeutic goal, such as surgery, interventional radiology, radiotherapy, and 

interventional gastroenterology. Data may pertain to any part of the patient care process 

(from initial presentation to long-term outcomes), may be about the patient, caregivers, as 

well as technology used to deliver care, and analyzed in the context of generic domain-

specific knowledge derived from existing evidence, clinical guidelines, current practice 

patterns, caregiver experience, and patient preferences. Data may be obtained through 

medical records, imaging, medical devices or sensors that may be either positioned on 

patients or caregivers or integrated into instruments and technology used to deliver care. 

Improvement may come from understanding processes and strategies, predicting events and 

clinical outcome, assisting physicians in decision-making and plan execution, optimizing 

ergonomics of systems, controlling devices before, during and after treatment as well as from 

advances in prevention, training, simulation and assessment. Surgical data science builds on 

principles and methods from other data-intensive disciplines such as computer science, 

Figure 2: Evolution of Surgery: In the PAST, a “physician for all purposes” handled patient treatment 
based on local traditions with only a minimum of equipment. At PRESENT, a wealth of information can be 
acquired for each patient, and modern surgery rooms are equipped with numerous devices for 
performing and monitoring treatment. However, it is up to the individual surgical team to make use of 
their domain knowledge and experience to use all the available information in an optimal manner. 
FUTURE surgery will be based on automatic holistic processing of all the available data to facilitate, 
optimize and objectify care delivery using Surgical Data Science techniques.   



engineering, information theory, statistics, mathematics, and epidemiology, and 

complements other information-enabled technologies such as surgical robotics, smart 

operating rooms, and electronic patient records. 

Key Clinical Applications 

As the definition above suggests, a data science approach may impact surgical care through 
the entire patient care pathway. Some of the opportunities include: 
  

i)      Decision Support 

The quality of surgical care is affected to a varying extent by decisions made by caregivers 

and patients throughout the care pathway. Traditionally, surgeons relied upon their 

experience to play a major role in consequential decisions such as on whether to operate 

and the type of surgery to be performed (8). This decision-making model has gradually 

evolved to be informed by predictive analytics based on systematic data capture and curation 

through patient registries. However, currently available registry-based analytics to support 

surgical decision-making rely upon cross-sectional measures of a subset of patient 

characteristics before surgery (9). Furthermore, registries rarely capture the full record of the 

patient care pathway and vary in the amount of missing data (10). A data science approach 

to decision-support relies not only upon continuously updating predictive analytics throughout 

the patient care process but also upon more comprehensive and unconventional sources of 

data (11,12,13). Furthermore, surgical decisions may be optimized by modeling individual 

patients within the context of population-level data and other multimodal data sources 

(14,15). Finally, Surgical Data Science emphasizes integration of such decision-support into 

patient care workflows through user-friendly data products. 

ii)  Context-aware Assistance  

Surgical Data Science enables context-aware assistance and applications throughout the 

patient care pathway. In the operating room, such applications include monitoring procedures 

to predict remaining duration to facilitate scheduling or to anticipate need for resources (16). 

Similarly, autonomous assistance can provide surgeons with timely information through 

surgical phase recognition (17,18), decision-support through patient-specific simulations (19), 

and collaborative robots (20). Context-aware assistance enhances safety, quality, and 

efficiency of care, and can augment providers’ performance, when integrated into surgical 

care pathways. 

iii) Surgical Training 

Surgical education and certification ensure that competent surgeons provide care, and are 

thus a critical aspect of assuring quality of care. Poor surgical technical skill is associated 

with an increased risk of readmission, reoperation, and death (21,22). Technical skill and 

errors are also associated with non-technical skills such as decision-making (23). Surgical 

Data Science can be transformative for surgical training through objective computer-aided 

skill evaluation (OCASE) (24), robot-assisted active learning of technical skill (25), patient- 

and context-specific simulation training and assessment, and surgical coaching (26,27). 

Additional data analytics such as surgical process modeling, detection of constituent 

activities, errors, and skill deficits facilitate targeted feedback based on OCASE (28,29). 

Surgical Data Science thus represents the new frontier for surgical training in a complex 

patient care environment with limited resources. 



Key Challenges 

We foresee two immediate challenges to advancing our vision of Surgical Data Science - 

data availability and analysis of highly heterogeneous multi-modal data.  

Surgical Data Science relies upon access to high-quality data at large scale that documents 

both the patient care process and patient outcomes. While other communities share 

databases for advancing research and practice (cf. e.g. ImageNet2), such resourceful 

databases are lacking in surgery despite an inherent culture of quality improvement through 

outcome measurement, for example, using patient registries. This paucity of databases may 

be attributed to a multitude of regulatory, technical, and sociological factors. For example, 

concerns related to privacy and confidentiality of both patients and caregivers pose important 

legal and ethical issues that must be addressed for data science to be possible. On the other 

hand, although large amounts of data are routinely available during interventional care, it is 

not captured and annotated using standardized protocols (30). While international healthcare 

terminology standards for biomedical data science are well-established (cf. e.g. Foundational 

Model of Anatomy (FMA)3 , Gene Ontology (GO)4 , SNOMED-CT5), ontologies to describe 

activities and other aspects of interventional care processes are lacking. Furthermore, data 

annotation is resource-intensive. Whereas some aspects of annotating data from 

interventional care processes may be crowdsourced to lay untrained individuals (31), others 

may require content expertise. Ultimately, data should be collected as a matter of best-

practice in a consistent, longitudinal manner with tools that smoothly integrate into the clinical 

workflow. Workers in the field need to identify allies and clear short-term “win scenarios” that 

will build interest and trust in the area so that hospitals, insurers, and practitioners all see the 

value of creating the resources to advance the profession (32). 

Analysis of data from interventions also introduces unique challenges. First, a substantial 

aspect of Surgical Data Science involves modeling the orchestrated manipulation by teams 

of individuals, and patients’ response to such actions. In surgical procedures, for example, 

not only the head surgeon but also anesthetists, assistant surgeons, circulators and nurses 

play crucial roles at different workflow steps within surgery and their smooth dynamic 

collaboration and coordination play an important role in the success of the overall process. 

Second, anatomical manipulation during surgery is frequently irreversible, with errors 

resulting in serious complications or even death. Hence, robustness and reliability of the 

methods are of crucial importance (33). Furthermore, while the diagnostic process follows a 

rather regular flow of data acquisition and big companies such as Google Inc. (Mountain 

View, CA, USA) and IBM (Armonk, NY, United States) have started developing Biomedical 

Data Science techniques to support it, the surgical process varies significantly from case to 

case and is highly specific to procedure, patient, and surgeon (34). The heterogeneity in the 

data resulting from different hardware, imaging protocols (cf. OR.NET6 and MD PnP7), 

context, training, care guidelines, physicians, and so forth is a grand challenge to be 

overcome - not only for the development of data analysis methods but also for the validation 

of new methodology and systems. Finally, procedural data must be holistically analyzed with 

                                                
2
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3
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other heterogeneous data including genetics, biomarkers, patient demographics, imaging, 

pre- and intraoperative data, enabling the move from eminence-based to knowledge-based 

and data-driven medicine. In this context, shared tools for optimizing discovery and training 

researchers could significantly advance the field (35). 

Dissemination and Impact  

Surgical Data Science is a field of scientific research. It enables fundamental understanding 

of surgical procedures, their variability, crucial parameters, hidden structures, dependencies, 

optimal pathways, importance of each parameter and keys to success and failure of 

methodologies and basic principles driving our surgical education, training and practice. In 

this sense, its dissemination will be manifold. As discussed above, Surgical Data Science 

could change education and training of millions of physicians across the planet. It is true that 

Wikipedia allowed us to accumulate, prune and improve our knowledge and make it available 

to billions; in the same way, search engines allow us to access information instantaneously 

and to easily get informed. Similarly, Surgical Data Science will allow the next generation 

medical students to better learn from complex data without restriction to a particular book or 

a particular teacher. We expect that distinct career pathways will evolve for training Surgical 

Data Scientists and embedding them into clinical research teams. In addition, data science 

may be introduced into undergraduate and medical school curricula. 

The end-point for discoveries through Surgical Data Science is their effective translation into 

patient care workflows, which can involve commercialization of data products and services. 

This is possible when different stakeholders such as academic scientists and commercial 

partners collaborate from inception through translation of data products. Surgical Data 

Science offers a diverse space for discovery and innovation, which may transform into a wide 

range of products such as decision support systems, smart instrumentation, intelligent 

technologies, or surgical training. Surgical Data Science will enable medical companies to 

fully optimize every single of their solutions and also allow in-depth usability studies of each 

component of every surgical product based on large amount of data and its interaction with 

all other components and players of this complex domain.   

In summary, Surgical Data Science can be disseminated through its impact on a wide range 

of products from medical training and education, to surgical imaging, instrumentation and 

user interface, and finally, next-generation advanced patient information systems getting 

permanently updated based on analysis of large amounts of dynamic data. 

Towards next-generation surgery 

● Surgical Data Science will pave the way from artisanal to data-driven interventional 

healthcare with concomitant improvements in quality and efficiency of care. 

● A key element will be to institutionalize a culture of continuous measurement, 

assessment and improvement using evidence from data, as a core component. 

● An actionable path is for societies to support and nurture efforts in this direction 

through best practices, comprehensive data registries, and active engagement and 

oversight. 

● Surgical Data Science should be established as a new element of both the 

education and the career path for hospitals that teach and train future 

interventionalists. 
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