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ABSTRACT. Kaede, an analogue of green fluorescent protein (GFP), is a green-to-red 

photoconvertible fluorescent protein used as an in vivo ‘optical highlighter’ in bioimaging. The 

fluorescence quantum yield of the red Kaede protein is lower than that of GFP, suggesting that 

increasing the conjugation modifies the electronic relaxation pathway. Using a combination of 

anion photoelectron spectroscopy and electronic structure calculations, we find that the isolated 

red Kaede protein chromophore in the gas phase is deprotonated at the imidazole ring, unlike the 

GFP chromophore that is deprotonated at the phenol ring. We find evidence of an efficient 

electronic relaxation pathway from higher lying electronically excited states to the S1 state of the 

red Kaede chromophore that is not accessible in the GFP chromophore. Rapid autodetachment 

from high lying vibrational states of S1 is found to compete efficiently with internal conversion 

to the ground electronic state.  
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Green fluorescent proteins (GFP) and its family of variants are used widely as non-invasive 

fluorescent probes for in vivo monitoring of biological and biochemical processes.1-6 The wild-

type GFP chromophore, p-hydroxybenzylidene-2,3-dimethylimidazolinone (pHBDI, Fig. 1), is 

formed by the cyclisation and oxidation of Ser65–Tyr66–Gly67 amino acid residues and is 

embedded within a β-barrel protein structure.1,4,7-10 The chromophore exists in deprotonated 

anionic (pHBDI–) or neutral forms and excitation of either of these leads to fluorescence from the 

deprotonated anionic chromophore at around 508 nm, with a quantum yield of Φ = 0.7911-14 (the 

neutral form deprotonates upon photoexcitation, yielding the anionic form).11,15 An interesting 

feature of the isolated GFP chromophore is that it is non-fluorescent, in both solution and gas-

phases,12,14,16-17 as a result of efficient ultrafast non-radiative decay pathways being accessible in 

the absence of the protein.18  

 

Fig. 1 Structure of the model GFP chromophore, p-hydroxybenzylidene-2,3 

dimethylimidazolinone (pHBDI) (top) and the model rKaede chromophore (bottom). Possible 

deprotonation sites are highlighted in blue. 
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For multi-labelling experiments, GFP variants with high visual contrast are desirable.19-20 

Kaede, an analogue of GFP, is a green-to-red photoconvertible fluorescent protein.19,21-22 It has a 

GFP-like chromophore, thus fluorescing green (green Kaede) following irradiation at 480 nm.19-22 

Upon exposure to ultraviolet (UV) light (350 – 420 nm), green Kaede converts efficiently and 

irreversibly into a red fluorescent form (rKaede).19-21 This green-to-red fluorescence conversion 

produces an easily distinguishable bright and stable red colour that is not present in the un-

irradiated sample.1,19 Selective UV irradiation of cells expressing the Kaede protein enables it to 

be used as an in vivo ‘optical highlighter’ in bioimaging.1,19,21 Importantly, the excitation 

wavelengths needed to generate the red or green fluorescence do not induce photoconversion.19  

The green-to-red photoconversion of Kaede has been the subject of several studies.21,23 Briefly, 

UV light causes a Cα-Nα bond cleavage of the green Kaede chromophore, which is followed by 

deprotonation which in turn leads to the extended π-conjugated system that red-shifts the 

emission.21,23 The green Kaede chromophore, made up of a tripeptide of His62–Tyr63–Gly64,21,23 is 

similar to that of GFP; however, relatively little is known about the photophysics of the isolated 

model rKaede chromophore, 2-[(1E)-2-(5-imidazolyl)ethenyl]-4-(p-hydroxybenzylidene)-5-

imidazolinone (Fig. 1).21 Since the fluorescence quantum yield of the rKaede protein, F = 0.33, 

is lower than that of GFP,19 it seems likely that non-radiative decay pathways play a more 

important role in the excited state dynamics of the rKaede protein. 

The aim of this combined photoelectron spectroscopy and computational study of the rKaede 

chromophore is to shed new light on how the extended conjugation affects non-radiative 

processes in the gas-phase. Understanding the intrinsic properties of the rKaede chromophore is 

important as it is a first step towards understanding such processes in the protein; for example, 

the higher lying electronic states of the GFP chromophore in the gas-phase undergo efficient 



 5 

electron detachment and in the protein are resonant with a quasi-continuum of solvated electron 

states, enhancing electron transfer from GFP to the solvent.24 

Several recent experimental and theoretical investigations of pHBDI– in the gas-phase have 

identified two dominant competing radiationless relaxation channels – fragmentation, following 

IC back to the ground electronic state, and electron detachment.16,18,24-34 Experimental 

photoelectron spectroscopy studies and quantum chemistry calculations of gas-phase pHBDI– 

have revealed that both direct and indirect electron detachment processes play an important role 

in the deactivation of isolated pHBDI–.16,18,24,26-35 Close to the detachment threshold, around 355 

nm, direct photodetachment dominates. This wavelength corresponds to a minimum in the 

overall action absorption spectrum, lying above the maximum absorption cross-section to the 

first, bright electronically excited state, but below the onset of significant absorption cross-

section to higher-lying electronically excited states. In fact, vibrationally-resolved photoelectron 

spectra of cold pHBDI–  recorded at 355 nm have confirmed the adiabatic detachment threshold 

to be 2.73 eV (454 nm)27 in agreement with calculations.36 Above the photodetachment threshold, 

in the 350 – 315 nm photoexcitation range, indirect electron emission via resonant excitation of 

higher lying electronically excited states is also possible. Although there are many excited states 

and competing non-adiabatic decay pathways, the electron emission is dominated by a single, 

optically bright, excited state shape resonance that is strongly coupled to the electronic 

continuum.24,37  

The rKaede chromophore has two deprotonation states: the O(-) form which is deprotonated at 

the O7 position on the phenol group (as in p-HBDI–), or the N(-) form which is deprotonated at 

the N19 or N21 positions on the imidazole group.  Studies of the wild-type rKaede protein have  
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Fig. 2 Structures of (a) N(-)-1 and (b) O(-)-1 conformers of the rKaede chromophore anion. 

Representative bondlengths of the N(-)-1 S0, S1 and D0 minima obtained with different methods 

(see text) given in Å. Relative energies in the gas phase (g) and in water in kcal mol-1 at the 

bottom of the figure.  

 

revealed the chromophore in the protein to be deprotonated at the phenolic oxygen.21,23 The pKa 

of unsubstituted imidazole in water (14.52)38 is higher than that of phenol (9.95), suggesting that 

the phenoxy form might be the more stable form of the deprotonated isolated chromophore in the 

gas phase; however, MP2 calculations on seven N(-) and O(-) rKaede isomers with different side 

chain conformations indicate that the N(-) form is more stable in the gas phase (see 

Computational Details and Table S1 in the Supporting Information). The most stable N(-) 

conformer at the MP2/aug-cc-pvtz level, labeled N(-)-1 (see Figure 2a), is planar and has E 

conformation along the C16-C17 bond and s-trans and s-cis conformation along the C11-C15 and 

C17-C18 bonds, respectively, and it is approximately 2 kcal mol-1 more stable than the other N(-) 

isomers. This arrangement was also found in an NMR study of a fragment of the Kaede protein 



 7 

containing the red chromophore.21 In turn, the most stable O(-) conformer, O(-)-1 (Figure 2b), 

has E, s-trans, s-trans conformation and is 3.6 kcal mol-1 higher in energy than N(-)-1. These 

values are internal energies because calculation of the entropic contribution is not practical at this 

level of theory; however, our assignment of N(-)-1 as the predominant gas-phase is confirmed by 

the calculated vertical detachment energies (VDEs) and the photoelectron spectroscopy data (see 

next section).  

The relative stabilities in water have been estimated at the PCM/MP2/aug-cc-pvtz level.39 This 

approach does not consider specific H bonds but gives a first approximation of the solvation 

effect. O(-)-1 is stabilized compared with N(-)-1, and the two isomers have virtually the same 

energy, the difference being less than 0.01 kcal mol-1 (see SI). This suggests that in water there 

may be an equilibrium between the two forms. Overall, the deprotonation state of the rKaede 

chromophore is very sensitive to the environment, which is consistent with the pH dependence of 

the absorption spectrum of the red protein.19 The stabilization of O(-)-1 in water is due to its 

larger dipole moment, 16.5 Debye compared to 9.7 Debye for N(-)-1 in the gas phase, and the 

deprotonation of the phenol ring found in the protein is probably a result of the neighboring 

residues, which favor the electronic density distribution of the O(-) form. 
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Table 1 Vertical p,p* excitation energies Eex, and corresponding wavelengths l, for the first five 

singlet excited states, S1-S5,a of the N-deprotonated rKaede chromophore (N(-)-1) at the MS-

CASPT2, TD-CAM-B3LYP and CC2 levels of theory. Oscillator strengths f are in parentheses. 

The CASSCF/CASPT2 orbitals are presented in Fig. 3. S1 vertical excitations of the O-

deprotonated species (O(-)-1) and MS-CASPT2 data for p-HBDI– included for comparison. 

 MS-CASPT2(14,14)/ 
ANO-Lb 

TD-CAM-B3LYP/ 
6-311++G(3df,3pd) 

CC2/cc-pvtzd 

 Eex/eV (f) l/nm 
 

Characterc Eex/eV (f) l/nm Eex/eV (f) l/nm 

S1 2.49 (1.138) 
O(-):e 2.24 (1.03) 
HBDI: 2.77 (1.157) 

499 
 

H→L (0.62) 2.66 (1.266) 
O(-):e 2.48 
(1.28) 

466 2.49 (1.048)  
O(-):e 2.04 
(1.14) 

497 

S2 3.66 (0.029) 
 
HBDI: 3.99 (0.038) 

338 
 

H-2→L (0.26) 
H,H→L,L (0.25) 

3.86 (0.277) 321 3.79 (0.347) 327 

S3 4.07 (0.063) 
 
HBDI: 4.10 (0.073) 

304 
 

H-2→L (0.24) 
H→L+1 (0.24) 

4.03 (0.009) 307 4.02 (0.016) 309 

S4 4.25 (0.215) 
 
HBDI: 4.78 (0.013) 

291 
 

H→L+1 (0.24) 
H-1→L (0.23) 

4.21 (0.100) 295 4.13 (0.158) 300 

S5 4.28 (0.149)f 

 
HBDI: 4.89 (0.020) 

290 
 

H→L+2 (0.31) 
H-3→L (0.18) 

4.44 (0.077) 279 4.21 (0.060) 294 

an,p* states not included in the numbering. bExcitation energies obtained at the SA-8-MS-
CASPT2(14,14)/ANO-L level. SA-8-MS-CASPT2(16,14)/ANO-S data for p-HBDI- included for 
comparison. cState character based on the PM-CASCI expansion from the MS-CASPT2 wave 
function. Squared coefficients given in brackets. d(n,p*) states: 3.78 and 3.94 eV. eS1 vertical 
excitation of the O-deprotonated form (O(-)-1 in Figure 2). fObtained at the SA-11-MS-
CASPT2(14,14)/ANO-L level. 

 

Electronic structure of the rKaede chromophore. The vertical p,p* excitation energies of   

N(-)-1, computed at the MS-CASPT2, TD-CAM-B3LYP and CC2 levels are presented in    

Table 1, and the corresponding orbitals in Figure 3. All methods agree in a bright lowest vertical 
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excitation (oscillator strength 1.05-1.27) corresponding to the HOMO→LUMO transition. The 

excitation energy of S1 at the MS-CASPT2 and CC2 levels is 2.49 eV, while the TD-CAM-

B3LYP value is somewhat higher, 2.66 eV. For comparison, the S1 energy of the O-deprotonated 

form is 0.2-0.4 eV lower (2.24 eV at the MS-CASPT2 level). At the MS-CASPT2 level, S2 of the 

N(-)-1 form has predominantly HOMO-2→LUMO character and appears at 3.66 eV. The S2 

energies are higher with TD-CAMB3LYP and CC2 (3.86 and 3.79 eV) because of the partial 

double-excitation character that cannot be reproduced by TD-DFT or CC2. Because of this, S2 is 

only weakly absorbing at the MS-CASPT2 level (oscillator strength 0.029), while the oscillator 

strength at the TD-CAMB3LYP and CC2 levels is larger. There are three additional states 

between 3.9 and 4.5 eV, approximately, with the following energies at the MS-CASPT2 level: 

4.07, 4.25 and 4.28 eV. Compared to the p-HBDI- anion, the MS-CASPT2 S1-S5 excitations of 

the rKaede chromophore are shifted to lower energies by 0.2 - 0.6 eV. For S1, the red shifts are 

approximately 0.3 eV and 0.5 eV for the N(-1)-1 and O(-)-1 isomers, respectively. This is 

consistent with the usual assumption that extended conjugation causes a red shift in the 

absorption. The lowest n,p* states appear at 3.78 and 3.94 eV at the CC2 level and are not 

considered further because they have oscillator strengths < 0.001 and are only weakly coupled to 

the electron detachment continuum due to their Feshbach resonance character. 
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Fig. 3. Main CASSCF/MS-CASPT2 molecular orbitals involved in the transitions to the first 

three excited singlet electronic states of the rKaede chromophore and a schematic energy level 

diagram showing the resonance character (horizontal blue arrows) of these electronic states with 

respect to the D0 electronic continuum.  

 

The MS-CASPT2 vertical S1 energies of the deprotonated forms in water (see SI for details) 

have been calculated to be 2.52 and 2.76 eV for O(-)-1 and N(-)-1. These values are in good 

agreement with the experimental band maximum of 2.55 eV, even though the calculations do not 

include vibronic effects which often shift the calculated absorption band to the red.40  

The excited states were optimized at the CC2/cc-pvtz level of theory,41-42 and the energies were 

recalculated with MS-CASPT2. Our discussion is based on the MS-CASPT2 values, but there is 

overall good agreement between the relative energies of the two methods for all minima (see 
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Table SI2 for a comparison of the two methods). All optimized structures were planar. The 

calculated band origin (0-0 transition) of N(-)-1 in the gas phase is 2.42 eV (513 nm) at the MS-

CASPT2 level, which corresponds to a relaxation energy of approximately 0.1 eV. The most 

significant structural changes at the S1 minimum are stretches of the C8-C9, N10-C11 and C15-C17 

bonds by 0.03 - 0.05 Å (see bond lengths in Figure 2a). This is consistent with the nodal 

structure of the orbitals involved in the excitation (H and L in Figure 3), which are delocalized 

along the conjugated system. The S2 state has a relaxation energy of 0.30 eV, and the relative 

MS-CASPT2 energy of the S2 minimum 3.36 eV. The main changes in the bond lengths involve 

the imidazole ring, where the excitation is localized (see the H-2 orbital in Figure 3). At this 

structure, the energy of S1 is 3.03 eV. The S2/S1 energy gap is reduced from 1.17 eV at the 

Franck-Condon structure to 0.33 eV at the S2 minimum, which suggests that there may be a near-

lying conical intersection facilitating S2→S1 internal conversion. Finally, optimization of S3 at 

the CC2 level of theory leads to a state inversion and a minimum on S2 with a relative MS-

CASPT2 energy of 3.66 eV. At this structure, the S3 energy is 3.75 eV. This suggests that 

excitation of S3 will result in rapid internal conversion to S2, and we postulate that this will be 

followed by further decay to S1, like what is predicted to happen after S2 excitation. 

The photoelectron spectra of the deprotonated anionic model rKaede chromophore were 

recorded at 355, 350 and 315 nm as a function of electron kinetic energy (eKE) and plotted as a 

function of electron binding energy, eBE=ℎ𝜈−eKE (Figure 4, solid black lines). The 

corresponding photoelectron spectra of pHBDI– are also presented for comparison (shaded grey) 

and are consistent with previous experimental photoelectron spectra measured by several groups, 

including our own group.18,29-32,43 It is clear that the rising edges of the photoelectron spectra for 
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the rKaede and pHBDI– anions are independent of the laser wavelengths employed, a signature 

of direct electron detachment.  

 

 

Fig. 4. Photoelectron spectra of the rKaede chromophore recorded at 355 nm (3.49 eV), 350 nm 

(3.54 eV) and 315 nm (3.94 eV) (solid black lines) compared with photoelectron spectra of 

pHBDI– (shaded grey). All spectra have been normalised to their maximum intensities. Black 

vertical lines mark the calculated VDEs of the N(-)-1 (solid) and O(-)-1 (dashed) forms of the 

rKaede chromophore, and dotted red vertical lines mark the vertical excitation energies of the 

first 2 excited singlet states of the deprotonated Kaede chromophore. 

 

The eBE corresponding to the maximum intensities of the 355 nm spectra for the deprotonated 

rKaede chromophore and pHBDI– were estimated as the maxima of Gaussian functions fitted to 

the rising edges of the experimental spectra. The eBE estimated in this way for pHBDI– is 2.8 ± 
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0.1 eV, which is close to the adiabatic detachment energy of 2.73 ± 0.1 eV determined from high 

resolution photoelectron spectra of vibrationally cold pHBDI–.27 The eBE for the rKaede anion is 

estimated to be 3.3 ± 0.1 eV, which is in good agreement with the value of 3.38 eV calculated 

both with EPT/6-311++G(3dp,3df) and MS-CASPT2/ANO-L (see Computational Details in the 

SI). The VDE calculated for O(-)-1 at the EPT level is 2.87 eV, which is sufficiently lower than 

the values estimated from experiment and calculated for N(-)-1, to support our suggestion that 

the rKaede chromophore is generated in its N-deprotonated form during electrospray ionization 

from methanol or methanol–water solutions. The 0.4 eV blue shift of the VDE for the rKaede 

chromophore compared to pHBDI– can be rationalized in terms of the increased conjugation 

having a greater stabilizing effect on the anion than the neutral radical. 

The slopes of the rising edges of the rKaede chromophore spectra are much shallower than 

those of pHBDI–, hinting at a larger difference between the VDE and adiabatic detachment 

energy (ADE) for the rKaede chromophore than for pHBDI–. This is indeed the case; the VDE 

and ADE for the rKaede chromophore at the MS-CASPT2 level are 3.38 and 3.15 eV, where the 

minimum of the ionized species was optimized at the B2PLYPD/cc-pvtz level of theory.44 The 

calculated relaxation energy upon ionization, 0.23 eV, is in good agreement with experiment 

(Fig. 4) and contrasts with pHBDI– for which calculations have determined that ADE ≈ 

VDE.24,26,31-32,37 At the optimized D0 minimum, the main structural changes with respect to S0 are 

found in the imidazole ring (see bond lengths in Figure 2), which is consistent with the ring 

having a formal negative charge in the N(-)-1 anion.  

As the photon energy increases, the broad features in the photoelectron spectra change shape 

on the high eBE side, characteristic of indirect photodetachment processes following resonant 

excitation of a higher lying electronically excited state (autodetachment). This broadening has 
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been observed before in pHBDI– and it was rationalized in terms of resonant excitation of a 

higher lying excited 1pp* state, which has excited shape resonance character with respect to the 

lowest electronic continuum, and some contribution from a 11np* state, which is a Feshbach 

resonance. Similar effects have been observed in photoelectron spectra of deprotonated 

photoactive yellow protein (PYP) chromophore anions following resonant excitation of the 

higher lying 21pp* state, which also has excited shape resonance character with respect to the 

lowest electronic continuum.30,43 

The photoelectron spectra of the rKaede chromophore all have significant intensities at low 

eKE (high eBE), unlike the photoelectron spectra of pHBDI–. However, the low eKE electrons 

do not have the characteristic exponential shape that is a signature of thermionic emission from 

the ground electronic state, nor do they have an intensity step that might indicate opening of a 

higher lying electron continuum. In fact, the VDE of D1 is calculated to be 4.70 eV at the MS-

CASPT2 level for the rKaede chromophore, which is significantly higher than the highest photon 

energy used in our experiments (3.94 eV), suggesting that direct detachment to the D1 continuum 

is unlikely.  
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Fig. 5. Schematic potential energy level diagram illustrating competing electron detachment 

processes following photoexcitation of the S3 state of the rKaede protein chromophore. The 

horizontal dashed line represents the final state energy and the solid grey shading represents the 

D0 continuum. The solid black vertical arrow represents photoexcitation of the S3 state. The 

dotted black vertical arrow represents direct detachment. Autodetachment to the D0 continuum is 

possible from electronically excited S3, S2 and S1 states (vertical blue, green and red arrows, 

respectively) from any point along the intramolecular displacement coordinate lying in the D0 

continuum. 

 

In Fig. 5, the possible electronic relaxation and electron emission processes following 

photoexcitation of the S3 state of the rKaede protein chromophore are shown on a schematic 
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potential energy diagram. The S3 and S2 states have a Feshbach resonance character with respect 

to the D0 continuum, whereas the S1 state is predominantly a shape resonance. Thus, S3 and S2 

are only weakly coupled to the electronic continuum. Moreover, the S3 and S2 optimizations 

suggest that excitation of S3 will be followed by rapid, sequential internal conversion to S2 and 

S1. Therefore, internal conversion to S1 is likely to be more efficient than autodetachment from 

either S3 and S2. This is similar to the efficient and rapid internal conversion that has been 

observed to occur through a series of conical intersections between excited states, that are 

unbound with respect to electron detachment, in para-benzoquinone.45 Because S1 is a shape 

resonance with respect to the D0 continuum, the coupling between S1 and D0 is strong and 

autodetachment from S1 to D0 will be fast. The absence of an exponential tail of low eKE 

electrons, characteristic of thermionic emission from the hot electronic ground state, suggests 

that autodetachment from high vibrational levels of S1 is faster than internal conversion to the 

electronic ground state. This in turn suggests that autodetachment from high lying vibrational 

states in S1 is responsible for the continuum of low eKE electrons observed in the 315 nm 

photoelectron spectrum of rKaede. It is worth noting that S4 and S5 may also contribute to the 

continuum of low eKE in the 315 nm spectrum of rKaede by similar rapid internal conversion 

through a series of conical intersections to S1. 

The continuum of low eKE (high eBE) electrons seems likely to be a signature of 

autodetachment from high vibrational levels of a low lying excited electronic state and indeed 

such a continuum is also observed in the static photoelectron spectrum of para-benzoquinone, in 

addition to the exponential tail arising from thermionic emission from a hot ground state.45 A 

continuum of low eKE electrons is not observed in the 315 nm photoelectron spectrum of 

pHBDI–, although a broadening of the photoelectron spectrum towards high eBE is observed. 
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This is readily understood in terms of the characters of the excited states. In pHBDI–, the S1, S2 

and S3 states are shape, Feshbach and excited-shape resonances, respectively, with respect to the 

D0 continuum.37 Thus, in pHBDI– the S3 state that is accessible at 315 nm is so strongly coupled 

to the D0 electronic continuum that it will undergo rapid autodetachment, resulting in a 

broadening of the photoelectron spectrum to lower eKEs (higher eBE) but not to a continuum at 

very low eKE.  

In summary, the comparison between UV photoelectron spectra of the rKaede protein 

chromophore and the GFP chromophore suggests that there is an efficient electronic relaxation 

pathway from higher lying electronically excited states to the S1 state in the rKaede chromophore 

that is not in operation in the GFP chromophore. Specifically, relaxation of S2 facilitates S2→S1 

internal conversion after excitation to S2 and S3. This is a result of increasing the conjugation, 

since the state that facilitates internal conversion to S1 (S2 at the Franck-Condon geometry) has 

H-2->L configuration, i.e. it involves an occupied orbital on the imidazole ring which is not 

present in pHBDI–. Therefore, the extension of the pHBDI– chromophore with the imidazole 

group causes the appearance of an additional state that is responsible for the suppression of 

autodetachment from S2, suggesting that electron transfer from rKaede to the solvent will be less 

efficient than in GFP. We believe this may be a general effect in large chromophores. This work 

highlights the importance of detailed spectroscopic and dynamical studies of the rKaede protein 

and of other green-to-red photoconvertible proteins so we may improve our understanding of 

how to improve the properties of fluorescent protein optical markers that are not only used in the 

biological and biomedical sciences as genetically coded fluorescent markers but are also 

important tools for super resolution imaging.46-47 
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Supporting Information: Computational details, experimental methods and Cartesian 

coordinates for N(-)-1 structures. 
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