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Abstract

The work presented in this thesis concerns the production of high-temperature spec-

troscopic line lists for the SO2 and SO3 molecules, for the purposes of astrophysical,

terrestrial and industrial applications. Both line lists are computed using ab initio com-

putational methods to calculate rovibrational energy levels and dipole moment transi-

tion intensities.

The hot SO2 line list is computed using the DVR3D program suite, optimised to

work efficiently with the molecule, and by making use of high performance computing.

The calculations are based on an empirically refined ab initio potential energy surface

(PES), and a purely ab initio dipole moment surface (DMS). Results are compared to

previous ab initio studies and available experimental data. The final line list can be

used in spectroscopic models for temperatures up to and including 1500 K.

A preliminary, room-temperature line list for SO3 is calculated using the TROVE

program, in conjunction with a purely ab initio PES and DMS. The results are com-

pared to available experimentally derived energy level data. These are then used to

empirically refine the ab initio PES, which is subsequently employed in the calcula-

tion of the complete, hot line list, suitable for modelling SO3 spectra up to 773.15 K.

Preliminary comparisons are made with experimental high-temperature measurements,

and the quality of the ab initio DMS is discussed.

In addition, the rotational behaviour of the SO3 molecule is investigated from a

theoretical perspective using the synthetic SO3 line list, where the ‘forbidden’ rotational

spectrum is analysed. The formation of so-called 6-fold rotational energy clusters at

high rotational excitation is also predicted, the dynamics of which are analysed both

quantum mechanically and semi-classically.

The potential applications and limitations of both line lists is outlined, and impli-

cations for further work are also discussed.
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Chapter 1

Introduction

The understanding of sulphur chemistry is of great interest for a variety of astrophys-

ical, terrestrial and industrial environments. The cosmic abundance of sulphur and

its significant role in the current comprehension of biological processes mean that its

importance cannot be overstated. Sulphur exists in many forms, one of which is the

molecular compound form of the sulphur oxides. There are many stable forms of such

compounds, although arguably the most important of these are sulphur dioxide (SO2)

and sulphur trioxide (SO3). In their gaseous states their presence is well-known in a

variety of settings, and their coexistence is often linked via the same chemical pro-

cesses. For these reasons the detection and monitoring of these species is of particular

importance across a large number of scientific disciplines.

The analysis of molecular spectra in conjunction with quantum mechanics is es-

sential in the understanding of the physical properties of molecules, and the field of

molecular spectroscopy is varied and well-established. The characteristics of observed

spectra provide insight into the structure and motional behaviour of molecules, as well

as the physical properties of their environment; in particular, infrared and microwave

spectroscopy concern the study of the vibrational and rotational motions of molecules.

The discrete nature of energy states associated with these motions for a particular

molecule, and the transitions between them due to their interaction with electromag-

netic radiation give rise to the well-known features within these spectral regions. A firm

understanding and interpretation of the unique spectral characteristics of a molecule

can therefore be exploited to determine its presence, abundance and behaviour in a

large number of remote physical settings, as well as providing a means to probe the

conditions of such environments.
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SO2 and SO3 are certainly no exception. The work described in this thesis con-

cerns the production of an extensive set of spectroscopic data for both SO2 and SO3

from a theoretical perspective, in order to supplement observational analyses pertain-

ing to these molecules. In addition to this, the simulation of the spectral characteristics

of these molecules provides an opportunity to rigorously assess already established the-

oretical models, and augment them appropriately to suit the requirements of the desired

results.

In this introductory chapter the importance of the spectroscopic description for

both SO2 and SO3 is considered within a variety of different contexts, including an

outline of the already existing experimental and theoretical work on the subject. The

subsequent need to extend upon these studies is also addressed.

1.1 Background & Motivation
The presence and detection of both SO2 and SO3 in their gaseous states may be ex-

plained by either physical processes that are naturally occurring or by those that are

influenced by human activity. There are a number of different isotopologues of both

SO2 and SO3 which undoubtedly contribute in varying, minor degrees to the sulphur

oxide chemistry described in the literature. The most abundant of these are 32S16O2

and 32S16O3. These main isotopologues are the focus of this thesis, and reference to

them is implicit throughout. This section highlights some important settings where

both species are known or thought to play a significant role.

1.1.1 SO2 and SO3 in Astrophysical & Terrestrial Environments

The study of atmospheric physics and chemistry provides a key insight into the prop-

erties of the Earth’s atmosphere, and both solar and extra-solar system bodies. The

sophisticated modelling and understanding of these environments relies heavily on the

knowledge of various spectroscopic processes involving atomic and molecular species

that are present. Spectral measurements may be performed in order to gain insight

into such processes, via both ground and satellite based observations, as well as in

laboratory-based replications.

Both SO2 and SO3 are well-known to exist naturally in Earth’s atmosphere. The

main source of their natural occurrence is via volcanic emissions and hot springs [1–3];
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observation of these products provide a useful tool in the understanding of such geolog-

ical processes. The spectroscopic study of these sulphur oxides can also provide insight

into the history of the Earth’s atmosphere [4]. However the most important aspect of

the existence of these two species is arguably their contribution to the formation of acid

rain [5–8]. The oxidisation of SO2 to SO3 in the atmosphere, followed by subsequent

rapid reaction with water vapour results in the production of sulphuric acid (H2SO4),

which leads to many adverse environmental effects. The study of these chemical pro-

cesses is therefore of great importance. Though a product of natural processes, the

effect is greatly enhanced by human activity, particularly via byproducts of industrial

applications; these are addressed in Subsection 1.1.2.

The remote sensing techniques of the Earth’s atmosphere can be extended to-

wards distant astrophysical bodies. In the absence of in situ measurements, and not

to mention their associated impracticalities, spectroscopy provides the only means of

analysing the characteristic behaviours of distant planetary atmospheres, as well as

other environments of interest. Sulphur oxide chemistry has been observed in a variety

of astrophysical settings. Within the solar system, both SO2 and SO3 are thought to be

major constituents in the atmosphere of Venus [9–15] and Jupiter’s moon, Io [16–19];

all of these are known to have volcanic activity. It has been observed in the atmo-

sphere of Mars, although to a much lesser extent [3]. These molecules are often found

alongside sulphur monoxide (SO) [3, 9, 13], which is also an important molecule with

regards to sulphur chemistry. The presence of these sulphur oxides has also been at-

tributed to environments beyond the solar system, including the atmospheres of gi-

ant planets, brown dwarfs, and dwarf stars [20], circumstellar envelopes of young

and evolved stars [21–25], and in molecular clouds and nebulae within the interstel-

lar medium [26–31]. Extragalactic detection of SO2 has even been achieved [32, 33],

emphasising the universal abundance of this particular compound, along with SO [34].

One of the most exciting developments in recent years lies in the discovery of ex-

trasolar planets, or “exoplanets”. The observation of the tremendous variety of such

bodies has challenged the current understanding of solar system and planetary forma-

tion. Exoplanet detection methods have grown in sophistication since the inception

of the field, however efforts to characterise their atmospheres are relatively new. The

well-documented distribution of sulphur oxides in various terrestrial and astrophysical
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environments mean that a thorough understanding of their fundamental spectroscopic

behaviour is essential in the future analysis of the spectra of these exoplanetary atmo-

spheres, and of other bodies of interest observed through past, present and future space

telescope missions [35, 36].

1.1.2 SO2 and SO3 in Industrial Environments

The measurement and calibration of SO2 and SO3 spectra is of particular relevance to

industrial applications. Their presence is observed in the products of various combus-

tion processes involving sulphur-containing fuel [8, 37, 38], and analyses of these is

often useful, for example in monitoring the performance of jet engines [39]. SO2 and

SO3 are also observed in selective catalytic reduction (SCR) units, where the presence

of both is undesirable within flue gas chambers in large quantities, as well as other in-

dustrial exhausts [40]. SCR systems are used to reduce NOx emissions with the aid of

a catalyst, producing an array of chemical reactions within gas chambers; the produc-

tion of SO2, and SO3 within secondary reactions, due to a catalytic process, can have

damaging effects due to their acidic properties; they are corrosive, making their pro-

duction hard to monitor [41] and, as previously stated, form a major constituent in the

production of acid rain [5]. The control of their output is therefore of great importance.

A team led by Alexander Fateev at the Technical University of Denmark (DTU)

have been working to develop in situ infrared measurement techniques for a variety

of gaseous species at high temperatures, making the need for accurate spectral assign-

ments a priority [42, 43]. Both SO2 and SO3 are considered species of interest, due

to the requirement of their close monitoring in these industrial settings, and therefore

assignments of their spectra at high temperature are required in order for in situ moni-

toring to be suitable for industrial applications on SCR units, with the ultimate aim of

optimising the reduction of NOx emissions and ammonia consumption, and minimising

material corrosion to prolong the lifetimes of these units.

The development of this technique has involved the measurement of species con-

centrations for SO2 and SO3 within a hot gas flow cell in laboratory conditions [42],

which is essential in the characterisation of the IR spectra of these molecules within

flue gases. The temperature ranges of interest lie within 500 - 800 K, however this

technique of spectral assignment has its limitations due to the high reactance of these
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species. Laboratory production of SO3 can be achieved by the reaction of SO2 with

either O2 or O3, though despite efforts in the design of gas cells optimised for use with

reactive gases, corrosion of gas cell components have still been observed, suggesting

losses of SO3/H2SO4 between the generation unit and the gas flow cell where IR mea-

surements are performed.

1.1.3 The Requirement of Infrared Data

The importance of SO2 and SO3 within the previously described physical environments

has meant that they have been the subject of a large number spectroscopic studies (see

Section 1.2) which include analyses in both the infrared (IR) and ultraviolet (UV) re-

gions of the electromagnetic spectrum. There are a number of reasons for further ex-

tending upon these studies, particularly in the IR, which serve as the justification for

the current work.

The UV (electronic) spectrum of SO2 is easily observed and widely used in the

detection of SO2 in astrophysical and industrial analyses [42, 44–48]. However, de-

spite the numerous studies of the SO2 UV spectrum in the laboratory, the properties

of this molecule in these spectral regions are still poorly understood, and it is difficult

to accurately predict its absorption behaviour as a function of temperature [49–52].

Experimental studies of the UV spectrum have of course been complemented by theo-

retical works [53–57], though they are limited in that they may only draw comparison

with room-temperature data. The case is similar for SO3, which has, in general, been

studied less so than SO2 experimentally [58–60], and not at all theoretically in the UV.

Supplementary studies of these molecules in the IR can help paint a clearer picture as

to their presence and abundance, where UV observations may be inadequate.

Huang et al. [35] described the need for accurate IR SO2 data by astronomers

to effectively analyse astronomical atmospheres and identify other molecular species

of interest. A large number of observing instruments provide an insight into the IR

spectral range where many important molecules are spectroscopically active, such as

the Herschel Space Observatory [61], the Spitzer Space Telescope [62], and the Strato-

spheric Observatory for Infrared Astronomy [63]. From an alternative point of view,

the presence of SO2 within recorded spectra may be considered a hindrance to the un-

derstanding of the astrophysical environments under observation. The problem lies in
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the fact that, in efforts to identify important molecular species within various astro-

nomical settings, the presence of extraneous features attributed to other superfluous

molecules within these spectral regions makes it particularly difficult to identify those

that are of interest. A report from the workshop on laboratory spectroscopy in support

of Herschel, SOFIA, and ALMA [64] describes the need of removing spectral ‘weeds’

in order to allow for the inference of more important species. SO2 has been described

as such a ‘weed’, and therefore a firm understanding of its IR spectrum at high reso-

lution is required in order to identify and subtract out its influence from recorded data

in these regions, and high-temperature data is necessary to account for the increasing

effect of interference in warmer regions of interest.

In a similar vein, and more closely related to the aims of the current work, the

identification of SO3 in the IR is hindered by the presence of interfering SO2 in en-

vironments where both species are found simultaneously; a number of their spectral

features overlap, particularly the ν3 bands of both molecules in the 1300 - 1400 cm−1

region (see Section 1.2). From this point of view SO2 can also be seen as a spectral

‘weed’ with respect to the detection of SO3. A firm understanding of the spectroscopic

behaviour of both of these molecules within the same spectral window is therefore

required to be able to correctly identify each species independently.

These reasons, along with the practical problems described in subsection 1.1.2 that

make the spectral assignment of each species a difficult task form the motivation for the

current work: to obtain an extensive resource of IR spectroscopic data for both SO2 and

SO3 via ab initio computational methods, in order to supplement the characterisation

of hot spectra within industrial environments. Such work is performed by the ExoMol

group, which is discussed in Section 1.4. First, a brief review is given of the pre-

existing experimental and theoretical work carried out in order to achieve such results,

and a discussion of molecular spectroscopic databases.

1.2 Previous Spectroscopic Studies on SO2 and SO3

Both SO2 and SO3 have already been the subject of a wide variety of spectroscopic

studies. This section highlights some important relevant works carried out with re-

gards to the spectroscopy of both these molecules, in both experimental and theoretical

contexts.
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1.2.1 Experimental Studies

1.2.1.1 SO2

The importance of SO2 in the various physical and chemical settings previously de-

scribed means that it has been the focus of a great number of experimental spectroscopic

studies, and subject to a number of reviews. Early studies focusing on the structure of

the molecule using microwave observations measure the equilibrium S-O bond length

at 1.43076 Å and O-S-O bond angle at 119◦ [65, 66]. Its bent molecular shape gives it

the characteristics of C2v symmetry (see Chapter 2), and a permanent dipole moment

of 1.62673 D [67]. The fundamental vibrational frequencies ν1, ν2 and ν3 have been

measured as 1151.7, 517.9 and 1362.1 cm−1, respectively [68], and consistently reaf-

firmed [66]. Spectra have also been analysed for the purposes of measuring absolute

intensities [69–71] and determining dipole moments [67, 72, 73]. Spectra have even

been obtained from supersonic jet engines [37, 38] for the purposes of vibronic analy-

sis, and phosphorescence studies have also been performed [74]. The range of work is

vast; with the advancing improvement of spectroscopic observational tools the infrared

spectrum of SO2 is constantly being reassessed with ever increasing resolution.

For the purpose of brevity it is perhaps best to focus upon infrared studies at-

tributed to aggregated data within the HITRAN database for high-resolution transmis-

sion, molecular absorption data [75] (see Section 1.3) for this molecule, for which

assigned transition wavenumbers and intensities are provided. There are a total of 14

bands available in the HITRAN database for SO2, consisting of 72 459 lines for the

main 32S16O2 isotopologue (there are a further 22 662 for 34S16O2).

Purely rotational transitions are provided by the CDMS database [76] (see Section

1.3) for both ν0← ν0 and ν2← ν2. The majority of remaining band data is provided

by Lafferty et al. for ν2, 2ν2 ← ν2, 3ν2 ← 2ν2, ν1, ν1 + ν2 ← ν2, ν3, ν1 + ν3, ν1 +

ν2 +ν3← ν2, 2ν3, 3ν3 and ν1+ 3ν2 [68,70,71,77,78], with additional data for ν3 and

ν2 +ν3← ν2 by Henningsen et al. [79]. Additional absolute intensity data is provided

in conjunction with corresponding bands from Refs. [69, 80]. The majority of these

transitions possess a HITRAN error code for line position and intensity of ierr ≥ 4,

meaning their uncertainties are less than 1 × 10−3 cm−1 and 20%, respectively. The

exception to these is in the 3ν3, ν1 + ν3, and ν1 + ν2 + ν3 ← ν2 bands, for which
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error codes are unreported for both line position and absolute intensities. The set of

HITRAN data for SO2 provides the main source of experimental comparison to the

results produced in the current work, which is detailed in Chapter 3.

The most recent high resolution analysis of SO2 has been carried out by Ulenikov

et al. for a number of bands [81–86]. These publications cover 15 vibrational bands for

the purposes of transition and parameter assignment via effective Hamiltonian models.

The following bands were analysed: ν1, ν3, 3ν1, 2ν2, 3ν2, 2ν3, ν1 + ν2, ν1 + 3ν3, 2ν1 +

ν2, 3ν1 + ν3, ν2 + ν3, ν1 + 2ν2← ν2, ν2 + 3ν3← ν2, ν2 + 2ν3← ν2, 2ν2 + ν3← ν2 and

2ν1 + ν2 + ν3← ν2. A number of these bands are not covered in the HITRAN database,

however absolute intensities were not reported for any of these measurements.

The ultraviolet (electronic) spectrum of SO2 has also been the subject of spec-

troscopic interest, and exhibits an easily observed, but complex structure. There are

three UV absorption bands within the 170 - 400 nm window [87] which are all rel-

evant to atmospheric studies. The strongest of these is attributed to transitions from

the ground X1A1 electronic state to the excited C1B2−X1A1 state, and extends from

170 to 230 nm [49, 87]. A number of cross section measurements have been made

for this band [87–90] at various resolutions and temperatures. Between 240 and 340

nm, UV features are mainly associated with the B1B1−X1A1 band, but include vi-

bronic coupling contributions from the 3B1, 3B2 and 1A2 states [91]. The perturbation

of the B1B1−X1A1 is such that it is difficult to make rovibrational assignments, due

to the inability to resolve rotational structure from a dense continuum of weak ab-

sorption features [52]; nevertheless, cross sections for this band have been reported in

the literature [49, 52, 90, 92], and some vibrational structure analyses have also been

performed [50, 93, 94]. Finally, the region 345 - 400 nm contains a weak absorption

feature which has been assigned to the a3B1 − X1A1 electronic transition, which is

spin-forbidden [87, 95]. The assignment of this band has been attempted with varying

results [50, 51], and with some confirmations [38]. The temperature dependence of

this band was also analysed [52], which also showed that previous assignments were

unsatisfactory.
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1.2.1.2 SO3

The experimental IR spectroscopic study of SO3 is not as extensive as that of SO2,

which may be attributed to its extreme chemical reactivity which make measurements

difficult. Historically vibrational Raman [96], infrared [97] and electron diffraction

studies [98] have all contributed to the understanding of the structure of this molecule,

as well as its fundamental vibrational frequencies. Its equilibrium position was found to

be that of a symmetric planar molecule with equilibrium S-O bond lengths of 1.41732

Å and inter-bond angles of 120◦ [99], described by D3h(M) symmetry (see Chapter 2),

which makes it a suitable example for testing effective Hamiltonian models for these

types of symmetric tops. The ν1, ν2, ν3 and ν4 fundamental frequencies are attributed

to the totally symmetric stretch at 1064.9 cm−1 [100], the symmetric bend at 497.5

cm−1, and the asymmetric stretching and bending modes at 1391.5 and 530.1 cm−1,

respectively [101].

The infrared and coherent anti-stokes vibration-rotation spectra of a number of iso-

topologues of SO3 have been extensively investigated in a series of papers by Maki et

al. [99–105], reassessing and confirming fundamental constants and frequencies. Sev-

eral bands were analysed based on an empirical fitting to effective Hamiltonian models,

yielding rovibrational constants and energy levels assigned by appropriate vibrational

and rotational quantum numbers. In total,18 bands were analysed: ν2, ν3, ν4, 2ν
(l3=2)
3 ,

3ν
(l3=1)
3 , 3ν

(l4=1)
4 , ν1 + ν2, ν1 + ν

(l4=1)
4 , ν2 + 2ν

(l4=0)
4 , ν2 + 2ν

(l4=2)
4 , 2ν2 + ν4, ν3 + ν4,

ν1← ν4, ν2 + ν4← ν2, 2ν2← ν2, ν2 + ν4← ν4, 2ν
(l4=0)
4 ← ν4 and 2ν

(l4=2)
4 ← ν4.

The work also provided some information on transition intensities (for room-

temperature), however these were secondary to the main focus of the study, provided

only as supplementary material in the form of relative intensity values for a limited

number of bands, and at the time of writing are the only known intensities published to

the literature. The associated supplementary data of these studies for both the rovibra-

tional energies and relative intensities have been used as a basis for comparison in the

current work on SO3, and their use is described in detail in Chapters 4, 5, and 6.

The “forbidden” rotational spectrum, for which centrifugal distortions can induce

transitions, was investigated for the first time by Meyer et al. using microwave Fourier-

transform spectroscopy [106]. Assignments for 25 transitions were made, as well as
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the determination of a number of rotational constants, including the only direct mea-

surement of the C0 rotational constant.

There have been a few studies on the ultraviolet spectrum of SO3 by Fajans and

Goodeve [58], and LeRoy et al. [59], both between 220 and 270 nm where overlap with

SO2 is small. A further study by Burkholder and McKeen [60] reported cross sections

for the 195 to 330 nm range for the purposes of photolysis rate calculations of SO3. All

measurements were taken at room-temperature, and neither reported assignments for

any of the bands, which exist as weak, diffuse vibrational band structures superimposed

on a continuous background. As such, the rovibronic behaviour of SO3 is much less

understood than for SO2.

1.2.2 Theoretical Studies

1.2.2.1 SO2

Theoretical IR studies on the spectroscopy of SO2 have been numerous. The develop-

ment of potential force fields for the purposes of rovibrational energy calculation has

been the subject of many efforts using various ab initio methods [107–114], all with

varying degrees of accuracy in reproducing experimental observations. For example,

Pak and Woods [113] reported equilibrium constants as 1.4417 Å and 118.9◦ for the

S-O and O-S-O bond lengths and angles, respectively, as well as a permanent dipole

moment of 1.6909 Debye. This was based upon a CCSD(T) (coupled-cluster with sin-

gle and double excitations) approach [115] in conjunction with a Gaussian-type basis

set (see Chapter 2 for a discussion on basis sets and the coupled-cluster method, along

with other electronic structure methods). Martin reported improved values of 1.43043

Å and 119.26◦ based on the same coupled cluster approach, and a variety of basis

sets. The SO2 fundamentals were reproduced with errors of +3.9, -0.4, and +0.4 cm−1.

These works have set the precedent for ab initio methods for computations regarding

SO2, however they show a good example of the need to spectroscopically refine poten-

tial parameters based on experimental data.

An example of SO2 IR intensity simulation for high temperatures has been at-

temptted by Voitsekhovskaya et al. for the purposes of analysing jet engine exhausts

[39, 116]. These are based on a model Hamiltonians in conjunction with potential pa-

rameters for reproducing rotational energy levels, as well as rovibrational levels for
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the three fundamental bands. The method for intensity simulation is based upon ex-

perimentally derived dipole derivatives, and reproduces integrated intensities at room-

temperature reasonably well for these bands. Such methods are not particularly well-

suited for high-resolution studies, however, and more sophisticated ab initio methods

for dipole calculations are required.

A limited IR line list was produced for SO2 by Fortenberry et al. [117] on the basis

of quartic force field models to produce transition wavenumbers, and ab initio dipole

moment surfaces to calculate transition intensities, based on MP2 and coupled clus-

tered methods. The calculation of transition dipoles via this method is necessary for

extensive coverage of intensities. This work was drastically expanded upon in a more

advanced theoretical spectroscopic work of SO2 by Huang et al. [35] in the calculation

of room-temperature, infra-red line lists for a number of SO2 isotopologues [118]. This

study, which was published during the timeframe of the work of this thesis, involved

the construction of experimentally refined ab initio potential energy and dipole mo-

ment surfaces, computed using coupled cluster methods, which then serve as a basis in

the nuclear motion calculations and intensity simulations, respectively. A theoretically

derived S-O bond length of 1.431086 Å was obtained, as well as 1.629402 D for the per-

manent dipole moment, both agreeing well with experimentally retrieved values [67].

Comparisons of rovibrational transitions were made with HITRAN data [75] and to the

data of Ulenikov et al. [81–86] mentioned previously, with root-mean-squares errors

ranging from 0.01 - 0.03 cm−1. The reported line lists are suitable for the modelling of

spectra in the 0 < ν ≤ 8000 cm−1 region, involving transitions between energy levels

up to 13 168 cm−1, for all J ≤ 80. This work by Huang et al. forms part of a collab-

orative effort in conjunction with the work on SO2 which is detailed in this thesis, and

deals with extending this work via the computation of a hot line list by use of the PES

and DMS constructed in Refs. [35]. This is the subject of Chapter 3.

Work has also been done on the UV spectrum of SO2 from a theoretical per-

spective, involving the calculation of potential surfaces for the ground X1A1 electronic

state, and some low-lying excited states; the majority of these deal with the C1B2 ex-

cited state. For example, Nachtigall et al. investigated the stationary points of the C1B2

state by means of high-level ab initio methods [119] and later used the PES to calculate

vibrational levels up to dissociation [120]. Further studies by this group included the
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calculation of absorption and resonance emission cross sections involving the X1A1 and

C1B2 states, in conjunction with transition dipole functions [53], giving semi-quantitive

agreement with experiment. Similar work has been performed by Ran et al. [54] and

by Tokue and Nanbu [55]. Lévêque et al. [56] provided one of the few examples of ab

initio work on the coupled 1B1 and 1A2 states, with nearly quantitive agreement with

low-resolution experiment. A similar study was conducted by Xie et al. [57], addition-

ally providing ab initio potential surface calculations of the a3B1 and b3A2 for the first

time.

1.2.2.2 SO3

There has been limited theoretical work on SO3. Dorney et al. [121] reported the first

anharmonic force constants based on a valence force model, with the aim of repro-

ducing a number of well-determined spectroscopic parameters available at the time of

publication. The work yielded a value of 1.4184 ± 0.001 Å for the equilibrium bond

length. Flament et al. [122] published ab initio harmonic force constants for SO3, cal-

culated via a ‘scaled quantum mechanical’ method, as well as through the multi config-

urational self consistent field (MCSCF) method, and computed vibrational frequencies

agreeing to within 4% of the established experimental values.

The first accurate, fully ab initio anharmonic quartic force field for 32S16O3 was

published by Martin [123]. This work involved computation using coupled cluster

methods (CCSD(T)) [115] in conjunction with a number of different basis sets, and

reported theoretical estimates for the band origins of the low-lying vibrational states.

The results reproduced the equilibrium bond length to within +0.0003 Å, and the fun-

damentals to within 1.15 cm−1, on average.

As in the case of experimental studies for SO3, there exist no absolute transition

intensity values derived from theoretical approaches. The current work provides the

first instance of such an effort, and is the subject of Chapters 4 and 6. There have also

been no theoretical studies into the UV spectrum of SO3.

1.3 Spectroscopic Databases
The large number of studies on SO2 and SO3, and indeed every molecular species of

interest, provides a huge, multi-sourced set of spectroscopic data from which to choose

from. For the purposes of atmospheric modelling, quantum mechanical analysis, and
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other situations which require the use of spectroscopic parameters, it is often useful to

have a standardised set of reliable data to work with.

The aggregation of molecular spectroscopic data is a familiar concept, as can be

seen in the variety of pre-existing spectroscopic databases, such as HITRAN [75],

GEISA [124, 125], CDMS [76], NIST and PNNL [126], and JPL [127]. These

databases provide experimentally accurate data for a variety of molecular species, ob-

tained from a number of sources. For example HITRAN (high-resolution transmis-

sion) [75] was originally set up to provide parameters for the simulation of atmospheric

transmission of infrared light based on a limited number of important atmospheric ab-

sorbers on Earth, but has since expanded to include a larger spectral range for a greater

number of molecules important in a wider range of environments, such as planetary

atmospheres. The GEISA (Management and Study of Atmospheric Spectroscopic In-

formation) and CDMS (Cologne Database for Molecular Spectroscopy) databases ex-

panded upon the aims of HITRAN, with CDMS in particular focusing on molecules

thought to be of interest in the interstellar or circumstellar mediums and in planetary

atmospheres. These databases obtain their data from a number of reliable sources.

While in many cases high accuracy data may be guaranteed, the main disadvantage of

these databases is lack of coverage. Experimental studies are often limited to specific

spectral regions, and although the combination of several observations may slightly

improve the overall description across the spectrum, the lack of data is still a common

occurrence. The matter of self-consistency (or rather lack thereof) can also become

highlighted when using data from multiple sources. As well as lack of coverage in

line position, data obtained from experimental observation is often limited in the tem-

perature domain, rendering the data only useful for modelling at room-temperature

and below; for example, both HITRAN and GEISA specify spectroscopic parameters

at room-temperature [75, 124]. At higher temperatures the molecular spectra become

increasingly complicated to analyse, therefore making the extraction of spectroscopic

data impossible; performing such experiments becomes ever more difficult as temper-

atures increase. The high-temperature version of HITRAN, HITEMP [128] provides

appropriate data for modelling at elevated temperatures, but is limited to five molec-

ular species. Spectral assignment may also be hindered by other practical issues, as

described in the previous section. As such, the data provided by these databases are
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often insufficient for modelling high temperature environments.

1.4 The ExoMol Project
The work presented in this thesis forms part of a larger endeavour to produce an ex-

tensive spectroscopic database for a number of astronomically important molecular

species. The main focus of the project, ExoMol [129], is in the production of high-

temperature ‘line lists’ of molecules for the use of characterising the atmospheres of

exoplanets and cool stars. This involves the amalgamation of both reliable experimen-

tal and ab initio data which may be used in a number of different applications for spec-

tral characterisation and simulation. The data provided are also relevant across a larger

range of disciplines, for example in the atmospheric understanding of solar system

bodies, and in industrial-based chemical processes described previously. The ‘basic’

format of ExoMol data is in the listing of the physically accessible energy states of a

molecular system, and the Einstein A coefficients corresponding to transitions between

them.

The spectra of hot molecules contain many more transitions than those at cooler

temperatures, and thus the modelling of high-temperature environments where molec-

ular absorbers dominate is difficult. This is where pre-existing molecular databases

falter; their limited coverage in the spectral and temperature domains renders their

data unsuitable for accurately modelling the environments which have a high density

of molecular absorption lines. Even at lower temperatures their spectral range can be

limited. The ExoMol project strives to alleviate these shortcomings from a theoretical

perspective, by making use of a number of ab initio computational methods (often sup-

plemented or refined by experimental observation) in order to produce spectroscopic

data which may be suitable for the modelling of such high-temperature, molecule-rich

atmospheres. The advantage of a ‘first principles’ approach is that full coverage of

line position and temperature may be achieved while maintaining self-consistency; the

high-density of states and transitions necessary for high-temperature modelling is read-

ily computed from the theoretical perspective. However, the main disadvantage in these

efforts to produce high accuracy data is in computational expense. Figure 1.1 shows a

comparison of intensity data for phosphine at room-temperature between data provided

by ExoMol and by CDMS and HITRAN (2008 edition), where it is clearly seen that
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the coverage of data in existing databases is limited even at this low temperature; the

2012 edition of HITRAN [75] was revised based on this computed line list.

Figure 1.1: Room-temperature line list for PH3 [130] (above) computed using the TROVE pro-
gram [131], and corresponding data available in CDMS [76] and HITRAN [75]
(below).

ExoMol makes use of multiple high-performance computing facilities in order to

meet the high computational demands of hot line list calculations. Due to the difficulty

of the task, line list calculations are usually approached on a molecule-by-molecule

basis, divided between the ExoMol team and computed by appropriate ab initio meth-

ods. The convergence of various skills and methodologies within the ExoMol group

has allowed for the production of a vast array of data for different molecular species

(www.exomol.com), and provides an excellent resource for the calculation of spectro-

scopic data for SO2 and SO3, of which this thesis documents in detail.

Line lists already exist for a number of important molecules, including water

[132], ammonia [133], methane [134] and phosphine [135], and have already been

put to use. For example, the BT2 water line list by Barber et al. [132], which contains

around 500 million transitions, has been used to identify water in comets, sunspots

and a brown dwarf, and for the detection of water in exoplanet HD189733b [136].

The database is continuously updated and extended, and in the future aims to provide

additional spectroscopic parameters, including partition functions, cross sections and
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broadening parameters [137].

1.5 Thesis Structure
The work presented in this thesis consists of a number of self-contained projects per-

taining to theoretical spectroscopic studies of SO2 and SO3.

Chapter 2 provides a detailed discussion of the fundamental, theoretical principles

upon which all calculations in this work are based. The computational schemes used

in the production of spectroscopic data are outlined within the context of both SO2 and

SO3, including a description of quantum chemistry solutions to the electronic structure

problem, and the bespoke algorithms written in order to solve for the nuclear motion of

the molecules in question.

Chapter 3 focuses on the work carried out in order to produce a hot line list for
32S16O2, via the use of previously computed (and refined) potential energy and dipole

moment surfaces (PES and DMS) [35], in conjunction with the DVR3D method [138].

Results are analysed, and compared to previous studies, where possible.

Chapter 4 describes the first portion of a two-part study into the development of

a spectroscopically accurate, hot 32S16O3 line list, using the TROVE program [131].

Serving as a precursor to the main calculation, the work involves the computation of

a room-temperature line list based on a purely ab initio PES and DMS, of which the

accuracy is scrutinised based on a comparison to available experimental data.

Chapter 5 considers the rotational behaviour of 32S16O3 from a theoretical per-

spective, including both an analysis of the room-temperature rotational (microwave)

spectrum and the observation of energy level cluster formation for highly excited rota-

tional states, of which explanation is provided based on the underlying dynamics of the

rotating molecule.

Chapter 6 continues from the work of Chapter 4; the ab initio PES is spectro-

scopically refined based on available experimental data, and calculations are extended

to higher rovibrational excitations in order to produce a hot line list for 32S16O3. The

improvement upon the initial line list is analysed in detail.

Finally, Chapter 7 provides some general discussions and conclusions, as well as

some considerations for future work.



Chapter 2

Theoretical & Computational

Background

The theoretical study of molecular spectra involves a first-principles, quantum mechan-

ical understanding of the behaviour of the electrons and nuclei. The development and

improvement of computational tools has allowed for the solution to quantum many-

body problems with ever increasing accuracy, and the large library of algorithms is

under constant expansion and refinement. Most computational methods pertaining to

electronic and nuclear motion can all be attributed to a few common principles, though

vary greatly with respect to the mathematical tools used in approaching the problem at

hand. This chapter highlights some important principles and methods used to approach

both the electronic and nuclear structure problems of small, polyatomic molecules, and

how these ideas may be exploited in to understand rovibrational spectra. A comprehen-

sive review of theoretical methods used in the production of rovibrational spectroscopic

data for small molecules is given by Lodi and Tennyson [139]. A general overview of

those used in the current work is presented in this chapter, within the context of the SO2

and SO3 molecules.

2.1 The Molecular Hamiltonian
The mathematical basis upon which quantum mechanics is formed describes the ob-

servable values of a quantum system as being represented by vectors in a Hilbert space.

In theoretical molecular spectroscopy and quantum chemistry it is of interest to obtain

the values representing the total energy of the particular molecular system being stud-

ied. For such a system it is possible to construct the molecular Hamiltonian, which
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contains the sum of the kinetic and potential energies of Coulomb interactions of all

constituent particles, namely the electrons and nuclei, as a function of their spatial dis-

tributions:

Ĥ =−
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(2.1)

Here, mx represents the mass of particle x, e is the electron charge, ZN is the atomic

number of nucleus N, and rx/Rx represents the coordinate vector of particle x. The con-

stants h̄ and ε0 refer to the reduced Planck’s constant and permittivity of the vacuum,

respectively, and ∇2
x is the Laplace operator for particle x. The first two terms represent

the kinetic energy of the electrons and nuclei, respectively, the third the inter-electron

potential energy, the fourth the electron-nuclei potential energy, and finally the fifth

term represents the potential energy of Coulombic nuclei-nuclei repulsions. The quan-

tum molecular Hamiltonian takes the form of an operator who’s spectrum is the set of

possible outcomes for the value of the total energy. One of the principle tasks of molec-

ular physics and quantum chemistry is to obtain the eigenfunctions and eigenvalues of

this Hamiltonian for various molecular systems, i.e. by solving the time-independent

Schröodinger Equation:

ĤΨ = EΨ, (2.2)

where Ĥ is the Hamiltonian operator, E is the total energy, and Ψ is an eigenfunc-

tion which describes the spatial distribution of the system’s constituent particles over

all space, otherwise known as the wavefunction. These equations are non-relativistic,

and describe the stationary states of a molecular system who’s constituent particles are

moving at low speeds.

Attacking this problem as presented is a formidable task. This is a many-body

problem in which the electronic motion is coupled to the motion of the nuclei and there-

fore, beyond the solution of relatively small molecular systems, cannot be approached

without the implementation of various approximations. The primary concern in the

field of quantum chemistry is to obtain the most efficient method of achieving the best

solutions by making use of such approximations, the most important of which is the
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Born-Oppenheimer approximation, which will be described in the following section.

2.2 The Born-Oppenheimer Approximation
The wavefunction Ψ in Equation 2.2 is a function of electronic and nuclear coordinates

describing a many-body problem, and therefore for many molecular systems of interest

is extremely difficult to obtain analytically. In an attempt to simplify the problem, it

is possible to introduce a decoupling of electronic and nuclear motion. Essentially, it

reduces the problem to one whereby the motion of the electrons no longer depends upon

the motion of the nuclei, but only on the nuclear positions. The manifestation of this is

a separation of the molecular wavefunction into nuclear and electronic components:

ΨMol(r, R) = ψNuc(R)× ψelec(r;R) (2.3)

Both r and R are position vectors representing all electronic and nuclear coordinates,

respectively. The electronic wavefunction ψelec has a parametric dependence on the

instantaneous position of the nuclei, R. This decoupling of the nuclear and electronic

motions is the core principle of the Born-Oppenheimer approximation [140]. The justi-

fication of this approximation is usually explained by the large ratio of the nuclear and

electron masses; both the nuclei and electrons experience coulombic forces of similar

magnitude yet, since the electrons are so much lighter they move much faster relative

to the nuclei. Therefore the assumption is that the electrons redistribute themselves

instantaneously upon any nuclear motion.

In this picture, the kinetic energy of the nuclei is neglected in solving for the total

electronic energy, i.e. the nuclei are ‘clamped’. With this taken into consideration, the

remaining components of Eq. 2.1 can define the clamped nucleus Hamiltonian:
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The resulting Schröodinger equation takes the form

Ĥcn(r;R)ψelec(r;R) = Ecn(R)ψelec(r;R), (2.5)
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where both ψelec(r;R) and Ecn(R) depend on the nuclear coordinates R. Using this

framework, the electronic energy problem is solved for various configurations of fixed

nuclear coordinates. This gives rise to the well-known concept in quantum chemistry

of a potential energy surface (PES), a grid of electronic energies corresponding to each

nuclear arrangement.

This is the first part of a two-step process. The so called electronic structure prob-

lem is solved for a number of nuclear geometries in order to construct the PES. It is

possible for multiple electronic configurations to exist for a particular fixed nuclear

geometry, depending on the particular system being described, and this would lead to

a number of potential surfaces existing which correspond to each electronic arrange-

ment. For the remainder of this work, the only concern is with the ground electronic

state, which gives rise to a single PES for each molecule of interest.

The second step makes use of the constructed PES in solving the for the motion

of the nuclei, with the nuclear Schröodinger equation taking the form[
−

N

∑
A=1

h̄2

2mA
∇

2
A +E(R)

]
ψnuc(R) = Enucψnuc(R), (2.6)

where the previously neglected nuclear kinetic energy term has been reincorporated.

The Born-Oppenheimer approximation described here is the at the root of all cal-

culations described in this work, where various methods are used to solve the two step

process. The following section describes the general approach to solving the first step,

the problem of electronic motion.

2.3 The Electronic Motion Problem
Despite the simplification that the Born-Oppenheimer approximation strives to achieve,

finding exact solutions to the clamped nucleus Hamiltonian is still analytically impos-

sible for most molecular systems of interest. Instead, numerical procedures are im-

plemented in order to solve these eigenvalue problems ab initio. This section briefly

outlines the principles of electronic structure theory, and mentions various quantum

chemistry methods that are used in the calculations for constructing potential surfaces,

particularly the coupled-cluster Theory which has been used in the construction of the

PESs used in this thesis.
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2.3.1 The Hartree-Fock Method & Post Hartree-Fock Methods

The fundamental approach underlying most ab initio electronic structure calculations

lies in the Hartree-Fock method [141–143]. The starting point for this particular scheme

is an anzatz for the electronic wavefunction, taken to be a product of one-electron

functions, or ‘orbitals’, which depend on the position vector, ri of electron i. The

existence of spin adds an extra degree of freedom alongside the spatial coordinates of

the electrons, so spin-orbitals are generally used, denoted by χ :

ψelec = χ1(r1)χ2(r2)...χN(rN) (2.7)

A direct product of one-electron functions however does not satisfy the Pauli princi-

ple in that the wavefunction is not antisymmetric with respect to the interchange of

two identical electrons (which are fermions). Instead, a linear combination of such

products can be used to account for this necessity. This can be represented as a Slater

determinant:

ψelec = ψHF =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣

χ1(r1) χ2(r1) · · · χN(r1)

χ1(r2) χ2(r2) · · · χN(r2)
...

... . . . ...

χ1(rN) χ2(rN) · · · χN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣
(2.8)

In order to generate the best approximation for the electronic wavefunction it is possible

to make use of the variational principle, which states that the energy of a given trial

wavefunction is greater than or equal to the value of the exact energy; in the case of such

an equality, the trail wavefunction is the exact wavefunction. By use of this principle

it is possible to vary the parameters of the initial wavefunction anzatz to minimise the

energy.

In this single-Slater determinant picture, it is assumed that each electron interacts

with an average charge distribution which is caused by the remaining electrons. This

is incorrect and can lead to a poor description of the electronic behaviour - it does not

correctly take into account the so-called Coulomb correlation, an effect arising from the

fact that the Hartree-Fock model treats instantaneous Coulumbic repulsions between

electrons in a simplified way by having individual electrons interact with an average
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electron charge cloud. This leads to an energy that is different from the exact energy.

The difference between the exact energy and the Hartree-Fock energy is known as the

correlation energy [139]:

Ecorr = Eexact−EHF (2.9)

This is one of the primary shortcomings of the Hartee-Fock method. Although it al-

lows for some correlation between electrons of identical spin, it neglects any between

those of opposite spin. The Hartree-Fock method can be complemented by additional

schemes which aim to account for the residual correlation energy.

The aim of post Hartree-Fock methods is to improve upon the accuracy of the HF

calculation. This does however come at a price, that of computational expense. There

are a variety of methods available aiming to achieve the desired accuracy, and each

have their own computational costs; generally speaking, the higher the accuracy of the

result required, the more computationally demanding.

The most well-known post Hartree-Fock methods include the configuration inter-

action (CI) method, Møller-Plesset perturbation theory (MP) and coupled-cluster (CC)

theory [139, 144–146]. In the case of CI, the solution to the Hartree-Fock method

is assumed to be a good approximation, and the ‘true’ wavefunction is expanded as

a weighted, linear combination of Slater determinants, including the Hartree-Fock

ground-state determinant, as well as determinants representing excitations to unoccu-

pied (virtual) orbitals, which contribute less and less to the overall wavefunction with

increasing excitation [139]. This method aims to account for the pair correlation of

electrons, and optimises the appropriate weights in a minimisation scheme. Due to

computational difficulty the wavefunction expansion is often truncated to include sin-

gle excitations, single and double excitations, etc. from the reference Hartree-Fock

wavefunction, and methods are referred to by acronyms such as CIS, CISD, etc. These

all offer varying degrees of quality in final results, with inclusion of higher order exci-

tations providing greater accuracy.

The coupled-cluster approach is similar in that it relies on a good approximation in

the Hartree-Fock calculation, and improves upon the CI method, most notably by con-

sidering the problem of size-consistency, which requires the total energy of a combined

system to be equal to the individual energies of the system’s constituents separated
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by a large enough distance where their interaction is zero [139]. The coupled-cluster

wavefunction is given as:

ψCC = eT̂
ψ0, (2.10)

where ψ0 is the a reference wavefunction, i.e. a Hartree-Fock wavefunction, and T̂ is

the cluster operator, defined as:

T̂ = T̂1 + T̂2 + T̂3 + ... (2.11)

Here, the T̂i are the cluster operators for single, double, triple etc. excitations. The

inclusion of higher order excitations results in a convergence to the exact value within

a one-electron basis, i.e. full correlation [147]. In practice, similar to the CI method,

T̂ is truncated due to the increasing computational demands of higher excitations. As

such, the naming convention of these techniques is similar to that of CI and is defined

by the order of truncation, with CCS referring to a coupled-cluster computation using

only single excitations, CCSD for singles and doubles, CCSDT for singles, doubles and

triples, etc. There are also examples of coupled-cluster approaches introducing approx-

imate treatment for higher excitation, usually denoted by parentheses; e.g. CCSD(T)

refers to a coupled-cluster calculation for single and double excitations, with perturba-

tive treatment of triple excitations. This method in particular is well-known to provide

good accuracy while minimising computational costs, and is often referred to as the

‘gold standard’ [139]. This approach is used for all calculations discussed in this the-

sis. The coupled-cluster method is reviewed in greater detail in Ref. [147].

The accuracy to with which results are achieved is also dependent on the choice

of the basis set used to construct the one-electron functions in the Hartree-Fock Slater

determinant [144]. Typically these are composed as linear combinations of atomic or-

bitals, with the principle aim of describing the behaviour of an electron around the

atomic nucleus as well as possible. The ‘Slater type orbitals’ (STOs) generally give

a good description of such behaviour, however they are computationally difficult to

handle. For this reason they are more often approximated by contracted linear com-

binations of ‘Gaussian type orbitals’ (GTOs), in an effort to emulate the behaviour of

STOs.

A minimal basis set is one which contains the minimum number of basis functions
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to describe each atom, the most common of which is the STO-nG basis set [148]. Here,

the n represents the number of ‘primitive’ Gaussian functions used in the construction

of an individual basis function; the linear combination is referred to as a ‘contraction’.

The resulting STO-nG is subsequently used as an atomic orbital basis function. This

representation can be expanded upon to better describe the nature of molecular bonding

by providing an improved description of the valence electron orbitals. Such a descrip-

tion is known as a ‘split-valence’ basis set [149]. In this instance, the core orbital

remains described by a single contracted combination of Gaussian functions, however

the basis set used to describe the valence electrons are comprised of a linear combina-

tion of contracted Gaussians. A basis set described in this way is denoted as X-Y ZG,

where X represents the number of primitive Gaussians used in describing the core or-

bital, and the Y and Z represent the number of primitives for each Gaussian contraction

used in constructing the valence orbital. It is possible to add more Gaussian contrac-

tions to the valence orbital description, therefore increasing from what is known as a

‘split-valence double-zeta’ basis set (seen here) to ‘triple-zeta’, ‘quadruple-zeta’, etc.

Further additions to these basis set descriptions can be added, including the use

of polarisation functions, in which contracted Gaussian functions describing higher

excitations of angular momentum for the valence orbitals may be included to enhance

the ‘flexibility’ of the basis set. Another set of similar enhancements are the inclusion of

diffuse functions, in which the contracted Gaussians describe the behaviour of electrons

far from the nucleus. Each of these can help provide a less restrictive description of the

orbital behaviour. The former are usually denoted with an asterisk in the standard Pople

naming convention, whereas the latter are described with a ‘+’.

The Pople basis sets described here are not well suited to the correlated, post-

Hartree Fock computations discussed previously. Dunning [150] provided ‘correlation-

consistent’ basis sets optimised to work with such methods, whose descriptions follow

a similar pattern to the Pople basis sets. Namely, double, triple, quadruple-zeta, etc

are specified along with any additional properties, such as polarisation functions and

diffuse augmentations. For example, the basis set named ‘aug-cc-pVTZ’ is augmented

with diffuse functions, is correlation-consistent, polarised-valence, and is a triple-zeta

combination.

There are several basis sets available, each suited to help solve the particular prob-
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lem described. More information on basis sets and electronic structure methods in

general is given in Ref. [139], and references within. Figure 2.1 [151] shows a plot out-

lining the quality of ab initio electronic structure methods and basis sets with respect

to obtaining exact solutions; as can bee seen, the extension of both basis set size and

electron correlation consideration is required to achieve experimental accuracy.

Figure 2.1: Hierarchy of electronic structure methods and basis set size. Figure taken from
Ref. [151].

2.4 The Nuclear Motion Problem: A Precursor
Once the electronic problem is dealt with it is necessary to solve for the motion of the

nuclei, i.e. by solving Eq. 2.6. Various methods have been implemented to achieve this,

many of which work by receiving an externally computed potential energy surface as

an input, with which subsequent calculations are made. The work in this thesis uses

two different methods to compute the rovibrational wavefunctions, energies and dipole

transition moments for the two molecular systems of interest. Both methods involve

the construction of a Hamiltonian matrix as a sum of kinetic and potential energy op-

erators. Diagonalization of these matrices in terms of suitable basis set functions gives

the necessary eigenfunction and eigenenergies desired.

In the next three sections these methods will be addressed. First, a general discus-

sion of the fundamental approaches common to both methods is given. In the following

section an overview of the DVR3D method is given. DVR3D specialises in the compu-
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tation of rovibrational energies and eigenfunctions for triatomic systems; the procedure

is outlined and then discussed in the context of SO2. The final section regarding the

nuclear motion problem deals with the TROVE method. TROVE employs a more gen-

eral computational scheme for arbitrary polyatomic molecules, and has been adapted

to work with tetratomic systems. This is the technique used in the calculations of rovi-

brational energies for SO3.

2.4.1 Overview of the Problem

The aim is to solve the Nuclear Schröodinger equation of a polyatomic molecule which,

in Cartesian coordinates, can be expressed as[
−h̄2

2

N

∑
A=1

∇2
A

mA
+V

]
ψT RV = ET RV ψT RV , (2.12)

where each nucleus A has mass mA and coordinates (RAX ,RAY ,RAZ) in the laboratory-

fixed axis system. V is the potential surface obtained from solution to electronic struc-

ture calculations outlined in the previous section, and the ψT RV and ET RV are the

eigenfunctions and eigen-energies, respectively. The subscript T RV denotes that the

solutions are for the energies associated with translational, rotational and vibrational

motion.

For a molecule with N atoms, there are a total of 3N degrees of freedom in the

laboratory fixed frame associated with these motions. In practice, the Schröodinger

Equation for the N-atomic molecule in this Cartesian form is not easy to solve. It is

possible to introduce more suitable coordinates which take into account the fact that

the translational motion can be completely separated from the rotational and vibra-

tional motion, and that the remaining motions can also (to a lesser extent) be decou-

pled [131, 152, 153], thereby simplifying the construction and eventual solution of the

Schröodinger Equation.

To this end, a transformation to a ‘space-fixed’ axis system is introduced, where

the origin lies at the centre of mass of the molecular system, thus removing the centre

of mass motion entirely. This leaves a total of 3N - 3 degrees of freedom associated

with rotation and vibration. In reality it is not possible to completely decouple these

motions, but to a good first approximation the dimensionality of the problem may be
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further reduced by introducing the ‘molecule-fixed’ axis, which essentially rotates with

the molecule; in this reference frame the only motion is from vibrations of the molecule,

where the removal of the rotational degrees of freedom leaves 3N - 6 vibrational degrees

(or 3N - 5 for linear molecules).

This, together with the separation of the translational motion, allows for the ‘rovi-

brational’ eigenfunction to be defined in terms of suitable coordinates which describe

both the rotational and vibrational motions:

ΨRoVib = ψrot(θ ,φ ,χ)ψvib(q), (2.13)

where θ , φ and χ are the Euler angles [154], and q are a set of internal coordi-

nates. In order to define the orientation of the molecule with respect to the space-fixed

frame the Euler angles are introduced as parameters of an orthogonal rotation from the

molecule-fixed frame to the space-fixed frame, i.e. they describe the rigid rotations of

the molecule [153]. It is therefore useful to use standard rigid rotor functions in terms

of these angles in order to describe this motion. The remaining 3N - 6 internal coor-

dinates and corresponding basis functions must be chosen to describe the vibrational

motions. Examples of such functions are standard harmonic or spherical functions, in

terms of bond length or bond displacement coordinates, and inter-bond angles.

The possible transformations to the molecule-fixed axis system are described more

rigorously in Refs. [131,153]. Despite the differences in methodology, the common aim

of both DVR3D and TROVE is to construct a Hamiltonian for the molecule in question

in terms of appropriate internal coordinates and basis functions. Both the DVR3D and

TROVE program suites operate on the assumption of this coordinate transformation

to the molecule-fixed frame, and each allow for the choice of suitable coordinates and

basis functions for describing the vibrational motions. As a result, the potential energy

surface, V , which is supplied as an external function, must be given in terms of the

internal coordinates used to describe the problem.

Thus, a matrix representation of the Hamiltonian operator is constructed in accor-

dance with the chosen coordinates, and diagonalised in terms of a suitable basis set

comprised of functions describing the rotational and vibrational motions.
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2.4.2 The Finite Basis Representation

The aim is to diagonalize the Hamiltonian matrix in terms of a basis set which consists

of a product of 1-dimensional basis functions, describing individual bond stretches,

inter-bond bends, and rotation. Historically, the usual approach to representing a basis

set involves a Finite Basis Representation (FBR), which is a truncation of an infinite

Variational Basis Set (VBR). In the VBR, wavefunctions are expressed as a superposi-

tion of orthonormal basis functions:

ψ =
∞

∑
i=1

ciφi. (2.14)

In the variational approach, the coefficients ci are optimised to achieve a minimisation

in the eigenvalue associated with ψ . Eigenvalues of the Hamiltonian matrix are found

by diagonalizing the matrix represented in the chosen VBR. In practise, an FBR is used

by truncating this sum to retain N basis functions, φi. This truncation introduces an

approximation to the minimised result for the eigenvalues. As the basis approaches

completeness the eigenvalues of the Hamiltonian matrix converge to their true values,

however due to the increased computational demands of a larger basis set, there must

be a trade-off between accuracy and computing time, which is why the truncation is

introduced.

2.4.3 Symmetry

It is often practical to take advantage of the symmetrical properties inherent in many

molecules to further simplify the computation of rovibrational wavefunctions. One

method is to classify the molecule according to a Molecular Symmetry (MS) group,

under the mathematical framework of group theory [154]. This classification is based

on the geometry of the molecule. A so-called ‘point group’ contains various symmetry

operations across elements (axes, planes, etc.); in the context of a molecule these sym-

metry operations may be characterised as nuclear permutations and inversions. The

labelling of wavefunctions via the MS group is based on the behaviour of the wave-

function when subject to the operations of the group.

A Molecular wavefunction describing a rovibrational state of a system can be la-

belled by an irreducible representation (or ‘symmetry species’) of the MS group, de-
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pending on how it transforms under the various operations of the group, and this is

useful for a number of reasons. Firstly, the classification of functions by symmetry

species allows for the determination of Pauli Principle-permitted wavefunctions. From

a computational perspective this helps eliminate the calculation of unnecessary wave-

functions which describe unphysical molecular states.

Secondly, the symmetry labelling of molecular functions introduces simplification

to calculations involving integrals; in particular, it is of interest to determine the condi-

tions which integrals of the form 〈ψi|Ô|ψ j〉 must satisfy in order to be non-zero, where

Ô is an operator. Integrals of this form appear in the construction of matrix elements in

the Hamiltonian matrices, and the simulation of intensities via the computation of tran-

sition strengths between states and their corresponding rovibrational wavefunctions.

It follows that there is a dependency upon the symmetry properties of the indi-

vidual functions involved in the integrand, ψi, Ô, and ψ j. If these functions are from

spaces whose bases generate the irreducible representations Γi, ΓÔ and Γ j, respectively,

and if ΓÔ⊗Γ j does not contain Γi, then [154]

〈ψi|Ô|ψ j〉= 0. (2.15)

Therefore, with prior knowledge of the symmetry behaviour of ψi, Ô, and ψ j, it is

possible to avoid unnecessary calculations of integrals that would ultimately equate to

zero. An additional consequence is that transition selection rules are imposed by this

rule; these are discussed Section 2.7.

2.5 The Nuclear Motion Problem: SO2 & DVR3D

The nuclear motion rotation-vibration wavefunctions required for computing dipole

transition moments for the focus of the current work on SO2 are calculated using the

DVR3D program suite [138]. This set of program modules has been built specifically

for triatomic systems, based on the Discrete Variable Representation (DVR). The DVR

was first used by Harris et al. [155] and was applied to some simple one-dimensional

quantum mechanical problems. Its potential was not discovered until much later when

Light et al [156, 157] devised a procedure for calculating nuclear motion states of

molecules, the principles of which define the workings of DVR3D.
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The DVR3D suite allows for the calculation of ro-vibrational wavefunctions and

spectra using either Radau or Jacobi coordinates. There are a number of advantages of

using the DVR technique above other widely used variational techniques. These, along

with a background of the DVR method are discussed.

2.5.1 The SO2 Molecule

SO2 is a bent, asymmetric top molecule characterised by C2v symmetry, with the sul-

phur atom placed on the C2 symmetry axis. SO2 has three fundamental vibrational

modes (see Fig. 2.2), which are the ν1 symmetric stretch, the ν2 symmetric bend and

the ν3 asymmetric stretch, functions of which transform as A1, A1 and B2 under C2v,

respectively. The Bosonic nature of the spin-0 Oxygen atoms means that the total

rovibrational wavefunction must be symmetric with respect to the permutation of the

Oxygen nuclei, as per the Pauli Principle. From the C2v character table it can be shown

that this condition is satisfied only for the A1 and A2 symmetry species [154].

Figure 2.2: Fundamental vibrations of SO2.

The DVR3D suite deals with the labelling of rovibrational states via vibrational

‘symmetry blocks’ defined by the vibrational basis symmetry, q, and rotational par-

ity, p, which are either even (e) or odd (o) [138] (see Subsection 2.5.4). Thus, there

are four possible symmetry block combinations qp for vibrational and rotational basis

functions: ee, eo, oe, oo. These blocks can be related to the irreducible representations

of C2v [154], but the relation is dependent on whether the rotational angular moment

quantum number J is even or odd. This is summarised in Table 2.1.

Since the Pauli Principle physically excludes states with B-type symmetry for SO2,

only two symmetry block combinations are required for each J, which simplifies the

calculations by disregarding half of all the possible rovibrational wavefunctions. The
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Table 2.1: Symmetry block combinations within the DVR3D suite, and their relations to the
irreducible representations of C2v [154].

J even J odd
q e e o o e e o o
p e o e o e o e o
Γ(C2v) A1 B1 B2 A2 B1 A1 A2 B2

calculation of these is defined by certain input parameters to the DVR3D code which

are discussed in Chapter 3. The method for their calculation is now discussed.

2.5.2 The Coordinate System, Orientation Within the Molecule-

fixed Frame, & the Finite Basis Functions

There are two choices of orthogonal coordinate systems implemented in the DVR3D

program suite - Jacobi and Radau coordinates. The Jacobi, or ‘scattering’ coordinates

(r1,r2,θ) are well suited for describing collision systems between a single particle and

a diatom [158]. In this instance, r1 represents the bond length of the general diatomic

BC, and r2 the distance of the weakly bound atom A from the centre of mass of BC,

where θ represents the angle between these two vectors.

For the purposes of the current work on SO2, the Radau coordinates are used

instead. Here r1 and r2 represent the distances of atoms 1 (O1) and 2 (O2), respectively,

from a ‘canonical point’ P. This point satisfies the condition MB× CB = PB2, where

B is the centre of mass of atoms 1 and 2, C is the centre of mass of the triatomic

system, and M is the distance of atom 3 (S) from point B [159]. In the case of a heavy

central atom 3 (relative to the other atoms), the point P has little variation, and usually

coincides with the centre of mass of the third atom [158]. The angle between r1 and r2 is

represented by θ . Figure 2.3 shows a graphical representation of the Radau coordinate

system.

DVR3D specifies a set of generalised internal coordinates, g1 and g2, where [138,

160]

g1 =
A3−P
A3−A2

, g2 =
A3−R
A3−A1

. (2.16)

Here P and R specify the centre-of-masses between atom 3 and 2, and 3 and 1,

respectively, as in Figure 2.4.
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Figure 2.3: The Radau coordinate system [159].

Figure 2.4: The generalised coordinate system. Ai represents atom i [138, 160].

In general, these coordinates can be obtained for any system [160], by using

g1 = 1− A
A+B−AB

, g2 = 1− A
1−B+AB

, (2.17)

A =

(
m3

m1 +m2 +m3

)1/2

, B =
m2

m1 +m2
, (2.18)

and the mi are the masses of atoms 1, 2 and 3. In the case where m3 is much larger than

m1 and m2, the Radau coordinates behave as bond-length-bond-angle coordinates.

The choice of the orientation of the molecule, or ‘embedding’, within the

molecule-fixed frame xyz is important for facilitating the solutions to the rotational

excitation problem [138]. DVR3D includes four different types of embedding options:

1. r1 embedding: z-axis parallel to r1, with x in the plane of the molecule;

2. r2 embedding: z-axis parallel to r2, with x in the plane of the molecule;
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3. Bisector embedding: x bisects the angle θ , with z in the plane of the molecule;

4. Perpendicular embedding: x bisects the angle θ , with z perpendicular to the plane

of the molecule.

The current work makes use of the bisector embedding [138,161], which takes ad-

vantage of the symmetric properties of SO2; the z-axis coincides with the C2v symmetry

axis.

2.5.2.1 The Basis Functions

It is practical to use a set of orthogonal basis functions to describe each of the stretch-

ing motions in the r1 and r2 coordinates and the bending motion in the θ coordinate.

DVR3D uses Laguerre polynomials for the radial basis functions, in the form of either

Morse or spherical oscillators; for SO2 the Morse-type function [153, 162] is used:

|n〉= β
1/2Nnαexp(−y/2)y(α+1)/2Lα

n (y), y = Aexp[−β (r− re)], (2.19)

where NnαLα
n (y) is a normalised associated Laguerre polynomial [153, 163], and

A =
4De

ωe
, β = ωe(µ/2De)

1/2, α = INT (A), (2.20)

Here, µ is the reduced mass, and De, ωe and re are parameters in the Morse potential

function:

V (r) = De(1− exp[−β (r− re)])
2−De. (2.21)

De, ωe and re are treated as variational parameters in the DVR3D computation, and

their values must be optimized accordingly in order to minimize and converge the basis

set. Such convergence tests are outlined in Chapter 3. Since SO2 is homonuclear, the

same basis functions may be used for both the r1 and r2 coordinates.

In the case of the bisector embedding that is made use of in the current project,

the angular basis functions, |l〉, are Legendre polynomials in the case of the purely

vibrational problem, and associated Legendre polynomials of order k in the case of

rotational excitation [138] (see below).

Thus, in the FBR picture, the state |ψ〉 is expanded in terms of the basis functions
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as

|ψ〉= ∑
i, j,k

ci jkli(θ)m j(r1)nk(r2). (2.22)

As has been previously stated, the FBR introduces a truncation in the number of basis

functions that are retained, therefore the representation of the true wavefunction is com-

promised, particularly for high lying states. The lack of convergence of the eigenvalues

of these states may be improved by the addition of more basis functions, however this

becomes more computationally expensive.

2.5.3 The Discrete Variable Representation

The defining feature of DVR3D is the introduction of the Discrete Variable Represen-

tation (DVR) [138, 156, 157], which aims to mitigate the problems associated with the

FBR. The approach provides an efficient way in constructing the 3D Hamiltonian in

the Radau coordinates. The benefit of the DVR is that it provides a simple method for

evaluating matrix elements, and a compact way of representing the multidimensional

Hamiltonians.

The DVR is obtained as an orthogonal transformation from an equivalent FBR.

Assuming that the FBR is comprised of a set of orthogonal polynomials, the trans-

formation is defined in terms of the Gaussian quadrature points and weights of these

polynomials; for an FBR consisting of N orthogonal polynomials, there exists an iso-

morphic DVR at N weighted quadrature points. Essentially, the transformation changes

from a representation where the wavefunctions are expressed as amplitudes associated

with the polynomial functions to one where they are expressed as amplitudes at the

quadrature points.

A 1-dimensional DVR transformation, T , can be represented by the points and

weights of the N-point Gaussian quadrature rule associated with the corresponding

FBR polynomial in the coordinate of interest (r1, r2, θ ):

Tγl =
√

wγ l(γ), Tαm =
√

wαm(α), Tβn =
√

wβ n(β ), (2.23)

where the li, m j, nk are in accordance with Eq. 2.22.

Since the FBR is expressed as a direct product of the polynomial functions, a

3D transformation to the DVR can be defined as the product of the 1D transformation
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operators:

T = TαmTβnTγl. (2.24)

2.5.4 Method

In the following a brief outline of the DVR3D method is presented, with emphasis on

the technique for constructing rovibrational wavefunctions for homonuclear triatomics

in the bisector embedding [138, 161], used in the current work on SO2.

For the the purely vibrational J = 0 case, the Hamiltonian can be written in terms

of the FBR as

〈m,n, l|HJ=0|m′,n′, l′〉= 〈m|ĥ(1)|m′〉δn,n′δl,l′+ 〈n|ĥ(2)|n′〉δm,m′δl,l′

+(〈m|ĝ(1)|m′〉δn,n′+ 〈n|ĝ(2)|n′〉δm,m′)l(l +1)δl,l′

+ 〈m,n, l|V (r1,r2,θ)|m′,n′, l′〉,

(2.25)

where

ĥ(i) =
−h̄2

2µi

∂ 2

∂ r2
i
, ĝ(i) =

h̄2

2µir2
i
, (2.26)

and µi are appropriate reduced masses in terms of the parameters of Equations 2.17 and

2.18 [138].

Here, the radial basis functions |m〉 and |n〉 are the Laguerre-type polynomials

discussed in Subsection 2.5.2.1, and the angular functions |l〉 are Legendre polynomi-

als. Since SO2 is a symmetric AB2 type molecule it makes sense to take advantage

of the inherent symmetry present by using the same coordinates and basis functions to

describe the radial behaviour. The resulting symmetrised radial functions are given as

|m,n,q〉 =
√

2(1+δm,n)(|m,n〉 +(−1)q|n,m〉), q = 0,1, (2.27)

where q denotes the even (q = 0) and odd (q = 1) symmetry blocks.

DVR3DRJZ is used as a first step in the computation of the full rovibrational wave-

functions. This first step involves the calculation of a Coriolis-uncoupled Hamiltonian,

HJ,k for J > 0. In this picture, it is assumed that the projection of J onto the molecule-

fixed z-axis, k, is a good quantum number. Here, k is different from the well-known
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asymmetric top quantum numbers Ka and Kc [154], however at equilibrium k corre-

sponds to Ka [164]. The angular basis |l〉 functions for J > 0 are associated Legendre

polynomials of order k, and are coupled to symmetrised rotor functions [138], denoted

by |J,k, p〉, where p defines the rotational parity by (−1)J+p (p = 0 and p = 1 for even

and odd parity, respectively).

In the FBR, for the bisector embedding, HJ,k is given as [138]

〈m,n, l,J,k, p|HJ,k|m′,n′, l′,J,k, p〉=〈m,n, l|HJ=0|m′,n′, l′〉

+(〈m|ĝ(1)|m′〉δn,n′+ 〈n|ĝ(2)|n′〉δm,m′)

×
(1

4
〈lk| 1

(1− cosθ)
|l′k〉(J(J+1)−3k2)

+
1
8

δl,l′(J(J+1)− k2)

+δk,1
(−1)1−p

16
〈lk| 1+ cosθ

(1− cosθ)
|l′k〉J(J+1)

)
.

(2.28)

Here there is an extra term on the diagonal for the case k = 1, due to the symmetrisation

of the rotational functions [138, 161].

The Hamiltonian of Equation 2.28 may be transformed to the DVR associated

with the quadrature schemes of the FBR basis functions via the composite, unitary

transformation operator in Eqaution 2.24:

T T 〈m,n, l,J,k, p|HJ,k|m′,n′, l′,J,k, p〉T . (2.29)

This gives the transformed Hamiltonian written at the DVR points

HJ,k
α,α ′,β ,β ′,γ,γ ′ =K(1)

α,α ′δβ ,β ′δγ,γ ′+K(2)
β ,β ′δα,α ′δγ,γ ′+L(1)

α,α ′,γ,γ ′δβ ,β ′+L(2)
β ,β ′,γ,γ ′δα,α ′

+
1
8
(M(1)

α,α ′,β ,β ′+M(2)
α,α ′,β ,β ′)δγ,γ ′

(1
8
(J(J+1)− k2)

+δk,1
(−1)1−p

16
J(J+1)

1+ γ

1− γ

)
+V (r1α ,r2β ,θγ)δα,α ′δβ ,β ′δγ,γ ′,

(2.30)
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where

K(i)
x,x′ = ∑

t,t ′
Txt〈t|ĥ(i)|t ′〉Tx′t ′, (2.31)

L(i)
x,x′,γ,γ ′ = ∑

l
Tγll(l +1)Tγ ′l ∑

t,t ′
Txt〈t|ĝ(i)|t ′〉Tx′t ′, (2.32)

M(i)
x,x′ = ∑

t,t ′
Txt〈t|ĝ(i)|t ′〉Tx′t ′, (2.33)

from the quadrature approximation.

One of the attractive features of the DVR method is that, due to the quadrature

approximation, the potential V is completely diagonal at every coordinate [138], and

therefore requires no integration:

∑
m,n,l

∑
m′,n′,l′

TαmTβnTγl〈m,n, l|V (r1,r2,θ)|m′,n′, l′〉Tα ′m′Tβ ′n′Tγ ′l′

' V (r1α ,r2β ,θγ)δα,α ′δβ ,β ′δγ,γ ′.

(2.34)

Another advantage of the DVR3D method is that working within the DVR allows for

the solution of the 3D Hamiltonian to be performed as a series of diagonalisations and

truncations [138, 161], reducing the overall computational cost. In the current example

using symmetrised Radau coordinates in a bisector embedding, the 2D Hamiltonian in

the radial coordinates is constructed and diagonalised for a number of fixed angular co-

ordinates. The lowest valued solutions to these intermediate calculations are then used

in the construction of the full 3D Hamiltonian, a hierarchical scheme which is com-

putationally efficient. Singularities at low angles may also be avoided by disregarding

solutions to the 2D problem for small θ [161]. For each value of k the solutions of the

3D Coriolis-uncoupled Hamiltonian with the lowest energy are subsequently used to

construct a fully Coriolis-coupled rovibrational Hamiltonian for a particular J, where

the maximum number of these low energy solutions to be used is defined by the user.

This final Hamiltonian therefore exhibits a diagonal k-block structure; using the solu-

tions of the first step as a basis for this second step reduces the computation to that of

determining the off-diagonal coupling terms only. The current work makes use of the

ROTLEV3B module to perform this task, which uses a DVR for all three coordinates.
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The final Coriolis-coupled rovibrational Hamiltonian has the form

〈h, p,q|H|h′, p′,q′〉=δh,h′δk,k′ε
J,k
h

− (1+δk,0 +δk′,0)
−1/2

δk′,k±1δq′,1−qC±J,k

× ∑
α,β ,γ,γ ′

ψ
J,k,h
α,β ,γψ

J,k′,h′

α,β ,γ ′

(
M(1)

α,α,β ,β −M(2)
α,α,β ,β

)
J(2)k±1,k,γ,γ ′

− (1+δk,0 +δk′,0)
−1/2

δk′,k±2δq′,qC±J,k±1C±J,k

× ∑
α,β ,γ,γ ′

ψ
J,k,h
α,β ,γψ

J,k′,h′

α,β ,γ ′

(1+ γ

1− γ

)(
M(1)

α,α,β ,β +M(2)
α,α,β ,β

)
J(2)k±2,k,γ,γ ′

k = p, p+1, ...,J, p = 0,1,

(2.35)

where q and p are defined as above. In Equation 2.35 the |h〉 and ε
J,k
h are the eigen-

functions and associated eigenvalues, respectively, selected from the first DVR3DRJZ

step for a particular J and k. The C±y,k angular factors are given by

C±y,k = (y(y+1)− k(k± 1))1/2, (2.36)

and the J(i)k′,k,γ,γ ′ are angular integrals which are given by

J(1)k′,k,γ,γ ′ = ∑
l,l′

Tγ(k)l

[
δl,l′+

(k+ k′

2

)
〈l,k|(1+ cosθ)

sinθ
|l′,k′〉

]
Tγ ′(k′)l′, (2.37)

and

J(2)k′,k,γ,γ ′ = ∑
l,l′

T γ(k)l
[

δl,l′+ 〈l,k|
(1+ cosθ)

(1− cosθ)
|l′,k′〉

]
T γ ′(k′)l′ , (2.38)

i.e. they are obtained by a DVR transformation from the corresponding FBR functions;

the γ(k) notation makes it explicitly clear that the γ DVR points are obtained from the

Gaussian quadrature of the associated Legendre functions, which vary in k. Further

details of this procedure may be found in Ref. [138].

2.5.4.1 The Final Rovibrational Wavefunctions

The resulting wavefunctions files generated from the ROTLEV3B calculations are

structured according to k-blocks of the underlying basis functions [164], given as am-

plitudes at the DVR points. This is computationally advantageous for calculations of
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the dipole transition strength where transitions are calculated according to ∆k = 0, ± 1

(see Section 2.8).

The wavefunctions are classified by the angular moment quantum number J, and

the overall symmetry defined by the qp combinations of vibrational and rotational par-

ities, which give rise to either A1 or A2 symmetry type under C2v.

2.6 The Nuclear Motion Problem: SO3 & TROVE
The second half of the project described in this thesis focuses on the development of a

line list for SO3. Unlike for SO2, where a specific code designed for the wavefunction

construction of molecules of a particular structure (DVR3D for triatomic systems) is

used, the rovibrational calculations for SO3 have been performed with the program

TROVE [131], which employs a variational approach in constructing rovibrational

energies for general polyatomic molecules, using a numerically determined finite basis

representation.

The calculations in TROVE can be performed in terms of any set of physically ap-

propriate vibrational coordinates; in the current implementation linearised coordinates

are used. The kinetic and potential energy operators are expanded numerically as a

Taylor series in terms of these internal coordinates.

This section describes a general overview of the TROVE method, including a dis-

cussion of the important concept of symmetry involved with all calculations, particu-

larly within the context of the SO3 molecule. More detailed and general descriptions

may be found in the published literature [131, 165].

2.6.1 The SO3 Molecule
32S16O3 is a stable, tetratomic molecule consisting entirely of spin-0 bosons. It’s equi-

librium configuration is that of a symmetric, trigonal planar structure, with the a sul-

phur atom located at the centre, and three Oxygen atoms bonded at 120 degrees apart

within the plane [166]. It is this configuration that gives 32S16O3 the characteristics

of the D3h(M) molecular symmetry group, which has six irreducible representations,

defined in the D3h(M) character table [154]. Therefore, by determining the transfor-

mation properties of the wavefunctions computed for this molecule under the various

operations of D3h(M), they can each be labelled by either A′1, A′2, E ′, A′′1 , A′′2 , or E ′′.
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Functions representing the four fundamental modes ν1 (symmetric stretch), ν2 (sym-

metric bend), ν3 (asymmetric stretch) and ν4 (asymmetric bend) transform as A′1, A′′2 ,

E ′ and E ′, respectively; the last two vibrational modes are therefore doubly-degenerate

(see Fig. 2.5).

Figure 2.5: Fundamental vibrations of SO3 (image taken from Ref. [166]).

As with SO2, the Pauli Principle states that the total internal molecular wavefunc-

tion, ΨInt , must remain symmetric under the exchange of two identical Bosons. For
32S16O3 this is equivalent to a D3h(M) point group permutation which exchanges two

of the Oxygen atoms. Analysis of the D3h(M) character table shows that only func-

tions that transform as either A′1 or A′′1 obey this condition [154], with even and odd

parity, respectively, and therefore only rovibrational wavefunctions described by these

symmetry species need be constructed.

2.6.2 The Rovibrational Hamiltonian & Basis Set

The TROVE procedure concentrates on establishing a molecular Hamiltonian that is de-

fined in terms of suitable coordinates within a molecule-fixed axis system. The kinetic

and potential operators are then each expanded as a Taylor series in these coordinates



2.6. The Nuclear Motion Problem: SO3 & TROVE 60

up to a certain order. The Hamiltonian, transformed into the molecule-fixed axis system

can be written as [131, 165]

H = Hvib +
1
2 ∑

α,β

JαGα,β Jβ +
1
2 ∑

α,n
(JαGα,n

∂

∂ξn
+

∂

∂ξn
Gα,nJα), (2.39)

where

Hvib =
1
2 ∑

n,m

∂

∂ξn
Gn,m

∂

∂ξm
+V +U (2.40)

is the purely vibrational part of the Hamiltonian. The Jα(α = x,y,z) operators are as-

sociated with the x,y and z -components of the total rotational angular momentum, and

∂/∂ξn are the vibrational momentum operators associated with the internal vibrational

coordinate ξn. Gn,m, Gα,β and Gα,n are kinetic energy operators which depend on the

internal coordinates , as do the potential and pseudopotential functions, V and U [131].

Each of these is expressed as an expansion in terms of the internal coordinates, and are

implicitly dependent on the constituent atomic masses.

In this molecule-fixed Hamiltonian the energy due to the translational motion has

been completely separated, leaving only terms describing the internal motion, due to

vibration and rotation. The three components of the Hamiltonian in 2.39 essentially

describe the pure vibrational motion, the pure rotational motion, and the coriolis inter-

action, respectively.

The aim is to express the kinetic and potential operators as Taylor series expan-

sions in terms of the internal coordinates ξn, or functions thereof. TROVE allows the

choice of any coordinates so long as it can represent the internal motions correctly.

Linearised coordinates, or geometrically defined coordinates are examples of such co-

ordinates that have been implemented in TROVE [131]. The expansion order of both

of the kinetic and potential operators can be supplied by the user, and demonstrates the

first example of the computational trade off between resource and quality of results; the

truncation of each expansion is expected to introduce an error into the final results, and

thus must be chosen to minimize the computational time while achieving the greatest

accuracy (see Chapter 4).
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2.6.2.1 The Vibrational Basis Functions

As previously stated, for TROVE, the rovibrational eigenfunctions of the molecular

Hamiltonian are obtained in a finite basis representation (FBR) in terms of a specified

basis set. Before constructing the full rovibrational basis set, it is necessary to consider

the ’primitive’ vibrational basis functions which are used in the first stage of computing

the final rovibrational basis.

The aim is to define a purely vibrational basis composed of 1D primitive functions,

each describing individual motions. TROVE employs a local mode approach [167]:

|ν〉 = ∏
n
|νn〉= φn1(ξn1)φn2(ξn2)φn3(ξn3)...φn3N−6(ξn3N−6). (2.41)

Each φni is a function in the internal coordinate ξi, either defined as a standard analytical

function (e.g. Morse oscillator or harmonic oscillator), or derived in a Numerov-Cooley

numerical scheme [168, 169]. Each ξi describes a particular vibrational mode of the

molecule; for a N-atomic non-linear molecule, 3N − 6 vibrational modes exist (for

linear molecules, the number is 3N − 5). In the case of SO3, six vibrational modes

exist.

In the Numerov-Cooley scheme, the basis functions are obtained as eigensolutions

to a 1-dimensional reduction of Hvib in Eq. 2.40 [131]:

H1D
vib =

h̄2

2
∂

∂ξn
G1D

n,n(ξn)
∂

∂ξn
+V (ξn)

1D +U(ξn)
1D (2.42)

For SO3 a 6-dimensional vibrational basis set is created from various combinations of

the 1-D functions. In theory, this basis set should be infinitely large in order to exactly

describe the Hamiltonian matrix, however owing to the impracticalities associated with

this, a truncation of the basis is required. TROVE incorporates a number of truncation

schemes in order to define a basis cut off, whereby function combinations are kept or

discarded based on their adherence to certain criteria, for example, only considering the

products of functions whose individual 1-D function constituents have energies which

sum to a value which lies below a certain threshold (see Chapter 4).

Like the truncation of the kinetic/potential energy expansions, an error is intro-

duced to the final results due to the exclusion of various basis functions, and therefore
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the truncation must be carefully fine-tuned in order to incorporate those which are nec-

essary to ensure sufficient accuracy.

2.6.2.2 Symmetry Considerations in the Vibrational Basis Set

In order to facilitate further calculations a technique of ‘symmetrisation’ can be car-

ried out whereby the purely vibrational Hamiltonian can be factorised into independent

symmetry blocks [165,170–172]. This can be thought of as a rotation of the vibrational

basis, |ν〉, into a set of symmetrised vibrational basis functions that can be classified

under D3h(M) symmetry; in this approach, the Hamiltonian is diagonalised in terms of

the new basis functions, φ Γ
ni

, where Γ = A′1, A′2, E ′, A′′1 , A′′2 , or E ′′.

This procedure greatly reduces the number of non-diagonal elements in the vibra-

tional Hamiltonian matrix, however it does not eliminate them. As such, the resulting

eigenfunctions will be linear combinations of the underlying basis functions. In order

to characterise the final eigenfunctions by symmetry species, the symmetry label of the

basis function with the largest contribution is used [172]. The symmetry labelling of the

resulting vibrational eigenfunctions serves to simplify further calculations in conjunc-

tion with rotational basis functions where resulting combined rovibrational functions

that are physically disallowed via the Pauli Principle may be ignored based on their

symmetry properties, and computation of matrix elements may be reduced based on

the vanishing integral rule.

2.6.2.3 The J = 0 Repesentation & the Final Rovibrational Basis Set

The resulting eigenfunctions computed as solutions to the 6-dimensional, symmetrized

pure vibrational problem can themselves be used to form a compact basis set for the

rotation-vibration solutions. This is the so-called J = 0 representation [165], |ΨJ=0
i 〉.

Naturally, Hvib is diagonal in this basis

〈ΨJ=0
i |Hvib|ΨJ=0

j 〉= EJ=0
i δi, j. (2.43)

These eigenfunctions can be used in conjunction with rigid rotor functions to form the

final rovibrational basis set [165, 171]:

|Ψi
J,K,m,τrot

〉= |ΨJ=0
i 〉 |J,K,m,τrot〉. (2.44)
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Here, |J,K,m,τrot〉 is a symmetrised rigid rotor function, with τrot signifying rotational

parity by (−1)τrot [131]. Since Hvib is diagonal in the |ΨJ=0
j 〉 basis the matrix elements

need not be computed in all further rovibrational calculations, which greatly simpli-

fies the J > 0 problem. This is akin to the DVR technique previously discussed, by

maintaining a diagonal vibrational basis set.

The matrix elements associated with the Gα,β and Gα,n operators in 2.39 can also

be transformed into the J = 0 representation [165]; these can be precomputed and stored

to disk for use in the rovibrational eigenfunction calculations which, along with the use

of the J = 0 basis set, removes the need for further use of the larger primitive basis set.

Thus, the final rovibrational Hamiltonian evaluation is represented by [165]

〈Ψi
J,K,m,τrot

|H|Ψi′
J,K′,m,τ ′rot

〉= EJ=0
i δi,i′δK,K′

+
1
2 ∑

τrot ,τ ′rot

∑
α,β

〈J,K,m,τrot |JαJβ |J,K′,m,τ ′rot〉 ⊗ 〈ΨJ=0
i |Gα,β |ΨJ=0

i′ 〉

+
1
2 ∑

τrot ,τ ′rot

∑
α,n
〈J,K,m,τrot |Jα |J,K′,m,τ ′rot〉 ⊗ 〈ΨJ=0

i |Gα,n
∂

∂ξn
+

∂

∂ξn
Gα,n|ΨJ=0

i′ 〉

(2.45)

2.6.2.4 Symmetry Considerations in the Rovibrational Basis Set

The rotation of SO3 can be approximated by using the rigid-rotor model for the case of a

symmetric top [154]; in TROVE, the rovibrational basis is constructed as symmetrised

combinations of such functions [131]. As with the vibrational basis functions, the sym-

metry of each rotor function may be determined by their behaviour under operations of

the rotational subgroup of D3h(M).

Since the rovibrational wavefunction must have characteristics of either A′1 or A′′1

symmetry to obey the Pauli Principle, restrictions on the rotation-vibration combina-

tions can be made. The product table for the D3h(M) point group shows the resulting

characters of symmetry species combinations; the product of two or more irreducible

representations results in a further representation which may be either itself irreducible,

or a reducible species complex. Table 2.2 summarises the various species combinations

which produce A′1 or A′′1 .

The Hamiltonian for a specific J is constructed in the fashion of Equation 2.45 by
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Table 2.2: Symmetry species combinations giving rise to A1-type symmetry in the D3h(M)
symmetry group.

Γvib Γrot ΓTotal
A′1 A′1 A′1
A′1 A′′1 A′′1
A′′2 A′′2 A′1
A′′2 A′2 A′′1
E′ E′ A′1 + A′2 + E′

E′ E′′ A′′1 + A′′1 + E′′

combining the symmetrized rotor functions corresponding to the particular J with the

symmetrized J = 0 vibrational basis. Thus, the procedure can be performed for each J

individually.

The diagonalization of the Hamiltonian matrices for each J produces the wave-

functions and energies necessary for defining transitions and their corresponding

strengths. These wavefunctions are labelled by symmetry species resulting from the

combinations of the rotational and vibrational functions. Like in the case of the vi-

brational basis functions, the final wavefunctions are in fact linear combinations of the

underlying basis functions, therefore their symmetry labelling (and, in fact, all quan-

tum number labelling) result from analysis of which basis functions have the largest

contribution.

For a given vibrational function, the combination of its symmetry species with

that of the largest rotational contribution provides the total symmetry of the resulting

wavefunction. Those that do not transform as A′1 or A′′1 are discarded.

2.6.2.5 The Final Rovibrational Wavefunctions

The rovibrational wavefunctions computed by TROVE are defined by a set of quantum

numbers. Two rigorously conserved quantum numbers are the total angular momentum,

J, and the overall symmetry, ΓTotal .

The remaining quantum numbers are approximate. For quantum numbers asso-

ciated with rotation there is K, the projection of J on the the molecular z-axis, and is

taken as the K associated with the largest contribution from the underlying rotational

basis functions. The symmetry species associated with this rotational contribution, Γrot

is also defined.

For vibrational quanta the local mode numbers are defined by the largest contribu-
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tions from the underlying 1-dimensional, primitive vibrational basis functions. These

local mode [173] quantum numbers can be mapped onto the commonly known normal

mode quantum numbers of the Herzberg convention [174]. The vibrational symmetry

associated with this contribution is given by Γvib.

2.7 Transition Intensity Simulations
The calculation of rovibrational wavefunctions represents the first half of a line list

calculation. Already this provides sufficient information about the available energy

levels accessible to the molecular system. The second half of the calculation involves

determining the strengths of transitions between the energy levels.

2.7.1 The Dipole Moment

For a rovibrational transition to occur within a molecule an oscillating dipole moment

must be induced by either rotation or vibration of the molecule, which can then inter-

act with the oscillating electric field of incident electromagnetic radiation in order to

enter another energetic state, where the difference in energy of the states is equal to

the frequency of the interacting photon; this is known as an electric dipole transition.

The dipole moment is a vector quantity describing the distribution of charge within a

molecule. If a charge displacement exists across a molecule in its equilibrium config-

uration then it is said to have a permanent dipole moment, and vibrational distortions

may also induce an instantaneous dipole moment due to asymmetry of the nuclear po-

sitions.

In the language of quantum mechanics the interaction between a charge distribu-

tion and an electric field can be represented by an ‘interaction energy’,

I =−µ̂ · Ê, (2.46)

where Ê is the external electric field, and µ̂ is the dipole moment, defined as

µ̂ = ∑
i

qir̂i, (2.47)

where r̂i is the position of charged particle i, given in arbitrary coordinates.

The strength of the interaction can be given by the expectation value of the inter-
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action energy operator. Assuming that the electric field has constant magnitude over

the duration of interaction, then the expectation value can be written as

〈I〉=−〈ψn|µ̂|ψm〉 · Ê. (2.48)

The case where n 6= m is of interest, as these off-diagonal matrix elements give an in-

dication as to the mixing of states ψn and ψm introduced by the perturbation I. In other

words, if the matrix element is non zero, then the interaction induces transitions from

ψm to ψn; the magnitude of the square of the integral is proportional to the probability,

or strength of the transition.

The dipole moment operator µ̂ in this sense can be thought of as an analytical

representation of a Dipole Moment Surface (DMS), which is an N-dimensional grid of

dipole moment values as a function of the N degrees of freedom defining the molecular

geometry. To this end, the DMS is structurally analogous to a PES, and is obtained in a

similar fashion. Representation of a DMS in terms of appropriate internal coordinates

(i.e. those used in the nuclear motion calculations) can help facilitate the calculation of

the matrix elements described in Eq. 2.48.

2.7.2 Allowed & Forbidden Transitions

The discussion on symmetry in Subsection 2.4.3 provides a good precursor to the un-

derstanding of physically allowed molecular dipole transitions, particularly the concept

of the Vanishing Integral Rule described in Eq. 2.15.

For example, by analysing the transformational properties of the dipole operator

µ̂ under operations of the Molecular Symmetry group spanned by the eigenfunctions

of the Molecular Hamiltonian, it is possible to determine which irreducible represen-

tation is generated by the operator. The vanishing integral rule states that the integral

〈ψ f |µ̂|ψi〉 is only non zero if the representation generated by the integrand product, Γ f

+ Γµ ⊗ Γi, contains the totally symmetric representation of the group.

It is easy to demonstrate that the dipole moment operator µ̂ is invariant under

permutation operations of like particles, however it is antisymmetric upon inversion.

As a consequence of this, |ψi〉 and |ψ f 〉 must have opposing parities [154]. Similar

arguments in conjunction with the the rigid rotor functions for non-linear molecules

show that electric dipole transitions allowed between states |ψJ′
i 〉 and |ψJ

f 〉 (which are
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comprised of rigid rotor functions) are those where

∆J = J− J′ = 0,±1. (2.49)

These are ‘rigorous’ selection rules defined for electric dipole transitions [154], which

must also be obeyed in conjunction with

A1↔ A2 (2.50)

for SO2, and

A′1↔ A′′1 (2.51)

for SO3, in order to satisfy the parity change rule. These selection rules define the

allowed transitions calculated by both DIPOLE3 and TROVE.

Other ‘approximate’ selection rules can also be enforced, however these are not

based on well-defined quantum numbers. An example of this is for the K (z-axis pro-

jection of J) quantum number. Selection rules involving this number do not strictly

forbid transitions, instead they usually define a strong transition. For example ∆K = 0

is generally obeyed for strong transitions, however deformational effects often lead to

K no longer being a good quantum number, and therefore ∆K > 0 transitions can also

occur, due to rotation-vibration coupling. Such behaviour is the source of the purely

rotational transitions of SO3, which at equilibrium has no permanent dipole moment.

Chapter 5 discusses this effect at length.

2.7.3 Energy State Population & Temperature Dependence of

Transition Intensities

The transition dipole moment gives a quantum mechanically ‘intrinsic’ measure of the

strength of a molecular transition. However, the physical manifestation in reality of

transitions allowed via the vanishing integral rule depends on the population of the

states involved.
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2.7.3.1 Degeneracy of the Energy Levels

In the absence of an external magnetic field there exists a systematic degeneracy of

the rotational levels. The quantized angular momentum is aligned along a total of 2J

+ 1 spacial orientations, where J is the angular momentum quantum number associ-

ated with the state in question. The population of an energy state will depend on this

degeneracy factor, and therefore calculations must be weighted accordingly.

Another source of degeneracy may arise from the nuclear spin statistics [154].

This is best understood by a separation of the total wavefunction into electronic, rovi-

brational and nuclear spin components:

ΨTotal = ΨElectronicΨRovibΨNucSpin. (2.52)

The total wavefunction ΨTotal must obey the Pauli Principle in terms of Fermi-Dirac or,

in the case of SO2 and SO3, Bose-Einstein Statistics; for the case of SO2 and SO3 the

wavefunction must remain symmetric under exchange of identical Bosons (Oxygen).

This puts restrictions on the physically allowed combinations on the right-hand side of

Eq. 2.52 as their product must generate a symmetric irreducible representation.

For the work described in this thesis, only rovibrational motion within the elec-

tronic ground state of both SO2 and SO3 is considered, both of which are fully sym-

metric closed shell systems, i.e., ΓElectronic transforms as the fully symmetric species

of the appropriate point groups for each molecule [154]. Therefore the product

ΨRovibΨNucSpin must ensure that ΨTotal is fully symmetric under the exchange of iden-

tical Bosons.

The Bosons in question, the Oxygen nuclei, have zero spin and therefore only

a single, symmetric nuclear spin configuration is possible for all combinations of

ΨRovibΨNucSpin, meaning that ΨRovib must also be a symmetric function. The degener-

acy factor arising from the nuclear spin statistics is therefore simply 1 for all ΨTotal as

there are no other nuclear spin configurations that occur.

This represents a rather simple case whereas in other cases such as those involving

two Hydrogen nuclei, due to the Fermionic nature of the particles, ΨTotal would need to

be antisymmetric upon their exchange, and since they also posses 1
2-spin a total of three

symmetric and one antisymmetric nuclear spin states become possible, which results in
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a 3:1 ratio of ‘ortho’ and ‘para’ states when combining with ΨRovib.

2.7.3.2 The Effect of Temperature

The characteristic features of a molecule’s spectrum will vary with the absolute temper-

ature at which it is observed. The individual transitions within a spectrum between pairs

of states will have an intensity that is proportional to the probability of the occupation

of the initial state, which is given by a Boltzmann factor:

P(Ei) ∝ e−Ei/kbT . (2.53)

Here, Ei is the energy of the state i, kb is the Boltzmann constant, and T is the absolute

temperature. Clearly, the population of the state increases with the temperature of the

sample, hence the transitions originating from the state in question increase in number,

and therefore so do their intensities. Each probability must be weighted by the degen-

eracy factor of the state Ei to obtain an accurate estimate of the level’s population. To

ensure normalization for the probability P(Ei) a weighting factor may be introduced as

a probability summation over all possible energy states:

Q = ∑
i

gi e−Ei/kbT . (2.54)

This value is known as the partition function, and is an important thermodynamic quan-

tity. The gi represents the total degeneracy of the state Ei, which for a rovibrational level

is equal to gns(2Ji+1), where gns is the nuclear spin degeneracy. The accurate calcula-

tion of the partition function for a given system is vital for determining the occupation

probabilities of states.

In reality, summing over all possible states of the system is not practical as the

energies may not necessarily all be calculated, particularly higher ones. Provided that

the partition function is adequately converged up to a given energy threshold, then the

summation may be truncated. However as the temperature increases in Eq. 2.54, higher

energies are required for convergence of Q; they ‘contribute more’ to the partition func-

tion, which is physically equivalent to stating that these higher energies become more

occupied at higher temperatures.
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2.7.3.3 Intensity Simulations

The intensity of an absorption line, assuming thermal equilibrium at the absolute tem-

perature T , is related to the line strength S( f ← i) [165]:

I( f ← i) =
8π3NAνi f

(4πε0)3hc
e−Ei/kbT

Q
× [1− e−hcνi f /kbT ]S( f ← i). (2.55)

Here, νi f is the wavenumber of the line, between energy states Ei and E f , NA is Avo-

gadro’s constant, h is Planck’s constant, c is the speed of light in a vacuum, kb is Boltz-

mann’s constant, and ε0 is the permittivity of free space. To ensure accurate intensity

results for any absorption line at the absolute temperature, T , it is vital that the partition

function, Q, is adequately converged, as discussed above.

The temperature-independent part of the intensity calculation is encapsulated by

S( f ← i), the transition strength. The general definition of this quantity is of a matrix

element of the dipole operator, the derivation of which depends on the structure of the

rovibrational wavefunctions. In Ref. [165], in a accordance with the TROVE method,

it is given by

S( f ← i) = gns ∑
m f ,mi

∑
A=X ,Y,Z

|〈Ψ f
rv|µ̂A|Ψi

rv〉|2, (2.56)

where gns is the nuclear spin statistical weight factor [154], µA is the electronically

averaged component of the molecular dipole moment along the space-fixed axis A =

X ,Y,Z; µA is expressed in terms of the dipole moment components along the molecule

fixed axes. The quantum numbers mi and m f are the projections of J onto the Z axis

for the initial and final states, respectively. The |Ψi
rv〉 and |Ψ f

rv〉 are the rovibrational

states associated with the initial and final states. The line strength may be computed in

a number of different ways [138] (see Subsection 2.8.3).

When producing a line list it is useful to list only the temperature-independent

form of the transition intensity, as any temperature-dependent result may be extrapo-

lated from this, for example via Eq. 2.55.

2.7.4 The Final Line List

The structural form of a final line list requires both information for a transition (i.e.

its strength), and for the states between which the transition occurs. To this end, the

ExoMol line list format consists of two files [175].
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The first list is a states file listing all the rovibrational energies calculated for the

molecular system. Each energy state is labelled according to a set of quantum num-

bers produced from the calculations. ‘Rigorous’ quantum numbers include the energy

value, the rotational quantum number J, and the state degeneracy. Further labels may be

introduced to ensure the assignment of states is less ambiguous; these include parity,

further rotational quantum numbers, e.g. K, vibrational quantum numbers (detailing

the level of excitement in the vibrational modes), and symmetry labels for the total

wavefunction, and its rotational and vibrational constituents. The extent of the quan-

tum number labelling is dependent on the method of the rovibrational wavefunction

calculation. For example, with TROVE it is possible to label states according vibra-

tional local (and normal) modes according to the vibrational contribution to the state,

as local mode functions are an inherent feature of the TROVE calculation. Conversely,

DVR3D does not produce any vibrational labels. Nevertheless, each level in the file

may be uniquely identified via a running index, which is made use of in the second line

list file.

The second file, the transition file, is more straightforward. It contains a list of

transitions labelled by the indices of the initial and final states in accordance with the

states file, and the strength of the transition between these two states, resulting in a total

of three columns. The strength of the transition is given in the form of the Einstein A-

coefficient, which is temperature-independent and related to the quantity S( f ← i) in

Eq. 2.56. This ensures that any temperature-dependent simulation may be extrapolated

from the line list for a whole range of T .

The work in this thesis consists of the calculation of various line lists which are

suitable for different temperatures. Since the line lists do not explicitly specify a tem-

perature, it is important to explain what is meant by a ‘room-temperature line list’ and a

‘hot line list’. A line list is suitable for modelling spectra up to a temperature T if all the

energies that are significantly occupied at this temperature have been calculated. This

can be checked with the partition function, Q, in Eq. 2.54; if this quantity is converged

for the absolute temperature T then the energy level coverage from all the Ei can be

assumed to be sufficient. A line list containing transitions from all these Ei is therefore

suitable for describing spectra at the given temperature.
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2.8 Improvements to the DVR3D Suite for the Compu-

tation of the SO2 Line List
Calculating a molecular line list can be a formidable task and depends on a multitude

of factors. The ultimate aim is to compute wavefunctions and energies suitable for de-

termining strengths of all transitions which are significant for a given spectral range at

the desired temperature. This requires not only a suitable number of rovibrational en-

ergies, but the additional requirement that they are adequately converged using a basis

set of an appropriate size. The optimisation and truncation of the initial basis set has

an effect on all subsequent calculations; the computation time, memory requirements

and hard disk storage space are all dependent on the size of the initial basis. Estimating

the amount of these resources required for the calculation of the complete linelist is not

straightforward.

Although constructed for the purpose of triatomic rovibrational calculations, the

DVR3D suite was not readily optimised for the the SO2 problem at the start of the

project due to the requirements of basis set convergence for this molecule. Initial cal-

culations quickly demonstrated that various adaptations to the code were required in

order to deal with the large basis set, and to enable computations for wavefunctions

and transition moments for SO2. The changes made to each module are now described.

2.8.1 DVR3DRJZ

The changes made to the first module of the program suite focus on various aspects of

the gaussian quadrature calculations.

Changes were required for a routine ‘ASLEG’ (associated Legendre) that com-

putes the associated Legendre functions used in building the angular basis set. The

routine by Press et al [176] encounters issues with surpassing limits of double preci-

sion in the IEEE Standard for Floating-Point Arithmetic; namely, for high rotational

quantum number J (and subsequently k), the routine attempts to compute numbers that

are beyond the the limit for the 64 bit number format. In the Fortran standard, the func-

tion HUGE(x) returns the largest number that is not an infinity of the type x. For the

64-bit Intel compiler this number is roughly equal to 2× 10308 in double precision.

For values of k > 90 this proved to be an issue in the original implementation of
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the routine by Press et al and would lead to computing infinities over various loops.

To prevent this it was necessary to implement some conditional statements to reduce

the size of these numbers to work with the original machinery of the routine by using

a constant scaling factor, which is chosen to ensure that subsequent growth of these

numbers over DO loops is restricted to be within the range of the double precision

format. Calculations are subsequently performed using these numbers and final results

are then multiplied once more by the original scaling factor to achieve the desired values

with a negligible change in accuracy. This modification routine was also identically

implemented into the ROTLEV3B and DIPOLE3 modules of the DVR3D suite where

the computation of associated Legendre polynomials is also required, and therefore will

not be addressed in the following subsections.

The second change change deals with a subroutine to calculate the zeros of the

highest-order associated Legendre polynomial and corresponding weights to be used in

the Gauss-associated Legendre quadrature scheme for the radial functions [177]. The

subroutine computes the quadrature points using a brute force search for the zeros of the

Nth order polynomial (where N is an argument passed into the subroutine) by stepping

through the polynomial and looking for a change in sign.

Beginning at x = 1, the routine steps through the polynomial at equal intervals

predefined in the code. In the original code design the stepping interval was taken

to be 10−4, and the value of the polynomial is calculated at each value of x stepping

backward from x = 1. When a change of sign is found then the zero of this Nth degree

polynomial is taken to be the value of x at that point. This is done until all the zeros

are found (in fact, only the zeros for the region 0 < x≤ 1 are required which constitute

half of the total amount, the remainder of which can be easily found as the polynomials

are symmetric about 0).

Initial convergence tests of the basis set for this work (see Chapter 3) could not be

achieved using this routine, and would fail before any convergence was observed. In

order to be able to calculate the necessary quadrature points, the code was adapted first

by decreasing the size of the stepping interval to 10−6, and then by defining the zero

to be the mid-point between the current value of x and the previous value. This change

has proven adequate to suit the requirements.
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2.8.2 ROTLEV3B

This module remains largely unchanged other than for the ‘ASLEG’ routine previously

described. This is required in ROTLEV3B in order to calculate associated Legendre

functions in accordance with Equations 2.37 and 2.38. It was also found that, for high

J, vibrational basis functions generated by the DVR3DRJZ run are not required above

certain values of k to construct the Hamiltonian, whose dimension is defined by an

input parameter (see Chapter 3). Given that these are associated with high energies,

they are therefore discarded, and the ‘ASLEG’ routine is not called for these values of

k in order to optimise time usage. The main difference in the ROTLEV3B module is

in how the final rovibrational wavefunctions are saved, which has proven essential for

ensuring that they are stored completely, and in order to perform the computation of

transition moments later on using DIPOLE3. Although the modification only requires

a simple change to some Fortan ‘open’ statements, it is worth discussing the reasoning

and purpose.

The wavefunction files written by ROTLEV3B are unformatted which reduces

storage requirements and I/O usage in further processing. The layout of the wave-

functions also optimises I/O by being structured into blocks of the k quantum number

(projection of J onto the body-fixed z-axis). Each record within the file corresponds to

a k-block containing data fields for each energy level. This structure is used advanta-

geously in DIPOLE3 by reading through the k-block records sequentially to compute

transition moments.

The standard way in which these wavefunctions are saved are in the Fortran

variable-length record type. Over the course of the work it became apparent that, for

the SO2 problem in the chosen basis set, this type of sequential file organisation failed

as the records being written were surpassing the record length limit imposed by the

operating system. To resolve this issue it is possible to write records in a ‘segmented’

structure. The segmented record type is unique to Intel Fortran. A record written in

this style consists of multiple variable-length, unformatted records (segments) which

together combine into the one single logical record. The “segmented” flag can be used

to write records where it is not desired or not possible to write a single-variable length

record. For this work the segmented record type facility was used to store all wave-
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function files, and assures the completeness of each record and, particularly important

for this work, that they are read in fully by the DIPOLE3 module.

2.8.3 DIPOLE3

The main issues that lead to the modifications of the DIPOLE3 module were related

to I/O performance. The DIPOLE3 procedure is outlined in Ref. [138] and in greater

detail in Ref. [178]. DIPOLE3 is already successfully implemented using OpenMP

for parallelisation across multiple CPUs, which speeds up performance of the BLAS

routine ‘DGER’ for the necessary transformations which were the original source of

maximum CPU usage [138]. However, for the current work on SO2 the module must

read in extremely large wavefunction files computed and stored by ROTLEV3B (peak-

ing at around 0.5 TB), and the existing method for reading records proved to be a

bottleneck in the computation of transition moments.

DIPOLE3 performs the following calculation for the linestrength [138]:

S( f ← i) =
1
4
[(2J′+1)(2J′′+1)][(−1)J′′+J′+1 +(−1)p′+p′′ ]2

×

[
+1

∑
ν=−1

J′′

∑
k=p′′

a(k+ν ,k)(−1)k

 J′ 1 J′′

−ν− k ν k

 ∑
αβγ

cJ′p′x′

k′αβγ
cJ′′p′′x′′

k′′αβγ
µ

m
ν (αβγ)

]2

(2.57)

between initial and final states x′′ and x′, with J′′, k′′, p′′ and J′, k′, p′ quantum numbers,

respectively. Here, the cJpx are the values of the wavefunction of the xth state at the

DVR grid points specified by α , β and γ , and µm
ν (αβγ) is the value of the molecule-

fixed dipole moment, specified on the same grid. The first sum runs over ν , which

is equal to zero for a dipole moment aligned along the z-axis, and ±1 when there is

a dipole component across the x-axis in either direction. The second sum runs over

the k quantum number; the cJpx are k-dependent as the ROTLEV3B wavefunctions are

constructed from the k-dependent DVR3DRJZ basis set.

The phase factors in Equation 2.57 give the already known rigorous section rules:

∆J = 0, p′ 6= p′′,

∆J = 1, p′ = p′′. (2.58)
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In addition to these, as a consequence of the Wigner 3-j symbols the further rules are

defined as ∆k = 0,±1, depending on the value of ν . Thus, DIPOLE3 performs all

linestrength calculations for initial and final states satisfying these rules. The process

involves navigating through wavefunction files and extracting the necessary informa-

tion to perform the above calculation.

The wavefunctions produced by ROTLEV3B are stored in a k-block structure in

terms of the original DVR3DRJZ basis, which are given as amplitudes at the DVR

points. However the angular DVR points are k-dependent, and therefore DIPOLE3 first

transforms all the ROTLEV3B wavefunctions onto a common DVR grid [138, 178],

where the transformation is defined by the Gauss-Legendre quadrature of a zero-order

polynomial (k = 0), defined by the number of angular points. The resulting wavefunc-

tions are the cJpx in Equation 2.57. The advantage of the wavefunction storage by the

k-block structure is due to the ∆k = 0,±1 selection rules previously mentioned. For

a given transition there are two wavefunction files to be accessed, one containing the

bra (initial state) wavefunctions and the other the ket (final state) wavefunctions. First,

the coefficient data records of each file are read through simultaneously and sequen-

tially; for each k-block the k-dependent wavefunctions are read and used subsequently

in the main section of the code that deals with computing the transition moments, i.e.

Equation 2.57 (this is the section where ‘DGER’ is called). These k′← k′′ transition

moment calculations for ∆k = 0 are performed for all k ≤ J.

This is followed by a ‘rewind’ of the wavefunction files to begin from the start of

the k-block records in order to calculate transition moments for ∆k =±1. This involves

moving through the ket wavefunction file one k-block at a time for each k′, as before,

but by switching back and forth through the bra wavefunction files to access the k′′ =

k′− 1 and k′′ = k′+ 1 records by using a ‘rewind’ statement for each cycle. This has

proved to be highly inefficient for reading through the SO2 wavefunctions computed

with ROTLEV3B. These wavefunction files are so large that I/O performance with

DIPOLE3 using the described method is significantly worse than for smaller problems,

and it is not possible to compute the necessary transition strengths in a reasonable

amount of time.

To deal with this problem available memory resources on computing nodes have

been employed; the current work makes use of the High Performance Computing Ser-
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vice at Cambridge, specifically the Darwin cluster, where each compute node provides

up to 64 Gb of RAM which can be utilised for each computation. The solution therefore

lies in taking advantage of this resource by storing the bra wavefunction records in the

memory instead of navigating to them using the I/O performance-degrading ‘rewind’

function. Records from the bra file can be stored in memory arrays and cycled through

sequentially. In this way, the bra wavefunction file is read through only once in an iden-

tical way to the ket file, in order of increasing k. The required RAM to store a single

k-block record from a wavefunction file for a given J is roughly equal to the size of the

file divided by J (since there are J amount of k-blocks). Using this method there are

four records stored in the memory at any given time (one from the ket file, three from

the bra file), which would mean that roughly (4× size of J′ wavefunction file)/J′ Gb of

RAM are required for the calculation. As an example from the current work on SO2,

wavefunction file size peaks at around 0.5 Tb for J = 60, and therefore a DIPOLE3

calculation with this new implementation would require around 33 Gb of RAM, which

fits comfortably within the 64 Gb memory resource for each computing node.

This has improved I/O performance immensely for the current work on SO2, al-

lowing for dipole transition moment calculations to be carried out fully within the 36

hour wall clock limit on the HPCS Darwin system.



Chapter 3

A Hot Line List for 32S16O2

In order to compute a line list for 32S16O2 using the DVR3D program suite [138] dis-

cussed in Chapter 2 three things are required: a suitable potential energy surface (PES),

dipole moment surface (DMS), and an adequately converged basis set. The PES and

the DMS used in this work are those of Huang et al. used in their production of a

room-temperature line list [35].

In this chapter, the production of the hot line list is presented. The various con-

vergence tests for the basis set are discussed, along with an outline of the computa-

tional approach of the ro-vibrational wavefunctions and subsequent transition moments.

Problems encountered within the different aspects of the computation are also touched

upon. The finalised hot line list is analysed and compared to some available experi-

mental and theoretical data within the literature, in order to assess the reproducibility

of the DVR3D calculations. Simulations of hot spectra are also compared to recently

obtained experimental intensity cross sections.

3.1 The AMES SO2 Line List
Huang et al. reported a highly accurate PES, DMS and IR line list for 32S16O2 up

to 8000 cm−1 [35], computed at 296 K (denoted Ames-296K). The methods follow

closely those reported in their works on H2O [179], NH3 [180, 181], and CO2 [182].

Both the PES and DMS were computed at the CCSD(T) [115] level of theory.

The energy level coverage includes eigenstates up to 13 168 cm−1, for all J ≤

80, computed using the program VTET [179, 183], using an ab initio CCSD(T)/cc-

pVQZ-DK [184] computed PES later refined based on experimental data provided by

HITRAN [75]. In total, 30 129 energy states were used in the refinement. The root
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mean square (RMS) error for all J ≤ 80 energy levels was 0.013 cm−1. Transition

intensities were computed based on an ab initio CCSD(T)/aug-cc-pV(Q+d)Z [184,185]

computed DMS.

The aim of the current work is to extend upon the Ames-296K line list and produce

a hot line list based upon the same PES and DMS, by computing energies up to 15 000

cm−1and beyond the J ≤ 80 limit, for the 0 < ν ≤ 8000 cm−1 region. The following

section discusses the implementation of the PES and DMS into the DVR3D program

suite [138], as well as an overview of the computational process.

3.2 Calculation using DVR3D
The procedure for producing a line list with the DVR3D program suite consists of four

major steps:

DVR3DRJZ This first module solves the vibrational problem, either for the purely

vibrational case (J = 0) or for an initial rotationally-uncoupled vibrational basis

to be used later in ROTLEV3B (J > 0). For each J, two runs of this module

must be performed to obtain two set of wavefunctions, labelled by by even vi-

brational symmetry (q = 0) and odd vibrational symmetry (q = 1), respectively.

The DVR3DRJZ module requires a number of inputs to produce these vibrational

wavefunctions. Firstly, an accurate potential energy surface must be supplied to

the code. Secondly, a set of parameters to define the structure of the DVR basis

set, specified as the amount of DVR grid points in the radial and angular coor-

dinates, as well as the Morse oscillator parameters discussed in Chapter 2. The

optimisation of all these input parameters will be discussed in the next section.

ROTLEV3B In this module the vibrational wavefunctions for (J > 0) are taken from

DVR3DRJZ as a compact basis in order to calculate the fully ro-vibrational wave-

functions for a certain vale of J. For each value of q in DVR3DRJZ there are two

rotational parities that are computationally allowed, p= 0 (even) and p= 1 (odd),

giving rise to a total of four possible combinations of symmetry labelling for the

final ro-vibrational wavefunctions. However it is only necessary to compute the

wavefunctions of two of the four possible combinations for a given J (which

ones depend on whether J is even of odd), as certain combinations are physically
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disallowed due to symmetry arguments. ROTLEV3B also requires the input of

some optimisation parameters, which will also be discussed alongside those of

the DVR3DRJZ module.

DIPOLE3 Two outputs from ROTLEV3B are taken as inputs to this module, which

computes the dipole transition strengths (Einstein A coefficients) of all possible

transitions between the bra and ket wavefunction files, provided that they obey

rigorous, symmetry-based selection rules. The DIPOLE3 inputs allow the user to

specify the number of upper and lower energies to be considered in a run, which

can be important in reducing the computational time for a single calculation and

enabling the process to be separated and run in parallel, with each job calculating

for different upper and lower energy ranges.

SPECTRA Finally, this module takes the outputs from DIPOLE3 to calculate

temperature-dependent line strengths of any transition computed in the previous

module. The temperature of interest is specified as an input parameter, amongst

others such as energy and J cut-offs to produce a temperature-dependent spec-

trum. The partition function value can either be calculated using this module, or

specified as an input in order to produce a spectrum. Technically it is possible to

produce a ’final’ line list using only data computed in the DIPOLE3 module, as

this contains all the information of energies, transitions and Einstein coefficients,

which can be later used in subsequent programs built to interpret the DIPOLE3

data as an input.

3.2.1 Convergence Testing

The basis functions used in the DVR3D program suite are discussed in Chapter 2; for

the angular basis functions Legendre polynomials are employed, and for the radial basis

functions employ Laguerre polynomials in the form of Morse oscillator-like functions.

The truncation of the combined basis set is controlled by a number of parameters which

are supplied to the user input of the various modules of the DVR3D code. The proce-

dure involves an empirical trial and error approach to obtain the optimal values for these

parameters, to ensure the initial basis set is as accurate as possible, while minimising

computational cost.
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The majority of these control parameters are entered into the first module

DVR3DRJZ, and define the DVR grid points upon which the rovibrational wavefunc-

tions are constructed. Two parameters, NPNT2 and NALF define the number of DVR

grid points in the radial coordinates and angular coordinate, respectively, from their

associated quadrature schemes. The NPNT2 parameter actually defines the number of

points in both radial coordinates due to the symmetry of the SO2 system. The Radau

grid must be optimised by a trial scheme to determine the best values of these parame-

ters which obtains adequate convergence.

3.2.1.1 Parameters in DVR3DRJZ

The convergence testing within DVR3DRJZ calculations is essentially a minimisation

scheme for the vibrational term values. Therefore, the Morse oscillator-like functions

that represent the basis functions isomorphic to the DVR require optimising. This

involves choice of the values of re, De, and ωe (see Chapter 2), as well as the atomic

masses. These were chosen as MSul phur = 31.963294, and MOxygen = 15.990526, in

atomic mass units.

In general, it is found that results are insensitive to the variation of De [138], and

it is only re and ωe which require variation. However these are strongly coupled and

cannot be independently optimised, therefore convergence testing in these parameters

involves analysing results across a grid of combinations.

Ultimately, the values of re = 3.0 and ωe = 0.005 yielded an adequate minimisation

in energies for J = 0 tests. It should be noted that these values are not physical in that

they do not necessarily represent those of the ‘true’ vibrating bond in question. In

fact, the optimal value of re is generally found to be larger than the value obtained

from the minimum of the Morse potential [138]. They are instead treated as empirical

parameters to be determined.

The next parameters to be determined are those that determine the number of DVR

points required in both the radial and angular coordinates NPNT 2 and NALF , respec-

tively, i.e. the number of points required for their associated quadrature schemes. The

choice of these values actually has an effect on the optimisation of the Morse param-

eters, and therefore they are set to high, computationally expensive values during the

previous phase, with a view to reducing them. The values NPNT 2 = 30 and NALF =
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130 are well suited for adequate convergence within reasonable computation time, and

are therefore chosen for the remaining calculations.

Finally, the dimension of the Hamiltonian matrix, MAX3D, which also affects

convergence must be specified. Like with NPNT 2 and NALF this may be initially

set to a high value in order to determine the Morse oscillator parameters and then re-

duced to speed up computation time, whilst retaining the accuracy of the final results.

MAX3D is set to 3052 for all calculations using DVR3DRJZ. The number of eigen-

values/eigenvectors retained from this calculation to be used in ROTLEV3B is chosen

as NEVAL = 1000. The optimisation of this parameter is actually performed in con-

junction with ROTLEV3B calculations, as the number of DVR3DRJZ functions used

in further calculations affects the results of the final rovibrational eigenvalues.

3.2.1.2 Parameters in ROTLEV3B

Once the DVR3DRJZ parameters are found to be suitably optimised for basis set con-

vergence, it is necessary to do so for the ROTLEV3B module, and this includes finding

the best value for the size of the Hamiltonian. This value, IBASS is dependent on J via

the relation IBASS = n(J+1); the Hamiltonian is built from the selection of the IBASS

lowest energies (eigenfunctions) for each k computed by DVR3DRJZ. The testing pro-

cess in this case consists of empirically determining a value of n such that the required

ro-vibrational eigenvalues are converged after diagonalisation of the Hamiltonian. For

this work convergence tests for IBASS are performed for J = 5, J = 10 and J = 60.

The determination of n is important since, like NPNT2 and NALF the computation

time increases as the value of n increases, therefore it is important to find the minimum

value for which adequate convergence is observed. The higher energy values are much

more sensitive to this value, and therefore the optimum value of n is found by observing

the convergence behaviour in this region. For SO2 it is found that a value of n = 725

shows very good convergence of energies up to 15 000cm−1. Table 3.1 demonstrates

the level of convergence by comparing results computed with values of n above and

below 725. The input parameters for DVR3DRJZ and ROTLEV3B calculations are

summarised in Table 3.2.
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Table 3.1: Convergence of rovibrational energies. Tests are performed for various values of J;
here, for J = 60, the sum of energies below 10 000, 11 000, 12 000, 13 000, 14 000,
and 15 000 cm−1 are listed for various values of n. Convergence is observed in all
cases shown for energies below 10 000cm−1.

J Emax/ cm−1 n = 600 n = 650 n = 700 n = 750
60 10 000 33060146.8373 33060146.8373 33060146.8373 33060146.8372

11 000 50025398.5194 50025398.5188 50025398.5185 50025398.5184
12 000 73813352.9930 73813352.9852 73813352.9818 73813352.9809
13 000 104959184.7657 104959184.6718 104959184.6316 104959184.6202
14 000 145689245.2379 145689244.1034 145689243.6767 145689243.5457
15 000 197570330.8183 197570317.0376 197570312.5276 197570311.0017

Table 3.2: Input parameters for DVR3DRJZ and ROTLEV3B modules.

DVR3DRJZ
Parameter Value Description
NPNT 2 30 No. of DVR points in the radial coordinates (Gauss-Laguerre)
NALF 130 No. of DVR points in the angular coordinate (Gauss-Legendre)
NEVAL 1000 No. of eigenvalues/eigenvectors required
MAX3D 3052 Maximum dimension of the final Hamiltonian
XMASS (S) 31.963294 Mass of Sulphur atom in amu
XMASS (O) 15.990526 Mass of Oxygen atom in amu
re 3.0 Morse parameter (radial basis funciton)?

De 0.4 Morse parameter (radial basis funciton)
ωe 0.005 Morse parameter (radial basis funciton)
ROTLEV3B
Parameter Value Description
NV IB 1000 No. of vib. levels read in from DVR3DRJZ for each k
n 725/500§ Defines IBASS = n(J+1) (see text)

?See Chapter 2.
§n = 725 for J < 124, and n = 500 for J ≥ 124 (see text).

3.2.2 The Potential Energy and Dipole Moment Surfaces

As has been previously stated, in order to calculate accurate line positions and transi-

tion strengths it is necessary to have a good description of the potential energies and

dipole moments, respectively, as a function of molecular geometry. The electronic

structure methods involved in obtaining these surfaces are numerous and with varying

degrees of accuracy, some examples of which are described in Chapter 2. Producing a

functional form of both the potential energy surface (PES) and the dipole moment sur-

face (DMS) that are complementary to solving the nuclear motion and dipole transition

problems is necessary for their implementation into a variational rovibrational code,



3.2. Calculation using DVR3D 84

such as DVR3D.

In this subsection the potential energy surface and the dipole moment surface com-

puted by by Huang et al. [35] will be discussed, including overviews of their calcula-

tion, and their correct implementation into the DVR3D code.

3.2.2.1 The AMES-1 PES

The Potential Energy Surface initially used in this work is that presented by Huang

et al. [35], which is used in the computation of their room-temperature “Ames-296K”

line list. This ab initio potential is constructed using a coupled-cluster approach for

singles and doubles, with perturbative triples (CCSD(T) [115]) for the electronic struc-

ture calculations across a total of 489 geometries. The correlation consistent basis set

employed was cc-pVQZ-DK [184], chosen after comparing the deviations from 125

experimental energies with theoretical energies produced from 26 different PESs asso-

ciated with various other basis sets. The average deviation of the compared energies

was 5.34cm−1 for the cc-pVQZ-DK basis set. The points are fitted to a global function

consisting of 219 coefficients.

The PES (which will be referred to as AMES-1) is presented as a subroutine

with an associated coefficient file. This subroutine must be implemented into the

DVR3DRJZ code; it returns the value of the potential, V , corresponding to the configu-

ration of Radau coordinates R1, R2, and XCOS supplied as arguments to the subroutine,

where the bond lengths are in Bohr and XCOS = cosθ .

After convergence testing, as described in the previous section, comparisons for

the J = 0 problem were carried out between the DVR3RJZ computed vibrational en-

ergies and those published by Huang et al. [35] in order to ensure that the PES was

implemented correctly. These comparisons appeared to show some discrepancies.

Huang et al. published values for their calculated vibrational bands up to around

5000 cm−1 using their variational rovibrational program VTET [179,183], and labelled

the band origins with normal mode quantum numbers. These were used as the basis

of comparison for the corresponding energies computed with DVR3DRJZ. The major

source of discrepancies appeared in bands associated with the ν3 vibrational quantum

number, which describes the asymmetric stretch normal mode.

Based on this disagreement the initial reaction was to re-assess the DVR3DRJZ
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basis used for calculating the vibrational energies, the atomic masses assumed, and

to ensure that the AMES-1 PES was implemented correctly. Increasing the basis set

size and modification of the atomic mass inputs did not yield any improvements, lead-

ing to the conclusion that the DVR3DRJZ input parameters had been optimised effi-

ciently enough. To test the correct implementation of the PES, the same subroutine

was adapted to work with TROVE [131] (which has been used in the current work for

SO3, see Chapters 4, 5 and 6). Vibrational band energies calculated using TROVE pro-

duced similar discrepancies. The comparisons are tabulated in Tables 3.3, and 3.4,

showing vibrational bands with even and odd vibrational symmetries, respectively. In

the case of the even symmetry bands, the disagreements associated with the ν3 stretch

are highlighted, and are all roughly of the order of 0.15 - 0.2 cm−1, whereas other

bands agree more closely. In Table 3.4 all the bands are associated with ν3 excitation

and therefore comparisons all show a similar offset.

3.2.2.2 The Improved AMES-1B PES

After ensuring that the source of the discrepancies were not related to incorrect PES

implementation, basis set convergence errors or faults within the DVR3DRJZ code, the

anomalies associated with AMES-1 were communicated to the original authors of the

PES. An explanation for the observed disagreements was eventually found.

In a later publication [118] focused on the production of empirical line lists for var-

ious SO2 isotopologues, Huang et al. discussed the lack of convergence in a particular

parameter in their VTET program [179, 183]. This parameter (presumably associated

with the ν3 stretch) affects potential parts of the matrix elements, and was not set to

a fully converged value for both their pre- and post-refinement calculations. The de-

fect introduced to the potential due to this lack of convergence is corrected during the

refinement procedure in VTET, and therefore their reported band origins in [35]) are ac-

tually due to an effective potential produced in VTET based on the AMES-1 PES. This

means that unless other variational programs (such as DVR3D) use the same procedure

as VTET then they will not necessarily produce the same band origins.

Since DVR3D does not use the same computational procedures are VTET, the

AMES-1 PES could not be used to generate accurate results, and thus production on

the hot line list was halted. However time was spent on making numerous modifications
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Table 3.3: A comparison of even symmetry vibrational bands in cm−1 based on the AMES-1
PES.

Band VTET (published) [35] DVR3D Difference
ν2 517.8708 517.8692 0.0016
2ν2 1035.1121 1035.1099 0.0022
ν1 1151.7115 1151.6996 0.0119
3ν2 1551.7447 1551.7428 0.0019
ν1 +ν2 1666.3226 1666.3146 0.008
4ν2 2067.7815 2067.7805 0.001
ν1 +2ν2 2180.3074 2180.3035 0.0039
2ν1 2295.8146 2295.7964 0.0182
5ν2 2583.2272 2583.2280 -0.0008
ν1 +3ν2 2693.6859 2693.6861 -0.0002
2ν3 2713.3862 2713.2338 0.1524
2ν1 +ν2 2807.1715 2807.1597 0.0118
6ν2 3098.0789 3098.0819 -0.003
ν1 +4ν2 3206.4707 3206.4751 -0.0044
ν2 +2ν3 3222.951 3222.7876 0.1634
2ν1 +2ν2 3317.9021 3317.8965 0.0056
3ν1 3432.2839 3432.2642 0.0197
7ν2 3612.3254 3612.3312 -0.0058
ν1 +5ν2 3718.6665 3718.6753 -0.0088
2ν2 +2ν3 3731.9384 3731.7644 0.174
2ν2 +3ν2 3828.0259 3828.0263 -0.0004
ν1 +2ν3 3837.5893 3837.4214 0.1679
3ν1 +ν2 3940.392 3940.3790 0.013
8ν2 4125.9477 4125.9569 -0.0092
ν1 +6ν2 4230.2707 4230.2838 -0.0131
3ν2 +2ν3 4240.3554 4240.1710 0.1844
2ν1 +4ν2 4337.5544 4337.5607 -0.0063
ν1 +ν2 +2ν3 4343.7922 4343.6183 0.1739
3ν1 +2ν2 4447.8721 4447.8657 0.0064
4ν1 4561.1041 4561.0861 0.018
9ν2 4638.9188 4638.9319 -0.0131
ν1 +7ν2 4741.2725 4741.2898 -0.0173
4ν2 +2ν3 4748.2031 4748.0086 0.1945
2ν1 +5ν2 4846.4909 4846.5027 -0.0118
ν1 +2ν2 +2ν3 4849.4206 4849.2406 0.18
2ν1 +2ν3 4953.5546 4953.3811 0.1735
3ν1 +3ν2 4954.7439 4954.7437 0.0002
4ν1 +ν2 5065.968 5065.9558 0.0122
10ν2 5151.2137 5151.2211 -0.0074
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Table 3.4: A comparison of odd symmetry vibrational bands in cm−1 based on the AMES-1
PES.

Band VTET (published) [35] DVR3D Difference
ν3 1362.0585 1361.9235 0.1350
ν2 +ν3 1875.7913 1875.6457 0.1456
2ν2 +ν3 2388.9226 2388.7672 0.1554
ν1 +ν3 2499.8906 2499.7365 0.1541
3ν2 +ν3 2901.4657 2901.3012 0.1645
ν1 +ν2 +ν3 3010.3149 3010.1560 0.1589
4ν2 +ν3 3413.4264 3413.2533 0.1731
ν1 +2ν2 +ν3 3520.1389 3519.9750 0.1639
2ν1 +ν3 3629.7874 3629.6206 0.1668
5ν2 +ν3 3924.8035 3924.6223 0.1812
ν1 +3ν2 +ν3 4029.3743 4029.2051 0.1692
3ν3 4054.0243 4053.9048 0.1195
2ν1 +ν2 +ν3 4136.9158 4136.7466 0.1692
6ν2 +ν3 4435.5888 4435.3998 0.1890
ν1 +4ν2 +ν3 4538.0261 4537.8513 0.1748
ν2 +3ν3 4559.4025 4559.2725 0.1300
2ν1 +2ν2 +ν3 4643.4436 4643.2712 0.1724
3ν1 +ν3 4751.6997 4751.5258 0.1739
7ν2 +ν3 4945.7665 4945.5702 0.1963
ν1 +5ν2 +ν3 5046.0924 5045.9117 0.1807
2ν2 +3ν3 5064.2215 5064.0816 0.1399
2ν1 +3ν2 +ν3 5149.3807 5149.2046 0.1761
ν1 +3ν3 5164.837 5164.7045 0.1325

to the different modules of the DVR3D suite while an improved PES was computed by

Huang et al. These modifications, discussed in Chapter 2 were necessary to ensure

rovibrational wavefunction calculations for high J were possible, as well as efficient

calculations of dipole transition moments. The AMES-1 PES was used since high

accuracy results were not required to optimise and test functionality of the code.

Eventually an improved PES was supplied by Huang et al. which maintains the

same structure of 219 coefficients as the AMES-1 PES. The updated potential, AMES-

1B, consists of a set of improved coefficients based on a refinement, ensuring that the

PES functions correctly with variational programs other than VTET.

Table 3.5 shows the comparisons of even symmetry band origins produced by

VTET and DVR3DRJZ using the new AMES-1B PES. They are in much better agree-

ment than for the AMES-1 PES; not only is the ν3 stretch discrepancy absent, but the

average agreement has improved by one order of magnitude. The results of Huang et
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al. using this improved potential differ slightly from their published values [35] as a

result of the refinement.

Table 3.5: A comparison of even symmetry vibrational bands in cm−1 based on the AMES-1B
PES.

Band VTET (updated) DVR3D Difference
ν2 517.8725 517.8726 -0.0001
2ν2 1035.1186 1035.1188 -0.0002
ν1 1151.7138 1151.7143 -0.0005
3ν2 1551.7595 1551.7598 -0.0003
ν1 +ν2 1666.3284 1666.3288 -0.0004
4ν2 2067.8084 2067.8087 -0.0003
ν1 +2ν2 2180.3187 2180.3191 -0.0004
2ν1 2295.8152 2295.8158 -0.0006
5ν2 2583.2704 2583.2708 -0.0004
ν1 +3ν2 2693.7053 2693.7056 -0.0003
2ν3 2713.3936 2713.3938 -0.0002
2ν1 +ν2 2807.1739 2807.1744 -0.0005
6ν2 3098.1428 3098.1432 -0.0004
ν1 +4ν2 3206.5009 3206.5012 -0.0003
ν2 +2ν3 3222.9523 3222.9526 -0.0003
2ν1 +2ν2 3317.9078 3317.9082 -0.0004
3ν1 3432.2724 3432.2729 -0.0005
7ν2 3612.4145 3612.4150 -0.0005
ν1 +5ν2 3718.7109 3718.7111 -0.0002
2ν2 +2ν3 3731.937 3731.9373 -0.0003
2ν2 +3ν2 3828.0367 3828.0370 -0.0003
ν1 +2ν3 3837.6154 3837.6161 -0.0007
3ν1 +ν2 3940.3781 3940.3786 -0.0005
8ν2 4126.0668 4126.0673 -0.0005
ν1 +6ν2 4230.3325 4230.3327 -0.0002
3ν2 +2ν3 4240.3549 4240.3553 -0.0004
2ν1 +4ν2 4337.5726 4337.5729 -0.0003
ν1 +ν2 +2ν3 4343.8153 4343.8158 -0.0005
3ν1 +2ν2 4447.8567 4447.8572 -0.0005
4ν1 4561.0634 4561.0638 -0.0004
9ν2 4639.0726 4639.0731 -0.0005
ν1 +7ν2 4741.3554 4741.3556 -0.0002
4ν2 +2ν3 4748.2069 4748.2074 -0.0005
2ν1 +5ν2 4846.519 4846.5192 -0.0002
ν1 +2ν2 +2ν3 4849.4433 4849.4438 -0.0005
2ν1 +2ν3 4953.5971 4953.5978 -0.0007
3ν1 +3ν2 4954.7285 4954.7289 -0.0004
4ν1 +ν2 5065.9188 5065.9192 -0.0004
10ν2 5151.3969 5151.3974 -0.0005
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3.2.2.3 The AMES-1 DMS

The dipole moment surface used in the calculations of the current project was also

supplied by Huang et al. [35]. A total of 3638 dipoles were calculated using a

CCSD(T)/aug-cc-pV(Q+d)Z level of theory (a better description of the diffuse part

of the wavefunction is necessary for the calculation of electrical properties, hence the

use of the aug-cc-pV(Q+d)Z basis set). These dipoles have been fitted to an expansion

formula containing a total of 969 coefficients. Both the formula and expansion coef-

ficients are encapsulated into a subroutine and coefficient file, to be implemented into

the DIPOLE3 code.

In order to be used by DIPOLE3 the subroutine must be adapted to return the value

of the dipole DIPC as a function of the input arguments R1, R2, and XCOS, as in the

previous case for the potential V , as well as NU , which represents the NUth component

of the dipole, where NU = 0 corresponds to µz and NU = 1 corresponds to µx. In the

bisector embedding only the z and x components of the dipole are non-zero, and for a

given molecular configuration in R1, R2, and XCOS, the subroutine is called twice to

compute the dipole across both these components, in order to calculate the strength of

a particular transition [138]. The orientation of the dipole must therefore be carefully

considered when implementing the subroutine due to the direction-dependence of µz

and µx.

3.2.3 Computing the Line List

All calculations were carried out on the High Performance Computing Service Darwin

cluster, located at Cambridge. Each job from DVR3DRJZ, ROTLEV3B and DIPOLE3

is submitted to a single computing node consisting of two 2.60 GHz 8-core Intel Sandy

Bridge E5-2670 processors, therefore making use of a total of 16 CPUs each through

OpenMP parallelisation of the various BLAS routines in each module. A maximum of

36 hours and 64 Gb of RAM are available for each calculation on a node.

Submitting jobs to the compute nodes is subjected to a fair-usage queuing pol-

icy, where job priority is based on the amount of requested resources per job. The

DVR3DRJZ runs generally do not require more than 2 hours of wall clock time. The

most computationally demanding parts of the line list calculation are in ROTLEV3B

for the diagonalisation of the Hamiltonian matrices, where wall clock time increases
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by a factor of N3 with increasing J, where N is the matrix dimension. For each job in

ROTLEV3B the maximum memory allocation is requested, which ensures all diago-

nalisations of the matrices are possible using the LAPACK DSYEV routine [186].

3.2.3.1 Rovibrational Wavefunctions

The input parameters required for all DVR3DRJZ and ROTLEV3B calculations are

summarised in Table 3.2. To compute rovibrational wavefunctions for a particular value

of J it is necessary to run the DVR3DRJZ module twice to produce both even and

odd symmetry vibrational wavefunctions files. Each of these files is then used in a

ROTLEV3B run to produced rovibrational wavefunctions of one of four vibrational

symmetry-rotational parity combinations, ee,eo,oo, or oe (e = even, o = odd). The

required combinations depend on whether J is even or odd. Table 2.1 sums up the

physically allowed symmetry combinations for rovibrational states.

The desired energies for use in calculating the line list are chosen to be below 15

000 cm−1. Some code was added to the ROTLEV3B module to display the amount

and sums of energies below 8000, 9000, 10 000, 11 000, 12 000, 13 000, 14 000, and

15 000 cm−1. Initially a number of ROTLEV3B runs were performed at various values

of J in increasing steps of 10 without limiting the number of eigenvalues displayed

by the Hamiltonian diagonalisation. This gave an idea of the number of energies as a

function of J were under 15,000 cm−1 and therefore it was possible to fit a functional

form to determine the amount of energies that needed to be saved to disk for all J. This

also allowed for automation of the input files for ROTLEV3B. The specified number

of energies required for each run was slightly overestimated to ensure the entire range

was covered.

Figure 3.1 shows both the dimension of the hamiltonian matrix (IBASS = n(J+1))

and number of energies below the 15 000 cm−1 threshold as a function of J (for all

rotational parities). At J = 124 the dimension of the hamiltonian is reduced due to

a computational bottleneck in the DSYEV eigensolver; up to this point, all matrix

diagonalizations are carried out over 16 CPUs via OpenMP parallelization, however at

J = 124, with NBASS = 90 625 (for even rotational parity), it is impossible to complete

this within the 36 wall clock limit imposed on the Darwin cluster, as the computational

time increases roughly with N3, where N is equal to the matrix dimension.
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Figure 3.1: Size of Hamiltonian matrix (for both even and odd rotational parities combined)
and number of eigenvalues below 15 000 cm−1 as a function of increasing J. The
discontinuity in the matrix dimension reflects the decrease in the value of NBASS
for calculations above J = 123. There is also a small discontinuity in the blue curve
at J = 50 due to a defect in the DVR3D calculations. Both of these are referred to
in the main text.

Reducing the value of n in IBASS = n(J+1) to 500 was found to have essentially

no effect on the convergence of rovibrational eigenvalues produced at J = 124. At this

point there exists a total of 14 523 eigenvalues below 15 000 cm−1for both rotational

parities combined. This constitutes roughly 8% of the total combined matrix dimension

of 175 450 for n = 725 and 12% of 121 000 for n = 500. The value n = 725 was origi-

nally obtained for convergence of energies at J = 60, where the number of eigenvalues

below 15 000 cm−1 accounts for 38% of the combined matrix dimension of 88 450.

The higher energies at J = 60 are much more sensitive to the value of n due to the way

the basis functions provided by DVR3DRJZ are distributed, whereas for J ≥ 120 the

energies below the 15 000 cm−1 threshold are already easily converged at lower values

of n.

During the production of the line list a defect in the AMES-1B PES was identified

which severely affected the computed high J eigenvalues; at small bond angles, the PES
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appears to become negative. During a particular stage in the DVR3DRJZ calculation

the angular functions corresponding to the lowest MAX3D = 3052 eigenvalues of the

1D angular Hamiltonian are selected for use in the construction of the 3D hamiltonian.

In the DVR, this corresponds to the selection of functions located over a range of DVR

points. Due to the presence of negative eigenvalues associated with the potential de-

fect, the sampling of functions was carried out incorrectly, where the lowest negative

eigenvalue was treated as the ‘true’ lowest value.

Figure 3.2 shows that the angular functions selected (associated with the lowest

eigenvalues) tend to come from around the same region in the 1-D DVR grid space,

corresponding to medium-high angle in the θ coordinate. The small bump at γ = 65

- 70 shows an example of function sampling which includes functions at grid points

associated with high θ via the AMES-1B PES. The DVR3DRJZ program ensures that

these functions are discarded as they are assumed to be non-physical. However with

increasing J (and therefore, k), it becomes ambiguous as to when such functions should

be discarded.
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Figure 3.2: Plot of the number of lowest angular functions selected as a function of γ , the
angular grid point index, where γmax = 130.

Although DVR3DRJZ discards the unphysical functions, the distribution of low

1D angular energies is incomplete in that it is less by the same amount as there are

discarded functions, i.e. N = 3052 - Ndiscarded . This affects the ROTLEV3B basis
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functions provided by the DVR3DRJZ module, and manifests as the high energy func-

tions being slightly lower. A small amendment to the DVR3DRJZ code allowed for the

selection of appropriate functions by ignoring those above a certain DVR grid point,

and distributed the 3052 lowest functions across those that remained. This amendment

was essential for the high J calculations where higher rovibrational energies start to

dominate.

This version of the code was used for all J ≥ 50. For J < 50 this defect only

affected very high rovibrational energies computed in ROTLEV3B. This can be seen

via the blue curve in Figure 3.1 at the small J = 50 discontinuity, where the number of

eigenvalues below 15 000 cm−1 is slightly higher for J < 50 due to the defected PES.

A total of 3 255 954 energy levels below 15 000 cm−1 have been calculated for all

J ≤ 165.

3.2.3.2 Transition Moments

For each value of J there are two ROTLEV3B-produced rovibrational wavefunction

files to be used for DIPOLE3 calculations. The code added to ROTLEV3B for deter-

mining the number of energies below a threshold is also useful for the DIPOLE3 runs;

the input allows the number of bra (lower) energies and the number of ket (upper) en-

ergies to be specified for the calculation. For the current work all energies below 8000

cm−1 are considered for the bra inputs to DIPOLE3, and all energies below 15 000

cm−1 are considered for ket inputs. The code added to ROTLEV3B gives the required

numbers, and this greatly speeds up the DIPOLE3 runs as superfluous energies are not

considered in the dipole transition moment calculations.

The DIPOLE3 runs also make use of the maximum memory per node, which en-

ables records from the wavefunction files to be stored as arrays to speed up the compu-

tation. This was a new modification introduced for the current SO2 project, discussed

in Chapter 2.

Due to the huge sizes of the wavefunction files the danger of overloading the hard

disk space was an issue. For the most energy-dense values of J the files lie above or

around 0.5 Tb, so computing the wavefunction files for all values of J at once was

untenable. Therefore a procedure was adopted of computing wavefunctions in batches

of 10 J’s, i.e. all files for J = 0 → 9, 10 → 19, 20 → 29, etc. After each batch is
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computed, relevant DIPOLE3 calculations are performed using these files, after which

the wavefunction files are discarded, leaving disk space open for the following batch.

In total, there are 1.3 billion transitions computed for 32S16O2 between all energies

with J ≤ 165, E ′′ ≤ 8000 cm−1E ′ ≤ 15 000 cm−1. Figure 3.3 shows the number of

transitions between J pairs as a function of J′′.
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Figure 3.3: Plot of the number of transitions calculated from energy levels with rovibrational
quantum number J.

3.3 Temperature Dependence and Completeness of the

Line List
The current work for SO2 seeks to expand upon the work of Huang et al. by the pro-

duction of a line list suitable for the modelling of spectra above room-temperature.

As described in Chapter 2, the convergence of the partition function, Q, at the given

temperature, T , is necessary in order for computed line list to be applicable at this

temperature. The computation of wavefunctions corresponding to energy levels greater

than the cut-offs imposed by Huang et al. (J ≤ 80, E≤ 13 168 cm−1) seeks to achieve

convergence for T > 296 K.

The value of the partition function at T = 296 K, computed using all energy levels
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satisfying J ≤ 165 and E ≤ 15 000 cm−1, is 6337.131. With a cut-off of J ≤ 80, as

used in the work of Huang et al., the value for the same temperature is computed as

6336.803, which is in excellent agreement with their calculated value of 6336.789.

Figure 3.4 shows the partition function values as a function of a J cut-off for a

range of temperatures. The highest value of J considered, J = 165, defines the last

point where the lowest energy is less than 8000 cm−1, which is used as the maximum

value of lower energy states in DIPOLE3 calculations. As can be seen from this figure,

the partition function is well converged for J = 165 at all temperatures. Table 3.6 shows

the final values of Q obtained for each temperature, quoted alongside their degree of

convergence.
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Figure 3.4: Convergence of partition function at different temperatures as a function of Jmax.

The J-dependent convergence of Q gives a good indication of the completeness

of the computed energy levels with respect to their significance at each temperature.

However in order to ascertain the reliability of the line list for increasing temperatures

it is more pertinent to observe the convergence of Q as a function of energy cut-off; this

is illustrated in Figure 3.5.

The importance of this lies in the fact that the computed line list in the current work
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Table 3.6: Values of the partition function, Q, for different temperatures, T . The degree of
convergence is specified by QJ165−QJ164/QJ165× 100.

T (K) Q Degree of Convergence (%)
296 6337.131 < 10−12

400 11040.245 1.8 × 10−12

800 53449.248 2.9 × 10−6

1000 99288.461 4.6 × 10−5

1200 171740.274 2.8 × 10−4

1500 352549.889 1.6 × 10−3
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Figure 3.5: Convergence of partition function at different temperatures as a function of Emax

(cm−1).

only considers transitions from energy levels below 8000 cm−1. Since the physical

interpretation of an energy level’s contribution to Q is the probability of it’s occupancy,

the completeness of the line list can only be guaranteed if all transitions from states

with non-negligible population are computed. In other words, the line list may only be

considered 100 % complete if Q is converged when summing over all E ≤ 8000 cm−1.

Figure 3.5 shows that, at a cut-off of 8000 cm−1, the partition function is not

fully converged for T = 1500 K. Despite computing all rovibrational levels below 8000

cm−1 (J ≤ 165), and all transitions from these states to states with E ≤ 15 000 cm−1,
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there is still a minor contribution from energies above this cut-off to the partition sum,

corresponding to all values of J. However, the neglected transitions are not expected to

provide significant addition to the overall intensity.

The completeness of the line list may be quantified by considering the ratio of

the partition function at the 8000 cm−1 cut-off and the total partition function, QTotal ,

which takes into account all computed energies. Figure 3.6 shows this ratio as a func-

tion of temperature.
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Figure 3.6: Ratios of Q8000 to the assumed converged values QTotal as a function of tempera-
ture.

For T ≤ 1500 K the line list is over 96 % complete. As can be seen from Figure

3.6 the level of completeness decreases with increasing temperature; at 2000 K the ratio

falls to 86 %, and as low as 33 % for 5000 K. The assumption made here is that QTotal is

equal to the ‘true’ value of the partition function; in reality, this depends on the ability

of the AMES-1B PES to accurately reproduce the energies that become important at

these higher temperatures. Nevertheless, it is interesting to note that at 3000 – 5000

K the partition function is still converged to within 0.1 % when all computed energy

levels are taken into consideration, though the 8000 cm−1 cut-off means that the line

list becomes less than 50 % complete at these temperatures, as the contribution to the
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Table 3.7: Extract from the state file for SO2. Quantum numbers are defined in Table 3.8.

i Ẽ g J p ν1 ν2 ν3 Ka Kc
1 0.000000 1 0 0 0 0 0 0 0
2 517.872609 1 0 0 0 1 0 0 0
3 1035.118794 1 0 0 0 2 0 0 0
4 1151.714304 1 0 0 1 0 0 0 0
5 1551.759779 1 0 0 0 3 0 0 0
6 1666.328818 1 0 0 1 1 0 0 0
7 2067.808741 1 0 0 0 4 0 0 0
8 2180.319086 1 0 0 1 2 0 0 0
9 2295.815835 1 0 0 2 0 0 0 0

10 2583.270841 1 0 0 0 5 0 0 0
11 2693.705600 1 0 0 0 4 0 0 0
12 2713.393783 1 0 0 0 0 2 0 0
13 2807.174418 1 0 0 2 1 0 0 0
14 3098.143224 1 0 0 0 6 0 0 0
15 3206.501197 1 0 0 0 5 0 0 0
16 3222.952550 1 0 0 0 1 2 0 0
17 3317.908237 1 0 0 1 3 0 0 0
18 3432.272904 1 0 0 3 0 0 0 0
19 3612.415017 1 0 0 0 7 0 0 0
20 3718.711074 1 0 0 0 6 0 0 0

partition function from energy levels higher than 10 000 cm−1 starts to dominate.

The line list is presented in the ExoMol format [175] described in Chapter 2, i.e.

via a ‘states’, containing a list of energy levels, and a ‘transition’ file which lists up-

per and lower energies via their index from the ‘states’ file, and associated Einstein A

coefficient. Table 3.7 gives a portion of the SO2 states file; the quantum numbers are

described in Table 3.8. As DVR3D does not provide approximate quantum numbers,

Ka, Kc and the vibrational labels ν1, ν2 and ν3, these have been taken from the calcula-

tions of [35], where possible, by matching J, parity and energy (see Section 3.4); these

quantum numbers are approximate and may be updated in future as better estimates

become available. Table 3.9 gives a portion of the transitions file.

3.4 Rovibrational Energy Levels & Intensity Simula-

tions
The validation both the CCSD(T)/cc-pVQZ-DK Ames-1 PES and of the CCSD(T)/aug-

cc-pV(Q+d)Z DMS for room-temperature simulations is carried out by Huang et al.
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Table 3.8: Quantum numbers used in labelling energy states.

Quantum Number Descriptions
i: State counting number.
Ẽ: State energy in cm−1.
g: State degeneracy.
J: Total angular momentum
p: Total parity given by (−1)J+p.
ν1: Symmetric stretch quantum number.
ν2: Bending quantum number.
ν3: Asymmetric stretch quantum number.
Ka: Asymmetric top quantum number.
Kc: Asymmetric top quantum number.

Table 3.9: Extract from the transitions file for SO2: f is the upper state counting number, i is
the lower state counting number, and A f i is Einstein-A coefficient in s−1.

f i A
679 63 1.9408E-13
36 632 5.6747E-13
42 643 1.7869E-11

635 38 1.1554E-11
54 662 3.6097E-11

646 44 1.9333E-08
660 52 2.5948E-08
738 98 3.4273E-06
688 69 3.4316E-06
47 650 1.4537E-11

648 45 3.4352E-06
711 82 3.5730E-06
665 55 3.5751E-06
716 85 3.4635E-06
670 58 3.4664E-06
635 37 3.4690E-06
611 23 3.4701E-06
595 12 3.4709E-06
734 95 3.7253E-06
684 66 3.7257E-06

[35], however it is useful to re-assess their accuracy within the context of the current

work, particularly since the Ames-1B PES is employed in the DVR3D calculations.

The correct implementation of both into the DVR3D suite must be tested, and any

major discrepancies obtained via the differing methodologies should be addressed.

The purpose of the current work is to produce a hot line list by the extension

of rovibrational energy and intensity calculations, and is primarily concerned with the
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adaptation of the DVR3D program suite in order to achieve this aim. It should therefore

be noted that substantial improvement is not necessarily anticipated when comparing

the current work to experimental data; there has been no focus on the improvement in

the ability of the PES and the DMS to accurately replicate experimental energies and

intensities. The convergence of DVR3D wavefunctions is expected to at least allow for

comparable data analyses to those already carried out by Huang et al.

3.4.1 Comparison with Ames-296K

The energy level values published by Huang et al. in Ref. [35] are derived from a

different PES to that used in the current work (see above). It is difficult to compare

energy levels, particularly at higher energies due to ambiguities arising from possible

double matching based on quantum numbers. However the self-contained “complete”

nature of both line lists including transition intensities allows for suitable comparisons

to be made.

In an approach similar to one made in Ref. [35], transitions between both data sets

have been compared in order to asses both the agreement between energy levels/line

positions, and line intensities, for T = 296 K. Huang et al. made use of the rigorously

defined quantum numbers J and the rotational parity in order to match their lines with

corresponding transitions in HITRAN, along with a restriction on the maximum devia-

tion of wavenumbers for line positions and energy levels. These rules were originally

chosen by Huang et al. to avoid discrepancies observed due to large experimental un-

certainties and disagreements of quantum number assignments between observed and

computed values of line positions are intensities [35]. Since the DVR3D method does

not readily provide description of the vibrational bands or Ka and Kc quantum numbers,

the criteria of parity matching is well-suited for this comparison.

The criteria used here for line matching are given as: Obs. - Calc. residuals for Ei

and ν are ≤ 0.1 cm−1, and the quantum numbers J f , Ji, and the parity (defined by Ka +

nν3) agree. In addition, intensity comparisons are screened via the symmetric residual

[35] δ (I)% = 50% × (IDV R3D/IAmes−296K - IAmes−296K/IDV R3D), where the restriction

of δ (I)% ≤ 10% is used. The inclusion of intensities facilitates the comparison with

the imposed restriction allowing for lines to be matched, as well as the energy states.

Based on these criteria a total of 4 031 063 lines are matched to the 4 196 337 lines
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in the Ames-296K line list with an intensity greater than 10−30 cm molecule−1. This

translates to roughly 96% of lines matched. In reality it is difficult to rule out double

matches in such a comparison, and therefore in these cases the match with the minimum

deviations is kept. In general, the largest deviations in line positions are due to higher

energy disagreements for energy levels. To give an indication of the quality of the

matches, 94% of matches are ≤ 0.05 cm−1 in line position, and 97% are ≤ 0.1 cm−1.

The standard deviation in line positions is 0.043 cm−1, and for transition intensities the

standard deviation in the symmetric residual is given as σ (δ I) = 1.63%.

Figure 3.7 shows an overview comparison of simulated spectra at 296 K using the

line list generated in the current work, using the DVR3D method in conjunction with

the Ames-1B PES and DMS, and the VTET-produced Ames-296K line list provided in

the supplementary material of Ref. [35]. The lowest intensity considered is 10−30 cm

molecule−1. The DVR3D method reproduces excellently the intensity features gener-

ated by VTET at this temperature, indicating an effective implementation of the PES

and DMS into the DVR3D code, and validating the adaptations made to each program

module in order to make the calculations possible.

Minor differences begin to appear as ν approaches 8000 cm−1, where the hot line

list provides a very small contribution to the overall intensity in this spectral region, of

the order 10−29 cm molecule−1, as a consequence of the consideration of higher ener-

gies than in the Ames-296K line list. Such intensity contributions are present across

the entire 0 < ν ≤ 8000 cm−1 region when J > 80 energies are taken into considera-

tion, but are negligible in comparison to higher intensity transitions which are already

provided by Ames-296K.

3.4.2 Comparison with HITRAN

There are 72 459 lines for 32S16O2 included in the HITRAN2012 database [75], which

include rovibrational energies up to and including J = 99. In order to quantitatively

compare energy levels and absolute intensities a similar approach was adopted to that

of Huang et al. in Ref. [35].

3.4.2.1 Rovibrational Energy Levels

In order to compare energy levels, the HITRAN transitions are transformed into a list

of levels labelled by their appropriate upper and lower state quantum numbers; ener-
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Figure 3.7: Comparison of simulated spectra at T = 296 K, between line lists generated in the
current work (black), and by Huang et al. [35] (blue).

gies are obtained from the usual lower energy column, E ′′, and upper energies are also

obtained via E ′′+ ν . Any duplication from the combination difference method is re-

moved, and energies are only kept if the HITRAN error code for line position satisfies

the condition ierr≥ 4, ensuring all line position uncertainties are under 1× 10−3 cm−1.

For this reason, the ν1 +ν3, ν1 +ν2 +ν3 and 3ν3 bands are excluded from the current

comparison, as in Ref. [35]. This leaves a total of 13 507 rovibrational levels across 10



3.4. Rovibrational Energy Levels & Intensity Simulations 103

vibrational bands available for comparison.

Energies are matched in a similar fashion to that in the comparison with Ames-

296K, based on the following criteria: Obs. - Calc. residuals for Ei are ≤ 0.2 cm−1,

and the quantum numbers J f , Ji, and the parity (defined by Ka + nν3) agree. The results

are displayed in Table 3.10.

Table 3.10: Comparisons of rovibrational energy levels between available HITRAN data [75]
and corresponding data calculated using DVR3D.

ν1 ν2 ν3 Emin Emax Jmin Jmax Kmin
a Kmax

a No. ∆max ∆RMS
0 0 0 1.908 4062.964 1 99 0 35 2774 0.092 0.014
0 0 1 1362.696 4085.476 1 90 0 33 2023 0.092 0.019
0 0 2 2713.383 4436.384 0 76 0 23 1097 0.085 0.013
0 1 0 517.872 3775.703 0 99 0 29 2287 0.084 0.016
0 2 0 1035.126 2296.506 0 62 0 20 894 0.073 0.010
0 3 0 1553.654 2237.936 0 45 0 17 502 0.070 0.016
1 0 0 1151.713 3458.565 0 88 0 31 1706 0.097 0.016
1 1 0 1666.335 3080.042 0 45 0 21 757 0.080 0.007
0 1 1 1876.432 3964.388 1 70 0 25 1424 0.087 0.017
1 3 0 2955.938 3789.613 11 52 11 11 43 0.075 0.057
Total 1.908 4436.384 0 99 0 35 13507 0.097 0.016

Overall the agreement with the corresponding comparison in Ref. [35] is fairly

consistent. There are some minor deviations in ∆max, though the values of ∆RMS are

comparable. However it is not entirely meaningful to compare to the values reported by

Huang et al. It is likely that these deviations are largely due to the use of the Ames-1B

PES in the DVR3D calculations. It is unclear whether there is any contribution based

on the inclusion of energies above J = 80, and computational deviations introduced by

the differing methods.

3.4.2.2 Absolute Intensities

In keeping with the replication of comparison analyses, HITRAN band positions and

intensities are compared to the data produced in the current work, again in a similar

fashion to Huang et al. In Ref. [35] all 13 HITRAN bands are compared (despite three

of these being excluded from their energy level comparisons). In their comparison all

transitions associated with 2ν3 and Ka = 11 levels were excluded due to a resonance of

the band with ν1 + 3ν2; the same exclusion has been applied here.

A total of 70 830 transitions are available for comparison here, taking into account
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those corresponding to energy levels with J > 80. The matching criteria are identical to

that outlined above for energy levels, with the addition that the Obs. - Calc. residuals

for ν also satisfy≤ 0.2 cm−1. The algorithm used is prone to double-matching, leading

to comparisons which may be reasonable in wavenumber residuals but not in intensity

deviations. In these instances, the intensity comparisons are screened via the symmetric

residual [35] δ (I)% = 50%× (IDV R3D/IHIT RAN - IHIT RAN /IDV R3D), where the best match

is found where this value is at a minimum. These criteria have been able to match all

available lines, with the exception of the 001← 000 which matches 5686 out of 5721

lines. The explanation for this appears to be due to systematic errors in HITRAN for

energies with Ka ≥ 33 [35, 86]. Table 3.11 shows a statistical summary of the band

comparisons in a similar fashion to that of Huang et al.

The standard deviations in line position, σ(∆ν), and line intensity, σ (δ I), are in

fairly good agreement with those of Huang et al. despite the used of a different PES,

and the inclusion of energies with J > 80, as mentioned above in the case of the en-

ergy level comparisons. The differences in minimum, maximum, and average values

may be attributed to these, though the tighter restriction on the line intensity matching

algorithm used in this work may also contribute.

3.4.3 Comparison with Recent High-Temperature Measurements

The reproducibility of the Ames-296K data and the comparison with HITRAN serve

as an important indicator of the correct implementation of the DVR3D method in ap-

proaching the SO2 problem. However the main purpose of the current project is in the

calculation of a line list which is appropriate for high-temperature modelling.

There is limited spectral data for SO2 available at elevated temperatures, and is ei-

ther not applicable to the spectral region of interest or consists of remote observational

data requiring sophisticated, bespoke atmospheric modelling to reproduce in conjunc-

tion with a line list [3,42]. However a few measurements of cross section data have been

made for hot SO2 spectra in the laboratory, carried out by Fateev et al. [42, 43, 187],

the group motivating the work of this thesis (see Chapter 1). This data is not publicly

available at the time of writing, but has been obtained collaboratively and via private

communication, and is included here for a preliminary comparison with simulated cross

sections obtained from the hot line list.



3.4. Rovibrational Energy Levels & Intensity Simulations 105

Ta
bl

e
3.

11
:S

ta
tis

tic
al

su
m

m
ar

y
of

co
m

pa
ri

so
ns

be
tw

ee
n

13
H

IT
R

A
N

ba
nd

s
an

d
co

rr
es

po
nd

in
g

ba
nd

s
pr

od
uc

ed
in

th
e

cu
rr

en
tw

or
k.

Tr
an

si
tio

n
fr

eq
ue

nc
ie

s
ν

ar
e

gi
ve

n
in

cm
−

1
an

d
in

te
ns

iti
es

ar
e

in
cm

m
ol

ec
ul

e−
1 .

B
an

d
J f

K
a

ν
m

in
ν

m
ax

N
o.

∆
ν

m
ax

∆
ν

AV
G

σ
(∆

ν
)

Su
m

I H
IT

R
A

N
Su

m
I D

V
R

3D
δ

I m
in

δ
I m

ax
δ

I A
V

G
σ

(δ
I)

00
0
←

00
0

0
–

99
0

–
35

0.
01

7
26

5.
86

0
13

72
5

0.
04

8
0.

00
4

0.
00

7
2.

21
×

10
−

18
2.

39
×

10
−

18
-5

.3
%

71
.0

%
14

.8
%

11
.0

%
01

0
←

01
0

0
–

99
0

–
29

0.
02

9
20

1.
90

1
92

15
0.

04
1

0.
00

4
0.

00
6

1.
78
×

10
−

19
1.

93
×

10
−

19
0.

6%
40

.6
%

10
.6

%
5.

8%
01

0
←

00
0

0
–

70
0

–
26

43
6.

58
9

64
5.

55
6

59
14

0.
03

0
0.

00
6

0.
00

5
3.

71
×

10
−

18
3.

84
×

10
−

18
-4

8.
7%

38
.9

%
2.

5%
18

.8
%

02
0
←

01
0

0
–

62
0

–
21

44
6.

39
0

62
2.

05
5

37
27

0.
02

4
0.

00
5

0.
00

4
5.

77
×

10
−

19
5.

94
×

10
−

19
-3

8.
7%

34
.0

%
2.

6%
16

.1
%

03
0
←

02
0

1
–

46
0

–
17

46
3.

09
7

59
8.

26
7

15
32

0.
02

8
0.

01
5

0.
00

7
5.

59
×

10
−

20
5.

72
×

10
−

20
-2

9.
5%

26
.0

%
2.

0%
12

.6
%

10
0
←

00
0

0
–

88
0

–
32

10
30

.9
73

12
73

.1
75

82
91

0.
05

2
0.

00
3

0.
00

4
3.

32
×

10
−

18
3.

63
×

10
−

18
-4

2.
3%

34
.6

%
6.

4%
11

.2
%

11
0
←

01
0

0
–

45
0

–
22

10
47

.8
59

12
43

.8
20

40
43

0.
02

1
0.

00
5

0.
00

4
2.

51
×

10
−

19
2.

74
×

10
−

19
-9

9.
3%

27
.4

%
6.

0%
18

.1
%

00
1
←

00
0

0
–

90
0

–
32

12
94

.3
34

14
09

.9
83

56
86

0.
04

1
0.

00
6

0.
00

4
2.

57
×

10
−

17
2.

79
×

10
−

17
-4

7.
5%

14
.1

%
1.

2%
7.

6%
01

1
←

01
0

0
–

71
0

–
25

13
02

.0
56

13
97

.0
07

39
48

0.
03

4
0.

01
4

0.
00

6
2.

02
×

10
−

18
2.

22
×

10
−

18
-1

5.
1%

36
.0

%
5.

4%
6.

7%
10

1
←

00
0

0
–

82
0

–
24

24
33

.1
92

25
33

.1
95

40
34

0.
11

0
0.

02
3

0.
01

1
5.

39
×

10
−

19
5.

34
×

10
−

19
-4

1.
7%

27
.2

%
-5

.3
%

5.
2%

11
1
←

01
0

0
–

61
0

–
21

24
41

.0
79

25
21

.1
17

27
33

0.
14

5
0.

01
1

0.
01

3
4.

24
×

10
−

20
4.

25
×

10
−

20
-3

0.
5%

4.
2%

-2
.5

%
4.

1%
00

2
←

00
0

0
–

76
?
0

–
24

25
99

.0
80

27
75

.0
76

43
27

0.
03

3
0.

01
1

0.
00

6
3.

77
×

10
−

21
3.

51
×

10
−

21
-9

7.
9%

57
.9

%
-1

0.
8%

13
.4

%
00

3
←

00
0

0
–

77
0

–
25

39
85

.1
85

40
92

.9
48

36
55

0.
12

2
0.

03
1

0.
03

0
1.

55
×

10
−

21
1.

33
×

10
−

21
-9

4.
3%

21
.3

%
-3

1.
3%

21
.1

%

?
K

a
=

11
ex

cl
ud

ed
.



3.4. Rovibrational Energy Levels & Intensity Simulations 106

Figures 3.8 and 3.9 show the simulated cross sections for the 1000 < ν < 1500

cm−1 spectral region at 573.15 K (300 C) and 773.15 K (500 C), respectively, con-

volved with a Gaussian line shape function with HWHM = 0.25 cm−1. These are

compared with experimental cross sections obtained by Fateev et al. measured at a

resolution of 0.5 cm−1. The simulations are calculated using a cross section code,

‘ExoCross’, developed by S. Yurchenko designed to work with the ExoMol line list

format [175], based on the principles outlined in Ref. [188].
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Figure 3.8: Comparison of cross sections obtained at T = 573.15 K for 32S16O2 via experimen-
tal observation by Fateev et al. [187] (above) and from the hot line list (below).

This spectral region contains both the ν1 and ν3 bands, and the intensity features

are qualitatively well represented by the simulated cross sections. For 573.15 K (300 C)

the integrated intensity across the 1000 < ν < 1500 cm−1 spectral region is calculated

as 3.43× 10−17 cm2 molecule−1, which is about 2% less than that for the experimental

value, measured as 3.50 × 10−17 cm2 molecule−1.

For 773.15 K (500 C) the integrated intensity across the same spectral region is

calculated as 3.41 × 10−17 cm2 molecule−1, which is roughly 6% less than that for

the experimental value, 3.62 × 10−17 cm2 molecule−1. This may be attributed to a
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Figure 3.9: Comparison of cross sections obtained at T = 773.15 K for 32S16O2 via experimen-
tal observation by Fateev et al. [187] (above) and from the hot line list (below).

small discrepancy observed in the P-branch of the ν3 band which is not obvious from

Figure 3.9; the intensity here is slightly lower for the computed cross sections. Since

this disagreement affects a specific region of the spectrum, it is unlikely wholly due

to an error in the partition sum. The quality of the DMS may also be a contributing

factor, in conjunction with the states involved in these transitions. Another source may

be from the generation of the cross sections themselves; the line shape function used

in constructing the theoretical cross sections is Gaussian, and therefore only considers

thermal (Doppler) broadening, as opposed to a combination of thermal and pressure

broadening (Voigt line shape). It is possible that neglecting the pressure broadening

contribution in the line shape convolution is the source of this disagreement, as it is

expected to have significance at elevated temperatures. Regardless of this discrepancy,

using a Voigt profile would considerably improve the overall quality of computed cross

sections. This is discussed further in Chapter 7.
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3.4.4 Cross Sections

Figures 3.10 - 3.13 display temperature-dependent calculated cross sections for the

rotational and fundamental bands of 32S16O2. All simulations are produced using the

hot line list convolved with a Gaussian line shape function with HWHM = 0.5 cm−1.
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Figure 3.10: Temperature-dependent cross sections for the rotational band of 32S16O2.

Figure 3.14 shows an overview plot of the spectrum for 0 < ν < 8000 cm−1,

highlighting the temperature-dependence of the cross section intensities. Again, this

simulation is produced using the hot line list convolved with a Gaussian line shape

function with HWHM = 0.5 cm−1.

3.5 Discussion
Application of the DVR3D method has been carried out in order to produce a hot line

list for 32S16O2. The process has consisted of several adaptations to the pre-existing

code in order to facilitate the high demands of this computation. The line list is based

upon an ab initio PES and DMS computed by Huang et al. [35], which have both been

shown to be correctly implemented into the DVR3D program by the comparison of

rovibrational energies and transition intensities with existing data. The Ames-296K

data is reproduced very well, and comparisons with HITRAN data for all J = 0 – 99
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Figure 3.11: Temperature-dependent cross sections for the ν1 band of 32S16O2. The contribu-
tion to the intensity beyond 1225 cm−1 is due to the ν3 band.

rovibrational energy levels produces an overall root-mean-square error of 0.016 cm−1.

The majority of HITRAN intensity comparisons agree to within 80% - 90%, and pro-

vide similar correlation to comparisons drawn by Huang et al. Preliminary cross section

data has been simulated and compared and has been shown to have good qualitative

agreement with available experimental data, and may facilitate in the future analysis of

hot spectra.

The main focus of this project has been in the production of fully converged wave-

functions suitable for the simulation of energies and transitions at high temperatures,

which has been achieved. Discrepancies discussed in Ref. [35] are not necessarily alle-

viated by the convergence of higher energies, or by the application of a different com-

putational method, and are inherent to both the PES and DMS. Huang et al. guarantee

high-accuracy (0.01 – 0.03 cm−1) for simulations below 5500 cm−1, and therefore the

same precautions should be followed here. Computed rovibrational energies above 10

000 cm−1, though converged, can not be guaranteed to spectroscopically accurate, and

are entirely dependent on the quality of the PES. This may have very minor repercus-

sions on the convergence of the partition function at the high end of the temperature

range.
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Figure 3.12: Temperature-dependent cross sections for the ν2 band of 32S16O2.
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Figure 3.13: Temperature-dependent cross sections for the ν3 band of 32S16O2.

Nevertheless, the scalability of the DVR3D suite has been greatly improved and is

now well suited for future computations in conjunction with higher accuracy PESs and

DMSs, which require the construction and storage of wavefunctions based on larger
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Figure 3.14: Temperature-dependent cross sections for the entire 0 < ν < 8000 cm−1 region
of 32S16O2.

DVR grids. The final line lists consists of 1.3 billion transitions within 0 < ν < 8000

cm−1, between 3 255 954 rovibrational energy levels up to J = 165. This line list is

suitable for the simulation of rovibrational spectra for T ≤ 1500 K, but may be used

approximately for temperatures above this. The full line list can be downloaded from

the ExoMol website (http://www.exomol.com).



Chapter 4

An Initial Room-Temperature Line

List for 32S16O3

In this chapter the first stage of a theoretical study on spectroscopic data for SO3 is

presented. This is the first time a large, comprehensive theoretical investigation has

been performed regarding this molecule. There have been a handful of previous studies

performed for SO3, both experimental and theoretical, but neither have attempted to

cover both line position and transition strength data to the desired level. The aim of this

project is to compute accurate line positions and Einstein coefficients complete within

the chosen spectral window.

Since spectroscopic data for SO3 is relatively sparse within the literature, with

studies limited to room temperature analysis, it is difficult to test the reliability of line

list data computed for higher temperatures. Both the potential and dipole moment

surfaces for the current study are computed ab initio, with a view to refinement based

on experimental data. For this reason the project is divided into two stages.

First, a room temperature line list for SO3 is computed using the purely ab initio

PES and DMS. This is compared to the available experimental data to determine any

discrepancies observed in line positions; it is expected that the purely ab initio PES

would not immediately produce accurate energy levels without an empirical refinement.

This initial line list is usually computed at a reduced basis set size adequate for the

coverage of data at lower temperatures, i.e. until partition function convergence is

observed, and therefore is less computationally demanding than a high temperature

line list.

The second stage of the full high-temperature line list computation involves the
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empirical refinement of the PES, before the final calculation using an increased basis

set and spectral range. This is the subject of discussion in Chapter 6.

Presented here are details of the first stage of the process, in computing the purely

ab initio room-temperature line list, referred to as UYT (Underwood, Yurchenko, Ten-

nyson). Discussed are the potential and dipole moment surfaces, convergence tests and

variational calculations, along with comparisons between the final computed data and

those available in the literature. All nuclear motion calculations were performed with

the program TROVE [131] which had previously been adapted to work in the D3h(M)

molecular permutation-inversion group for NH3 [189], which belongs to the same

point group as SO3. The final line list consists of transitions on the region 0 - 4000

cm−1 with rotational states up to J = 85, resulting in 174 674 257 transitions.

4.1 Calculation using TROVE
The TROVE procedure [131] consists of a number of steps in order to calculate a line

list, much like the DVR3D suite. The main difference in the case of TROVE is that a

single program module is used in all steps, which reads in various different inputs which

specify which calculation to perform, along with relevant input parameters. Each step

produces a particular set of checkpoint files required for use in the following step(s).

The general theoretical background describing the calculation procedure is outlined in

Chapter 2. A summary of the computational steps are listed below:

Step 1 In the first step the expansion of the Hamiltonian is performed in terms of the

chosen coordinates. This requires expanding the kinetic and potential energy

operators, each to a particular order defined by the user input. The electric dipole

moment function is also expanded in terms of the chosen coordinates. These

expansions are stored as external checkpoint files to be read by later processes.

The primative 1D basis functions discussed in in Chapter 2 are also generated

in this step. Only functions associated up to a certain number of vibrational

quanta are considered, based on a truncation scheme with a limit specified in the

user input. This truncation parameter is discussed further below in subsection

4.1.2. The 1D basis functions describe the internal motions of the molecule;

in the case of SO3 there are six internal vibrational degrees of freedom. The

primitive functions are combined to produced a vibrational basis for subsequent
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rovibrational calculations, the process is described in Chapter 2. The vibrational

matrix elements are stored to disk, and the vibrational hamiltonian is diagonalised

in this 6D product basis.

Step 2 The eigenfunctions computed in the previous step as solutions to the vibra-

tional (J = 0) problem are now used to produce a compact basis set for all J >

0 calculations. This greatly facilitates the construction of J > 0 Hamiltonian

matrices as their vibrational elements are now diagonal. The new rovibrational

basis set is formed as a product between the J = 0 vibrational eigenfunctions

and symmetrised rigid rotor wavefunctions. This stage of computation stores

the vibrational and electric dipole moment matrix elements in terms of the new

rovibrational basis set, to be used in further steps.

Step 3 Now eigenfunctions for J > 0 are computed. The Hamiltonian is built by read-

ing the vibrational matrix elements in the J = 0 representation generated in the

previous step and combining them with rigid rotor functions. As such the Hamil-

tonian matrix is block diagonal in J. This allows for the Hamiltonian to be built

and diagonalised separately for individual J blocks. For each J an individual

process computes the appropriate matrix. Since the underlying basis functions

are symmetry labelled according to the Molecular Point Group (see Chapter 2),

eigenfunctions of the rovibrational matrix are only required for states with phys-

ically allowed symmetry species. The required symmetries can be requested as

user input; in the case of SO3 the physically allowed symmetry species are A′1

and A′′1 in the D3h(M) molecular permutation-inversion group. The final com-

puted eigenfunctions are saved to disk, stored in files grouping by J and the

overall symmetry ΓTotal . Only wavefunctions with energies up to a user defined

limit are saved.

Step 4 Once all necessary wavefunction files have been generated for J′ and J′′,

TROVE can be used to generate absorption intensities, line strengths and Ein-

stein coefficients for all transitions satisfying J′↔ J′′ and associated selection

rules (A′1 ↔ A′′1), along with user-specified cut-offs for E ′max and E ′′max. Lower

thresholds for intensities/line strengths can also be specified, as well as the spec-

tral window of interest, and the temperature and partition function can also be
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entered, in order to generate the temperature-dependent line intensities. This is

essentially the final TROVE step. All transitions of interest are computed with as-

sociated Einstein coefficients. Subsequent programs can use this data to generate

a temperature-dependent spectrum.

4.1.1 The Potential Energy and Dipole Moment Surfaces

In order to produce rovibrational wavefunctions and energies using TROVE it is nec-

essary to supply the program with an external potential surface. Provided the TROVE

code has been adapted to work with the specific functional form of the PES the coef-

ficients of this external function are given as input parameters to the first stage of the

TROVE computation - the vibrational problem.

At the start of the project the only known fully ab initio work in the literature re-

garding a PES for SO3 was by Martin [123]. Previous studies by Dorney et al. [121]

provided force constants, which Martin expanded upon by computing an ab initio quar-

tic force field developed using coupled cluster methods. The quadratic, cubic and quar-

tic force constants were computed in symmetry-adapted internal coordinates. The very

first calculations performed in this project, which involved various convergence tests

(see next subsection) successfully implemented these constants. However a number

of computed vibrational bands using this force field could not be reconciled with their

experimental counterparts, an example being the ν2 vibration (see next section). The

production of a brand new ab initio PES was already under construction at this point,

however, as improvements to electronic structure methods since the publication of the

force field by Martin would improve upon the force constants. This new PES is the ba-

sis upon which rovibrational wavefunctions have been computed in the current project,

and is discussed below.

4.1.1.1 The ab initio PES

The ab initio PES was constructed by Yurchenko [170] using the explicitly correlated

F12 singles and doubles coupled cluster method including a perturbational estimate of

connected triple excitations, CCSD(T)-F12b [190]. The basis sets used are correla-

tion consistent and optimised for F12 calculations; the valence correlation-consistent

functions aug-cc-pVTZ-F12 and aug-cc-pV(T+d)Z-F12 [191] are used for oxygen and

sulphur, respectively. Molpro.2010 [192] was employed for all electronic structure
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calculations. The masses for the sulphur and oxygen atoms used in all subsequent

calculations are, respectively, 31.97207070 and 15.99491463 in amu.

A grid of 13 000 points was used with the stretching modes ranging from 1.1 to

2.0 Å, interbond angles α between 70 and 123◦, and the inversion angle ρ between 0

and 50◦. Grid points were specified based on an algorithm which produced a higher

concentration of equidistant points close to the equilibrium position, but favoured less

those that exceeded a certain energy value. Each point was processed with an MP2

calculation as a further filter, and those producing an MP2 result of 50 000cm−1 or

higher were disregarded. This grid is sufficient to cover energies up to 40 000 cm−1

above the minimum. It is important to note that CCSD(T) is probably not reliable for

the higher energy regions which approach dissociation. However, the nuclear motion

calculations based upon this PES are largely sensitive to energies below 10 000cm−1,

and therefore the coupled cluster method used is assumed to be adequate.

This PES is represented by an analytical form given by the expansion [170, 189]

V (ξ1,ξ2,ξ3,ξ4a,ξ4b; sin ρ̄) = Ve +V0(sin ρ̄)+∑
j

Fj(sin ρ̄)ξ j

+ ∑
j≤k

Fjk(sin ρ̄)ξ j ξk + ∑
j≤k≤l

Fjkl(sin ρ̄)ξ j ξk ξl

+ ∑
j≤k≤l≤m

Fjklm(sin ρ̄)ξ j ξk ξl ξm (4.1)

in the coordinates ξk:

ξk = 1− exp(−a(rk− re)), k = 1,2,3, (4.2)

ξ4a =
1√
6
(2α1−α2−α3) , (4.3)

ξ4b =
1√
2
(α2−α3) , (4.4)

sin ρ̄ =
2√
3

sin[(α1 +α2 +α3)/6], (4.5)

where

V0(sin ρ̄) = ∑
s=1

f (s)0 (sinρe− sin ρ̄)s (4.6)

and

Fjk...(sin ρ̄) = ∑
s=0

f (s)jk... (sinρe− sin ρ̄)s. (4.7)
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This form has been used to represent the PESs of NH3, PH3, SbH3, NH3
+, and

BiH3 [193–196]. The potential parameters f (s)jk... were obtained through a weighted

least squares fit to the ab initio points with a root-mean-squares (rms) error of 0.067

cm−1. Weight factors were set using the expression suggested by Partridge and

Schwenke [179]:

wi =
tanh

[
−0.0005 cm×

(
Vi−16000 cm−1)]+1.002002002

2.002002002 cm×V (w)
i

, (4.8)

where V (w)
i = max(16000 cm−1,Vi), and Vi is the ab initio energy at the ith geometry

(in cm−1), measured relative to the equilibrium energy. These weight factors favor the

energies below 16 000 cm−1. The weighting function used was based on an empirical

adjustment scheme used to ensure that the ab initio points were fitted to within their

individual errors while obtaining accurate replication of experimental line positions.

In conclusion, a total of 304 coefficients were determined to be readily input into the

TROVE program.

The ab initio equilibrium geometry re as obtained from the fit is 1.42039 Å, com-

pared to the experimentally derived value 1.41732 Å [99]. The experimental rotational

energies of SO3 [104] are best described by the latter value, and therefore is used in

all rovibrational calculations in place of the ab initio value. Replacing the equilibrium

structure may cause undesirably large changes to the vibrational energies, as, for ex-

ample, the bending kinetic energy depends on re [197]. In order to minimise this effect

the following procedure was employed.

The constructed PES can be considered as an expansion around r(ai)
e , however

the desired PES should be centred on r(exp)
e . If the expansion is performed around

r(exp)
e then by definition it would produce a completely different PES (PES-a) to the

one calculated, whose structure would differ by a number of linear terms. In order to

maintain the structure of the ab initio PES while ensuring an expansion around r(exp)
e ,

the quantity ∆re = r(ai)
e − r(exp)

e is defined. A second value, r(ref)
e is defined as the point

which is a distance ∆re from r(ai)
e , but in the opposite sense from r(exp)

e . Expanding the

PES around r(ref)
e defines yet another PES (PES-b), which also differs to the original

PES by a number of linear terms. However substituting r(ref)
e with r(exp)

e has the effect of

removing the linear terms in PES-a, therefore maintaining the structure of the original
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PES while expanding around r(exp)
e .

Table 4.1 compares rotational levels measured by Maki et al. [104] and those com-

puted using the equilibrium-adjusted PES used in this work. The agreement is very

good.

4.1.1.2 The ab initio DMS

The DMS was calculated using the same level of theory as the PES and on the same

grid of 13 000 points. The ab initio values were then expressed analytically using

a symmetrized molecular bond (SMB) representation described in Ref. [198]. The

resulting dipole moment parameters obtained through a least squares fit reproduce the

ab initio data with an rms error of 0.00013 D. In these fits the same factors defined by

Eq. (4.8) were used to weight the geometries according to the corresponding energies.

As with the PES, a total of 304 coefficients were determined to be readily inputted

into the TROVE program. At the time this project was carried out, there were no

experimental or ab initio dipole moment data in the literature that could be use to

validate the ab initio DMS against. However, experience of working dipole moments

for different systems [198–201] has shown that high quality ab initio intensities in most

cases are competitive with experimental measurements. Nevertheless, an attempt has

been made to assess the quality of the relative intensities calculated using the ab initio

DMS, and this is discussed below.

4.1.2 Convergence Testing

As with the SO2 calculations described in Chapter 3, in order to achieve results of

high accuracy as well as minimising the requirement for computational resources, it is

necessary to optimise the size of the nuclear motion Hamiltonian matrix. This involves

preliminary truncation of the basis set, as well as limiting the order of both the kinetic

and potential components of the Hamiltonian expansion [131]. Deciding upon these

expansion orders involves a trade-off between accuracy and computational expense.

These expansion orders were the first to be determined in the set of convergence tests.

A number of combinations for the expansion orders were tested with Nkin = 4, 6,

8, and with Npot = 4, 6, 8, 10. It was found that convergence in the kinetic energy ex-

pansion occurred before that of the potential energy expansion, and ultimately setting
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Table 4.1: Theoretical rotational term values for 32S16O3 ground vibrational state (cm−1) com-
pared with experiment [104].

J K Obs. TROVE
2 0 2.0912 2.0916
3 3 2.6115 2.6119
4 3 5.3998 5.4006
4 0 6.9707 6.9718
5 3 8.8852 8.8864
6 6 8.3548 8.3559
6 3 13.0675 13.0694
7 6 13.2342 13.2360
7 3 17.9467 17.9493
8 6 18.8106 18.8132
8 3 23.5228 23.5263
8 0 25.0935 25.0972
9 9 17.2297 17.2319
9 6 25.0838 25.0874
9 3 29.7958 29.8002

10 10 17.2297 17.2319
10 9 24.2002 24.2035
10 6 32.0539 32.0584
10 3 36.7655 36.7709
10 0 38.3360 38.3417
20 18 89.8252 89.8372
20 15 107.0973 107.1122
20 12 121.2253 121.2425
20 9 132.2114 132.2304
20 6 140.0574 140.0777
20 3 144.7645 144.7856
20 0 146.3334 146.3548
80 78 1195.6589 1195.8085

Nkin = 4 and Npot = 8 yielded adequately converged results at minimal computational

cost; using a kinetic energy expansion order of 6 requires a more expensive calculation

where convergence is already observed to within 0.001 cm−1 when expanding to fourth

order. Table 4.2 shows computed fundamental bands using the quartic force field po-

tential by Martin [123] using varying expansion order combinations for Nkin and Npot ;

the converged values of the fundamental bands are not spectroscopically accurate, how-

ever this is not necessary to observe convergence. Table 4.3 shows the summation of

the first 200, 400, 600, 800, 1000, 1200, and 1508 eigenvalues computed at different

kinetic/potential expansion orders, in an effort to show the convergence.

After determining the expansion orders for the kinetic and potential energy com-
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Table 4.2: Convergence of basis set for kinetic and potential expansions: vibrational band cen-
tres (cm−1) for 32S16O3.

Nkin, Npot ν1 ν2 ν3 ν4
4, 4 1063.285404 428.341032 1386.453660 527.177358
4, 6 1063.360753 428.360347 1386.809831 527.349671
4, 8 1063.361192 428.360340 1386.810051 527.349228
6, 6 1063.360296 428.359962 1386.809558 527.349590
6, 8 1063.360736 428.359995 1386.809778 527.349146
8, 10 1063.360725 428.359950 1386.809774 527.349146

Table 4.3: Convergence of basis set for kinetic and potential expansions: summing of eigen-
values (cm−1) for 32S16O3.

NE Nkin = 6, Npot = 8 Nkin = 8, Npot = 10
200 851761.14 851761.13
400 2109965.2 2109965.15
600 3538487.59 3538487.44
800 5111050.14 5111049.78
1000 6805390.58 6805390.04
1200 8616196.34 8616195.55
1508 11730399.33 11730398.2

ponents of the Hamiltonian, it is necessary to determine the size of the basis set used

in the subsequent calculations. TROVE employs a polyad number truncation which

controls the size of the basis set. For SO3 the polyad number is given by

P = 2(n1 +n2 +n3)+n4 +n5 +
n6

2
, (4.9)

where ni are the quanta associated with 1D basis functions, φi, whose product gives the

vibrational basis set [131]. Each of these basis functions is associated with an internal

coordinate ξi, and only functions for which P ≤ Pmax are included in the primitive

basis set. Initial tests were carried out to measure the degree of convergence using

different values for Pmax, and the orders of the kinetic and potential energy expansions.

In the present study, it is apparent that the convergence is more sensitive to Pmax, and

convergence is obtained to within 0.1 cm−1 when Pmax is 12 (see table 4.4); therefore

a basis set based on this value is used.

As well as using the polyad number to truncate the size of the basis, a further

truncation technique is employed by specifying an upper limit for the eigenvalue cal-

culations, i.e. construct the basis set such that it provides energy values up to a limit
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Table 4.4: Convergence of basis set viewed for some vibrational band centres (cm−1) for
32S16O3.

Obs. [104] Pmax= 10 Pmax= 12 Pmax= 14
ν1 1064.92 1065.83 1065.75 1065.74
ν2 497.57 498.48 498.48 498.48
ν3 1391.52 1387.63 1387.45 1387.43
ν4 530.09 528.61 528.59 528.58
2ν3(l3=0) 2766.40 2759.61 2759.12 2758.75
2ν3(l3=2) 2777.87 2770.70 2770.29 2769.95
2ν2 995.02 995.43 995.35 995.35
2ν4(l4=0) 1059.81 1057.10 1056.50 1056.44
2ν4(l4=2) 1060.45 1057.86 1057.38 1057.33
ν2 + ν4(l4=1) 1027.90 1027.58 1027.35 1027.33
ν1 + ν4(l4=1) 1593.69 1593.82 1593.36 1593.30
3ν4(l4=1) 1589.81 1587.64 1586.46 1586.30
3ν4(l4=3) 1591.10 1587.61 1586.43 1586.27
ν1 + ν2 1560.60 1565.51 1565.33 1565.32
ν2 + 2ν4(l4=0) 1557.88 1556.38 1555.59 1555.47
ν2 + 2ν4(l4=2) 1558.52 1557.12 1556.45 1556.37
2ν2 + ν4(l4=1) 1525.61 1524.81 1524.48 1524.46
3ν2 1492.35 1449.81 1490.76 1490.76
ν2 + ν3(l3=1) 1884.57 1881.82 1881.53 1881.51
3ν3(l3=1) 4136.39 4138.88 4126.78 4125.92

of Emax. This is based on an estimate given by summing eigenvalues of the 1D basis

functions before they are considered for matrix element calculations; the active space

is constructed using basis functions whose eigenvalues sum together to have E ≤ Emax.

For the present study the condition Emax/hc = 10 000 cm−1 is used.

These precautions are particularly important for the SO3 molecule, as its larger

mass (compared to, for example, XH3 systems) gives rise to small rotational constants,

which in turn requires calculations up to high J value to ensure adequate coverage

of transitions for a given temperature. This means that use of any unnecessary basis

functions will prove computationally costly.

As an intial test of the TROVE procedure the quartic force field given by Mar-

tin [123] was used to compute fundamental term values using a well-converged polyad

truncation scheme of Pmax= 16. Discrepancies were found between the results and the

values published, particularly the value of the ν2 fundamental term value. A substition

of the symmetry-adapted force constant F22 associated with this vibration with a scaled

value from a previously published force-field [121] resulted in a significant improve-
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ment. Table 4.5 illustrates the differences between these values, and the final converged

result using the PES by Yurchenko for the fundamental vibrations, and it can be seen

that convergence is observed using to an improved degree using the PES calculated in

the current project.

Table 4.5: A comparison of the fundamental term values (cm−1) between this work and Mar-
tin [123] (computed with TROVE). The second ‘Martin F22’ column refers to a
calculation using a substituted F22 value (see text).

Obs. [104] Martin Martin F22 [121] This work
ν1 1064.92 1063.36 1064.22 1065.75
ν2 497.57 428.36 487.10 498.48
ν3 1391.52 1386.81 1386.85 1387.45
ν4 530.09 527.35 527.32 528.59

4.1.3 Computing the Line List

In the first step of the TROVE calculation where the vibrational basis is constructed,

the 1D functions φi (i = 1, 2, 3) are Numerov-Cooley derived functions for the three

stretching vibrations, in terms of linearised stretching coordinates ∆r = Ri− re (i = 1,

2, 3), where Ri is the length of one of the three S - O bonds. For the bending functions,

harmonic-oscillator functions are used in terms of linearised bending coordinates ∆αi

(i = 1, 2, 3) . The out-of-plane bending functions are also Numerov-Cooley functions

based on the inversion angle ρ [131]. The kinetic energy operator is expanded in terms

of the ξi (i = 1 - 6) linearised coordinates for all internal motions. In the potential

energy expansion, Morse-like functions are used as expansion functions for the three

stretches, whereas the expansion variables for the bending motions are the linearised

coordinates ξi (i = 4 - 6). More details can be found in Chapter 2 and in Ref. [131].

In addition to the basis set minimisation described in the previous subsection, it is

possible to reduce the size of the Hamiltonian further by making use of group theory.

SO3 has D3h(M) molecular group symmetry and the spin-0 Bosons which make up the

constituent atoms of this molecule allow the molecular rovibrational wavefunctions to

exhibit the symmetry of only two of the six irreducible representations of this group in

order to satisfy the Pauli Principle; namely the A′1 and A′′1 representations. This reduces

both the number of Hamiltonian matrices we need to consider and, since E symmetry

Hamiltonian matrices are larger, their size (see Chapter 2).
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Wavefunctions were calculated for all rovibrational states up to J = 85 with A′1

and A′′1 symmetry. All wavefunctions corresponding to rovibrational energies below a

threshold energy of 10,000 cm−1are saved. In computing dipole transition moments

between rovibrational states with E ′ and E ′′ for the upper and lower energies, respec-

tively, thresholds are introduced for these energies to control the number of transitions

computed, as well as defining limits for the spectral range of interest. In the room-

temperature calculation all transitions satisfying E ′max≤ 7000 cm−1, E ′′max≤ 3000 cm−1

and 0 < ν ≤ 4000 cm−1 are computed. This clearly does not make use of all the com-

puted energies, however a converged value in the partition function can be ensured

by including these higher energy states in the partition sum (see next section). The

transition dipoles, line strengths S, Einstein A coefficients and intensities I for allowed

transitions are computed. For 32S16O3, the rigorous selection rules determining al-

lowed electric dipole transitions are ∆J = J′− J′′ = 0,±1 (J′′+ J′ ≥ 1), and symmetry

selection rules A′1↔ A′′1 .

All calculations were carried out on local multi-CPU computing machines in the

Unversity College London Department of Physics and Astronomy, each equipped with

Intel Xeon processors of either 4 or 8 cores. Memory resources ranged from 16 to 96

Gb between machines. The compiled TROVE code was optimised for OpenMP par-

allelisation which allowed for matrix diagonalisations and dipole transition moments

to be calculated across multiple CPUs. The total time of the line list computation

was roughly 13,100 CPU hours. Due to the limitations imposed by the usage of ma-

chines by multiple users, this amounted to roughly 6-8 months of real time. A total

of 176,674,257 transitions are obtained for room temperature (296/298.15 K) from the

calculations. Energy levels are labelled by a unique set of quantum numbers, including

total symmetry in D3h(M), the vibrational symmetry in D3h(M), the rotational quantum

numbers J and K and the vibrational local mode quantum numbers.

4.2 The Partition Function
As well as the spectral region of interest, the amount of rovibrational energies required

also depends on the desired temperature at which to simulate a spectrum. The quality

of a computed spectrum will become sensitive to Emax as the temperature increases;

it is necessary to ensure that all energy states that are significantly populated for the
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given temperature are calculated. This can be checked using the temperature-dependent

partition function:

Q = ∑
i

gi exp(−Ei/kT ), (4.10)

where gi is the total degeneracy of the ro-vibrational state i with energy Ei, with the sum

running over all energies at the absolute temperature T , and k is Boltzmann’s constant.

The total degeneracy is given by (2J+1) times the nuclear spin degeneracy, which for

the present case of 32S16O3 is simply 1 for both the A′1 and A′′1 symmetries, given that

the nuclear spin of 16O and 32S are zero.

For a given temperature, it is possible to determine the contribution of various

states to the value of Q and then check that Q converges to a specific value as Ei tends

to infinity; as T increases a greater coverage of higher-lying energy states is required.

For T = 298.15 K calculations show that Q converges to better than 1 % at J = 85, with

a value of Q = 7908.266. Therefore calculations spanning all J’s up to 85 should be

sufficient for simulating spectra at this temperature. Figure 4.1 shows the value of Q as

a function of all energy levels having J quantum number up to a maximum value, Jmax,

at an absolute temperature of T = 298.15 K. As energies are included in the summation

for increasing values of J, associated energy levels contribute less and less to the value

of Q, until it converges to a limit.

4.3 Intensity Simulations

In order to determine the validity of the calculated line list it is necessary to com-

pare simulated spectra with spectra obtained through experimental procedures. In the

present case it is expected that the purely ab initio PES will deliver inaccurate line posi-

tions, and the need to empirically refine the PES must be dealt with. However it is still

possible to test the accuracy of the ab initio DMS through comparisons of transition

moments/absolute intensities, provided that both ab initio and experimental transitions

can be adequately defined by upper and lower state quantum numbers. Since there

is a lack of data in the literature regarding dipole moments, the best mechanism for

comparison lies in computing absolute intensities at temperatures for which absolute or

relative intensities are available. This is the approach taken here.
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Figure 4.1: Convergence of partition function at 298.15 K for different values of Jmax.

The intensity of a transition between two states is given by the formula [202]

I( f ← i) =
8π3NAνi f

(4πε0)3hc
e−Ei/kT

Q(T )
×
[

1− exp
(
−hcνi f

kT

)]
S( f ← i), (4.11)

where I( f ← i) is the transition intensity for a transition from state i with energy Ei to

state f with energy E f , with hcνi f = E f −Ei. Q is the partition function. S( f ← i) is

the line strength, which is defined by the following integration [202]:

S( f ← i) = gns ∑
m f ,mi

∑
A=X ,Y,Z

|〈Φ( f )
rv |µA|Φ

(i)
rv 〉|2 (4.12)

for a transition between initial state i with rovibrational wavefunction Φ
(i)
rv and final

state f with wavefunction Φ
( f )
rv . Here, gns is the nuclear spin statistical weight factor,

and µA is the electronically averaged component of the molecular dipole moment along

the space-fixed axis A = X ,Y,Z. The sum also runs over the quantum numbers mi

and m f which are projections of the total angular momentum J (in units of h̄) on the

laboratory fixed Z axis, for the initial and final states, respectively.

Maki et al. [99–105] reported extensive high-resolution studies of a number of

fundamental, combination and overtone bands of 32S16O3. Their principle aim was to

obtain accurate wavenumber measurements, but relative intensities were also measured.
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In the present work these data are converted into absolute intensities by normalizing to

the theoretical intensities obtained with TROVE at T = 298.15 K as described below.

The experimental measurements available cover three spectral regions: 405–

708 cm−1 (focusing on ν2, ν4, 2ν2-ν2, ν2+ν4-ν2, ν2+ν4-ν4, ν1-ν4, 2ν
(l4=0)
4 -ν4 and

2ν
(l4=2)
4 −ν4), 1200–1680 cm−1(ν3), and 2500-3280 cm−1 (2ν

(l3=2)
3 ). Each measure-

ment was made at different values of pressure. For the 405–708 cm−1 window, the

measurements were performed at 0.409 and 2.04 Torr, and for the ν3 measurements

between the 1200–1680 cm−1 window 0.16 Torr and 0.7 Torr was used. 560 lines

were measured at 0.7 Torr, however 439 of these had relative intensity values which

were negative. Therefore these higher pressure measurement were not used at all in the

present work.

Table 4.6 shows the comparison between the numbers of lines identified in each

measurement to the numbers of lines computed using TROVE. The latter numbers are

the subject of the following selection criteria: J ≤ 85, intensity cut-off, I( f ← i) >

10−34 cm/molecule, and the wavenumber window, 0–4000 cm−1. Experimental lines

with negative relative intensities were left out of the analysis.

To normalize the experimental intensities, the experimental relative data from each

spectral window and each different pressure were scaled to match the theoretical values

computed at T = 298.15 K. The scaling factors obtained through a minimization pro-

cedure using all selected experimental lines with non-zero intensity (see Table 4.7) are

6.571×10−21 cm/molecule (405–708 cm−1, 0.409 Torr), 1.838×10−21 cm/molecule

(405–708 cm−1, 2.04 Torr), 4.823×10−20 cm/molecule ( 1200–1680 cm−1, 0.16 Torr),

and 1.328×10−21 cm/molecule (2500-3280 cm−1, 4.99 Torr). With these factors the

‘experimental’ intensities match the theoretical values reasonably well, for example

for 405–708 cm−1 the agreement is within about 7.02× 10−22 cm/molecule and

5.05× 10−22 cm/molecule, at 0.409 and 2.04 Torr, respectively.

Having the absolute intensities derived, band intensities were estimated for each

experimental band as the sum of individual line intensities. In Table 4.7 these ‘ex-

perimental’ band intensities Sexp (cm/molecule) are compared to the theoretical values

obtained by summing intensities (a) from all TROVE lines from a given window and (b)

only from lines with experimental counterparts present. This was done separately for

each spectral range, and each measurement pressure therein. In Table 4.7 these quan-
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tities are referenced to as Scalc
tot and Scalc

red for the ‘total’ and ‘reduced’ band intensities,

respectively, and compared to Sexp.

The ratio Scalc
red to Sexp also shown in Table 4.7 demonstrates the good quality of the

scaling procedure employed as well as that of the computed ab initio dipole moment.

For example at 0.409 Torr, the differences between ‘experimental’ and theoretical band

intensities are within about 20% for all bands from the 405–708 cm−1 region with the

exception of 2ν
(l4=0)
4 - ν4 (see also discussion below). It should be stressed here that

only one scaling factor for all eight bands from this window was applied at a given

pressure. The difference between the two theoretical band intensities Scalc
tot and Scalc

red

gives a measure of the missing experimental transition data. According to Table 4.7 the

measurements for even stronger bands are missing more that 50% of the total intensity.

Table 4.7 also shows theoretical values of vibrational transition moments defined

as

µ̄ =
√

µ̄2
x + µ̄2

y + µ̄2
z , (4.13)

where

µ̄α = 〈Ψ(i)
vib|µα |Ψ( f )

vib〉, (4.14)

and Ψ
(i)
vib and Ψ

( f )
vib are the vibrational eigenfunctions of the ‘initial’ and ‘final’ states,

respectively, variationally computed using TROVE and µα is the component of the

molecular dipole moment along the molecular-fixed axis α = x,y,z.

Figure 4.2 presents an overview of the simulated spectrum (T = 298.15 K) with

TROVE and experimental absorption spectra of SO3 for the whole simulation range up

to 4000 cm−1. It reveals the gaps and limitations of the available experimental data.

Figure 4.3 shows the ‘forbidden’ rotational band as a stick spectrum. The characteris-

tics of this band are discussed later in Chapter 5. It should be noted that the microwave

measurements of Ref. [106] do not report any intensities. In Figure 4.4 all eight bands

from the 405–708 cm−1 region are combined into one graph for each pressure to illus-

trate the quality of the corresponding experimental data. This figure suggests that the

0.409 Torr data are generally more reliable. This is also reflected by the ratio values

Scalc
red /Sexp from Table 4.7, which are significantly closer to 1 at the lower pressure. For

data obtained at two pressures, scaled intensity values obtained for the lower pressure

are deemed to be more reliable. Finally, Figure 4.5 presents a detailed comparison
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Figure 4.2: Overview of the simulated absorption (T = 298.15K) spectrum (TROVE) of SO3
compared to experiment scaled to the theoretical intensities (see text).

for all the bands from the three spectral regions studied in this work in the form of

stick diagrams. The intensities based on the ab initio DMS in TROVE are in very good

qualitative agreement with the experiment.

Table 4.6: Comparison of calculated (TROVE) and experimental [104] band centers and num-
bers of line transitions.

Band Obs. Calc. P1 P2 TROVE
ν2 - ν0 497.57 498.48 773 1265 5422
ν4 - ν0 530.09 528.59 996 2052 12195
ν1 - ν4 534.83 537.16 0 69 15147

ν2 + ν4 - ν2 530.33 528.87 84 571 12477
2ν2 - ν2 497.45 496.88 112 704 7171

ν2 + ν4 -ν4 497.81 498.76 47 602 27182
2ν

(l4=2)
4 −ν4 530.36 528.79 116 775 31096

2ν
(l4=0)
4 −ν4 529.72 527.91 39 455 13718

ν3 - ν0 1391.52 1387.45 2014 – 14441
2ν

(l3=2)
3 −ν0 2777.87 2770.29 1527 – 18115

ν0 - ν0 – – 25 – 3439

For the the 405 - 708 cm−1 region, measurements were made at two pressures; P1 =
0.409 Torr, and P2 = 2.04 Torr. For the ν3 and 2ν

(l3=2)
3 bands, measurements were

taken at 0.16 Torr and 4.99, Torr respectively (Maki et al. [104]). Pressure values
are not recorded for microwave measurements [106].
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Table 4.7: Vibrational band intensities Sexp, Scalc
tot , Scalc

red in cm/molecule×10−18, and calculated
transition moments µ̄if in Debye. P1 and P2 refer to the different pressure measure-
ments within the same wavenumber region (see Table 4.6). Scalc

red /Sexp is the ratio of
the theoretical reduced and total band intensities (see text). Scalc

tot is the theoretical
band intensity computed by summing all TROVE lines. Sexp is the experimental
band intensity obtained from a summation over all experimental values after scaling
factors applied (see text). Scalc

red is the theoretical band intensity computed using only
lines for which experimental counterparts exist. Nred is the number of matched lines.

Band Sexp Scalc
tot Scalc

red Scalc
red /Sexp Nred µ̄if/D

P1 P2 P1 P2 P1 P2 P1 P2
ν2 2.987 1.537 3.705 2.915 1.559 0.98 1.01 773 1265 0.158
ν4 4.258 3.112 5.949 4.310 3.149 1.01 1.01 995 2052 0.200
2ν2 - ν2 0.116 0.470 0.661 0.101 0.411 0.88 0.88 112 704 0.221
ν2 +ν4 - ν2 0.062 0.322 0.528 0.052 0.251 0.84 0.78 84 571 0.199
ν2 +ν4 - ν4 0.026 0.260 0.581 0.022 0.215 0.84 0.83 47 602 0.223
2ν4(l4 = 2) - ν4 0.112 0.589 0.873 0.102 0.485 0.91 0.82 116 769 0.283
2ν4(l4 = 0) - ν4 0.026 0.222 0.405 0.015 0.179 0.57 0.81 38 454 0.196
ν1 - ν4 – 0.009 0.101 – 0.003 – 0.29 – 69 0.039
ν3 39.490 – 44.440 39.490 – – – 2014 – 0.321
2ν3 0.093 – 0.119 0.093 – – – 1527 – 0.012

4.4 Discussion

The shifted theoretical bands in Figures 4.4 and 4.5 indicate that the computed ab initio

PES of SO3 requires improvement (see also band centers in Table 4.6). The spread of

deviations is apparent; for example the theoretical ν2 frequencies have an rms devia-

tion of 0.77 cm−1 when compared with the experimental data, which is relatively small

compared to the deviation for ν3 of 4.07 cm−1. Since the PES was computed com-

pletely ab initio and at a modest level of theory, this is to be expected. An empirical fit

of the PES is necessary for high temperature calculations to achieve spectroscopically

accurate energies, and this is discussed in Chapter 6.

Table 4.7 outlines the quality of the intensity scaling procedure. For the 0.409

Torr and 2.04 Torr measurements the comparisons mostly agree to within 20%, with

the exception of the 2ν
(l4=0)
4 - ν4 band measured at 0.409 Torr which shows nearly a

50% difference, and the ν1 - ν4 band measured at 2.04 Torr with 80% uncertainty.

It is difficult to ascertain the quality of both the ab initio dipole moment surface

and the experimental relative intensities, given the observations described above. Also,

there are differences observed in identical bands across separate pressure measure-
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Figure 4.3: Rotational absorption band computed for T = 298.15K, complete up to J=85.

ments. In the case of the 2ν
(l4=0)
4 - ν4 band the comparison with the 2.04 Torr ex-

periment yields a better value for Scalc
red /Sexp than for the 0.409 Torr measurement. This

could probably be due to the number of lines available at 0.409 Torr being too low (see

also Figure 4.4).

Nevertheless, based on these numbers it is possible to place a lower estimate on

the quality uncertainty for the ab initio intensities for each band; for example the exper-

iment and theory for the ν2 and ν4 bands agree at least to within 3% for both pressure

measurements, while it is only 13% for 2ν2 - ν2, and between 17% -18% for the re-

maining bands.

In conclusion, the complete room-temperature ab initio line list for SO3 contains

174 674 257 lines with transition energies, Einstein coefficients A( f ← i), and absorp-

tion intensities estimated for T = 298.15 K. Additionally, a list of 10 878 experimental

transitions have been associated with computed absolute intensities obtained for T =

296 K and have been included in the latest edition of HITRAN [75]. With the compu-

tation of the more accurate hot line list to follow, both this lists will be updated.
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Figure 4.4: Comparison plot of TROVE results and the bands of interest measured between
405 - 708 cm−1 by Maki et al., at 0.409 Torr (above) and 2.04 Torr (below). Points
are enlarged in some cases for clarity.
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Figure 4.5: Fundamental band comparisons between this work (T = 298.15K, complete up to
J=85) and Maki et al. [104]. The top and middle panels show comparisons for the
ν2 and ν4 bands, respectively, at 0.409 Torr (left) and 2.04 Torr (right). The bottom
panel shows a comparison for the ν3 band at 0.16 Torr (left) and the 2ν3 band at
4.99 Torr (right).



Chapter 5

The ‘Forbidden’ Rotational Spectrum

of 32S16O3 and Formation of Sixfold

Rotational Energy-Level Clusters in its

Vibrational Ground State

The calculated transitions described in Chapter 4 include the ‘forbidden’ rotational

spectrum for 32S16O3. Induced by centrifugal distortions of bond lengths and angles,

these transition lines exhibit an interesting structure. Experimentally, only a handful

of microwave lines have been measured [106]. As well as these lines being few in

number, no intensity values are available for them. In this chapter an investigation of

the behaviour of the rotating SO3 molecule is made from a theoretical perspective.

As well as interpreting the rotational spectrum, the phenomenon of near-

degenerate energy cluster formation in the highly excited rotational states of SO3

is discussed. The analysis of the rotational motion of SO3 provides an opportunity to

characterize, for the first time, such energy cluster formation for a planar tetratomic

molecule containing no hydrogen.

Dorney and Watson [203] were the first to explain the formation of quasi-

degenerate energy levels for spherical top molecules using classical arguments fol-

lowed by a series of works based on the classical description of the clustering phe-

nomena [204–219].

Most of these descriptions involve the motion of the molecule about a ‘localiza-
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tion’ axis at high rotational excitation [203,207,211,214]. The clustering phenomenon

was further explored in great detail using a formalism based on the rotational energy

surface (RES) [220]. In this approach, a RES is introduced to describe the classical

rotational energy of the molecule as a function of the classical angular momentum vec-

tor, and equivalent stationary points on this surface, so-called relative equilibria, in

particular equivalent maxima directly associated with the patterns of rotational energy

clusters. For a molecule with structural symmetry (resulting from identical nuclei ar-

ranged symmetrically at equilibrium), the rotational energy clusters are associated with

the emergence of symmetrically equivalent localization axes recognizable on the RES.

Typical molecules exhibiting rotational energy clusters are of the type XYN with

a heavy central atom X, Y being H or D, and the X-Yi bonds being nearly orthogo-

nal [167, 221], which are often referred to as local mode molecules [167, 221]. The

formation of rotational or rovibrational energy-level clusters of this type of molecules

was studied for triatomic XH2 molecules (see, for example, Refs. [167,214,221–223]),

pyramidal XH3 molecules, including PH3 [167, 218, 224, 225], BiH3, SbH3 [194] and

their deuterated isotopologues [226]. Molecules with heavier Y-atoms can also form ro-

tational energy clusters. The existence of the clustering was predicted for the molecules

CF4 [227–229], SF6 [204–206], P4 [216] and experimentally confirmed for SF6 [230].

For PH3, BiH3 and SbH3, the energy cluster formation was investigated theoreti-

cally for J ≤ 70. SO3 is not a local mode molecule [167, 221], but, as will be shown,

for SO3 a pattern of energy clusters is predicted in the present work. However, the

clustering behaviour does not manifest itself until the rotational excitation reaches the

J range between 100 and 250. SO3 is also much heavier than the XH3 molecules, it

has much smaller rotational energy spacings due to the small rotational constant and,

in consequence, states with much higher J values will be populated at a given temper-

ature. This makes the clustering states of SO3 potentially accessible experimentally at

temperatures of a few hundred ◦C. Another potential opportunity to reach the required

rotational excitations is the rotational centrifuge technique, which allows one to climb

the rotational ladder up to the dissociation limit [231].

The present chapter deals with two aspects of the SO3 rotational motion. First,

rovibrational energies, wavefunctions and transition intensities produced in the pre-

liminary room-temperature line list study for SO3 (Chapter 4) are used to simulate
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Figure 5.1: The microwave spectrum of 32S16O3, simulated theoretically at T = 298.15K. Tran-
sitions between states with J ≤ 85 are included; they are color-coded in the diagram
to indicate the various transition types.

the room-temperature microwave (rotational) spectrum, and to analyse its structure.

The ab initio intensities have been combined with line positions obtained from an

effective, Watsonian-type rotational Hamiltonian, whose parameter values have been

determined in least-squares fittings to experimentally observed transition frequen-

cies [99–105]. This is expected to produce an accurate rotational line list for SO3,

which is recommended for inclusion in the HITRAN [75] and other spectroscopic

databases [76, 124]. Secondly, for the first time, the formation of rotational energy

level clusters for the planar D3h(M)-type molecule SO3 is described both classically

and quantum-mechanically.

5.1 The Theoretical Microwave Spectrum
Figure 5.1 shows the simulated microwave spectrum for 32S16O3, computed with

TROVE at T = 298.15 K. The spectrum consists of 3439 transitions between all

rotational states with J ≤ 85. The transitions are subject to the selection rules

∆J = J′− J′′ = 0,±1 (J′′+ J′ ≥ 1), and symmetry selection rules A′1 ↔ A′′1 . The in-

tensity of a transition between two states is defined as in Equations 4.11 and 4.12 of
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Figure 5.2: The strongest individual K sub-bands of the R-branch in the purely rotational spec-
trum of 32S16O3.

Chapter 4.

The colour coding in Fig. 5.1 distinguishes the P-, Q-, and R-branches in the spec-

trum. It can be seen that in each branch the intensities depend on J in a characteristic

manner. Figure 5.2 expands the wavenumber scale for the R-branch and the structures

of the individual K sub-bands are indicated. The intensities of the K sub-bands decrease

gradually as the K-values involved increase. SO3 has D3h(M) symmetry at equilibrium

and, in consequence, no ‘permanent’ dipole moment. Therefore, the transitions in Fig-

ure 5.1 are ‘forbidden’, that is, they are induced by the rotation-vibration interaction

as explained, for example, in Section 14.1.14 of Ref. [232]. The transitions satisfy the

selection rules A′1↔ A′′1 mentioned above and states of rovibrational symmetry A′1 or

A′′1 occur when the value of the quantum number K (which is not a ‘good’, rigorously

defined quantum number, but which can nevertheless be conveniently used for labelling

the SO3 rotational energies) is a multiple of 3: K = 0,3,6, . . .. Figure 5.2 shows that

the strongest sub-bands have K = 0← 3 and K = 3← 0. In general, strong sub-bands

satisfy ∆K =±3 and the band intensity decreases as K→ J.

In the following, an analysis of the wavefunctions for the states involved in the
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‘forbidden’ rotational transitions of SO3 is presented, and their non-vanishing line

strengths are discussed as a consequence of intensity stealing [232].

The wavefunctions are computed as linear combinations of the vibrational and

rotational basis functions φ
(J=0)
λ

|J,K,τrot〉 discussed previously in Chapter 2. Thus the

wavefunctions are given as

Ψ
J,Γ
n =

J

∑
K,τrot

∑
λ

C(n,J,Γ)
λ ,K,τrot

φ
(J=0)
λ

|J,K,τrot〉. (5.1)

Here, the C(n,J,Γ)
λ ,K are expansion coefficients, Γ is the irreducible representation of

the D3h(M) molecular symmetry group generated by Ψ
J,Γ
n , n is a running index that

distinguishes eigenfunctions that have the same J and Γ. J, K, and τrot are rotational

quantum numbers, and λ specifies a vibrational state.

The vibrational basis functions φ
(J=0)
λ

that enter into Eq. (5.1) are expressed as

linear combinations of products of 1D primitive basis functions φni . Each contracted

basis function φ
(J=0)
λ

|J,K,τrot〉 is labelled by the quantum number values for the prim-

itive basis functions with the largest contribution (in terms of the square of the ex-

pansion coefficient) to this contracted basis function. The quantum numbers labelling

the primitive vibrational functions are the principal quantum numbers of the individual

vibrational modes which can be conveniently mapped onto the conventional harmonic-

oscillator quantum number vi traditionally used to label vibrational states. In practice,

the vibrational labels λ = (v1,v2,v3,v4) are used for the φ
(J=0)
λ

basis functions where,

in the standard manner, vi is associated with the normal mode νi, i = 1, 2, 3, 4. That is,

the vibrational ground state has λ = (0,0,0,0), the ν1 state has λ = (1,0,0,0), and so

on.

Since purely rotational states are of interest here, it is expected that in Eq. (5.1), the

largest contribution to the ground vibrational state Ψ
J,Γ
n originates in a λ = (0,0,0,0)

basis function. That is, the largest value of |C(n,J,Γ)
λ ,K,τrot

|
2

is obtained for λ = (0,0,0,0).

Indeed, this is what is observed in the calculation. However, the expansion in Eq. (5.1)

is not generally dominated by this one term only, there will normally be a number of

other terms that also have significant contributions.

To understand better the significance of the contributions from the contracted basis

functions, which in themselves are truncated linear combinations of primitive basis
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functions, the vibrational reduced density is defined as

An,J,Γ
λ

= ∑
K,τJ

rot

|C(n,J,Γ)
λ ,K,τrot

|
2
. (5.2)

The summation is over K and τrot for all expansion-coefficient squares associ-

ated with a particular vibrational basis function φ
(J=0)
λ

; the individual terms in the sum

originate in the basis functions resulting from the combination of the particular func-

tion φ
(J=0)
λ

with different rotational basis functions |J,K,τrot〉. The resulting quantities

An,J,Γ
λ

indicate how the eigenfunction Ψ
J,Γ
n is partitioned between the vibrational basis

functions φ
(J=0)
λ

.

Figures 5.3(a) and 5.3(b) show how various An,J,Γ
λ

vary with Klc, which specifies

the K corresponding to the largest contribution to An,J,Γ
λ

. Each wavefunction Ψ
(J,Γ)
n is

found to have has dominant contributions from the φ
(J=0,A′1)
λ

basis functions with λ =

(0,0,0,0) and thus associated with the vibrational ground state. However, there are

other significant contributions originating in φ
(J=0)
λ

basis functions with λ = (0,1,0,0)

and (0,0,0,1) associated with the ν2 and ν4 bending vibrational modes, respectively.

Thus, even in the vibrational state conventionally labelled as the ground state, for purely

rotational excitation there is a non-negligible probability of finding the molecule with

the ν2 or ν4 vibrational mode excited by one quantum.

The contributions to the eigenfunctions from the ν2 and ν4 basis states are highest

at K = 0 and drop as K→ J (see Figs. 5.3(a) and 5.3(b)). This can be straightforwardly

explained classically. For a given J-value, the rotational eigenstates of SO3 that are

conventionally label by K = J and K = 0 correspond to the two limiting cases of the

molecule rotating about the z-axis (which, in configurations of C3v geometrical sym-

metry, coincides with the C3 symmetry axis) and about axes perpendicular to the z axis,

respectively. A rotation about the z axis preserves the high D3h(M) geometrical sym-

metry that the molecule has at equilibrium and the dipole moment vanishes at D3h(M)-

symmetry configurations, also for K → J. For K = 0, the situation is quite different.

The angular momentum vector of length
√

J(J+1)h̄ now results from rotation about

axes perpendicular to the z axis and this, in turn, gives rise to centrifugal forces that

deform the molecule away from D3h(M) geometrical symmetry. These deformations

can be described as excitations of the deformation bends ν2 and ν4 and, in the resulting
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Figure 5.3: Fig. (a) and (b), J = 50 and J = 100, respectively: The vibrational reduced density
values An,J,Γ

λ
(Eq. (5.2)) for specific pure rotational states Ψ

J,Γ
[0,0,0,0],K,τrot

with (a)
J = 50 and 0≤ K ≤ 50 and (b) J = 100 and 0≤ K ≤ 100, respectively, of 32S16O3,
plotted against the (approximate) quantum number K for four largest contracted
basis set contributions λ = [v1,v2,v3,v4].
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molecular configurations, the dipole moment has non-vanishing instantaneous values.

This explains the form of the rotational band in Fig. 5.1: the strongest transitions

involve the states with the smallest K-values. The transitions in the two bands with

K = 0← 3 and K = 3← 0, respectively, have intensities (and Einstein coefficients)

about twice as strong as the transitions in the bands involving states with K 6= 0 only.

Quantum mechanically, this is explained by the special-case nature of the K = 0 wave-

functions giving rise to an ‘extraneous’ factor of 2 in the expression for the line strength

(see, for example, Eq. (12.33) of Ref. [154]). A more detailed analysis of the rotational

eigenfunctions obtained at very high J-values is presented below in connection with the

discussion of the rotational-cluster-formation phenomenon.

The nonvanishing intensity of the SO3 rotational spectrum is explained here in

terms of intensity stealing. Alternatively but equivalently, it can be viewed as originat-

ing in asymmetric centrifugal distortions of the molecule leading to the formation of a

small, non-vanishing dipole moment in the vibrational ground state, see, for example

the prediction of a pure rotational spectrum of H+
3 [233, 234].

5.2 A Hybrid, Empirical Ab Initio Rotational Line List

for 32S16O3

In the previously generated list of transitions for 32S16O3, which were included in the

2012 edition of the HITRAN database [75], available experimental transitions [99–105]

were taken and compared to entries in the computed room-temperature line list, and

their relative intensities were adapted to the absolute scale [170] computed ab initio

using TROVE (see Chapter 4). The line positions of 25 pure rotational transitions were

measured by Meyer et al. [106] and the synthesised HITRAN line list for 32S16O3

included these 25 experimental microwave lines augmented with the theoretical values

computed for the transition intensities.

Here the room-temperature line list is extended to include additional rotational

transitions. For this, the ground state rotational constants and centrifugal distortion
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parameters for 32S16O3 of [104] are used in conjunction with the expression

F(J,K) = B0J(J+1)+(C0−B0)K2−DJ
0[J(J+1)]2−

− DJK
0 J(J+1)K2−DK

0 K4 +HJ
0 [J(J+1)]3 +

+ HJK
0 [J(J+1)]2K2 +HKJ

0 J(J+1)K4 +

+ HK
0 K6±δ3K∆0[J(J+1)][J(J+1)−2][J(J+1)−6] (5.3)

to generate rotational energies for J up to 85, using a simple script. These constants

have already been used in the analysis of the spectra presented in Refs. [99–105].

To make sure that the extrapolation to high-J states is reasonable, a comparison

between the energy values determined from Eq. (5.3) and the corresponding transi-

tion wavenumbers generated by TROVE has been made. A very good agreement is

observed, with a root-mean-square difference of only 0.0167 cm−1 for all rotational

transitions involving states with J ≤ 85.

Table 5.1 shows examples of comparisons between rotational term values in the

vibrational ground state of 32S16O3 calculated from Eq. (5.3) and values obtained varia-

tionally with TROVE. The 25 lines from the previous HITRAN-suitable list were taken

from Meyer et al. [106]. These transitions are replicated by Eq. (5.3) to within the pre-

cision quoted in the updated list. It is expected that the values from Eq. (5.3) are more

accurate than the TROVE values, so the line positions generated with this equation are

used in combination with their attributed absorption intensities (Einstein coefficients)

determined from the ab initio dipole moment surface. These new 3414 transitions for
32S16O3 should make a good addition to HITRAN and other spectroscopic databases;

they constitute a significant extension on the 25 microwave transitions presently in-

cluded in HITRAN.

5.3 Rotational Energy Level Cluster Formation in

High-J States

To investigate the possible rotational-energy cluster formation in SO3, rovibrational

term values of 32S16O3 for J ≤ 250 have been computed. The present work is focused

on rovibrational states in the vibrational ground state, and so the calculation aims at



5.3. Rotational Energy Level Cluster Formation in High-J States 142

Table 5.1: Comparison of rotational term values for 32S16O3 obtained by inserting the ex-
perimentally derived, effective rotational constant values from [104]) in Eq. (5.3)
(‘Obs.’) with theoretical TROVE values from the present work (‘Calc.’).

J K Obs./ cm−1 Calc./ cm−1

5 3 8.885 8.886
10 9 24.200 24.203
10 0 38.336 38.342
20 18 89.825 89.837
20 0 146.333 146.355
50 48 486.469 486.514
50 0 886.775 886.897
85 84 1315.569 1315.283
85 3 2529.972 2530.258

obtaining accurate results for these states only. Because of this, it is possible to reduce

the size of the vibrational basis with minimal loss in accuracy: only basis functions

satisfying P ≤ Pmax = 8 are employed in the polyad truncation scheme (see Chapters 2

and 4).

Rotational term values for SO3 are denoted as EJ,K and the reduced energy is de-

fined as ∆EJ,K = EJ,K −Emax
J,K where Emax

J,K is the maximum energy found in a given J

multiplet of the vibrational ground state (see, for example, Refs. [194, 224, 225, 235]).

The rotational-energy-cluster formation can be visualised by plotting the reduced ener-

gies ∆EJ,K against J in Fig. 5.4(a) for all states including those forbidden by the nuclear

spin statistics. The figure shows that for J > 150, energy-level clusters form for 32S16O3

in a manner similar to that previously described for the pyramidal molecules PH3, BiH3

and SbH3 [194, 224, 225, 235] at significantly lower J values.

The four highest energies in each J manifold cluster together. In conventional

symmetric-top notation, these highest four energy levels, taken in descending order,

have K = |k| = 0, 1, 2, and 3, respectively, and the D3h(M) symmetries A′1, E ′′, E ′, and

A′′2 (A′2, E ′′, E ′, and A′′1) for even (odd) J. Since the states of E symmetry are doubly

degenerate, the four energies define a near-degenerate six-fold cluster. Only one of

these fours levels for each J has symmetry allowed by the nuclear statistics (A′1 or A′′1),

see Fig. 5.4(a).

Figure 5.4(b) compares the reduced energy values obtained with TROVE with val-

ues determined from Eq. (5.3), using the experimentally derived values of the required

rotation-vibration parameters from [104]. Although the reduced energies obtained from



5.3. Rotational Energy Level Cluster Formation in High-J States 143

Figure 5.4: Fig. (a), Reduced energies ∆EJ,K plotted against J for 32S16O3. The ∆EJ,K-values
are calculated with TROVE. The symmetry of the EJ,K levels is indicated by color.
We note that only A′1 (black) and A′′1 (green) are allowed by Bose-Einstein statistics.
Fig (b). Reduced energies ∆EJ,K plotted against J for 32S16O3. Reduced energy val-
ues obtained with TROVE (black) are compared to experimentally derived values
(red) from Ref. [104].
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Maki et al. Eq. (5.3) do not exhibit a 6-fold cluster formation at the high J limit, there

is a clear tendency in the shape of the K = 3 curve to approach the topmost, K = 0

energy levels. However all other rotational states are completely misplaced indicating

the deficiency of the simplified model of Eq. (5.3) for describing the energy levels with

very high J.

The expansion (5.3) is truncated after the 6th order terms and it is expected that

higher-order terms become important at J > 150. In consequence, Eq. (5.3) is not

suitable for extrapolation to states with so high J-values, and the TROVE results are

taken to be more reliable.

5.3.1 Origin of the Cluster States

It is accepted and has been described in detail that the rotational clustering is asso-

ciated with the symmetry breaking of rotational energy surfaces and corresponding

stationary points [217]. For the XY3 type pyramidal molecules the formation of six-

fold rotational-energy clusters can be explained in terms of classical arguments that are

outlined briefly here. In the cluster states, the rotation of XY3 can be thought of as

taking place around one of three possible, so-called localisation axes, which represent

the stationary points, or relative equilibria of the corresponding RES [194, 224, 235].

For pyramidal XY3 molecules these three symmetrically equivalent axes are of the C2

type and nearly coincide with the three X-Hi bonds of the XH3 molecule, where Hi is

the proton labelled i = 1, 2, or 3 [194,224]. For each of the three localisation axes there

is the possibility of clockwise or anticlockwise rotation and so six equivalent physical

situations emerge, all six having approximately the same energy. The stationary points

are the six maxima on the RES [235], which constitute a six-fold near-degenerate en-

ergy cluster. The cluster states are stabilised by large energy barriers separating each

of the six equivalent situations just described.

Quantum mechanically to describe one of these situations it is customary to in-

troduce the concept of a primitive cluster state (PCS) function (see, for example,

[221, 224, 236]). When the PCSs are separated by energy barriers so high as to ef-

fectively prevent tunneling between the states, the six equivalent PCS situations be-

come degenerate and the manifold of wavefunctions associated with their common

energy can be viewed as a six-dimensional space where the PCS, or coherent wave-
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functions serve as a convenient basis set. Jensen and Kozin [236] constructed the PCS

wavefunctions of an XH2 molecule using the symmetry properties of the correspond-

ing eigenstates. Yurchenko, Theil, Patchkovskii and Jensen [224] obtained the PCS

wavefunctions for an XH3 molecule by diagonalising a matrix representing the angular

momentum. This latter approach is followed below in constructing and visualising the

(quantum-mechanical) PCS wavefunctions for SO3, a planar XY3 molecule.

Both the classical and quantum mechanical approaches are outlined in further de-

tail below.

5.3.2 Classical Analysis in Terms of the Rotational Energy Surface

Classically, the rotational cluster formation can be understood in terms of the topology

of the rotational energy surface [208, 210, 215].

Qualitatively speaking, the concept of the rotational energy surface (RES) is anal-

ogous to that of a potential energy surface (PES); the adiabatic rotational energy within

an isolated electronic and vibrational state is represented by a continuous 2-dimensional

surface embedded in 3-dimensional space. For a given value of J, the RES is obtained

as a radial plot of the function EJ(θ ,φ). This function yields the classical rotational

energy in terms of the two angles (θ ,φ) defining the orientation of the classical angular

momentum vector in the molecule-fixed axis system xyz. The RES serves to track the

motion of the laboratory fixed angular momentum vector Ĵ in the molecule-fixed frame,

i.e. each point on the RES represents a direction of Ĵ in the molecule-fixed frame, and

the magnitude at each point is taken to be the adiabatic rotational energy (in arbitrary

units) [208].

The trajectory of Ĵ on the RES is perhaps best understood also as an analogy, to

the classical trajectory along a PES. The trajectory along the potential is confined to

a path bound by classical turning points, which are defined as the intersection of the

PES with a ‘constant energy surface’ (CES). In the case of a RES, the intersecting CES

is spherical, since the energy plot is radial. Therefore, for the purely kinetic rotational

energy, the classical trajectory of Ĵ lies upon the contour line defined by the intersection

of the RES with a particular CES. Since a particular RES corresponds to a certain J

value, the different contour lines on the RES defined by intersections of multiple CESs

serve to visualise the fine structure of the rotational dynamics. Figure 5.5 [208] shows
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Figure 5.5: Rotational energy surface for a rigid, prolate symmetric top [208]. The contour
lines of RES and CES intersection define the classically allowed trajectories of the
Ĵ vector.

an example of a RES for an arbitrary rigid, prolate symmetric top, where such contour

lines can be seen.

Thus, the xyz components of the classical angular momentum vector, (Jx,Jy,Jz),

are given by

Jx =
√

J(J+1)h̄ sinθ cosφ (5.4)

Jy =
√

J(J+1)h̄ sinθ sinφ (5.5)

Jz =
√

J(J+1)h̄ cosθ , (5.6)

where θ ∈ [0,π] and φ ∈ [0,2π]. In this semi-classical approach the angular momentum

vector is assumed to have its ‘quantum-mechanical’ length of
√

J(J+1)h̄.

In order to construct the RES a perturbation theory-free approach [224,235,236] is

followed to obtain a classical Hamiltonian function Hrv by applying the classical limit

to the quantum-mechanical Hamiltonian operator Ĥ, i.e. to an “ab initio Hamiltonian”

as was proposed by [210]. The method is outlined extensively elsewhere [235]; a brief

outline is given here.

The classical Hamiltonian is introduced as a function of Jα , as well as the gener-

alised internal (vibrational) coordinates ξn (n = 1, 2, . . . , 6) and their conjugate mo-

menta pn:
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Hr = Hr−v(ξ̂e, p̂e, Ĵ) (5.7)

Here, ξ̂e and p̂e are obtained as stationary points, by equating the partial deriva-

tive of the Hamiltonian function with respect to each of the parameters to zero, re-

spectively. These values essentially represent the instantaneous configuration of the

internal molecular coordinates as a function of the Jα . That is, for each orientation of

the angular momentum vector Ĵ, there exists an ‘optimal’ geometry of the molecule,

i.e. a distortion introduced by rotation-vibration interactions. This is the essence of

the PES Born-Oppenheimer analogy; the “vibrational structure” is determined by the

“clamped” rotational configuration.

The generalised vibrational momenta pn are actually set to zero [214], which is

shown to be a good approximation [224, 225]. The rotational energy surface EJ(θ ,φ)

is then generated on a regular grid of angle points θm,φm by setting the vibrational

coordinates in Ĥ to the optimised geometries ξ̂e and p̂e for each orientation of the

angular momentum defined by the polar and azimuthal angles (θm,φm) and Eqs. (5.4)-

(5.6):

EJ(θm,φm) = Hr−v(ξ̂e, p̂e,θm,φm;J). (5.8)

Finally, the RES is given by a radial plot of the function

E(RES)
J (θm,φm) = EJ(θm,φm)−E(min)

J , (5.9)

where E(min)
J is the minimum value of EJ(θm,φm).

Plotting the RES along with the classically allowed trajectories of Ĵ offers insight

into the clustering phenomenon. As J increases, the topology of the RES changes such

that a number of maxima emerge upon the surface, which become more pronounced

with increasing J (see, for example, ref. [224]). The total degeneracy of a cluster corre-

sponds to the number of distinct classical trajectories with the same energy, located on

equivalent parts (maxima) of the RES [208]. It has already been mentioned that when

energy clusters form for pyramidal XH3 molecules, the six maxima on the RES corre-

sponding to the top clusters in a J manifold are located in the directions defined by the

local C2 symmetry axes associated with the plane containing a X–H molecular bond.
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For SO3, however, this semi-classical analysis suggests that the six maxima appear for

θ = 90◦ and φ = 30, 90, 150, 210 and 330◦, respectively, all in the molecular plane.

An example of a RES of SO3, computed for J = 200, is shown in Fig. 5.6. The

resulting RES has a doughnut-like shape with six symmetrically equivalent maxima in

the xy plane (i.e., for θ = 90◦). These maxima are difficult to observe in Fig. 5.6 but

they are better seen in the top display of Fig. 5.7, which shows the slice of the RES

along a path where θm is kept constant at 90◦ and φm is varied from 0 through 360◦.

Each of these directions is perpendicular to one of the S–O bonds and also define

the orientations of the localisation axes A. The molecular geometries corresponding

to the maxima on the RES are illustrated by the two lower panels of Fig. 5.7. For the

molecular geometry associated with the first stationary rotational axis and illustrated

in Fig. 5.8, the localisation axis A = C′2 is perpendicular to the S-O1 bond and the

molecular structure has a C2v symmetry with S-O2 and S-O3 elongated and the angle α1

= 6 (O2-S-O3) reduced from 120 to 112.4◦. These six maxima are relatively small and

separated by less pronounced barriers comparing to the clustering of XH3 pyramidal

molecules.

However their rotational energy-clustering structure (see Fig. 5.4) is very similar,

despite these differences in the topology of the RESs of a planar SO3 molecule from

that encountered for pyramidal XY3 molecules. The validity of this analysis can be

tested by a further, complementary quantum mechanical discussion, which is outlined

in the next subsection.

5.3.3 Quantum Mechanical Analysis

To obtain an understanding of the rotational motion of the cluster states, a quantum

mechanical approach can be taken by considering the wavefunctions obtained from the

variational calculations. The aim is to visualise the localisation axes associated with the

cluster states [221, 224]. For a given J-value, the Schrödinger equation for the Hamil-

tonian is solved using TROVE; the Hamiltonian matrix blocks are diagonalised for all

D3h(M) symmetries, using the basis set defined by Pmax=8. The six near-degenerate

eigenfunctions ψ
(J)
n associated with the ‘top’ cluster in the appropriate J manifold of

the vibrational ground state are selected. The aim here is to somehow visualise these

wavefunctions.
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Figure 5.6: The rotational energy surface of SO3 at J = 200.
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Figure 5.7: Top display: A 1D cut through the J = 200 RES of SO3 for θ = 90◦ and φ ∈
[0◦, 360◦]. Middle display: The φ -dependence (at θ = 90◦) of the vibrationally
averaged values for the three bond lengths r1, r2, r3. Bottom display: The φ -
dependence (at θ = 90◦) of the vibrationally averaged values for the three inter-
bond angles α1 = 6 (O2-S-O3), α2 = 6 (O1-S-O3), and α3 = 6 (O1-S-O2).
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Figure 5.8: The schematic representation of the optimised structure of SO3 at J = 200 corre-
sponding to one of the maxima on the RES.

The states can be visualised by plotting their reduced rotational densities, obtained

by integrating the square of corresponding wavefunction ψ
(J)
n over all vibrational coor-

dinates and over the Euler angle α:

F(β ,γ) =
∫ 2π

0
dα

∫
vib

dV
(

ψ
(J)
n

)∗
ψ

(J)
n , (5.10)

where dV is the volume element associated with the vibrational coordinates. This re-

duction technique reduces the dimensionality to 2;
(

ψ
(J)
n

)∗
ψ

(J)
n is independent of α ,

and the integration over the vibrational coordinates serves to isolate the problem to only

the rotational motion in the ground state [221, 224].

The explicit form of the rotational functions DJ,k,m(α,β ,γ) [232] is used for m= J

so that the molecule is aligned with the angular momentum oriented along the space

fixed Z axis to the greatest extent allowed by quantum mechanics; this is necessary

due to the fact that, even though computed energies are independent of m in the ab-

sence of an external magnetic field, the eigenfunctions themselves depend on the value

of the quantum number, and therefore require assignment. The consequence of this,

classically, is that the Z axis becomes the axis of rotation [224]. The Euler angles β ,γ

define the orientation of the space-fixed Z axis relative to the molecule-fixed axis sys-

tem xyz. Therefore, a plot of F(β ,γ) helps one visualise how the molecule orientates

itself relative to the Z axis.

In order to explicitly visualise the localisation axes associated with the cluster

states, it is necessary to determine the so called “primitive cluster states” |i PCS〉 asso-

ciated with each of these axes. Since there is a six-fold near-degeneracy in the cluster
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states, six equivalent localisation axes Ai (i = 1, 2, . . . , 6) are assumed to exist, with

associated |i PCS〉, as seen in Ref. [224]. The ψ
(J)
n associated with the top six clus-

ter states can be seen to be linear combinations of the |i PCS〉. To obtain such a PCS

a procedure can be followed whereby the six states ψ
(J)
n are considered to be fully

degenerate, owing to the small differences in their energies; a PCS can therefore be

constructed as a linear combination of the ψ
(J)
n states, and still be an eigenfunction of

the rovibrational Hamiltonian [221, 224].

Once the PCSs are obtained, their corresponding localisation axes Ai can be deter-

mined by a procedure outlined in Ref. [224]. In this method the |i PCS〉 is rotated in

space until the largest possible absolute value of the angular momentum projection, Jh̄

or −Jh̄, is obtained; this orientation is the corresponding localisation axis Ai associated

with |i PCS〉.

The findings of Ref. [224] showed that the |i PCS〉 occurred in pairs, where two

PCSs are associated with a common localisation axis, but each describe ‘clockwise’

and ‘anticlockwise’ rotation, respectively. For example, in the two states |1 PCS〉 and

|2 PCS〉, the molecule has angular momentum projections of +mh̄ and −mh̄, respec-

tively, with m≈ J, onto the localisation axis A1. Hence the determination of a PCS will

automatically obtain its counterpart describing motion in the opposite sense.

In the case of SO3, the semi-classical argument describes the localisation axes as

being in the molecular plane (θA = 90◦) and therefore only their azimuthal angle φA

must be determined. In agreement with the classical results, the localisation axes are

found to be perpendicular to one of the S–O bonds, that is, with φA = 30, 90, 150,

210, 270 or 330◦. It should be noted that the PCS functions associated with these

directions could be also obtained from the six eigenfunctions ψ
(J)
n based solely on their

symmetries, see, for example, Ref. [236].

Examples of probability distributions F(θ ,χ) obtained for ψ = |1 PCS〉 at J =

100, 150, 200 and 250 are shown in Fig. 5.9, where the F(β ,γ) functions are imaged

onto Bloch spheres of arbitrary radii. The maxima of the F(β ,γ) distributions indicate

how the molecule prefers to align itself relative to the space-fixed Z axis and, since m

= J, to the angular momentum vector which we can think of as being classical in these

highly excited rotational states. The classical angular momentum vector is conserved

in space and time so that it defines the axis of rotation. The vibrationally averaged
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structure, the molecule-fixed axis system xyz, and the localisation axis A are indicated

for the |1 PCS〉 state in Fig. 5.8. The difference between cluster states and non-cluster

states is illustrated in Fig. 5.10 which represents the probability distributions F(β ,γ)

for the states with (J,K) = (100,99) and (100,96), respectively.

In these high K states, the rotation obviously takes place around the z axis which

is perpendicular to the molecular plane and the angular momentum precesses about this

axis. In the two panels of Fig. 5.10, the precessing angular momentum forms angles

of roughly 9◦ and 18◦, respectively, with the z axis. The angles associated with these

precessions compare well with the classical interpretation of the the orientation of the

rotation axis relative to the z axis defined as (see, for example, [194, 208])

θk = arccos

(
±K√

J(J+1)

)
. (5.11)

For K = 99 and K = 96 (J = 100) values of θk = 10◦ and 17◦ are obtained, respectively.

5.4 Discussion
A ‘hybrid’ line list for 32S16O3 has been generated, consisting of 3 414 rotational tran-

sitions in the vibrational ground state. The transitions take place between rotational

states with J-values in the range from 0 through 85. The frequencies of the 3 414 ro-

tational transitions are obtained using the ‘Watsonian’ expression of Eq. (5.3) with the

values of the 32S16O3 ground state rotational constants obtained by Maki et al. [104] by

least-squares fits to their observed infrared frequencies. The line list values for the in-

tensities of the rotational transitions are purely theoretical, computed with the TROVE

program [131,133,165,237] from ab initio potential energy and dipole moment surfaces

reported previously [170]. The data has been provided in a form suitable for inclusion

in the HITRAN database [75] since at the present time of writing, the only SO3 in-

formation available there comprises 25 experimentally measured line frequencies for

rotational transitions of 32S16O3.

Furthermore, a theoretical investigation has been made into the formation of near-

degenerate rotation-vibration energy clusters in the vibrational ground state of 32S16O3

at high rotational excitation.

The study shows, for the first time, theoretical predictions of such cluster states
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Figure 5.9: Probability distribution functions F(β ,γ) obtained for PCS states with J = 100,
150, 200 and 250 in the vibrational ground state of 32S16O3. (Multimedia view)

for an XY3 molecule that is planar at equilibrium. Using variational nuclear motion

calculations, the formation of six-fold near-degenerate energy-level clusters in the vi-

brational ground state of 32S16O3 is predicted in the J range between 100 and 250.

The structure of the rotational energy clusters is similar to that previously described for
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Figure 5.10: Probability distribution functions F(β ,γ) for the rotational states withs (J,K) =
(100,99) and (100,96), respectively, in the vibrational ground state of 32S16O3.

the pyramidal XH3 molecules. However the cluster-formation mechanism is different;

whereas in the pyramidal molecules the rotation in the cluster states can be thought of

as taking place around so-called stabilisation axes roughly coinciding with the X–H

bonds, for SO3 each stabilisation axis is perpendicular to one of the S–O bonds, see

Fig. 5.8. In the cluster states at J ≥ 100, the bond perpendicular to the stable rotational

axis is significantly elongated by centrifugal forces.

As the two other bonds are not orthogonal to the axis of rotation, they are less

elongated, but the angle α1 between them is decreased by the centrifugal distortion

(Fig. 5.8).

Since the rotational clustering of heavy molecules, such as CF4 and SF6, has been

successfully studied experimentally, it is hoped that the results of this study will en-

courage experimentalists to confirm the existence of the 6-fold stabilisation rotations

for SO3 as well. Apart from the conventional spectroscopy at high T , another possi-

bility to reach high rotational excitation experimentally is the optical centrifuge tech-

nique [231].

Another reason to consider the rotational clustering SO3 as unique is that the nu-

clear statistics permits only the A1 states, at least in case of the S16O3 isotopologue.

This leads to the 6-fold rotational “clustering” represented by a single energy level ac-

companied by three “dark” levels. It was argued for other clustering systems [238] that

the PCS states can be prepared as a long-lived ensemble of eigenstates and thus exper-



5.4. Discussion 155

imentally observable. Obviously this cannot happen for S16O3, since the components

of such an ensemble cannot physically exist. One can speculate about intriguing ap-

plications with the optical centrifuge as a sieving device; only isotopologues with the

non-zero nuclear spin of oxygen can be driven into the long-lived PCS states.



Chapter 6

The Refinement of the Potential

Energy Surface and Computation of a

Hot Line List for 32S16O3

The computation of a room-temperature line list for 32S16O3 provides a starting point

for a hot line list calculation. Analyses of the results in Chapter 4 show that while sim-

ulated intensities at room-temperature show good reproduction of the ‘experimentally

derived’ absolute intensities, line positions based on a pure ab initio calculation are not

spectroscopically accurate. The advantage of the room-temperature line list calcula-

tion lies in the fact that these discrepancies can be observed for a lower computational

expense, allowing for modifications to be made to minimise the disagreements before

computing the final hot line list.

To be able to simulate spectra at higher temperatures, it is generally necessary to

increase the basis set upon which rovibrational calculations are performed. As well

as increasing the accuracy of band positions, the larger basis set size can account for

higher energy bands which become more populated as the temperature increases. The

consequence of this, however, is that the line list computation becomes a much more

intimidating task; the matrices which require diagonalization are larger, and their wave-

function solutions are composed of linear combinations of a greater number of basis

functions. This means the demand for computational resources is greater, with more

time, memory and storage space required for all calculations.

In this chapter the hot line list, UYT2 is presented. Discussed are the refinement
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procedure to the potential energy surface, the increased basis set, and the methods

employed to overcome the computational difficulties in order to ensure complete con-

struction of the line list.

6.1 Refining the Potential Energy Surface

The first stage in the computation of the hot line list focuses on the refinement of the

ab initio PES. This involves performing a least-squares fit of ab initio rovibrational

energies to experimentally obtained data. The method follows that described in Refs.

[130, 239–241], and uses the program TROVE [131]. The essence of the procedure is

to introduce a linear correction term to the ab initio Hamiltonian in order to minimise a

functional that quantifies the differences between the ab initio and experimental values

compared.

In Chapter 4 the analytical form of the ab initio PES, V0, is described in Equation

4.1, expanded in terms of a set of internal coordinates (Equations 4.2). The refinement

procedure assumes that this is a reasonable approximation to the ‘true’ PES; a correc-

tion, ∆V , is introduced to this PES, also expanded in terms of the internal coordinates

described above, i.e. H = H0 +∆V , where the unperturbed Hamiltonian H0 = T +V0

contains the kinetic energy, T , and the unrefined PES, V0.

The refined potential coefficients introduced by the ‘perturbation’ are given by

F ′jkl... = Fjkl...+∆Fjkl..., (6.1)

where the Fjkl... are in accordance with the expansion coefficients given by Equation

4.1. The determination of the fitting parameter ∆Fjkl... is achieved from a least squares

fitting algorithm based on the derivatives of energies with respect to ∆Fjkl... computed

via the Hellman-Feynman theorem [242]. The process is iterative; starting with a value

of zero for all ∆Fjkl..., optimal values for these perturbation expansion coefficients can

be obtained by allowing them to vary until adequate agreement is found between the

energies obtained from the calculation and their experimental counterparts.

In practice, not all of the ∆Fjkl... require varying in order to achieve a minimization

between observed and calculated energies; each of the expansion coefficients in Eq. 6.1

is associated with specific vibrational coordinates that are included in the expansion of



6.1. Refining the Potential Energy Surface 158

the PES, and therefore with the rovibrational energies described by basis functions in

these coordinates. In addition to this, the result of the variation of one parameter may or

may not be enhanced by the variation of another. As such, the minimisation scheme is

largely a trial and error process in which multiple combinations of varying parameters

must be tested before arriving at the optimal result.

It should be noted that the refined PES is ‘effective’ in that it is dependent on the

basis set used, i.e. the results presented here may only be obtained from the implemen-

tation of the refined PES into TROVE in conjunction with the basis set and operator

truncation schemes (see Chapters 2 and 4) that are used in the refinement procedure.

The truncation parameters employed in the calculation of UYT2 are specified in Sec-

tion 6.2.

6.1.1 Experimental Data Used in the Refinement

The experimental data for the energies is taken from the work of Maki et al. [99–

105] which has been discussed in Chapter 4. Despite being the only reputable data set

available at the time that the current work was carried out, the advantage is that the it

can be assumed to be more self-consistent compared to spectroscopic data that may be

found in collaborative databases. The majority of the data of Maki et al. provides upper

and lower energy states labelled by their vibrational and rotational quantum numbers,

based on a fitting procedure to an effective Hamiltonian.

The refinement procedure includes rotationally excited states which facilitates im-

provement from the perspective of the entire band. Since the energy levels used in the

Hamiltonian fits of Maki et al. are predominantly rotationally excited levels, then the

majority of the levels used in the refinement procedure are also for J > 0, therefore min-

imizing any ambiguity in the band positions. A total of 119 energy levels for J≤ 5 were

chosen from this set based on their reliability at reproducing the observed transitions,

with the condition that they are physically accessible states with A′ or A′′ symmetry;

any published values of experimentally-derived purely vibrational terms (i.e. band cen-

tres) that are infra-red inaccessible were not included. Table 6.1 lists all the J = 5 levels

used in the refinement process, comparing with their final computed counterparts.

Table 6.2 shows the effect of the final potential refinement on the bands used in the

refining procedure. The root mean square (RMS) differences are calculated by match-
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Table 6.1: Obs. - Calc. residuals for the J = 5 energy levels used in the refinement procedure.
All values are in cm−1. The corresponding values for J < 5 are included in the
appendix.

State K Obs. [104] UYT2 Obs. - Calc.
ν0 3 8.885 8.886 -0.001
ν2 3 506.367 506.360 0.008

0 507.900 507.893 0.007
5 535.323 535.312 0.011

ν
(l4=1)
4 4 538.471 538.490 -0.020

2 539.561 539.560 0.001
1 540.677 540.685 -0.008

2ν2 3 1002.357 1002.411 -0.054
ν2 + ν

(l4=1)
4 5 1033.102 1033.058 0.044

4 1036.241 1036.226 0.016
2 1037.252 1037.219 0.033
1 1038.243 1038.220 0.023
5 1068.278 1068.303 -0.025

2ν
(l4=0)
4 3 1068.461 1068.456 0.005

2ν
(l4=2)
4 2 1071.024 1071.031 -0.007

5 1398.427 1398.437 -0.010
ν
(l3=1)
3 2 1401.580 1401.581 -0.001

1 1401.599 1401.591 0.009
5 1529.365 1529.362 0.003

2ν2 + ν
(l4=1)
4 4 1532.498 1532.520 -0.022

2 1533.442 1533.448 -0.006
ν1 + ν2 3 1573.870 1573.856 0.014

0 1575.400 1575.387 0.013
3ν

(l4=1)
4 4 1597.408 1597.410 -0.002

ν1 + ν
(l4=1)
4 5 1601.162 1601.150 0.012

4 1604.308 1604.322 -0.014
2 1605.430 1605.426 0.004
1 1606.574 1606.577 -0.002
5 1923.797 1923.808 -0.011

?(ν3 + ν4)(L=2) 4 1925.310 1925.318 -0.008
0 1927.488 1927.422 0.066
1 1927.982 1927.988 -0.006
5 2782.262 2782.227 0.035

2ν
(l3=2)
3 4 2786.812 2786.837 -0.025

2 2786.901 2786.888 0.014
1 2788.419 2788.425 -0.006

3ν
(l3=1)
3 5 4143.316 4143.246 0.070

2 4146.379 4146.329 0.050
?The value L is given by L = |l3 + l4| as per Ref. [105].
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ing all experimental lines within each band with calculated values via their quantum

number assignments.

Table 6.2: Comparison of calculated (TROVE - UYT and UYT2) and experimental [104] bands
of 32S16O3.

Band Band Centre (cm−1)
Obvs. UYTRMS UYT2RMS

2ν2 - ν2 497.45 0.73 0.09
ν2 - ν0 497.57 0.77 0.05
ν2 + ν4 - ν4 497.81 0.82 0.03
2ν

(l4=0)
4 - ν4 529.72 1.33 0.30

ν4 - ν0 530.09 1.41 0.09
ν2 + ν4 - ν2 530.33 0.22 0.08
2ν

(l4=2)
4 - ν4 530.36 1.54 0.37

ν1 - ν4 534.83 0.47 0.20
ν3 - ν0 1391.52 4.06 0.09
2ν2 + ν4 - ν0 1525.61 0.19 0.08
§ν2 + 2ν

(l4=0)
4 - ν0 1557.88 2.39 1.17

§ν2 + 2ν
(l4=2)
4 - ν0 1558.52 2.12 0.64

§ν1 + ν2 - ν0 1560.6 1.14 1.28
§3ν

l4=1
4 - ν0 1589.81 6.73 4.00

§ν1 + ν
(l4=1)
4 - ν0 1593.69 3.32 3.57

?§(ν3 + ν4)(L=2) - ν0 1917.68 5.34 0.65
2ν

(l3=2)
3 −ν0 2777.87 7.53 0.20

§3ν
(l3=1)
3 - ν0 4136.39 – 0.08

?The value L is given by L = |l3 + l4| as per Ref. [105].
§These bands are refined by using energy levels obtained via a combination differ-
ence method.

The bands studied in Ref. [105] label transitions by rotational and vibrational

quantum numbers, but do not list upper and lower energy states. To obtain states for

these bands, combination difference methods were used using knowledge of the tran-

sition frequency and pure rotational terms values of the lower state (vibrational ground

state). The bands which have been refined using this method are highlighted in Table

6.2.

It should be noted that in matching line positions between the experimental and

computed values, a number of data points were not included in the calculation of the

RMS differences. These data points coincide with transitions which were not included

in the Hamiltonian fitting algorithm of Maki et al.
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The RMS differences calculated are slightly degraded for a few bands as a result

of the refinement, namely the ν1 + ν2 - ν0 and ν1 + ν
(l4=1)
4 - ν0 bands. The experi-

mental energy levels used to refine these two bands are obtained from the combination

difference method mentioned above, for a number of low-lying rovibrational states.

However, for more rotationally excited levels within these bands, the quantum num-

ber labelling for experimental transitions is slightly dubious; a number of transitions

are labelled with identical upper and lower rotational quantum numbers. Transitions

with identical quantum numbers are excluded from the RMS difference calculations,

although this alone does not account for the diminished RMS values. However, the

presence of duplicate quantum number assignments may indicate incorrect labelling

within the rest of the band, and render the RMS values dubious. Without specification

of the upper and lower experimental energy wavenumbers involved in the transitions it

is difficult to ascertain the source of the discrepancy. The experimental data is included

in the supplementary material of Ref. [105].

Table 6.3 compares all the published purely vibrational terms (J = 0) with those

calculated with TROVE before and after refinement. The are a number of notable dis-

crepancies introduced by the refinement procedure and in some cases deteriorations

from the pre-refined values (e.g 2ν2). The inclusion of terms which are not IR accessi-

ble tend to cause major deviations in the PES fit. Since the majority of these terms are

physically inaccessible (and therefore only inferred) it is more pertinent to assess the

quality of the refinement via Table 6.2,with the exception of 3ν2, for which there is no

experimental band data available beyond the quoted vibrational term value.

6.2 Calculation using TROVE
The method of calculating rovibrational energies and transition intensities for the hot

line list is, in essence, identical to that outlined in Section 4.1 of Chapter 4, by use

of the TROVE program [131]. The main differences lie in both the use of the refined

CCSD(T)-F12b/aug-cc-pVTZ-F12 potential energy surface (described above) and an

increase in the size of the basis set used in the variational calculations. The same ab

initio Dipole Moment Surface (DMS) used in the UYT calculation is also used for

UYT2 (see Chapter 4).

Various truncation parameters are described in Section 4.1 of Chapter 4 with re-
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Table 6.3: Comparisons of purely vibrational (J = 0) terms for 32S16O3, between experimen-
tally published values, and pre- and post-refinement of the ab initio PES using
TROVE (UYT and UYT2, respectively). All values are given in cm−1.

Obs. [104] UYT UYT2
ν2 497.57 498.48 497.56
ν4 530.09 528.59 530.09
2ν2 995.02 995.35 993.67
ν2 + ν

(l4=1)
4 1027.90 1027.35 1027.33

2ν
(l4=0)
4 1059.81 1056.50 1059.48

2ν
(l4=2)
4 1060.45 1057.38 1060.45

ν1 1064.92 1065.75 1066.49
ν3 1391.52 1387.45 1391.51
3ν2 1492.35 1490.76 1488.47
2ν2 + ν

(l4=1)
4 1525.61 1524.48 1524.20

ν2 + 2ν
(l4=0)
4 1557.88 1555.59 1557.50

ν2 + 2ν
(l4=2)
4 1558.52 1556.45 1558.46

ν1 + ν2 1560.60 1565.33 1565.07
3ν

(l4=1)
4 1589.81 1586.46 1588.97

3ν
(l4=3)
4 1591.10 1586.43 1591.06

ν1 + ν
(l4=1)
4 1593.69 1593.36 1595.92

ν2 + ν
(l3=1)
3 1884.57 1881.53 1884.29

?(ν3 + ν4)(L=2) 1917.68 1912.24 1917.68
?(ν3 + ν4)(L=0) 1918.23 1914.56 1919.63
2ν

(l3=0)
3 2766.40 2759.12 2766.38

2ν
(l3=2)
3 2777.87 2770.29 2777.86

3ν
(l3=1)
3 4136.39 4126.78 4136.33

?The value L is given by L = |l3 + l4| as per Ref. [105].

spect to the basis set used in computing the room-temperature line list, namely the

kinetic/potential expansion and polyad number truncation schemes. For the computa-

tion of UYT2 the parameters Nkin, Pmax were set to 6 and 18 (instead of 4 and 12 used

for UYT), respectively. The larger basis set allows for greater convergence at higher

energies which become important as temperature increases.

The room-temperature line list is also expanded by computing all physically al-

lowed rovibrational wavefunctions of A′1 and A′′1 symmetry corresponding to energies

satisfying E < 10 000cm−1. The final line list consists of all transitions between 0

< ν ≤ 5000 cm−1, satisfying the conditions E ′max ≤ 9000 cm−1, E ′′max ≤ 4000 cm−1.

Rotational excitations for all J ≤ 130 are considered. The expansion described here is
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necessary, along with the basis set increase, in order to guarantee complete coverage

and accuracy when simulating high temperatures. However, as discussed previously,

the need for greater accuracy comes at a computational cost. As such, the computation

of UYT2 is significantly more demanding than for the room-temperature list.

Construction of the line list took the best part of 2 years, owing to the increased

computation time in the calculation of wavefunction files and transition strength cal-

culations, in addition to the queuing systems imposed on job submissions, and the

resubmission of failed jobs.

6.2.1 Increasing Computational Demands

6.2.1.1 Matrix Construction and Diagonalisation

In terms of memory, the diagonalisation of the constructed Hamiltonian matrices is the

most computationally expensive part of the line list calculation. For each J, a matrix

is built as described in Refs. [131, 165] (and Chapter 2) and then stored in the memory

for diagonalisation, using an appropriate eigensolver routine. Since only the A′1 and A′′1

symmetry species are required, it is possible to separate each J matrix further into these

symmetry blocks to be dealt with separately.

The dimension of each matrix is indicative of the memory requirements needed

to store it, and roughly scales as NJ=0× (2J + 1), where NJ=0 is the dimension of

the purely vibrational matrix. For UYT2, the combined dimension NJ=0 of both A′1

and A′′1 symmetries is 2692; to put this into perspective, the same value in the UYT

line list calculations is NJ=0 = 679. The size of the largest matrix considered in the

room-temperature calculations (for J = 85) is NJ=85 = 111296, which is a value already

surpassed by J = 21 for the hot line list (for UYT2, the value of NJ=85 is 454488). It

became quickly apparent that the diagonalisation techniques previously employed to

determine the UYT wavefunctions would not be sufficient in the case of UYT2; full

diagonalisation scales roughly as N3 on CPU time, and N2 on memory requirement.

As well as a large memory requirement, both increased CPU resources and ade-

quate storage space for the produced wavefunction files are necessary for the hot line

list calculation. The computational resources described in Chapter 4 used in the UYT

calculations could not provide either of these in suitable amounts, and therefore calcu-

lations were performed elsewhere on both the Darwin and COSMOS HPC facilities in
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Cambridge.

Each of the computing nodes on the Darwin cluster provide 16 CPUs across two

2.60 GHz 8-core Intel Sandy Bridge E5-2670 processors, and a maximum of 64 Gb of

RAM. The advantage of moving eigenfunction calculations to the Darwin cluster are

that an entire node can be dedicated to one calculation, spread across the 16 CPUs,

which is double the highest amount that was available to a calculation for the room-

temperature line list (see Chapter 4). Since multiple nodes can be accessed by a single

user at any time, multiple computations can be carried out simultaneously.

Diagonalisations for a number of low J matrices were possible using the same

approach as the room-temperature line list, employing the LAPACK DSYEV eigen-

solver [186], optimised for OpenMP parallelisation across multiple CPUs (in this case

16). For J ≤ 32 this method was used, before constraints due to the memory (and to a

lesser extent, time) limitations made this no longer possible.

For 32 < J ≤ 90 a shared memory approach was used with an MPI-optimised

version of the eigensolver, PDSYEVD, which allowed diagonalisation across multiple

Darwin/COSMOS nodes in order to make use of their collective memory. In order to

diagonalise the matrix within the 36 hour wall clock limit, it was necessary to perform

this method in three steps. First, for a given J and symmetry species Γ, the Hamil-

tonian matrix is constructed and saved to disk. Secondly, the matrix is then read and

diagonalised in the PDSYEVD routine across a specified number of nodes capable of

containing the matrix within their shared memory. This produces a set of checkpoint

files which must be finally read in again by another process and saved in the TROVE

eigenfunction format.

For J < 90 yet another approach was developed for use on the COSMOS shared

memory machine. This method employs the PLASMA DSYTRDX routine and, un-

like the above method, can construct, diagonalise and store wavefunctions to disk in

one single process. However, the memory and time requirements did not fall within

the standard user restrictions of the cluster, and special access to a larger amount of

compute nodes and overall wall clock time were required. For J = 130 (Γ = A′1) a total

of 52 hours of real time was taken to construct and diagonalize the Hamiltonian ma-

trix across 416 CPUs, and utilising 3140 Gb of RAM. The computational demands of

such a process severely limited the number of simultaneously running jobs allowed at
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a given time.

Figure 6.1 shows the linear scaling of matrix dimension with J, as well as the

number of eigenvalues under the 10 000 cm−1 threshold, which does not scale linearly

with J. The size of the produced wavefunction files follow the same trend, and peak

between 60 < J < 70 at around 300 Gb for both A′1 and A′′1 symmetries combined. It

was impossible to compute and store the required wavefunction files all at once as their

large size put considerable pressure on the storage constraints of the systems in use. As

such, the process was staggered, as well as performed on multiple systems.
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Figure 6.1: Size of Hamiltonian matrix (A′ and A′′ symmetries combined) and number of eigen-
values below 10 000 cm−1 as a function of increasing J. The discontinuity at J =
32 is a result of the change in diagonalization procedure; before this point all eigen-
functions of the Hamiltonian are saved, whereas beyond this point only those below
10 000 cm−1 are kept.

6.2.1.2 Calculation of Transition Strengths

Where memory is the major requirement in the matrix diagonalisation stage of the line

list calculation, computation time is the largest component of the transition strength

phase. There are a number of methods for reducing the computational demands. Firstly,

calculations of the line strength S( f ← i) only take into consideration the basis func-

tions of the final state wavefunction who’s coefficients are greater than 10−4. In addi-
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tion to this a threshold value for the Einstein A coefficient of 10−74 s−1 dictates which

transitions are kept. However, the number of line strength calculations to be performed

is still very large.

Using TROVE, it is possible to parallelise this process by separating calculations

between each J↔ J+1 pair and run them on different nodes simultaneously. However,

due to the huge density of states for each J in the UYT2 calculation, it was necessary

to separate these further into windows of lower energy states, in order to ensure all

transitions for a given J↔ J + 1 pair can be computed within a wall clock limit. For

example, for one J↔ J + 1 pair, one process may compute all transitions between 0

< E ′′ ≤ 1000 cm−1 and 0 < E ′ ≤ 10 000 cm−1, while another computes all transitions

between 1000 < E ′′ ≤ 2000 cm−1 and 0 < E ′ ≤ 10 000 cm−1, etc.

However, even with these parallelisation techniques employed across multiple

Darwin CPUs, the calculations were still subject to a long, arduous process; the mul-

tiple submission of parallelised jobs all demanding maximum wall clock time limits

meant that the job submissions were subject to extended queue times based on a fair-

usage policy of the cluster. In addition to this, particularly in calculations involving high

densities of states, many jobs would be terminated before completion due to reaching

the imposed time limit.

In order to help alleviate this an adapted version of TROVE was used, optimised

for performing calculations on graphical processing units (GPUs). The use of this

implementation, known as GAIN [243], allowed for the computation of transition

strengths for the more computationally demanding parts of the calculations. These

were performed on the Emerald GPU cluster, based at CFI in Southampton. In general,

the calculation of transition strengths across multiple GPUs was much faster than the

Darwin CPUs. For example, there are a total of 349 481 979 transitions for J′′ = 35,

which took a total of 17 338 CPU hours to compute on the Darwin nodes, compared to

2053 GPU hours on the Emerald nodes for 346 620 894 transitions for J′′ = 59. These

GPU calculations were carried out for J ↔ J + 1 pairs containing a large number of

states, while the Darwin CPUs were reserved for the less computationally demanding

sections.

Despite these measures, submitted jobs were still prone to termination due to var-

ious hardware issues and wall clock limits, as mentioned above. It was necessary to
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either resubmit jobs that had been terminated, or continue from where they left off,

which required the use of various techniques to ensure that duplicate lines were not

calculated, including the use of shell scripts and, in many cases, manual checking.

Figure 6.2 shows the number of transitions between J pairs as a function of J′′. The

number of transitions peaks in the region 35 < J < 65, where the most computationally

expensive part of the calculations resided.
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Figure 6.2: Plot of the number of transitions calculated from energy levels with rovibrational
quantum number J.

The total number of transitions calculated for UYT2 satisfying E ′′ ≤ 4000 cm−1

and within the region 0 < ν ≤ 5000 cm−1 is 21 billion, an amount which is two or-

ders of magnitude larger than UYT. Despite the described measures taken to spread

the computational demand across all available resources, the lower energy cut-off of

4000 cm−1 is a compromise; the original aim was to include transitions from higher

energy states. Unfortunately the ever increasing density of states beyond 4000 cm−1

made these ambitions impossible within a reasonable amount of time. Throughout the

project much time was spent on attempting to estimate the computational time required

to calculate transitions from such high states, and whether it was feasible given the

resources available. Since it is difficult to make such estimations a priori the process
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Table 6.4: Extract from the UTY2 state file for SO3; quantum numbers are specified in Ta-
ble 6.5.

i E g J ΓTotal K ΓRot n1 n2 n3 n4 n5 n6 v1 v2 v3 L3 v4 L4 ΓVib
1 0.0000 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
2 993.6780 1 0 1 0 1 0 0 0 0 0 2 0 2 0 0 0 0 1
3 1059.4770 1 0 1 0 1 0 0 0 0 2 0 0 0 0 0 2 0 1
4 1066.4970 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1
5 1591.0349 1 0 1 0 1 0 0 0 0 3 0 0 0 0 0 3 1 1
6 1919.6346 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1 1 1 1
7 1981.9944 1 0 1 0 1 0 0 0 0 0 4 0 4 0 0 0 0 1
8 2054.0505 1 0 1 0 1 0 0 0 0 2 2 0 2 0 0 2 0 1
9 2061.9334 1 0 1 0 1 1 0 0 0 0 2 1 2 0 0 0 0 1

10 2117.4659 1 0 1 0 1 0 0 0 0 4 0 0 0 0 0 4 0 1
11 2124.4973 1 0 1 0 1 1 0 0 0 2 0 1 0 0 0 2 0 1
12 2129.3331 1 0 1 0 1 0 1 1 0 0 0 2 0 0 0 0 0 1
13 2444.1614 1 0 1 0 1 1 0 0 0 2 0 0 0 1 1 2 2 1
14 2586.0493 1 0 1 0 1 0 0 0 0 3 2 0 2 0 0 3 1 1
15 2648.2382 1 0 1 0 1 0 0 0 0 5 0 0 0 0 0 5 1 1
16 2655.7551 1 0 1 0 1 1 0 0 0 3 0 1 0 0 0 3 1 1
17 2766.3812 1 0 1 0 1 0 2 0 0 0 0 0 0 2 0 0 0 1
18 2904.3481 1 0 1 0 1 1 0 0 0 1 2 0 2 1 1 1 1 1

was largely based on trial and error, which resulted in the submission of thousands of

jobs all subject to long queue times, many of which resulted in termination before their

completion.

Ultimately, full coverage of the final line list has been sacrificed by the reduc-

tion of lower energy states used, in order for the computation to have been carried

out within the time constraints of the project. Section 6.4 discusses the extent of this

coverage/resource trade-off and the effect it has upon the simulation of rovibrational

spectra.

6.3 Overview of the UYT2 Line List
The UYT2 line list is presented in the ExoMol format [175] described in Chapter 2,

i.e. via a ‘states’, containing a list of energy levels, and a ‘transition’ file which lists

upper and lower energies via their index from the ‘states’ file, and associated Einstein

A coefficient. Tables 6.4 and 6.6 give portions of these files.

The energy levels listed in the ‘states’ file are labelled with the quantum numbers

summarised in Table 6.5.
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Table 6.5: Quantum numbers used in labelling energy states.

Quantum Number Description
i Energy index
E Energy value (cm−1)
g Total degeneracy of the state
J Rotational angular momentum quantum number
ΓTotal Total symmetry in D3h(M)
K Projection of angular momentum on to the z-axis
ΓRot Rotational symmetry in D3h(M)
ν1, ν2, ν3, ν4 Normal mode vibrational quantum numbers
L3, L4 ν3 and ν4 projections of the angular momenta
ΓVib Vibrational symmetry in D3h(M)
n1, n2, n3, n4, n5, n6 Local mode vibrational quantum numbers

Table 6.6: Extract from the UTY2 transitions file for SO3.

f i A
237007 249581 1.1253e-17
158430 148459 2.8358e-17
549592 568676 1.3725e-16
120670 112002 1.4546e-16

2080392 2117071 9.0696e-18
289088 302965 1.4938e-16
393104 377035 1.5764e-16
43637 49289 2.1375e-16

587986 607961 2.0370e-16
587868 647986 4.2068e-18

2007259 2043487 5.2490e-18
627725 648113 3.0673e-16

All quantum numbers are provided by TROVE, with the exception of the normal

mode vibrational quantum numbers, ν1, ν2, ν3 and ν4, and their angular momentum

projections L3 = |l3| and L4 = |l4|, which are obtained from the local mode quantum

numbers via the following rules:

ν1 +ν3 = n1 +n2 +n3, ν2 +ν4 = n4 +n5 +n6, (6.2)

and

l3 =−n3,−n3 +2, ...,n3−2,n3, l4 =−n4,−n4 +2, ...,n4−2,n4. (6.3)

The mapping between these quantum numbers for a particular level also required
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knowledge of the energy value and symmetry, since multiple levels may be labelled

with identical local mode quantum numbers. In these cases, the symmetric modes ν1

and ν2 are associated with the lower energy, and ν3 and ν4 with the higher, and that L3

and L4 increase proportionally with the energies, and are multiples of 3 in the case of

A1 or A2 symmetries, or otherwise for E-type symmetry. This mapping is performed

by hand at the J = 0 stage of the calculation, and then extrapolated to J > 0.

Of all the quantum numbers (except the running index), only J, gTotal and ΓTotal

are rigorously defined. The remaining quantum numbers represent the ‘largest con-

tribution’ from rotational and vibrational components of the wavefunction expansion

associated with a given state.

The ‘transition’ file contains Ni and N f , the indexes of an initial and final state,

respectively, in conjunction with the ‘states’ file, and the Einstein A coefficient in s−1

associated with the transition. The rigorous selection rules for electric dipole transi-

tions, ∆J = J′− J′′ = 0,±1 (J′′+ J′ ≥ 1), are obeyed, as are the symmetry selection

rules A′1↔ A′′1 .

6.4 Temperature Dependence and Completeness of the

Line List

As described in Chapter 2, in order for a line list to be suitable for modelling spectra

at a certain temperature it is necessary for the partition function, Q, to be converged at

this temperature. This is equivalent to stating that all energy levels that are significantly

populated at the given temperature, T , must be computed. This is the metric upon

which the line list completeness is gauged. The analysis of the partition function in this

section follows a similar procedure to that of Chapter 3 for 32S16O2.

In Chapter 4, for the room-temperature 32S16O3 line list, convergence was found

for Q at a value of 7908.266 for the absolute temperature T = 298.15 K, by including

all rovibrational energies for J ≤ 85 using the described basis set. However, as the tem-

perature increases, so does the contribution to Q from the higher lying states, therefore

the number of energies required increases. This is the reason for the expansion in basis

set size and calculation of higher rotationally excited states in UYT2, the ‘hot’ line list.

Figure 6.3 shows convergence of the partition function as a function of Jmax for
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different absolute temperatures, T .
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Figure 6.3: Convergence of partition function at different temperatures as a function of Jmax.

Upon inspection, the value of Q for each value of T is adequately converged at

J = 130. Table 6.7 shows the final values of Q obtained for each temperature, quoted

alongside their degree of convergence. As can be seen, the value of Q = 7908.906 at

T = 298.15 K calculated from UYT2 is in very good agreement with the value of Q =

7908.266 obtained from UYT.

Table 6.7: Values of the partition function, Q, for different temperatures, T . The degree of
convergence is specified by QJ130−QJ129/QJ130× 100.

T (K) Q Degree of Convergence (%)
298.15 7908.906 6.27 × 10−6

473.15 26065.642 8.50 × 10−4

573.15 48007.866 3.62 × 10−3

673.15 85016.645 9.99 × 10−3

773.15 145389.574 2.12 × 10−2

For the purposes of determining the completion of the line list, it is perhaps more

appropriate to view the convergence of Q as a function of an energy cut-off, Emax (in

the same vein as Chapter 3 for the case of 32S16O2). This is shown in Figure 6.4.
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Figure 6.4: Convergence of partition function at different temperatures as a function of Emax

(cm−1).

UYT2 only contains transitions from levels with E ′′ ≤ 4000 cm−1, as a conse-

quence of the computational and time limitations discussed in the Section 6.2. It is

clear from Figure 6.4 that imposing this limit will have a non-negligible effect on a

spectral simulation at T = 773.15 K, in particular; since the partition function is not

fully converged at Emax = 4000 cm−1 it is expected that levels with energies above this

value will also be populated to some extent. This would be manifest as certain lines

being missing from the spectrum, where transitions from levels contributing with some

significance to the partition function are not included.

Similarly, the truncation of calculations at J = 130 means that a number of po-

tentially contributing energy levels have been completely neglected from the partition

sum at T = 773.15 K; at J = 130 the lowest energy lies around 4000 cm−1. Therefore,

as well as transitions from these states not appearing on the simulated spectrum, their

absence also means that the partition function obtained here will be slightly lower than

the fully converged value.

As in Chapter 3, it is possible to quantify the completeness of the line list by

assuming that the value of Q at J = 130 is close enough to the ‘true’ value of the
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partition function at the given temperature. Figure 6.5 shows the ratio of the value of

the partition function at the 4000 cm−1 cut-off and the assumed total partition function,

QTotal .
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Figure 6.5: Ratios of Q4000 to the assumed converged values QTotal as a function of tempera-
ture.

At T = 773.15 K, the line list is roughly 90% complete. In reality, this is an upper

limit due to the fact that there is a slight under estimation in QTotal at this temperature.

However, the contribution from energies above 4000 cm−1 for any missing J > 130

levels can be considered negligible enough not to affect this beyond more than 1%.

6.5 Intensity Simulations
With a fully converged partition function at the given temperature a synthetic spectrum

may be computed as a line intensity plot, via Eq. 4.11 of Chapter 4.

6.5.1 Comparisons with Relative Intensity Measurements

Chapter 4 provides a room-temperature (T = 298.15 K) comparison between UYT

and the experimental data available. Here, the same comparisons are made using the

UYT2 line list. Table 6.8 contains various details of the experimentally studied bands,
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demonstrating the ability of UYT2 to reproduce the experimental band positions and

the band intensities calculated in UYT.

Table 6.8: Comparison of calculated band intensities between UYT and UYT2 at T = 298.15
K for bands with experimentally recorded intensities (see Table 4.7 in Chapter 4).
Units are given in 10−18 cm molecule−1.

Band Band Intensity
UYT UYT2

2ν2 - ν2 0.66 0.62
ν2 - ν0 3.71 3.39
ν2 + ν4 -ν4 0.58 0.54
ν4 - ν0 5.95 5.37
2ν

(l4=0)
4 - ν4 0.41 0.44

ν2 + ν4 - ν2 0.53 0.49
2ν

(l4=2)
4 - ν4 0.87 1.17

ν1 - ν4 0.10 0.22
ν3 - ν0 44.44 43.21
2ν

(l3=2)
3 −ν0 0.12 0.11

Figures 6.6 - 6.8 show some detailed intensity comparisons for various bands at

room temperature. The theoretical UYT2 data produced by TROVE is compared to

a number of bands studied in the works of Maki et al. [99–105], in the same vein as

Figure 4.5 in Chapter 4. The UYT2 data show an improvement in the band positions

due to the PES refinement discussed earlier in this chapter. The absolute intensities of

the experimental data are scaled via the same method as in Chapter 4.

There is no existing absolute intensity data for 32S16O3 above T = 298.15 K in the

published literature, therefore making it difficult to assess the quality of the ab initio

DMS used in the intensity simulations. Discussion is limited to that of Chapter 4 in

which relative band intensities are compared between the observed and calculated data.

Despite these available comparisons, there still remains ambiguity in both the relative

intensities recorded across different pressures and the reproduction of intensities by the

DMS.

6.5.2 Comparisons with Cross Section Data

Since the comparison with the data of Maki et al. is only able to provide a measure of

the quality of relative intensities within a particular band, there is only one remaining

method of assessing the overall DMS quality in the absence of available absolute inten-
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Figure 6.6: Comparison of the ν2 - ν0 (above) and ν4 - ν0 (below) bands at T = 298.15 K,
between UYT2 data produced using TROVE and experimental data recorded by
Maki et al. [99–105] at 0.409 Torr.

sity measurements, and that is through the generation of cross sections. During the cal-

culation of the hot line list a handful of experimentally derived SO3 cross section data

were made available for a range of temperatures by Alexander Fateev at DTU [187],

including data recorded by PNNL at room-temperature [126]; for both data sets there

are discernible features across four separate spectral regions. As with SO2 in Chapter
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Figure 6.7: Comparison of the ν3 - ν0 band at T = 298.15 K, between UYT2 data produced
using TROVE and experimental data recorded by Maki et al. [99–105] at 0.16
Torr.

Figure 6.8: Comparison of the 2ν3 - ν0 band at T = 298.15 K, between UYT2 data produced
using TROVE and experimental data recorded by Maki et al. [99–105] at 4.99 Torr.

3 it should be possible to make a semiquantitative analysis by comparing integrated in-

tensities across a given spectral window. To this end, the ExoCross tool by Yurchenko

is used to produce a number of theoretical, temperature-dependent cross sections, as in

Chapter 3 for SO2.
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The difficulty of obtaining the full UYT2 line list made simulating accurate cross

sections practically impossible until all energies and dipole transitions were computed.

It would be possible to use UYT to make such comparisons at room-temperature, how-

ever line-position inaccuracies and possible ambiguity of the computed partition func-

tion would make it hard to draw a valid conclusion. Figures 6.9 and 6.10 show compar-

isons between recorded cross sections from PNNL at 298.15 K (25◦C) compared with

simulated cross sections using the full UYT2 line list, based on a Gaussian profile of

HWHM = 0.1 cm−1.

Figure 6.11 shows a comparison of the the ν2 and ν4 complex and the ν3 band

between cross sections recorded for SO3 at 573.15 K (300◦C) and those simulated

using the UYT2 line list, based on a Gaussian profile of HWHM = 0.25 cm−1 (this

difference in HWHM value across different temperatures is mainly based on the best

representation of the experimental spectra; in actuality the integrated intensity across

the spectral region is largely independent of the HWHM value used). Figure 6.12 shows

the same for the ν1 +ν3 band, which appears in a noisier region of the spectrum, and

is also disturbed by a strong, foreign absorption feature resulting from the presence of

CO2. There is no data at T = 573.15 K for the 2ν3 band due to noise contamination in

the associated spectral region. Measurements of SO3 have also been made for 773.15

K (500◦C), however it has not been possible to generate accurate experimental cross

section values due to difficulties in estimating the concentration within the gas flow

cell; it is believed that at this temperature a significant amount of the SO3 gas is prone

to reacting with material within the measurement apparatus [187]. Therefore, this data

is not included in the current comparison.

As can be seen there is a clear tendency for the UYT2 data to overestimate the

line intensities for both temperatures, though band positions and features are qualita-

tively fairly well represented. There are a number of possibilities that could explain

these discrepancies. Firstly, it is possible that the experimental cross sections may be

underestimated due to an error in the SO3 abundances; the calculation of cross sections

requires the knowledge of the species concentration within the length of the absorption

cell [244]. The fact that measurements at room-temperature by Fateev et al. corroborate

the PNNL data, and that similar discrepancies are observed for both data sets suggests

that this is not the case [187].
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Figure 6.9: Comparisons of the ν2 and ν4 bands (above) and the ν3 band (below) for experi-
mentally obtained [126] and simulated cross sections at T = 298.15 K.

The second possible source of disagreement can be attributed to convergence is-

sues in the partition function. Since the calculated intensities given by Equation 2.55

depend on the scaling factor Q(T ) the incorrect computation of this value at the given

temperature will lead to inaccurate values of absolute intensity. The difference in inte-

grated cross section intensities observed suggest that, if the calculated value of Q(T ) is

incorrect, then it is smaller than the ‘true’ value, since the theoretical cross sections are

more intense than the experimentally observed values. This scenario can also be ruled
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Figure 6.10: Comparisons of the ν1 + ν3 bands (above) and the 2ν3 band (below) for experi-
mentally obtained [126] and simulated cross sections at T = 298.15 K.

out, due to two reasons. First, the agreement between Q(T ) for both UYT and UYT2

is very good at T = 298.15 K, where they are both adequately converged; the increased

basis set size underlaying the UYT2 calculations would undoubtedly account for any

missing rovibrational energies in UYT. Secondly, and perhaps more interestingly, the

analysis of several bands across different temperatures shows the cross section discrep-

ancies to be almost independent of the value of T (see below). This would not be

expected if Q(T ) were the source of the disagreement, since it has a nonlinear depen-
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Figure 6.11: Comparisons of the ν2 and ν4 bands (above) and the ν3 band (below) for experi-
mentally obtained [187]and simulated cross sections at T = 573.15 K.

dence on the temperature.

This heavily implies that the problem lies with the DMS. The successful repro-

duction of SO2 cross sections using the ExoCross tool by Yurchenko can rule out any

computational defects in this procedure, and therefore the error may be attributed to

the final computed values of Einstein A coefficients for SO3. DMS defects have been

observed previously within the ExoMol group [171, 245, 246], despite previous expe-

rience of obtaining accurate ab initio dipole surfaces; in general, it is highly beneficial
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Figure 6.12: Comparisons of the ν1 + ν3 bands (above) and the 2ν3 band (below) for experi-
mentally obtained [187] and simulated cross sections at T = 573.15 K.

to obtain accurate absolute intensity measurements in order to validate any computed

DMS, which is unfortunately not the case for SO3.

It is not easy to make a rigorous analysis based on cross section data available

for SO3, as it is not immediately obvious what the contributions are from individual

lines. In addition to this, both data sets contain varying degrees of noise within certain

spectral regions, with the region around the ν3 band generally providing the best signal.

Pavlyuchko et al. in ref. [246] performed a fit of their DMS based on experimental in-

tensity data for nitric acid, to better improve simulated intensities. The lack of absolute

intensity measurements for SO3, coupled with the expensive computational demands

of the line list calculation make this particularly difficult to perform here. Nevertheless,

the best approach has been to compare integrated band intensities across fixed spectral

windows to obtain scaling parameters for the each band. Table 6.9 summarises the ra-

tios of integrated intensities between simulated and recorded cross sections for some

available bands.

For most bands there appears to be a fairly consistent shift in intensity values

across different temperatures, however the overtone bands for T = 298.15 K suggest

otherwise. The differences are quite subtle; for example, while the 2ν3 band has almost

perfect agreement in integrated intensity across the band, the central Q-branch peak is
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Table 6.9: Integrated band intensities calculated from observed and calculated (UYT2) cross
sections. Intensity units are given in 10−18 cm2 molecule−1.

Temperature (K) Band Integrated Band Intensity Obs./UYT2
Obs. UYT2

298.15 ν2 & ν4 9.95 13.13 0.76
ν3 46.78 60.38 0.77
ν1 +ν3 0.71 0.82 0.87
2ν3 0.15 0.16 0.97

573.15 ν2 & ν4 10.26 13.53 0.76
ν3 46.79 59.62 0.78
ν1 +ν3 0.69 0.87 0.79

not well represented by the UYT2 cross sections. On the other hand, the data at 573.15

K by Fateev et al. for the ν1+ν3 band exhibits the same general shift as the ν2, ν3 and ν4

bands (care has been taken to not include the intense contamination in the integration),

while the same is not true at room-temperature. The PNNL room-temperature cross

sections are presented as a composite spectrum created from 8 individual absorbance

spectra taken at various different pressures using both a mid-band MCT and wide-band-

MCT detector [126], and uncertainties in intensity are listed as 10%. Conversely, the

high-temperature data is a continuous spectrum which, while being prone to noisier

regions, still provides some measurement consistency. If the scaling factors for the

two overtone bands at room-temperature are ignored, then the remaining factors may

be averaged (0.76) and applied to all simulated cross sections. The assumption made

here is that the apparent stronger agreement in the room-temperature intensities for the

ν1+ν3 and 2ν3 are ‘accidental’, while the wide, coverage-consistent high-temperature

cross sections provide a more accurate description of the differences. It should be noted

that defective DMSs are usually more likely to present non-consistent differences in

intensity across different bands [171, 245, 246]. Without extra experimental data for

more bands at different temperatures it is difficult to ascertain whether the same is true

in this case.

Figures 6.13 and 6.14 shows the various bands at room-temperature, with com-

puted cross sections multiplied by the averaged scaling factor. Figures 6.15 and 6.16

show the same for T = 573.15 K, which improves the simulated cross sections, and

demonstrates the implied temperature independent nature of the discrepancy. As can

be seen in Figure 6.14, using the averaged scaling factor (obtained from excluding the
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individual ν1 +ν3 and 2ν3 Obs./UYT2 ratios) improves the reproduction of the central

band peak, though the P-branch does show some intensity differences. This appears to

be common for multiple bands and is possibly due to the neglecting pressure broaden-

ing (see Chapter 7).
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Figure 6.13: Comparisons of the ν2 and ν4 bands (above) and the ν3 band (below) for experi-
mentally obtained [126] and scaled simulated cross sections at T = 298.15 K.

Figure 6.17 shows the cross sections calculated over the entire spectral range of

0 < ν ≤ 5000 cm−1, using a Gaussian profile of HWHM = 0.25 cm−1, for a number

of different temperatures. All simulated cross sections have been multiplied by the
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Figure 6.14: Comparisons of the ν1 + ν3 bands (above) and the 2ν3 band (below) for experi-
mentally obtained [126] and scaled simulated cross sections at T = 298.15 K.

average scaling factor discussed.

6.6 Discussion
The UYT2 line list contains 21 billion transitions, and a total of 18 million energy levels

below 10 000cm−1. This provides an improvement upon the initial room-temperature

line list, UYT, in terms of both line positions and temperature coverage.

Table 6.2 provides a measure of the improvement introduced by the PES refine-
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Figure 6.15: Comparisons of the ν2 and ν4 bands (above) and the ν3 band (below) for experi-
mentally obtained [187] and scaled simulated cross sections at T = 573.15 K.

ment present in the UYT2 line list. The total RMS deviation for the bands included in

the potential adjustment is 1.35 cm−1, compared to 3.23 cm−1 for the unrefined PES

of UYT. The majority of simulated line positions across these bands is improved by an

order of magnitude.

As with the UYT line list described in Chapter 4, it is difficult to ascertain the

overall quality of the ab initio DMS used in the production of line intensities. However

comparing with newly available cross section data at two different temperatures heavily
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Figure 6.16: Comparisons of the ν1 + ν3 band for experimentally obtained [187] and simulated
cross sections at T = 573.15 K.

suggests that the DMS used in the calculation of intensities is slightly defective, caus-

ing an apparently constant shift in all intensity values. The evidence suggesting this

temperature- and band-independent scaling factor is certainly not conclusive, and one

may wish to take care in which scaling factor to use for each band. In particular, bands

for which there are no experimental intensity data available can not be considered to be

truly represented well in UYT2 and the lack of exhaustive absolute intensity knowledge

for SO3 at the current time of writing severely limits the ability to effectively correct

for the disagreements observed.

For the purposes of discussion, it is interesting to observe what effect that different

levels of theory have on resulting ab initio dipole moment calculations; it is possible

that the DMS will be highly dependent on the use of basis set in the electronic structure

calculations. Table 6.10 shows the results of CCSD(T) [115] calculations using varying

basis sets for a few nuclear geometries, using Molpro [192]. Included are calculations

using a standard triple-zeta basis set [150], those optimised for F12 calculations [191],

as used in this work (and used in conjunction with the appropriate method [190]), and

finally with the quadruple-zeta basis set [184, 185] used in the construction of the SO2

DMS of the current work [35] (see Chapter 3). There is no experimentally measured

dipole moment data for SO3 as it does not posses a permanent dipole moment, and
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Figure 6.17: Overview of the simulated cross sections using UYT2, at T = 298.15, 473.15 and
773.15 K, with a Gaussian profile of HWHM = 0.25 cm−1.

therefore points are chosen arbitrarily, one to reflect a symmetric geometry, and another

for an asymmetric geometry. For these calculations the planar molecule lies within the

yz-plane, and the component of the dipole moment is measured across both these axes

for the instantaneous geometry.

Table 6.10: Components of dipole moment for a select number of nuclear geometries, com-
puted a various levels of theory. Both configurations align the S-O1 bond parallel
to the z-axis. The symmetric configuration consists of an elongated S-O1 bond of
1.517 Å, with the remaining bond lengths and angles at equilibrium (1.417 Å, and
120◦, respectively; only the z-component of the dipole moment is present. The
asymmetric configuration also has an S-O1 bond length of 1.517 Å, with the S-
O2 and S-O3 bonds at 1.417 Å and 1.317 Å, respectively, thus there is a dipole
component across both the y and z-axes.

Level of Theory Symmetric Geometry Asymmetric Geometry
µz / D µz / D µy / D

CCSD(T)/aug-cc-pVTZ 0.3772 0.6004 0.3664
CCSD(T)-F12b/aug-cc-pVTZ-F12b 0.3785 0.6022 0.3669
CCSD(T)/aug-cc-pV(Q+d)Z 0.3758 0.5989 0.3652

It can be seen that the value of the dipole moment is somewhat sensitive to the

choice of theory and basis set used, though in the absence of a fully-constructed DMS
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it is difficult to say what effect this would have on the quality of ab initio transition

intensity calculations. The DMS constructed in this work is based on an analytical fit

to a grid of 13 000 geometry points, which reproduces the ab initio data with an rms

of 0.00013 D (see Chapter 4). Therefore, though the deviations present in 6.10 are

relatively small, they are larger than this quoted rms, which suggests that an equally

accurate fitting to a set of higher-level ab initio points may produce a DMS which is

structurally different to the one used in the current work, perhaps enough to have a

significant effect on computed transition intensities. Investigating this would require a

further systematic study into the dipole moment, like that carried out by Azzam et al.

for H2S [245], in which ab initio dipole calculations are extended to a large number of

geometries in order to produce several DMSs based on different underlying basis sets,

in order to test each of their effects on the calculation of transition moments. However

the higher-dimensionality of the SO3 problem, coupled with the lack of experimental

dipole data for this molecule makes this a daunting task. Nevertheless it is hoped

that the scaling factor of the cross-sections can improve the ab initio intensity values

produced in the UYT2 line list, although further work will be required in order to fully

investigate the source of the discrepancy. In the meantime the scaling factor can provide

a lower limit to the estimated uncertainty in simulated cross section values, which is

31%.

The increased size of the basis set, the computation of rovibrational energies up to

J = 130, and the increased spectral range of line strength calculations allows for UYT2

to be used in the simulation of spectra between 0 < ν ≤ 5000 cm−1, with approxi-

mately 90% completion at T = 773.15 K (500 C). Given that this is the largest data

set of its kind for 32S16O3, it is recommended that UYT2 be used in the production of

cross sections at room-temperature, and up to T = 773.15 K, for both astronomical and

industrial applications. The full line list can be downloaded from the ExoMol website

(http://www.exomol.com).



Chapter 7

General Discussions & Conclusions

The main focus of this work has been in the production of highly accurate infrared line

lists for the main isotopologues of SO2 and SO3. These have been computed via the use

of spectroscopically-refined ab initio ground-state potential energy surfaces (PES) and

ab initio dipole moment surfaces (DMS), in conjunction with bespoke nuclear motion

codes.

The SO2 line list is based upon a CCSD(T) [115] calculated PES using a cc-

pVQZ-DK basis set [184], refined by the use of 30 129 experimentally obtained en-

ergy levels [35]. The DMS is computed at the same level of theory with an aug-cc-

pV(Q+d)Z [184, 185] basis set. Both the PES and DMS have been implemented into

the DVR3D program suite [138] which has been optimised for the purposes of comput-

ing high-J rovibrational energy levels and dipole transition strengths. The final line list

contains 1.3 billion transitions within the 0 < ν < 8000 cm−1spectral region between

3 255 954 rovibrational energy levels up to J = 165 and E ′ ≤ 15 000 cm−1. Analysis

of the partition function suggests that this line list should be suitable for simulating

rovibrational SO2 spectra for T ≤ 1500 K, and may be used approximately for higher

temperatures. The agreement with the synthetic line list produced by Huang et al. [35]

is good, with a standard deviation of 0.043 cm−1 in matched lines, with a correspond-

ing agreement to within 2% for absolute intensities. Agreement with HITRAN [75] is

also very good, with an overall root-mean-square error of 0.016 cm−1 in line positions,

and within 80% - 90% for absolute intensities. Preliminary comparisons with cross

section data at 573.15 K (300 ◦C) and 773.15 K (500 ◦C) shows good semiquantitative

agreement, with 2% and 6% difference, respectively, in integrated intensities across the

ν1 and ν3 fundamental bands.
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The SO3 line list is based upon a CCSD(T)-F12b [190] calculation for the PES and

DMS, using aug-cc-pVTZ-F12 and aug-cc-pV(T+d)Z-F12 [191] basis sets for oxygen

and sulphur, respectively. The ab initio PES and DMS were used to create an initial

room-temperature line list using the TROVE program [131], consisting of 174 674 257

transitions within the 0 - 4000 cm−1 region between 4 814 799 rovibrational energy

levels up to J = 85 and E ′≤ 7000 cm−1. This line list was compared to the experimental

data in the literature [99–105] where it was deemed necessary for a refinement of the ab

initio PES in order to correctly replicate band positions. With a lack of experimentally

obtained absolute intensities it was only possible to semi-quantitively determine the

accuracy of the DMS, which was able to replicate relative intensities fairly well for a

number of bands.

This was followed by a refinement of the PES based on 119 reliable experimental

energy levels, reducing the root-mean-square deviation from 3.23 cm−1 to 1.35 cm−1

over all compared bands, improving the majority of most band positions by an order

of magnitude. This refined PES was used to compute a hot line list for SO3, which

contains 21 billion transitions between 18 million rovibrational energy levels below for

J ≤ 130 and E ′ ≤ 10 000cm−1. Comparisons with experimental cross section data

at 298.15 K and 573.15 K from separate sources have cast doubt on the accuracy of

the ab initio DMS, where a temperature-independent difference in intensities has been

observed between experimental and calculated data. Nevertheless, some preliminary

analysis has been performed in an effort to scale the computed data to better replicate

the observed intensities. Convergence of the partition function suggest that this line list

is suitable for simulating spectra up to 773.15 K, but with possibility of approximating

for temperatures above this.

Finally, the rotational dynamics of the SO3 molecule have also been investigated

from a theoretical perspective, where the source of the ‘forbidden’ rotational spectrum

has been quantum mechanically analysed, and attributed to so-called ‘intensity stealing’

based on the centrifugal distortion of the molecule, attributed to the bending modes,

which induces a dipole moment. In addition, energy cluster formation is predicted

for this molecule for highly excited rotational states, providing a unique, first-time

observation of such behaviour in a planer, tetratomic molecule containing no hydrogen.
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7.1 Further Work
There are a number of implications for further work based on the studies presented in

this thesis. There are a variety of applications which may benefit from usage of both

the SO2 and SO3 line lists, across a multitude of scientific disciplines. There are also a

number of areas of improvement which must be considered with regards to the results

obtained from the current work.

7.1.1 The Hot SO2 Line List

Since the hot SO2 line list computed in the current work is based on the PES and DMS

by Huang et al. the conclusions drawn in Refs. [35] and [118] and subsequent implica-

tions for future work are particularly relevant here. In particular, the need for accurate

PES refinement for the purposes of simulations at higher energies and temperatures is

discussed. It is hoped that the current SO2 line list may facilitate in the analysis of high

resolution IR spectra, particularly in spectral regions where experimental coverage is

relatively low, and that assignments of lines within existing experimental datasets may

in turn be used to further refine the PES to more accurately reflect the true behaviour

in the higher energy regions. As has been previously stated, the rovibrational energies

calculated using DVR3D are only exact within the limitations of the underlying PES,

as they intricately dependent on its accuracy. The extension of wavenumber coverage

in the rovibrational spectrum would require the determination of an accurate ab initio

PES at higher energies. In a similar vein the simulation of high-temperature spectra

will also enable validation of the DMS beyond 296 K, however early indications for

two fundamental bands show good signs of semiquantitative agreement. It is hoped

that further collaboration with Huang and coworkers will enable a better understanding

of this molecule at higher energies and temperatures, based on their future electronic

and nuclear motion calculations [118].

The calculation of the hot SO2 line list has required a number of alterations to

be made to the triatomic DVR3D code. The nature of the SO2 system necessitates a

large basis set to underlay all computations, and various procedures within the program

structures have had to be optimised in order to deal with the large resulting wavefunc-

tion files. The future implementation of a refined PES should be fairly straightforward,

although further optimisations may be necessary; for example if convergence tests re-
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sult in the production of a higher density of computed bound states, particularly in the

higher energy regions, then this would undoubtedly lead to an increase in the size of

wavefunction files which in turn may result in storage issues, as well as longer com-

putational times in dipole transition calculations. Nevertheless, the improvements to

the DVR3D program suite in the current work have a number of implications beyond

the case of the SO2 molecule and could facilitate spectroscopic calculations for other

heavy triatomic systems of interest, such as KCN [153, 247–251], TiO2 [252, 253] and

ClO2 [254, 255].

7.1.2 The Hot SO3 Line List

The SO3 molecule has proven to be extremely difficult to work with experimentally and

- owing to the formidable tasks associated with the current study - theoretically. The

computation of a hot, ab initio SO3 line list has tested the boundaries of some of the

most sophisticated hardware and software implementations that are currently available.

Even so, the final line list presented in this work has been the result of a compromise in

the trade-off of accuracy and computational expense, and would certainly benefit from

further studies in a number of ways.

The refinement procedure discussed in Chapter 6 has improved the position of

many bands by a significant amount, and has managed to replicate very well their ex-

perimental counterparts. However a handful of theoretical band positions could benefit

from further improvement, as alluded to in Table 6.2. This would require knowledge

of a greater number of experimental bands in order to better refine the ab initio PES;

a total of 119 experimentally derived rovibrational energy levels were used for the re-

finement in the current work for the hot SO3 line list, with rotational excitation up to

J=5. For example, compared to Ref. [239] for ammonia, which used 392 rovibrational

terms in the fitting procedure, the number used in the current work remains relatively

small and could be greatly improved by the availability of a larger number of reliable

experimental measurements.

The complete lack of reliable absolute intensity data for SO3 has made a robust

validation of the ab initio DMS particularly difficult, and the only available means of

comparison have been via relative intensity measurements by Maki et al. [99–105] and

via semiquantitative cross section comparisons with a small number of data sets. In
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particular, the experimental cross section data only became available after the produc-

tion of the hot line list was started, and the semiquantitative analysis of cross section

intensities for different temperatures suggests a temperature-independent defect in the

calculated intensities. In other words, the discrepancies observed can probably be at-

tributed to a defective DMS, as opposed to a temperature-dependent source, such as

lack of partition function convergence. From initial comparisons there appears to be

a constant factor defining the differences between experimental and theoretical results,

which is unlike other cases in which ab initio DMSs have failed to accurately replicate

observations [171, 245, 246]; this needs to be investigated. However, further studies

into experimental cross sections would be required in order to reach a definitive con-

clusion, as there is a lack of observational data. In fact, determination of experimental

absolute intensities would be the most desirable input, meaning comparisons could be

made on a line-by-line basis. The current case for SO3 provides a good example of the

necessity of experimental and theoretical collaborations. In the meantime, the scaling

of the theoretical intensity data produced in this work can facilitate analysis of experi-

mental spectra for SO3. A possible alternative avenue to explore in future would be in

the systematic computational testing of the ab initio DMS, like those made by Lodi et

al. for water [200]. The construction of a new ab initio DMS could also be a possibility,

based on an improved theoretical calculation (such as the CCSD(T)/aug-cc-pV(Q+d)Z

calculation in SO2), to be used in conjunction with rovibrational wavefunctions that are

still available from the calculations performed in this work. This has been discussed

briefly in Chapter 6.

Finally, the coverage of the hot SO3 line list is defined in terms of the wavenumber

and temperature domains. The E ′′ ≤ 4000 cm−1 and J ≤ 130 cut-offs imposed by the

calculation have resulted in the final line list being roughly 90% complete at T = 773.15

K. In fact, the J ≤ 130 cut-off in particular means that there are a few energies below

4000 cm−1 that have still not been considered from higher J wavefunction calculations.

Obtaining wavefunctions for J > 130 has proved to be extremely difficult using TROVE

and the high performance computing systems available at the present time, however

in theory these routines may be optimised in order to allow for computations to be

successfully completed. Analysis of the partition function for T = 773.15 K suggests

that line list completeness would be obtained by considering all transitions for (roughly)
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E ′′ ≤ 6000 cm−1. Again, in theory this could be achieved using the wavefunction files

currently available, however owing to impracticalities of computation cost this may be

deemed as an unnecessary and expensive effort.

7.1.3 Modelling Astrophysical, Atmospheric & Industrial Environ-

ments

Chapter 1 discusses the astrophysical abundance of sulphur oxides. Missions dedicated

to IR spectroscopic detection [61–63] can greatly benefit from the inclusion of both the

SO2 and SO3 line lists in their analyses, particularly in the need for ‘de-weeding’ of

SO2 interference described in Ref. [64]. In situations where the molecule is of interest,

the SO2 line list can facilitate the theoretical modelling of solar system planetary atmo-

spheres [13–15], and can be augmented by the inclusion of the SO3 line list, where it

may be considered as an equally major source of opacity [10, 11]. At higher tempera-

tures the astrophysical modelling of SO2 spectra may allow for a better understanding

of its presence in stellar atmospheres. For example, in their study on the presence of

SO2 gas in oxygen-rich AGB stars [256], Yamamura et al. made use of the available

HITRAN data in their spectral models, where they found modelling spectra at T = 600

K to give the best comparison between modelled and observed data for the ν3 band.

Figure 7.1 shows an example of such comparisons for Ref. [256] where they note that

discrepancies in the wings of the ν3 band are due to a lack of high energy transition

data.

In a similar, more recent work, Adande et al. studied the sulphur chemistry in the

envelope of the supergiant star VY Canis Majoris [24], where spectral models were

based on CDMS data for the ground and ν2 = 1 vibrational state only, and on a sim-

ulated temperature of 400 K. Studies of this kind can benefit from the use of greater

coverage of line positions provided by the hot SO2 line list calculated in this work,

which current spectroscopic databases may be lacking in.

The exciting implications of exoplanet characterisation efforts include the identi-

fication of ‘Earth-like’ planets [257]. The current state of both detection methods and

spectroscopic technologies places a strong bias on the potentially observable objects,

where the majority of detected exoplanets tend to be larger, gas giants close to their

host star, which are more easily observed by current methods [257–259]. Nevertheless,
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Figure 7.1: Figure taken from Ref. [256] showing observed spectra (thick line) compared
against model spectra (thin line) using HITRAN data, for three oxygen-rich stars.

the detection of terrestrial-type planets is becoming more and more common [260,261]

which, with ever improving technological advances, increases the potential for charac-

terising those where SO2 and SO3 are likely to play a larger role [15, 260, 262, 263], as

on Venus, Mars, Io and Earth.

Interest in the high-resolution and high-temperature spectroscopy of SO2 and SO3

within the context of the current project was originally stimulated by Alexander Fateev
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and coworkers from the Technical University of Denmark (DTU). Their development

of in situ measurement techniques for the purposes of gas temperature and composition

within SCR units (see Chapter 1) requires high quality spectroscopic reference data,

which have previously been limited in scope [244]. The importance of monitoring the

various species concentrations within SCR units, particularly SO2 and SO3, is clear

[5, 40, 41]. The high-temperature nature of the SO2 and SO3 line lists is likely to

be immediately more important to such industrial applications. There have already

been collaborative efforts between both the DTU and ExoMol groups involving the

recording of hot ammonia spectra and line assignments via the BYTe line list [244],

in order to better understand the detection of ammonia within the SCR environment.

Both the SO2 and SO3 line lists may be used in a similar fashion in conjunction with

experimental observations at elevated temperatures. In particular it is hoped that they

may provide further insight into SO3 abundances, where laboratory measurements are

prone to difficulty due to losses of this highly reactive species within gas flow cells

[42]. The high-temperature line lists computed in the current work can also be used

to supplement other studies involved in the remote sensing of sulphur dioxide in other

exhaust gases [39, 116].

7.1.4 SO2 & SO3 Line Widths

Spectral lines observed in nature are usually subject to broadening due to temperature

and pressure effects associated with their environment, and do not exhibit an infinitely

thin line width as given by the computed line lists in this work. Spectral features will

always be subject to a natural broadening depending on the lifetime of an excited state.

Doppler broadening, which is associated with the thermal motion of particles, can give

an indication as to the temperature of the objects under observation, manifesting in an

increase of the spectral line width. Mathematically, the shape exhibited by thermal

broadening can be described by a Gaussian line shape profile [264]. The line shape

can also be affected by the pressure of the environment, where the constant collisions

between molecules leads to a distortion of energy levels and their lifetimes. This type

of broadening is best described by a Lorentz profile. In reality temperature and pressure

are not mutually exclusive, and therefore must both be accounted for in order to more

accurately simulate molecular absorption cross sections for environments of interest;
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the combination of Gaussian and Lorentz profiles leads to the so-called ‘Voigt’ profile

[244, 265].

The cross section data produced in this work for both SO2 and SO3 in Chapters

3 and 6, respectively, are constructed based on a Gaussian line shape function used to

convolve transition lines from the line lists, i.e. they only consider Doppler broadening.

To simulate pressure effects it is necessary to implement a Voigt profile which is dif-

ficult to create, and requires the use of pressure broadening parameters to achieve the

appropriate shape. The two important parameters of interest are the Lorentz half-width,

γ , and the temperature dependent exponent, n, which scales γ recorded at a reference

temperature to the temperature of interest [265].

There have been a number of efforts to obtain accurate broadening parameters for

SO2, both experimentally and theoretically. Sumpf et al. investigated the effects of self-

broadening [266–268], air-broadening [269] and Nitrogen-broadening [270] for the ν1,

ν2, ν3 and ν1 + ν3 bands, as well as broadening by noble gases [271–273]. Tasinato

et al. also reported self-broadening parameters in the 9.2 µm spectral region [274].

Broadening by H2, N2, O2 and He has also been studied by various authors [275–277],

and measurement of a single measured line has provided some insight into pressure

broadening due to CO2 [278]. A number of broadening parameters obtained from these

studies have also been incorporated into the HITRAN data set for this molecule [265].

Conversely, there have been no such studies published for the SO3 molecule.

The use of Voigt profiling based on line list data has already been carried out in

the previously mentioned collaboration between the DTU and ExoMol groups in order

to simulate and assign hot ammonia spectra using the BYTe line list [244], making use

of Lorentz half-width data available from HITRAN. An identical approach with SO2

and SO3 in conjunction with available broadening parameter data should enable for an

improved description of cross section characteristics at high temperature. The available

data for pressure broadening for SO2 should make it possible to begin investigating

this, however corresponding data for the SO3 would also be desirable. In the meantime

Doppler broadened cross sections for SO2 and SO3 created in this work may be used

for modelling environments in hot conditions.
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7.1.5 Cluster State Analysis for SO2

The theoretical rotational energy cluster formation observed for SO3 in this work sug-

gests that a similar phenomenon in SO2 may be possible. As previously stated, rota-

tional energy clustering is seen mainly in XYN type molecules with a heavy central

atom X, with Y being H or D, and X-Yi bonds being near-orthogonal, i.e. local mode

molecules [167, 221], as seen in H2S, H2Se, H2Te, and PH2 [167, 214, 221–223]. SO2

shares the similar triatomic nature of these XYN molecules, and also contains a rela-

tively heavy central X atom, though can not strictly be defined by local mode behaviour

due to the 119◦ angle subtended by the S-O bonds. However, the same is true for SO3

which has theoretically been shown to exhibit this clustering phenomenon, therefore

suggesting that this behaviour is worth investigating in SO2. The rotational energy

clustering is observed for high rotational excitation in SO3, which required a reduced

basis set in the TROVE calculations to produce the high energy energy states in a rea-

sonable time. Rotational excitation was considered as high as J = 250 in the vibrational

ground state, and clustering behaviour exhibited from J=125 onwards; the DVR3D

calculations for the SO2 line list considered rovibrational energy calculations up to J =

160. It is therefore possible that clustering phenomena may already be observed within

the already available calculations. The analysis is not as straightforward as with SO3

and TROVE as the DVR3D calculations do not readily provide vibrational quantum

numbers, making it difficult to separate out individual rotational levels within vibra-

tional states. The ever-increasing density of states with higher rotational excitation

would also make this process very difficult, therefore the DVR3D code would require

some changes in order to specify the vibrational contribution for each rovibrational

wavefunction. Alternatively, analysis may be performed using the TROVE program.

In Chapter 3 the use of TROVE with the Ames-1 PES was discussed briefly, where

it successfully reproduced DVR3D-computed energies for J=0 energy levels. It may

therefore be possible to implement the Ames-1B PES used in the calculation of the hot

SO2 line list in order to produce high-J energies labelled by vibrational quanta, making

the assessment of clustering phenomena more straightforward.
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7.2 Conclusion
The SO2 and SO3 hot line lists should help provide an extensive insight into the charac-

teristics of these molecules for a large range of temperatures and across a wide spectral

window, which in turn will provide experimental spectroscopists with a means to fur-

ther understand the environments in which they have significant presence. Both line

lists contribute to an extensive improvement in spectral data coverage as part of the

ExoMol project, and the collaborative efforts between the ExoMol group and DTU

represents a successful marriage of academic and industrial disciplines.

New avenues of investigation may opened up based on the results of this project,

from the assessment of ab initio quantum chemistry methods, and the further improve-

ment of efficient computational algorithms, to the improved characterisation of atmo-

spheric behaviour, within industrial, atmospheric and extraterrestrial environments.

The work presented in this thesis has been the result of over three years’ effort,

requiring a detailed knowledge of a variety of fundamental physical concepts and their

implementation into sophisticated computer codes optimised for efficient use on high

performance computing systems, followed by thorough analyses of the huge quantity

of produced data. The results presented are due to a combination of both independent

research and collaboration with scientists from various fields, including spectroscopy,

quantum chemistry, chemical engineering and planetary atmospheres.



Appendix A

SO3 Refinement Energies

Tables A.1 to A.5 contain the remaining comparisons for the rovibrational energy levels

used in the refinement procedure for the UYT2 SO3 PES, discussed in Chapter 6.

Table A.1: Obs. - Calc. residuals for the J = 0 energy levels used in the refinement procedure.
All values are in cm−1.

State K Obs. [104] UYT2 Obs. - Calc.
3ν

(l4=1)
4 0 1591.097 1591.040 0.057

2ν
(l3=2)
3 0 2766.405 2766.384 0.022

?The value L is given by L = |l3 + l4| as per Ref. [105].

Table A.2: Obs. - Calc. residuals for the J = 1 energy levels used in the refinement procedure.
All values are in cm−1.

State K Obs. [104] UYT2 Obs. - Calc.
ν2 0 498.257 498.246 0.010
ν
(l3=1)
3 1 1391.874 1391.863 0.011

2ν2 + ν
(l4=1)
4 1 1524.897 1524.909 -0.012

ν1 + ν2 0 1565.774 1565.757 0.017
2ν

(l3=2)
3 1 2778.723 2778.726 -0.003

3ν
(l3=1)
3 1 4136.740 4136.731 0.009

?The value L is given by L = |l3 + l4| as per Ref. [105].
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Table A.3: Obs. - Calc. residuals for the J = 2 energy levels used in the refinement procedure.
All values are in cm−1.

State K Obs. [104] UYT2 Obs. - Calc.
ν0 0 2.091 2.092 0.000
ν
(l4=1)
4 2 531.138 531.137 0.001

1 532.174 532.183 -0.009
ν2 + ν

(l4=1)
4 2 1028.938 1028.903 0.035

ν
(l3=1)
3 2 1393.243 1393.242 0.001

1 1393.264 1393.253 0.011
2ν2 + ν

(l4=1)
4 2 1525.220 1525.223 -0.003

1 1526.254 1526.267 -0.013
3ν

(l4=1)
4 2 1590.046 1590.028 0.018

?(ν3 + ν4)(L=2) 2 1919.085 1919.094 -0.009
1 1919.590 1919.597 -0.007

2ν
(l3=2)
3 2 2778.591 2778.575 0.016

1 2780.108 2780.111 -0.004
3ν

(l3=1)
3 2 4138.095 4138.097 -0.002

?The value L is given by L = |l3 + l4| as per Ref. [105].
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Table A.4: Obs. - Calc. residuals for the J = 3 energy levels used in the refinement procedure.
All values are in cm−1.

State K Obs. [104] UYT2 Obs. - Calc.
ν0 3 2.612 2.612 0.000
ν2 3 500.168 500.158 0.010

0 501.701 501.692 0.009
ν
(l4=1)
4 2 533.243 533.242 0.001

1 534.320 534.329 -0.009
2ν2 3 996.222 996.273 -0.051
ν2 + ν

(l4=1)
4 2 1031.016 1030.981 0.035

1 1032.041 1032.016 0.025
2ν

(l4=2)
4 2 1064.664 1064.671 -0.007

ν
(l3=1)
3 2 1395.327 1395.327 0.000

1 1395.347 1395.337 0.010
2ν2 + ν

(l4=1)
4 2 1527.275 1527.279 -0.004

1 1528.338 1528.351 -0.013
ν1 + ν2 3 1567.682 1567.665 0.017

0 1569.212 1569.196 0.016
ν1 + ν

(l4=1)
4 2 1599.089 1599.086 0.004

1 1600.178 1600.182 -0.004
?(ν3 + ν4)(L=2) 2 1921.185 1921.214 -0.029

1 1921.688 1921.695 -0.007
2ν

(l3=2)
3 2 2780.669 2780.653 0.016

1 2782.186 2782.190 -0.004
3ν

(l3=1)
3 2 4140.167 4140.114 0.053

1 4140.191 4140.129 0.062
?The value L is given by L = |l3 + l4| as per Ref. [105].
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Table A.5: Obs. - Calc. residuals for the J = 4 energy levels used in the refinement procedure.
All values are in cm−1.

State K Obs. [104] UYT2 Obs. - Calc.
ν0 3 5.400 5.401 -0.001

0 6.971 6.972 -0.001
ν2 3 502.923 502.915 0.009
ν
(l4=1)
4 4 534.963 534.982 -0.019

2 536.051 536.050 0.001
1 537.056 537.066 -0.010

2ν2 3 998.948 999.001 -0.052
0 1000.448 1000.501 -0.054

ν2 + ν
(l4=1)
4 4 1032.778 1032.762 0.017

2 1033.787 1033.753 0.034
1 1034.871 1034.846 0.025

2ν
(l4=0)
4 3 1064.926 1064.919 0.006

0 1066.532 1066.525 0.006
2ν

(l4=2)
4 1 1066.994 1066.982 0.012

2 1067.497 1067.504 -0.007
ν
(l3=1)
3 4 1395.016 1394.996 0.020

2 1398.106 1398.107 0.000
1 1398.129 1398.119 0.010

2ν2 + ν
(l4=1)
4 4 1529.073 1529.094 -0.021

2 1530.015 1530.021 -0.006
1 1531.028 1531.043 -0.015

ν1 + ν2 3 1570.432 1570.417 0.015
3ν

(l4=1)
4 3 1593.868 1593.870 -0.002

2 1595.007 1594.990 0.017
ν1 + ν

(l4=1)
4 4 1600.787 1600.805 -0.018

2 1601.907 1601.903 0.004
1 1602.892 1602.897 -0.005

?(ν3 + ν4)(L=2) 4 1921.813 1921.821 -0.008
2 1923.981 1923.990 -0.009
1 1924.485 1924.493 -0.008

2ν
(l3=2)
3 4 2783.349 2783.373 -0.024

2 2783.439 2783.424 0.015
1 2784.955 2784.960 -0.005

3ν
(l3=1)
3 4 4139.865 4139.793 0.072

2 4142.927 4142.876 0.051
1 4142.955 4142.894 0.061

?The value L is given by L = |l3 + l4| as per Ref. [105].
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Journal of Molecular Spectroscopy, 46:194–199, 1973.

[94] Y. Hamada and A. J. Merer. Rotational Structure in the Absorption Spectrum of
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