
Downloaded from www.microbiologyresearch.org by

IP:  128.41.35.169

On: Fri, 02 Jun 2017 13:45:33

Combination antiretroviral therapy and cell–cell spread of
wild-type and drug-resistant human immunodeficiency virus-1
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Abstract

Human immunodeficiency virus-1 (HIV-1) disseminates between T cells either by cell-free infection or by highly efficient

direct cell–cell spread. The high local multiplicity that characterizes cell–cell infection causes variability in the effectiveness

of antiretroviral drugs applied as single agents. Whereas protease inhibitors (PIs) are effective inhibitors of HIV-1 cell–cell

and cell-free infection, some reverse transcriptase inhibitors (RTIs) show reduced potency; however, antiretrovirals are not

administered as single agents and are used clinically as combination antiretroviral therapy (cART). Here we explored the

efficacy of PI- and RTI-based cART against cell–cell spread of wild-type and drug-resistant HIV-1 strains. Using a quantitative

assay to measure cell–cell spread of HIV-1 between T cells, we evaluated the efficacy of different clinically relevant drug

combinations. We show that combining PIs and RTIs improves the potency of inhibition of HIV-1 and effectively blocks both

cell-free and cell–cell spread. Combining drugs that alone are poor inhibitors of cell–cell spread markedly improves HIV-1

inhibition, demonstrating that clinically relevant combinations of ART can inhibit this mode of HIV-1 spread. Furthermore,

comparison of wild-type and drug-resistant viruses reveals that PI- and RTI-resistant viruses have a replicative advantage

over wild-type virus when spreading by cell–cell means in the presence of cART, suggesting that in the context of inadequate

drug combinations or drug resistance, cell–cell spread could potentially allow for ongoing viral replication.

INTRODUCTION

Over the last three decades, combination antiretroviral ther-
apy (cART) has completely transformed the prognosis of
human immunodeficiency virus 1 (HIV-1) infection from a
fatal disease to a manageable chronic condition. Despite the
success of cART, life-long treatment is limited by cost,
development of drug resistance, the need for life-long
adherence to therapy and the unknown effects of long-term
treatment. In recent years, the focus of HIV-1 research has
shifted towards the search for a definitive cure for HIV/
AIDS alongside ongoing efforts to develop a vaccine to pre-
vent new infections. These strategies are, however, far from
being realized and antiretroviral drugs remain the best
weapon to treat and potentially prevent HIV-1 infection.
cART leads to a dramatic suppression of viral replication,
reducing the plasma levels of circulating HIV-1 RNA copies
below levels detectable by conventional clinical assays [1–4].
Despite this considerable success, patients on cART have
episodes of intermittent detectable HIV-1 RNA in plasma
(blips) [5–7], viral rebound with therapy interruption and
can develop antiretroviral drug resistance [4]. Several

factors have been hypothesized to explain the inability to
completely eradicate HIV-1 using cART, including reduced
susceptibility of HIV-1 to cART during cell–cell spread that
may contribute to ongoing low-level viral replication [8].

HIV-1 can disseminate between cells either by cell-free fluid
phase diffusion of budded viral particles, or by direct cell–
cell spread. Cell–cell spread of HIV-1 across a virological
synapse (VS) [9] is a highly efficient mode of viral dissemi-
nation in comparison to the classical mode of cell-free diffu-
sion [9–14]. This is mainly attributable to the polarized
budding of the virus towards the target cell, close physical
contact between the effector and target cell, and the cluster-
ing of cellular receptors and viral envelope proteins at the
interface between the effector cell and the target cell [9, 10,
14, 15]. These factors limit the need for prolonged diffusion
and facilitate the efficient transfer of viral particles from the
donor cell to the target cell [9, 10, 14, 15]. Numerous studies
have demonstrated the reduced susceptibility of cell–cell
spread to the effects of some neutralizing antibodies [10, 11,
16–18] and more recently to some classes of antiretroviral
drugs [8, 19–22]. Indeed, we and others have shown
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the reduced efficacy of some classes of antiretroviral drugs
applied as single agents [8, 19–21]. While protease inhibi-
tors (PIs) remain effective inhibitors of both HIV-1 cell–cell
and cell-free infection, some reverse transcriptase inhibitors
(RTIs) have significantly reduced potencies against
the former mode of infection [19]. These observations seem
paradoxical given the strong evidence that cART effectively
inhibits viral replication in HIV-1-infected patients [4].
However, conventional first-line cART typically consists of
three antiretroviral drugs from at least two different thera-
peutic classes [4, 23, 24], rather than administration of a
single agent. Although two nucleoside RTIs (NRTIs) usually
form the backbone of the triple-drug regimen, the third
component can be a non-NRTI (NNRTI), a PI or an inte-
grase inhibitor (INI) [23, 24]. Whether clinically relevant
drug combinations suppress cell–cell spread of HIV-1
remains unknown, but the matter has clear implications for
antiretroviral treatment and eradication strategies.

In the present study, we explore the impact of clinically
relevant PI- and RTI-based combinations against cell–cell
spread of wild-type and drug-resistant HIV-1 and addi-
tionally consider interactions of drugs delivered in combi-
nation [25–27]. Our results show that PI- and RTI-based
antiretroviral drug combinations effectively inhibit both
cell–cell and cell-free spread of HIV-1. Combining drugs
that alone are poor inhibitors of cell–cell spread markedly
improves HIV-1 inhibition, demonstrating that clinically
relevant drug combinations can suppress HIV-1 replication
mediated by highly efficient cell–cell spread. We also
report that relatively less fit drug-resistant viruses regain a
replicative advantage when spreading by a cell–cell mecha-
nism in the presence of cART, suggesting that in a context
of inadequate cART or drug resistance, cell–cell spread
may contribute to treatment failure and viral replication.

RESULTS

RTI-based combination therapies effectively inhibit
cell–cell and cell-free spread of HIV-1

We and others have previously shown that the RTIs, Teno-
fovir (TFV), Zidovudine (AZT), Lamivudine (3TC) and
Nevirapine (NVP), have significantly reduced potency
against HIV-1 cell–cell infection when compared to cell-free
infection [8, 19–21]. Importantly, these drugs are not used
as monotherapy for the treatment of HIV-1-infected
patients, due to the risk of rapidly selecting for drug-resis-
tant variants of the virus. To evaluate the efficacy of clini-
cally relevant drug combinations, we combined different
drugs used in cART and measured their activity against
HIV-1 cell–cell spread. To do this we took two approaches.
Firstly, we simply compared whether drug combinations
were able to fully suppress cell–cell spread in vitro. Sec-
ondly, we considered whether, when combined, different
drug combinations showed improved potency (i.e. synergis-
tic or additive effects) against cell–cell spread. For this, we
applied the median effect analysis based on the median
effect principle of Chou and Talalay [25–27] to determine

the combination index and define whether the interactions
between the drugs in the combinations tested were additive,
synergistic or antagonistic and compared this between cell–
cell and cell-free modes of HIV-1 infection. The median
effect analysis is a well-established method for assessing
drug interactions and has been applied extensively for eval-
uating combinations of antiretroviral drugs in drug develop-
ment studies [28–36].

A well-established quantitative PCR (qPCR) assay for HIV-
1 reverse transcripts that directly measures the early steps
of HIV-1 infection [10, 19, 37] was used to measure cell–
cell and cell-free spread in the presence of RTI-based com-
binations. This assay was previously used to test the effi-
cacy of PIs and RTIs against HIV-1 cell–cell spread [19].
Having previously validated that Jurkat T cells and primary
T cells give similar results when studying cell–cell spread in
the presence of ART [19], the Jurkat T cell model system
was used here due to the large number of cells needed and
the complexity of multiple drug comparisons. Initially,
three dual combinations of RTIs – AZT+TFV, TFV+EFV
(Efavirenz) and AZT+NVP – were tested. These were cho-
sen as we and others have previously shown that these
drugs, when used as single agents, are poor inhibitors of
cell–cell spread, compared to PIs for example [8, 19–21].
The drugs were combined in a fixed-dose ratio based on
their IC50 values determined in a cell-free infection assay
[25–27, 38]. Cell–cell and cell-free spread of wild-type
HIV-1 (HIV-1wt) was measured in the presence of a serial
dilution of this fixed dose combination. The inhibitory
effect (fa) of each drug alone and as part of a combination
was calculated and expressed as a fraction, representing
inhibition of infection in the presence of the drug relative
to the no-drug control. These fa values were inputted in
CompuSyn to determine the combination index (CI) for
different concentrations of the drug combination. The
mean CI values for 50, 75, 90 and 95% inhibition levels
obtained from two independent experiments and the stan-
dard error of the mean are presented.

TFV and AZT, which we have previously shown to be
respectively >10- and >20-fold less potent against cell–cell
HIV-1 infection, were tested in combination against both
cell–cell and cell-free infections. Fig. 1(a) shows that while
this combination was able to block both modes of viral
spread, more drug was needed to cause equivalent inhibi-
tion of cell–cell spread compared to cell-free. CI values
showed additive/synergistic effects against cell–cell infection
and synergistic effects against cell-free infection (Table 1).
AZT and TFV were then respectively combined with non-
nucleoside inhibitors NVP and EFV to reflect clinically rele-
vant combinations (Fig. 1b, c). Both AZT and EFV drugs
are frequently administered in combination with NRTIs in
first-line cART regimens. In our hands, NVP as a single
agent has a four-fold reduced potency against cell–cell
spread of HIV-1 [19] whereas EFV is equally potent against
both cell–cell and cell-free spread of HIV-1, as for PIs [39].
The combination of AZT+NVP inhibited both cell–cell and
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cell-free modes of HIV-1 spread with synergistic/additive
effects against cell–cell infection and synergistic effects
against cell-free infection (Fig. 1b and Table 1). Again, we
did observe a slight reduction in efficacy of this drug combi-
nation against cell–cell spread compared to cell-free. Nota-
bly, TFV+EFV was found to be the most effective
combination and potently inhibited both cell-free and cell–
cell spread at low concentrations (Fig. 1c). For all the RTI-
based combinations tested above, we consistently observed
a stronger combined potency of the drugs against cell-free
infections compared to cell–cell infections, indicative some-
what of a reduced drug activity during cell–cell spread.

PI-based combination therapies effectively inhibit
cell–cell and cell-free spread of HIV-1

In contrast to RTIs, PIs are equally effective against both
cell–cell and cell-free spread of HIV-1 [19]. The introduc-
tion of PIs in the mid-1990s completely revolutionized
cART and these drugs are now important components of
both first-line and second-line treatment options [4, 23,

24]. We therefore wanted to explore the effects of combin-
ing the less effective RTIs with PIs against HIV-1 spread.
The PI Lopinavir (LPV) was tested in combination with
the NRTI TFV and in combination with the NNRTI NVP.
We opted to use LPV as opposed to other PIs because of
its position as first-line PI therapy in many resource-limited
high-prevalence countries. Both combinations, LPV+TFV
and LPV+NVP, potently inhibited cell–cell and cell-free
spread of HIV-1 (Fig. 2a, b and Table 1).

Drug-resistant viruses gain a replicative advantage
when spreading cell–cell in the presence of cART

The development of drug resistance remains one of the big-
gest challenges of cART. Cell–cell spread of drug-resistant
viruses and its possible implications for cART is therefore
important. To study the interplay between drug resistance
and cell–cell spread of HIV-1 in the context of dual and tri-
ple ART combinations, we tested PI and RTI drug-resistant
viruses commonly selected by cART in vivo and in vitro.
The PI-resistant virus carrying the V82A mutation in
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Fig. 1. RTI-based cART effectively inhibits cell-to-cell and cell-free spread of HIV-1. Cell-to-cell and cell-free infections were assessed

in the presence of a serial dilution of dual RTI-based drug combinations: (a) AZT+TFV, (b) AZT+NVP and (c) TFV+EFV. The drugs were

combined in ratios based on their IC50 values determined in a cell-free infection assay. Infection was quantified by detecting HIV-1 pol

DNA transcripts generated at each dilution of the combination by qPCR and expressed as a fraction of the no drug control. A represen-

tative from two independent experiments is shown. The error bars represent the standard deviation of the mean. The bold lines repre-

sent the non-linear regression curve-fit and dotted lines represent actual data points.
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protease and the compensatory A431V mutation in Gag
(HIV-1dm) is selected for by LPV therapy [40–44] and con-
fers varying degrees of resistance to all PIs except DRV [43,
44]. The NRTI-resistant virus (HIV-1m184v) with M184V
in RT is selected for by suboptimal ART containing 3TC or
FTC and confers a high level of resistance to these two
agents [45, 46]. The NNRTI-resistant virus (HIV-1k103n)
with K103N in RT is selected for by NVP or EFV containing
ART and confers high levels of resistance to these drugs
[47–49]. Besides conferring resistance to the relevant antire-
troviral agents, these mutations impose a fitness cost for the
replication of these viruses when compared to wild-type
HIV in cell-free assays [40, 50, 51].

The drug susceptibility phenotypes of the resistant viruses
compared to HIV-1wt were verified in an in-house drug sus-
ceptibility assay [52, 53]. As expected, HIV-1dm was suscepti-
ble to inhibition by DRV but was 8.4-fold more resistant to
inhibition by LPV (Fig. 3a, b). HIV-1m184v was susceptible to
inhibition by AZT but was 120-fold more resistant to inhibi-
tion by lamivudine (3TC) (Fig. 3c, d). HIV-1k103n was 28-
fold more resistant to inhibition by NVP and 650-fold more
resistant to inhibition by EFV. After verifying and confirming
the phenotype of drug-resistant viruses, the ability of these
viruses to spread efficiently by a cell–cell compared to a cell-
free mechanism was assessed using the qPCR-based assay sys-
tem. HIV-1wt cell–cell spread was significantly more efficient

Table 1. Combination indices for cell–cell and cell-free HIV-1 spread

Mode of infection Combination index (CI)*† Effect

50 75 90 95

Combination AZT+TFV (ratio=1 : 1)

Cell–cell AZT+TFV 0.9 (0.1) 0.85 (0.1) 0.82 (0.05) 0.74 (0.12) Additive/synergistic

Cell-free AZT+TFV 0.41 (0.06) 0.39 (0.03) 0.42 (0.1) 0.45 (0.04) Synergistic

Combination AZT+NVP (ratio=40 : 1)

Cell–cell AZT+NVP 0.95 (0.05) 1.05 (0.05) 1.1 (0.13) 1.1 (0.1) Additive

Cell-free AZT+NVP 0.97 (0.06) 0.89 (0.04) 0.79 (0.06) 0.76 (0.1) Additive/synergistic

Combination TFV+EFV (ratio=1000 : 1)

Cell–cell TFV+EFV 0.59 (0.05) 0.46 (0.07) 0.36 (0.05) 0.35 (0.02) Synergistic

Cell-free TFV+EFV 0.1 (0.02) 0.13 (0.01) 0.22 (0.05) 0.39 (0.1) Synergistic

Combination LPV+TFV (ratio=1 : 1000)

Cell–cell LPV+TFV 0.03 (0.06) 0.1 (0.01) 0.12 (0.04) 0.36 (0.2) Synergistic

Cell-free LPV+TFV 0.02 (0.01) 0.06 (0.01) 0.15 (0.02) 0.4 (0.13) Synergistic

Combination LPV+NVP (ratio=1 : 25)

Cell–cell LPV+NVP 1.1 (0.07) 0.92 (0.2) 0.74 (0.24) 0.71 (0.26) Additive/synergistic

Cell-free LPV+NVP 0.86 (0.03) 0.72 (0.03) 0.6 (0.04) 0.46 (0.04) Additive/synergistic

*Data are mean and SEM from two independent experiments.

†50, 75, 90 and 95 indicate the percentage inhibition of infection in the presence of the combination being tested.
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Fig. 2. PI-based cART effectively inhibits both cell-to-cell and cell-free spread of HIV-1. Cell-to-cell and cell-free infections were

assessed in the presence of a serial dilution of a PI+RTI combination: (a) LPV+TFV and (b) LPV+NVP. The drugs were combined in a

ratio based on their IC50 values determined in a cell-free infection assay. Infection was quantified by detecting HIV-1 pol DNA tran-

scripts generated at each dilution of the combination by qPCR and expressed as a fraction of the no drug control. A representative

from two independent experiments is shown. The error bars represent the standard deviation of the mean. The bold lines represent

the non-linear regression curve-fit and dotted lines represent actual data points.
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(six-fold) than cell-free spread (Fig. 4a), in agreement with
previous reports [10–14, 37, 54]. Similarly, all drug-resistant
viruses tested showed more efficient cell–cell spread compared
to cell-free spread (Fig. 4b–d). As expected, all drug-resistant
viruses maintained their resistant phenotypes when spreading
by a cell–cell mechanism and unlike wild-type virus were not
inhibited by the presence of the relevant anti-retroviral drug
(Fig. 4f–h).

Next, we assessed cell–cell spread of the resistant viruses in
the presence of combination therapy. We tested the PI-
resistant virus HIV-1dm in the presence of PI-based cART
and the RTI-resistant viruses HIV-1k103n and HIV-
1m184v in the presence of RTI-based cART. To evaluate the
impact of drug resistance on the potency of a given combi-
nation, we calculated the CI values for the drug-resistant
viruses and compared them to those obtained with the wild-
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tested in a cell-free-based HeLa TZM-bl drug susceptibility assay. The phenotypes of the viruses were confirmed in this assay and

compared to wild-type virus: (a) HIV-1dmD was 8.4-fold more resistant to LPV than HIV-1wt but was (b) equally susceptible to DRV as

HIV-1wt. (c) HIV-1m184v was as expected susceptible to AZT but was (d) 120-fold more resistant to 3TC than HIV-1wt. (e) HIV-1k103n

was 28-fold more resistant to NVP than HIV-1wt, and was (f) 650-fold more resistant to EFV that HIV-1wt. The dotted lines represent

actual data points while the bold lines represent the non-linear regression curve fit. The error bars represent the standard deviation of
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type virus. With the combination of LPV+TFV, HIV-1dm
(which is resistant to LPV) had a replicative advantage com-
pared to HIV-1wt when spreading by a cell–cell mechanism
(Fig. 5a, b and Table 2), indicating that TFV alone is unable
to suppress cell–cell spread, in agreement with previous
reports [8, 19–21]. A similar result was obtained for cell–
cell spread of HIV-1k103n compared to HIV-1wt in the
presence of TFV+EFV, with the resistant virus again show-
ing a distinct replicative advantage over wild-type virus
(Fig. 5c, d and Table 2). These results suggest that cell–cell
spread of drug-resistant viruses reduces the potency of

cART. Combinations that are synergistic against cell–cell
spread of wild-type virus become additive or exhibit

decreased synergy against cell–cell spread of drug-resistant

viruses (Table 2). This observation remained apparent even
when TFV+3TC+EFV, a potent clinically relevant first-line

triple drug combination, was tested against cell–cell spread

of HIV-1k103n (Fig. 5e, f and Table 2).

Finally, cell–cell spread of the NRTI drug-resistant virus

HIV-1m184v was tested in the presence of an RTI-based
combination and compared to HIV-1wt. The M184V
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mutation in RT was particularly interesting for this study
because while it confers a 120-fold greater resistance to inhi-
bition by 3TC compared to wild-type virus in the drug sus-
ceptibility assay (Fig. 3d), this mutation is also well
described for increasing the susceptibility of the virus to
other NRTIs, notably TFV and AZT [55–58]. It was there-
fore of interest to test whether the increased susceptibility of
HIV-1m184v to AZT would remain evident when infection
was mediated by highly efficient cell–cell spread, not least
because cell–cell spread by wild-type HIV-1 is highly imper-
vious to inhibition by AZT [19]. To address this, cell–cell
spread of the mutant virus was directly compared to that of
the wild-type virus in the presence of AZT. Fig. 6(a) shows
that although AZT was unable to fully suppress cell–cell
spread of HIV-1wt, the drug effectively inhibited cell–cell
spread of HIV-1m184v. Cell–cell spread of this resistant
mutant was then tested with drug combinations. With the
combination of 3TC+AZT, both HIV-1wt and HIV-
1m184v cell–cell infections were effectively inhibited
although HIV-1m184v showed a replication advantage
albeit a modest one in the presence of this combination in
comparison to HIV-1wt (Fig. 6b). The triple RTI combina-
tion of 3TC+AZT+EFV potently blocked cell–cell spread of
both viruses (Fig. 6c). This finding confirmed the continued
efficiency of clinically relevant triple cART in the presence
of the M184V mutation.

DISCUSSION

In recent years, the role of HIV-1 cell–cell spread as a means
of antiviral escape and a possible mechanism for the main-
tenance of the viral reservoir has elicited great interest and
debate. Our group and others have demonstrated the vari-
able effects of individual antiretroviral drug classes against
this mode of infection in vitro [8, 19–21]. However, given
the widely accepted and proven efficacy of cART for the
treatment of HIV-infected patients, this has been a topic of
much discussion.

Here we have assessed the potency of clinically relevant RTI
and, for the first time, PI-based drug combinations against
cell–cell spread of HIV-1 and compared this to the classical
mode of infection by cell-free diffusion. We find cART
potently inhibits both cell–cell and cell-free modes of viral
dissemination, albeit with a moderately reduced potency
against cell–cell infection that is a more efficient means of
HIV-1 spread. This is further reflected by weaker observed
combined effects (additive or synergistic) of the combina-
tions tested against cell–cell infection, compared to cell-free
infection, despite efficient suppression of viral dissemina-
tion in vitro. Notably, combining less effective RTIs (AZT
+TFV, TFV+EFV, AZT+NVP) and RTIs with potent PIs
(LPV+TFV, LPV+NVP) strongly inhibits cell–cell spread.
These drug interactions are similar to those observed in
previous cell-free-based antiviral drug interaction studies
[29–32, 34, 35, 59, 60]. The reduced potency of some
antiretrovirals against cell–cell spread has been mainly
attributed to the high viral m.o.i. that characterizes this
mode of dissemination in vitro. Thus it has been suggested
that RTIs, which act within target cells, may be more easily
saturated by an influx of infectious virions transmitted at
the VS, explaining their reduced potency against cell–cell
spread in vitro [8, 19, 21]. Our data showing that antiretro-
viral drugs display enhanced potency when used in combi-
nation suggest that cART is probably sufficient to overcome
the high multiplicity of cell–cell infections in this in vitro
model. Our data are supported by Agosto et al. [21] who
evaluated inhibition of HIV-1 cell–cell spread in the pres-
ence of RTI combinations using the instantaneous inhibi-
tory potential (IIP) as a parameter to assess the potency and
inhibitory capacity of drugs in combination. Like the CI, the
IIP is also derived from the median effect equation [25–27,
61, 62]. That two independent studies using different ana-
lytical approaches concur that cART can effectively block
HIV-1 cell–cell spread addresses the important issue of how
cART could control viral replication in vivo, in light of
reports attesting to reduced efficacy of single agents against
highly efficient cell–cell spread [8, 19–21]. Furthermore,

Table 2. CI values against PI-resistant virus (HIV-1DM), RTI-resistant virus (HIV-1K103N) and wild-type virus during cell-cell spread

Virus Combination index (CI)*† Effect

50 75 90 95

Combination (ratio=1 : 1000)

HIV-1wt LPV+TFV 0.03 (0.06) 0.1 (0.01) 0.12 (0.04) 0.36 (0.2) Synergistic

HIV-1dm LPV+TFV 0.14 (0.01) 0.21 (0.01) 0.29 (0.04) 0.49 (0.1) Synergistic

Combination TFV+EFV (ratio=1000 : 1)

HIV-1wt TFV+EFV 0.69 (0.05) 0.46 (0.07) 0.36 (0.05) 0.35 (0.02) Synergistic

HIV-1k103n TFV+EFV 1.1 (0.02) 0.93 (0.01) 0.82 (0.05) 0.79 (0.1) Synergistic/additive

Combination TFV+EFV+3TC (1000 : 10 : 1)

HIV-1wt TFV+3TC+EFV 0.08 (0.03) 0.09 (0.01) 0.12 (0.04) 0.18 (0.01) Synergistic

HIV-1k103n TFV+3TC+EFV 0.35 (0.02) 0.39 (0.01) 0.44 (0.02) 0.48 (0.13) Synergistic

*Data are mean and standard SEM from two independent experiments.

†50, 75, 90 and 95 indicate the percentage inhibition of infection in the presence of the combination being tested.
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here we have also included for the first time PIs in cART to
evaluate the effect against cell–cell spread, as well as combi-
nations with PIs and NNRTIs. While PIs and NNRTIs are
not typically used in cART, that they also demonstrate
potency against cell–cell spread further highlights the
advantage of combining drugs, even those that alone are
poor inhibitors of cell–cell spread, to achieve efficient viral
blockade. Taken together, these studies demonstrate that
different combinations of cART can effectively block cell–
cell spread of HIV-1.

Drug resistance is a major cause of treatment failure, but the

interplay between cell–cell infection and cART in the con-

text of resistant virus has been little considered, but has

important clinical implications [63, 64]. Our findings that

drug-resistant viruses can spread effectively by a cell–cell

mechanism in the presence of cART is therefore interesting.

The reduced replication fitness of the M184V mutation and

its enhanced susceptibility to Tenofovir and Zidovudine

has been used as an argument for maintaining patients who
select for this resistance mutation on 3TC containing treat-
ment regimens [50, 51, 58, 65]. The rationale is that select-
ing for and maintaining the relatively unfit M184V virus
will translate into a clinical benefit [50, 51, 58, 65]. While
this approach appears to work initially, patients eventually
fail treatment and still require the replacement of 3TC with
alternative second-line options [66]. Here we observed that
the NRTI drug-resistant mutant M184V, which has been
extensively described in the literature for its diminished rep-
lication capacity in cell-free assays [50, 51, 55–57], was
capable of cell–cell spread at levels similar to wild-type
virus. Indeed, a similar observation has recently been made
with the Dolutegravir (DTG)-resistant mutant R263K,
which has a diminished capacity to replicate [67] but was
found to spread efficiently via cell–cell contacts [68]. In light
of our findings, and those of Agosto et al. [21], further test-
ing to elucidate whether cell–cell spread may serve as a
means for continued replication and maintenance of ‘unfit’
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drug-resistant viruses and analysis of the mechanism
involved would be of clear interest.

While it is difficult to extrapolate from in vitro models to
explain the complexities of viral replication in vivo, it has
been suggested that if cell–cell spread of HIV-1 is taking
place in lymphoid tissue in vivo, then this should result in
the appearance of cells with multiply-integrated proviruses
[54]. Since only a few studies have demonstrated the pres-
ence of multiply infected CD4+ lymphocytes in vivo [69,
70], it has been argued that cell–cell spread does not con-
tribute to HIV-1 replication in vivo. However, this may be
an over-simplification. Firstly, it is increasingly apparent
that the defensive processes associated with high m.o.i.
infection induce cellular apoptosis as the result of a high
cytoplasmic load of viral DNA [71–73]. This may in turn
result in the selection of CD4+ lymphocytes carrying only a
single provirus, which are more frequently observed in vivo.
Thus these cells may simply be deleted from the pool of cells
available for sampling. Secondly, it may not naturally follow
that the attachment and entry of multiple viral particles
would necessarily result in multiple infectious units that all
lead equally to successful viral integration in the setting of
natural spread in vivo. Many aspects of the complex molec-
ular processes that regulate HIV-1 nuclear import and inte-
gration remain to be elucidated and future work will
undoubtedly shed light on this issue.

Some studies have failed to show evidence of viral evolution
in patients receiving fully suppressive cART, arguing against
ongoing viral replication in treated patients [74–77]; how-
ever, due to the difficulty in sampling niches and sanctuary
sites where cell–cell spread probably occurs, these data may
not fully capture the true picture. Furthermore, recent data
from some raltegravir intensification studies provide sup-
port for ongoing viral replication during cART [78–80],
although these too are subject to debate (reviewed in [81]).
In vivo HIV cell–cell spread would probably occur predomi-
nantly in the lymphoid tissues where there is an abundance
of CD4+ T cells and effective antiviral drug penetration may
be suboptimal [82]. Also, in other anatomical sanctuary
sites with reduced drug penetration [82–85], niches of cells
in close proximity and the absence of sheer flow may favor
cell–cell spread. It is reasonable to speculate based on our
results that in a context of low adherence to cART, sub-
optimal drug combinations and drug resistance, cell–cell
spread may allow for therapeutic escape due to its enhanced
replication efficiency over cell-free spread, even in the pres-
ence of cART. The development of improved methods to
identify and sample sanctuary sites in HIV-1-infected indi-
viduals will help to clarify this issue.

Predicting the outcomes of ART in patients, although highly
desirable, remains very difficult in current clinical practice.
As new therapies are developed for the treatment of HIV-1,
being able to assess the efficacy of novel combinations
against all modes of virus dissemination will serve as a valu-
able tool for predicting their efficacy, prior to clinical test-
ing. In view of our findings, the variable effects of

antiretroviral drugs on cell–cell spread of HIV-1 should be
considered for future prophylactic, therapeutic and eradica-
tion strategies. Employing a simple in vitro assay like the
one used for this study provides a straightforward way of
doing this.

METHODS

Cells, viruses and inhibitors

HeLa-TZMbl cells were obtained from the Center for AIDS
Reagents, National Institutes of Biological Standard and
Control, UK (CFAR, NIBSC) and donated by J. Kappes, X.
Wu and Tranzyme Inc. HEK 293T cells were originally from
the ATCC (American Type Culture Collection). Adherent
cells were cultured in Dulbecco’s modified Eagle medium
(DMEM) supplemented with 10% FCS (Invitrogen), 50 U
penicillin ml�1 and 50 µg streptomycin ml�1. The CD4+/
CXCR4+ T cell line Jurkat CE6.1 [obtained through AIDS
Research and Reference Reagent Program, Division of AIDS,
NIAID, NIH (ARRP): from Dr Estuardo Aguilar-Cordova
and Dr John Belmont] was maintained in RPMI 1640 sup-
plemented with 10% FCS and 50 U penicillin ml�1 and
50 µg streptomycin ml�1. The HIV-1 clone pNL4.3 was pro-
duced by Dr Malcolm Martin and obtained from the ARRP.
The antiretroviral drugs Lopinavir (LPV), Nevirapine
(NVP), Efavirenz (EFV), Zidovudine (AZT), Lamivudine
(3TC) and Tenofovir (TDF) were obtained from the ARRP.

Construction of drug-resistant viruses

To construct the drug-resistant variants of NL43,
site-directed mutagenesis was performed with Accuprime
Pfx supermix (Invitrogen) using forward and reverse pri-
mers containing the required nucleotide substitutions. For
the PI-resistant virus (HIV-1dm) two mutations, V82A, a
major protease drug resistance mutation (mutagenesis
primers: forward 5¢-GTAGGACCTACACCTGCCAACA
TAATTGGAAG-3¢, reverse 5¢-CAGATTTCTTCCAATTA
TGTTGGCAGGTGTAGG-3¢), and A431V, a cleavage site
mutation in the p7/p1 junction (mutagenesis primers: for-
ward 5¢-GAAAGATTGTACTGAGAGAGACAGGTTAATT
TTTTAGG-3¢, reverse 5¢-GGCCAGATCTTCCCTAAAAA
TTAACCTGTCTCTCAGT-3¢), were introduced. For the
NRTI-resistant virus (HIVm184v), the M184V mutation
was introduced in RT (mutagenesis primers: forward 5¢-TC
TATCAATACGTGGATGATTTGTATGTAGGATCTGACT
TAG-3¢, reverse 5¢-AATCATCCACGTATTGATAGATGAC
TATGTCTGGATTTTG-3¢). For the NNRTI-resistant virus
(HIV-1k103n), the K103N mutation was introduced in RT
(mutagenesis primers: forward 5¢-GCAGGGTTAAAACA-
GAACAAATCAGTAACAGTACTGG-3¢, reverse 5¢-ACAT
CCAGTACTGTTACTGATTTGTTCTGTTTTAAC-3¢). The
mutagenesis was carried out in the vector pCR 2.1 TOPO,
by sub-cloning a region of HIV-1NL4.3 covering nucleoti-
des 740–2940. Sequencing was performed by BigDye termi-
nator chemistry and a 3730xl analyzer (ABI) to confirm the
presence of the mutations introduced and the absence of
any other substitutions. The mutated fragment was re-
introduced into the HIV-1NL4.3 backbone by SpeI/AgeI
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digestion. Stocks of infectious virus (HIV-1dm, HIV-
1m184v, HIV-1k103n and HIV-1wt) were made by trans-
fecting 293T cells using Fugene HD (Promega). Infectious
viral titres were measured on HeLa-TZMbl reporter cells
using the Bright-Glo Luciferase assay kit (Promega).

Drug susceptibility assay to validate mutagenesis

An in-house assay was used to determine the drug suscep-
tibility of the mutant drug-resistant viruses compared to
the wild-type vector [52, 53]. The assay was modified to
accommodate the use of plasmids with full-length HIV-1
genomes. HEK 293T cells were transfected as described
above, and 16 h later the cells were seeded in the presence
of a serial dilution of PIs. Virus supernatant was harvested
24 h later and used to infect fresh target HeLa-TZMbl cells
by spinoculating for 2 h at 1200 g. Replication was deter-
mined by measuring luciferase expression in infected target
cells at 48 h post-infection using the SteadyGlo luciferase
assay system (Promega) and expressed relative to that of
no drug controls. Fifty per cent inhibitory concentrations
(IC50) were determined using Prism GraphPad Software.
The IC50 values calculated are the mean of at least two
independent experiments.

Flow cytometry

HIV-1-infected Jurkat cells were washed and fixed with
3% paraformaldehyde (PFA), permeabilized in BD Perm
Buffer (BD Biosciences) and stained with anti-HIV p24
monoclonal antibody conjugated to fluorescein isothiocya-
nate [HIV-1 p24 (24–4) FITC; Santa Cruz Biotechnology]
to detect intracellular Gag. Acquisition was performed
using a Becton Dickinson FACS Calibur and data were
analysed using FlowJo software. Cells were used when
>90 % were Gag positive.

Quantitative real-time PCR assay to measure cell–
free and cell–cell spread

To measure cell–cell transfer from an infected donor cell to
an uninfected target cell, real-time PCR was used to detect
de novo pol-transcripts as described in previous studies
using this assay [10, 19, 37] with modifications to accom-
modate for the use of drug inhibitors (RTIs and PIs). Donor
cells were infected at an m.o.i. of 0.3–0.5 with either HIV-1
NL4.3 (wild-type) or drug-resistant mutant virus by spino-
culating at 2000 g for 2 h. Three days after infection, the
donor cells were stained for Gag and analyzed by flow
cytometry. Only donor cell cultures that were >90 %
infected were used for experiments. This minimizes the
background from spreading infection between donor cells
after target cells are added to the culture. In total, 2�105

pre-washed infected Jurkat cells (donors) per well on a 96-
well plate were mixed with 8�105 uninfected Jurkat cells
(targets) per well in the presence of a serial dilution of the
single inhibitor or combination of inhibitors being tested.
The co-culture was incubated for 24 h at 37

�

C after which
the cells were pelleted, stored at �80

�

C and genomic DNA
was extracted (Qiagen). Quantitative real-time PCR was
performed to measure cell–cell spread as described

previously using primers and probes specific for HIV-1 pol
DNA and the housekeeping gene albumin [10, 19, 37]
(HIV-1 pol primers and probe: forward 5¢-GTGCTGGAA
TCAGGAAAGTACTA-3¢, reverse 5¢-ATCACTAGCCA
TTGCTCTCCAATT-3¢, probe 5¢-TGTGATATTTCTCA
TGTTCATCTTGGGCCTTATCT-3¢, albumin primers and
probe: forward 5¢-GCTGTCATCTCTTGTGGGCTGT-3¢,
reverse 5¢-AAACTCATGGGAGCTGCTGGTT-3¢, probe
5¢-CCTGTCATGCCCACACAAATCTCTCC-3¢).

Cell-free experiments were performed as previously
described [19]. Briefly, pre-washed 2�105 donor cells per
well were allowed to produce virus over 24 h. Then, 100 µl
of the virus supernatant was used to infect 1�106 target cells
per well by spinoculation at 2000 g for 2 h, in the presence
of a serial dilution of the drug combination under investiga-
tion. Following infection by spinoculation, the target cells
were incubated for 24 h, after which they were pelleted for
total DNA extraction and subsequent real-time PCR quanti-
fication of infection as described previously.

Drug combination studies

The real-time PCR-based infection assays described above
were used for the drug combination studies. Antiretroviral
agents from the RTI and PI classes were tested in clinically
relevant combinations. The drugs were combined in a ratio
based on the IC50 values of the individual drugs for cell-free
infection. For example, if the IC50 of drug A=50 nM and the
IC50 of drug B=100 nM, to test these drugs in combination,
A+B were combined in a ratio of 1 : 2 [38]. Cell–cell and
cell-free infection was assessed in the presence of a serial
dilution of the combination and infection was determined
by qPCR as described above. The percentage inhibition at
each concentration was determined and expressed as a frac-
tion of the ‘no-drug’ positive control. These values were
used to determine the CI values for the drug combination
using the drug synergy analysis software CompuSyn
(Paramus). The CI obtained can then be interpreted to
determine whether the interaction between the drugs under
study is synergistic, additive or antagonistic. For the presen-
tation of our data the following cut-offs for CI values
according to Chou and Talalay are applied: CI <0.9 = syn-
ergy, CI 0.9–1.2 = addition, CI >1.2 = antagonism.
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