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Summary

1. Restoration and maintenance of habitat diversity have been suggested as conservation prio-

rities in farmed landscapes, but how this should be achieved and at what scale are unclear. This

study makes a novel comparison of the effectiveness of three wildlife-friendly farming schemes

for supporting local habitat diversity and species richness on 12 farms in England.

2. The schemes were: (i) Conservation Grade (Conservation Grade: a prescriptive, non-

organic, biodiversity-focused scheme), (ii) organic agriculture and (iii) a baseline of Entry

Level Stewardship (Entry Level Stewardship: a flexible widespread government scheme).

3. Conservation Grade farms supported a quarter higher habitat diversity at the 100-m radius

scale compared to Entry Level Stewardship farms. Conservation Grade and organic farms both

supported a fifth higher habitat diversity at the 250-m radius scale compared to Entry Level

Stewardship farms. Habitat diversity at the 100-m and 250-m scales significantly predicted spe-

cies richness of butterflies and plants. Habitat diversity at the 100-m scale also significantly pre-

dicted species richness of birds in winter and solitary bees. There were no significant

relationships between habitat diversity and species richness for bumblebees or birds in summer.

4. Butterfly species richness was significantly higher on organic farms (50% higher) and mar-

ginally higher on Conservation Grade farms (20% higher), compared with farms in Entry

Level Stewardship. Organic farms supported significantly more plant species than Entry Level

Stewardship farms (70% higher) but Conservation Grade farms did not (10% higher). There

were no significant differences between the three schemes for species richness of bumblebees,

solitary bees or birds.

5. Policy implications. The wildlife-friendly farming schemes which included compulsory

changes in management, Conservation Grade and organic, were more effective at increasing

local habitat diversity and species richness compared with the less prescriptive Entry Level

Stewardship scheme. We recommend that wildlife-friendly farming schemes should aim to

enhance and maintain high local habitat diversity, through mechanisms such as option pack-

ages, where farmers are required to deliver a combination of several habitats.

Key-words: agri-environment schemes, bees, birds, butterflies, landscape heterogeneity,

organic farming, plants, pollinators

Introduction

The expansion and intensification of agricultural land is a

global threat to biodiversity (Green et al. 2005), and bio-

diversity declines associated with agricultural intensifica-

tion have been documented for multiple taxa (birds:

Donald et al. 2006; aculeate pollinators: Ollerton et al.

2014; Lepidoptera: Ekroos, Heli€ol€a & Kuussaari 2010;

plants: Kleijn et al. 2009). Agricultural intensification

reduces the spatial and temporal complexity of habitats*Correspondence author. E-mail: chloehardman@gmail.com
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(Stoate et al. 2001). This reduction in habitat heterogene-

ity has occurred at multiple spatial scales, for example

through reduced crop diversity and hedgerow removal at

local scales and homogenization of land-use types at land-

scape scales (Tscharntke et al. 2005). Restoring habitat

heterogeneity has been proposed as a ‘universal manage-

ment objective’ that would increase biodiversity in agricul-

tural systems (Benton, Vickery & Wilson 2003). However,

the suitability of this objective has been disputed for low-

intensity agricultural landscapes (Bat�ary et al. 2011b). In

agricultural landscapes, relationships between habitat

diversity and species richness are taxon specific and scale

dependent (Jeanneret, Sch€upbach & Luka 2003; Weibull,

Ostman & Granqvist 2003; Gaba et al. 2010). Therefore,

how habitat diversity should be restored and at what scale

are questions that need further research.

In Europe, government-run agri-environment schemes

(AES) and private sector environmental certification

schemes are important mechanisms for reducing the neg-

ative environmental impacts of agricultural intensifica-

tion. Government AES encompass a range of financial

incentives for farmers to undertake low-input extensive

farming and/or restoration of particular habitats, species

or landscape features (Hart 2010). The effectiveness of

AES in conserving and promoting biodiversity has been

highly variable; depending on ecological contrast, land-

scape context and land-use intensity (Kleijn et al. 2011).

AES appear to be most effective when they create a

high ecological contrast (the extent to which the AES

management improves habitat conditions for the target

group relative to conventional management, Scheper

et al. 2013). In addition, there is evidence that AES are

most effective in simple landscapes (1–20% semi-natural

habitat), compared to complex (>20%) (Bat�ary et al.

2011a).

Environmental Stewardship is an English AES, with a

wildlife conservation focus, which accepted applications

between 2005 and 2013 (Natural England 2013a). The

scheme has two tiers of whole-farm schemes: Entry Level

Stewardship (ELS, 5-year agreements) and Higher Level

Stewardship (HLS, 10-year agreements in addition to

ELS). ELS is a ‘broad and shallow’ scheme, which aimed

to maximize geographic coverage. ELS includes manage-

ment options for boundary features, trees and woodland,

historic and landscape features, buffer strips, arable,

grassland, crop diversity and soil and water protection.

Each option gains a number of points per unit area, and

farmers choose how to combine options to achieve an

overall 30 points per hectare. The organic version of ELS

(OELS) includes the same choice of options, and farmers

are paid double the conventional rate. In contrast, HLS is

a ‘narrow and deep’ scheme, which is regionally targeted

and competitive. HLS contains more complex manage-

ment options including the creation, restoration and

maintenance of priority habitats, such as species-rich

semi-natural grassland. ELS covered 64�6% of England’s

agricultural land area in October 2013, OELS covered

3�4%, and HLS covered 13�0% (Natural England 2013b).

Direct comparisons of organic farms with non-organic

biodiversity-targeted AES are scarce (but see Marja et al.

2014). This research gap was highlighted by Hole et al.

(2005). Studies examining the different AES in England

have shown effectiveness to be variable. Organic farming

has been evaluated extensively, and a recent meta-analysis

showed that it was associated with 30% greater species

richness compared to conventional farming (Tuck et al.

2014). Benefits of HLS have been observed for birds

(Bright et al. 2015), whilst ELS has been shown to benefit

granivorous passerines in winter, but to have mixed

effects during the breeding season (spring/summer, Baker

et al. 2012). The impacts of ELS on birds and pollinators

have been limited by low uptake of the most effective

options (Butler, Vickery & Norris 2007; Breeze et al.

2014). At a national scale, hedgerow management and

low-input grassland together account for half of all points

awarded in ELS (Breeze et al. 2014). Farmers did not

need to change existing management in 50% of cases for

hedgerow options and 81% of cases for low-input grass-

land options in order to qualify for ELS payments

(Boatman et al. 2007).

In addition to government AES, farmers can enter

ecological certification schemes. One such scheme, which

has more stringent habitat management requirements

than ELS, is Conservation Grade (CG, http://www.con-

servationgrade.org). This scheme uses a ‘Fair to Nature’

protocol that requires 10% of the farm area to be man-

aged solely for wildlife habitat according to a specific

formula: 4% pollen- and nectar-rich habitats, including a

grass and native wildflower mix (>1�5%) and a legume

mix (<2�5%); 2% wild bird food crops, including at least

three seed-producing crops such as barley, triticale, kale

or quinoa; 2% tussocky and fine grasses; and 2% wild-

life habitat specific to the farm. Pollen and nectar habi-

tats and wild bird food crops require continued

management to maintain quality. The additional manage-

ment costs are met through sales of ‘Fair to Nature’

branded food products. CG has been implemented since

2004 and currently involves 80 farms, mostly cereal pro-

ducers in the UK. CG farms had on average 24 times

more nectar flower mixture (EF4) and 15 times more

wild bird seed mixture (EF2) than farms in ELS alone

(Natural England 2013a, proportional area data from 52

CG farms).

The CG protocol was based on evidence from experi-

mental farms that showed significantly higher levels of

invertebrates in sown margin mixes compared to the crop

(Meek et al. 2002) and substantial benefits of pollen and

nectar mixes for bumblebees (Carvell et al. 2004). More

recently, benefits of sown wildflower strips for insects

have been demonstrated more widely (Haaland, Naisbit &

Bersier 2011) and wild bird food crops have been found

to support higher densities of birds in winter compared to
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controls (Henderson, Vickery & Carter 2004; Hammers

et al. 2015). Taxon-specific studies have been carried out

in parallel with our multitaxa study, using a subset of the

same sites. CG farms supported higher densities of

granivorous passerines in winter than organic farms (Har-

rison 2013), and functional diversity of hoverflies on CG

farms was slightly higher and less variable between farms

(Cullum 2014) compared to organic. We undertook the

first multitaxa study of farmer-managed CG farms and

examined how they compared to alternative wildlife-

friendly farming schemes.

We compared CG, organic and ELS, in terms of the

extent to which they enhanced habitat diversity and spe-

cies richness of a wide range of taxa. We focused on spa-

tial rather than temporal heterogeneity and on habitat

diversity rather than configuration. We examined habitat

diversity at multiple spatial scales, since not doing so

would potentially miss important species–landscape effects

(Jackson & Fahrig 2015). This analysis also enabled us to

check whether scheme type was associated with landscape

diversity.

Our research questions were: (i) Does habitat diversity

vary between these wildlife-friendly farming schemes at

local and landscape scales? (ii) At which spatial scale does

species richness of different taxonomic groups respond to

habitat diversity? (iii) Does species richness differ between

farms in the three schemes and if so, how far can this be

explained by habitat diversity? We collected spatial data

on habitats, along with species richness and abundance

data on plants, butterflies, bumblebees, solitary bees and

birds in order to answer these questions. We expected

farms in the additional schemes (CG and organic) to sup-

port higher species richness and habitat diversity than

farms only in ELS. We expected taxonomic groups to

respond most strongly to habitat diversity at scales similar

to those at which individuals typically use the landscape.

We expected local habitat diversity to be more important

on CG and ELS farms than on organic farms, since

organic crops receive lower or zero synthetic chemical

inputs compared to CG and ELS. Therefore, an organic

area surrounded by low habitat diversity would be

expected to support more species than a non-organic

equivalent.

Materials and methods

DEFIN ING SPATIAL SCALES

We evaluated habitat diversity at four spatial scales: two local

scales that largely reflect within-farm management (100-m radius;

3�14 ha and 250-m radius; 19�6 ha) and two larger scales that

represent the wider landscape (1-km radius; 314 ha and 3-km

radius; 2827 ha). These radii were chosen because they cover the

range of radii at which different taxonomic groups have been

found to typically use the landscape: birds, up to 3 km (Pickett &

Siriwardena 2011); bumblebees, up to 2 km (Walther-Hellwig &

Frankl 2000); solitary bees, up to 600 m (Gathmann & Tscharn-

tke 2002); and butterflies, up to 420 m (Merckx & Van Dyck

2002).

STUDY SITES

This study was carried out in southern England on matched tri-

plets of farms to minimize confounding environmental variables.

Triplets of sites were matched on region (Joint Character Areas

[Natural England 2011]), soil type (NSRI 2011), crops and live-

stock, as far as possible. The number of sites fitting these selec-

tion criteria was low, but four suitable triplets were found

(Fig. 1, Table S1, Supporting Information). There were no signifi-

cant differences in broad habitat composition metrics between

scheme types (farm scale and 1-km radius scale, Tables S2 and

S3). The minimum time since scheme entry was 6 years for CG

farms and 5 years for ELS farms (with one exception of 2 years).

The minimum time since organic conversion started was 13 years.

Three-quarters of the CG and organic farms were in HLS, and

one organic farm began HLS conversion towards the end of the

study. Nationally, 56% of CG, 25% of OELS farms and 24�5%
of ELS farms were in HLS in 2013 (Natural England 2013a).

Average farm size was 267�5 � 36�6 ha (mean � SE), and the

average field size was 9�11 � 0�40 ha. Organic farms had signifi-

cantly smaller field sizes than the ELS farms (chi-square test

[2] = 5�43, P = 0�021) and significantly lower wheat yields than

ELS farms (generalized linear mixed models [GLMM] chi-square

test [2] = 13�70, post hoc tests: CG > Org: P = 0�001, ELS > Org:

P = 0�005) (Table S4). CG farms had a higher number of HLS

options per farm than organic farms (chi-square test [2] = 16�148,
P = 0�001). However, there were no differences between schemes

in the number of ELS options per farm (chi-square test

[2] = 7�319, P = 0�292).

HABITAT MAPPING

Farm habitats were mapped by digitizing Environmental Ste-

wardship maps and cropping plans using Arc GIS v.10, with a

minimum mappable unit of 0�01 ha. The UK Land Cover Map

2007 was used as a base for landscape mapping (Centre for Ecol-

ogy & Hydrology 2011), which has a minimum mappable unit of

0�5 ha. All maps were ground-truthed (Methods detailed in

Appendix S1, habitat categories in Tables S5 and S6).

BIODIVERSITY SAMPLING STRATEGY

A proportional stratified sampling technique was designed to rep-

resent the habitat composition of each farm. If calculated by area

alone, Environmental Stewardship options of high biodiversity

value covering small areas would be under-represented; therefore,

areas of AES options were weighted using the points scored in

ELS/OELS/HLS (for details see Appendix S1). Sampling stations

were plotted randomly according to habitat designations using

the ‘genrandompnts’ tool (Beyer 2012).

HABITAT DIVERSITY CALCULATIONS

Habitat diversity was calculated using a Shannon diversity index,

which emphasizes rare habitat types that may be important for

sensitive species (Nagendra 2002). To avoid bias in the compar-

ison of habitat diversity between schemes, landscape buffers were
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drawn around random points. The same number of points was

generated as the number of sampling points used for biodiversity

surveys. To test correlations between species richness and habitat

diversity, buffers were generated around biodiversity sampling

stations and clipped to relevant habitat maps.

BIODIVERSITY SURVEY METHODS

Biodiversity surveys were carried out between 2012 and 2014,

between April and August. An additional winter bird survey was

carried out between January and March 2013, but only in three

of the four regions due to logistical constraints. Sampling effort

varied between years, but was always consistent within years,

with five sampling rounds for summer birds, three for insects and

winter birds and one for plants, at 10–30 sampling points per

farm. Butterflies were recorded on transects using UK butterfly

monitoring methods (Pollard & Yates 1993); bees were sampled

using triplicate pan traps (Westphal et al. 2008) and identified to

species using keys (solitary bees: Else In Press; bumblebees: Prŷs-

Jones & Corbet 2011). Birds were sampled along line transects

using similar methods to the British Breeding Bird Survey, and

plants were surveyed in 1-m2 quadrats at each pan trap sampling

point (further method details in Appendix S1).

STATIST ICAL ANALYSIS

We accounted for the nested design by including farm nested in

region as a random effect. All GLMM were fitted using the pack-

age lme4 (Bates et al. 2014). Models were checked for overdisper-

sion and residual normality and heteroscedascity. Conditional

and marginal R2 were calculated (Nakagawa & Schielzeth 2013).

Likelihood ratio tests (LRTs) were used to assess the significance

of terms in the models (Zuur et al. 2009). Post hoc simultaneous

tests for general linear hypotheses using single-step P value

adjustments were made to correct for multiple comparisons

(multcomp package, Hothorn, Bretz & Westfall 2008). All analy-

ses were performed using R v. 3.1.1 (R Core Team 2014).

Wildlife-friendly farming scheme differences in habitat

diversity

To test the effect of scheme type and buffer radius on habitat

diversity, we used a GLMM estimated using ML with Gaussian

errors. Buffer radius length was categorical, and the interaction

between radius and scheme type was examined. Year was a ran-

dom effect since it represented temporal autocorrelation and did

not influence the mean habitat diversity (GLMM LRT for year

as a fixed effect, chi-square test [1] = 2�699, P = 0�100). The

nested random effects structure was the following: Year/Region/

Farm/Point since the data included multiple buffers around the

same points.

Habitat diversity as a predictor of species richness

Species richness data were pooled across sampling rounds. Habi-

tat diversity at each spatial scale was tested as a predictor of spe-

cies richness of different taxonomic groups in separate GLMM

models. Bonferroni corrections were not used, in order to retain

statistical power (Nakagawa 2004). Year was a fixed effect since

species richness varied significantly between years. For summer

Fig. 1. Sampling maps showing (a) the location of the four regions in southern England: HD, Hampshire Downs; CS, Chilterns South;

CN, Chilterns North; LW, Low Weald and (b) one region containing a triplet of farms one in each wildlife-friendly farming scheme:

ELS, Entry Level Stewardship; CG, Conservation Grade; and organic.
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bird models, where there were several observers, observer was

included as a random effect. For birds and insects, abundance

was included as a fixed effect to account for sample size varia-

tion. The potentially confounding influence of 1-km landscape

proportion of mass flowering crop was included in insect models.

Proportion of semi-natural habitat in the surrounding landscape

was not included because it was significantly correlated with habi-

tat diversity at landscape scales (GLMM 3 km: estimate:

0�010 � 0�002, LRT chi-square test = 29�359, P < 0�001; 1 km:

estimate: 0�005 � 0�001, LRT chi-square test = 8�405, P = 0�004).
For butterflies, birds and bumblebees, a Poisson distribution was

used. For solitary bees and plants, the log-normal Poisson

(Elston et al. 2001) and negative binomial distributions were

used, respectively, to reduce overdispersion.

Effects of wildlife-friendly farming scheme and habitat

diversity on species richness

To test for the effect of scheme type on species richness, we used

GLMM models that included fixed effects for year. The propor-

tion of mass flowering crop in a 1-km radius buffer was included

for models on insects. Subsequently, we tested for interactions

between scheme type and habitat diversity at the 100 and 250-m

scales and then carried out model simplification according to the

guidance of Zuur et al. (2009). We did not explore interactions

between landscape habitat diversity and scheme type because

there was not sufficient replication at the landscape scale to draw

valid conclusions. By putting habitat diversity and scheme type

into models together, we could evaluate the relative effects of

each variable on species richness.

Results

WILDLIFE-FRIENDLY FARMING SCHEME DIFFERENCES

IN HABITAT DIVERSITY

Differences in habitat diversity between scheme types var-

ied with spatial scale, with significant differences at local

but not at landscape scales (GLMM scheme type 9 ra-

dius interaction LRT: chi-square test [6] = 38�64,
P < 0�001, Fig. 2, Table S7). CG farms supported 24%

higher habitat diversity than ELS at the 100-m scale and

18% higher habitat diversity at the 250-m scale (post hoc

tests P = 0�021 and P < 0�001, respectively). Organic

farms supported 16% higher habitat diversity at the 100-

m scale (P = 0�109) and 19% higher habitat diversity than

ELS at the 250-m scale (P < 0�001).

HABITAT DIVERSITY AS A PREDICTOR OF SPECIES

RICHNESS

During this study, we recorded the following numbers of

species: 23 butterflies; 84 solitary bees; 14 bumblebees; 95

birds in summer; 59 birds in winter; and 178 plants (of

which 123 were insect-rewarding; M. Baude, pers.

comm.). Relationships between species richness and habi-

tat diversity varied between taxonomic groups (Fig. 3,

Table S8). For butterflies, solitary bees, plants and winter

birds, habitat diversity at the 100-m radius scale signifi-

cantly predicted species richness (butterflies: P < 0�001,
plants: P < 0�001, solitary bees: P = 0�014, winter birds:

P = 0�012). Significant positive effects of habitat diversity

at the 250-m scale were seen for butterflies (P = 0�006)
and plants (P = 0�012). There was a negative effect of

habitat diversity at the 1-km scale for species richness of

solitary bees (P = 0�029). For summer birds and bumble-

bees, no significant correlations between species richness

and habitat diversity were seen at any spatial scale.
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Fig. 2. Variation in Shannon habitat diversity at different spatial

scales for farms in three different wildlife-friendly farming

schemes: ELS, Entry Level Stewardship; CG, Conservation

Grade; Org, organic. Means and 95% confidence intervals from

the raw data are shown. Letters a and b indicate significant dif-

ferences between schemes at P < 0.05.
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four spatial scales and six taxonomic groups.
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EFFECTS OF WILDLIFE-FRIENDLY FARMING SCHEME

AND HABITAT DIVERSITY ON SPECIES RICHNESS

The schemes had varying effects on species richness per

sampling point, depending on taxonomic group (Fig. 4,

Table 1). Butterfly species richness was 50% higher on

organic farms compared to ELS farms (P = 0�046) and

20% higher on CG farms compared to ELS farms

(P = 0�062). Plant species richness on organic farms was

70% higher compared to ELS farms (P = 0�013) and 60%

higher compared to CG farms (P = 0�067). No other

significant differences between scheme types were seen.

Species richness at the farm scale did not vary between

scheme types (Friedman chi-square tests: plants,

chi-square test [2] = 0�5, P = 0�789; butterflies, chi-square
test [2] = 2�6, P = 0�273; bumblebees, chi-square test

[2] = 2�923, P = 0�232; solitary bees, chi-square test

[2] = 0�5, P = 0�789; summer birds, chi-square test [2] = 2,

P = 0�368; winter birds: chi-square test [2] = 2, P = 0�368).
No interactions between local habitat diversity and

scheme type were significant in explaining species richness.

Testing scheme type and local habitat diversity as predic-

tors of species richness together produced largely the same

results as testing independently. The only difference was

for butterflies where, once habitat diversity at the 250-m

scale was included in models, the effect of scheme type

was no longer significant (LRT chi-square test = 5�26,
P = 0�072, Table S9).

Discussion

The results showed that farms in additional wildlife-

friendly farming schemes (CG and organic) supported

higher habitat diversity than farms in the ‘broad and shal-

low’ ELS scheme. The higher local habitat diversity on

CG farms was likely to be due to the greater number of

HLS options per farm. Organic agriculture per se does

not prescribe non-crop habitat management, but the

higher habitat diversity on organic farms could be due to

the significantly smaller fields (an organic attribute also

found more widely, Norton et al. 2009) and/or the HLS

scheme. The farms in our study met the minimum require-

ments for the schemes we were interested in (CG, ELS

and organic). However, farmers can carry out additional

wildlife-friendly management beyond the minimum

requirements set by these schemes. Three-quarters of the

farms in CG and organic schemes carried out additional
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Fig. 4. Variation in species richness per sampling point pooled

across years for farms in three different wildlife-friendly farming

schemes: ELS, Entry Level Stewardship; CG, Conservation

Grade; Org, organic. Means and 95% confidence intervals from

the raw data are plotted with y-axes scaled appropriately for each

taxonomic group. Letters a and b indicate significant differences

between schemes at P < 0.05.

Table 1. Results of generalized linear mixed models testing for differences in species richness between wildlife-friendly farming schemes,

with significant differences at P < 0.05 shown in bold

Scheme-type likelihood ratio test Post hoc test

Marginal R2 Conditional R2Chi-square test (2 df) P value Direction P value

Plants 6�678 0�035 Org > ELS 0�013 0�537 0�552
Org > CG (0�067)

Butterflies 7�093 0�029 Org > ELS 0�046 0�936 0�936
CG > ELS (0�062)

Bumblebees 1�577 0�454 0�686 0�686
Solitary bees 1�202 0�548 0�415 0�680
Birds (summer) 1�118 0�572 0�945 0�949
Birds (winter) 1�220 0�543 0�409 0�417

CG, Conservation Grade; ELS, Entry Level Stewardship; Org, organic.
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management as part of the HLS scheme. In interpreting

the results, we need to be aware that the differences seen

in the CG vs. ELS and organic vs. ELS comparisons may

have been amplified by the HLS scheme. Further research

with a larger sample size of farms could investigate the

individual and aggregate impacts of combined schemes.

We found stronger associations between sampling point

species richness and local habitat diversity (100 or 250-m

radius) compared to landscape (1 or 3-km radius) habitat

diversity. These effects depend upon the degree to which

land-use classifications reflect suitable habitats for species

in the area. Had higher resolution habitat maps for the

landscape scale been available, positive effects of land-

scape habitat diversity on species richness may have been

apparent; land-use maps of relatively larger grain were

employed in the present study.

Positive correlations between species richness and local

habitat diversity were seen for plants, butterflies and soli-

tary bees. This conformed to our expectation that animal

taxa with smaller home ranges would respond more

strongly to local scale habitat diversity at local scales (100

and 250-m radii). Positive effects of habitat heterogeneity

on species diversity have been found for plants at the 200-

m scale in cereal fields in France (Gaba et al. 2010), and

for butterflies at the 500-m scale in the UK (Botham et al.

2015). Points with high habitat diversity at the 100-m-

radius scale are often near field edges or in non-crop habi-

tats. Field edges are commonly found to support more

species than field centres (e.g. Gabriel et al. 2010). Field

edges are likely to have higher plant species richness since

they tend to have lower agrochemical exposure and may

receive plant propagules from neighbouring habitats

(Zonneveld 1995). In addition, bird species richness in

winter showed a positive correlation with local habitat

diversity, but bird species richness in summer did not.

This could be because AES management for winter food

resources has a stronger effect than management for

breeding season resources (as found by Baker et al. 2012).

In our study, there could also be a sampling effect, since

all summer bird transects were along boundaries due to

access limitations, whereas winter bird sampling points

also sampled field centres so included more points with

low habitat diversity.

The results suggest that landscape moderation of AES

effectiveness was occurring, since a negative relationship

between solitary bee species richness and landscape habi-

tat diversity at the 1-km scale was found. This fits with

the intermediate landscape-complexity hypothesis, pro-

posed by Tscharntke et al. (2005) and supported by evi-

dence (Bat�ary et al. 2011a), in which AES in simple

landscapes are more effective. If we had sampled more tri-

plets of farms in simple landscapes, we expect to have

seen more significant benefits of the CG scheme. Based on

these results and the wider literature (Carvell et al. 2011;

Scheper et al. 2013; Wood, Holland & Goulson 2015), we

recommend that the CG scheme targets low-diversity

landscapes.

The benefits of CG and organic farming for species

richness varied between taxa. No effects were seen for

bumblebees or summer birds. This is perhaps because

bumblebees and birds use the landscape at larger scales

than individual farms. Perhaps if the CG or organic

schemes were implemented throughout a landscape, posi-

tive effects for bumblebees and birds would be found. The

limited benefit of organic farming for birds is consistent

with Chamberlain, Wilson & Fuller (1999) and Gabriel

et al. (2010) but in contrast to the findings of Hole et al.

(2005) and Bengtsson, Ahnstr€om & Weibull (2005), show-

ing how variable the impact of organic farming can be on

birds.

Differences between scheme types in butterfly species

richness were no longer significant once habitat diversity

at the 250-m radius scale was included in models. This

suggests that the effect of the organic and CG schemes on

butterfly species richness was partly mediated through the

effect of habitat diversity. For plants, organic farming

remained beneficial even once habitat diversity was taken

into account. This was expected due to plant species rich-

ness commonly benefitting from organic farming (Tuck

et al. 2014) due to reduced agrochemical use (Geiger et al.

2010).

The three schemes examined are all examples of land-

sharing (Phalan et al. 2011). However land-sparing offers

an opportunity to protect or restore natural habitat and

associated species by intensifying yields on existing land

to prevent further agricultural land conversion (Phalan,

Green & Balmford 2014). There is potential to intensify

yields using ecosystem services rather than synthetic

inputs (Bommarco, Kleijn & Potts 2013), and the capacity

of each scheme in achieving this could be investigated in

future. A wider analysis of trade-offs between yields and

biodiversity for each of these schemes could also be

explored. It is worth noting that in this study, CG farms

outperformed organic farms on wheat yields by up to

5 tonnes per hectare whilst still supporting 20% more

butterfly species than ELS farms.

CONCLUSIONS AND POLICY RECOMMENDATIONS

Our study confirms that increasing local habitat diversity

is a valid objective in high-intensity agricultural land-

scapes, since it is associated with biodiversity benefits.

There will be a threshold past which further increase in

habitat heterogeneity will be detrimental due to shrinking

patch size reducing viable populations (Fahrig et al. 2011;

Redon et al. 2014), and the threshold for this effect in

AES systems needs further research. Three broad (but not

mutually exclusive) mechanisms by which local habitat

diversity can be increased are by: (i) increasing non-crop

habitat diversity (typical of CG, ELS and HLS schemes),

(ii) increasing crop diversity (Le F�eon et al. 2013) and (iii)

reducing the grain of the landscape by reducing field size

(Fahrig et al. 2015) through restoring hedgerows and field

margins.
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Recent policy changes that are likely to influence local

habitat diversity have occurred in the EU. The Common

Agricultural Policy reform 2014–2020 made 30% of the

‘Pillar 1’ direct payments to farmers dependent on three

compulsory greening rules: protection of permanent grass-

land, diversification of crop measures and maintenance of

ecological focus areas. Although these measures were

designed to increase habitat diversity, the policy is consid-

ered to be too dilute to be effective (e.g. Pe’er et al. 2014).

New AES under ‘Pillar 2’ are also about to be imple-

mented, such as the English Countryside Stewardship

Scheme. This scheme will be regionally targeted, competi-

tive, and include packages of habitat options targeting

pollinators and farmland birds (Natural England 2015).

The packages are not compulsory, but applications are

more likely to be successful if they meet the minimum

requirements of a package.

Our results support evidence-based packages of options

in schemes (such as CG and the new Countryside Ste-

wardship), and our findings suggest that these should

improve habitat diversity and species richness beyond that

of ELS. The success of the new Countryside Stewardship

scheme will depend on the detail of the scheme design,

along with the extent of uptake, monitoring, management

resources and farmer training. The CG scheme offers an

alternative funding model, which could increase the num-

ber of farms with packages of wildlife-friendly farming

options beyond that of Countryside Stewardship, given

sufficient consumer demand and business subscription.

We recommend that compulsory, contractually binding

ecological standards should be part of future wildlife-

friendly farming schemes, in order to ensure efficient use

of funding for biodiversity conservation in intensive agri-

cultural landscapes.
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