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Abstract 

The mechanical behaviour of Eglin sand at the micro-scale was studied in this work. 

Laboratory experiments using unconventional apparatuses were carried out in order to study 

the contact behaviour of pairs of particles in both compression (normal loading) and shearing 

(tangential loading) and the strength of grains. Particle fractions were identified according to 

their colour by visual observation and both their chemical composition and surface 

morphologies were obtained. The tangential stiffnesses and inter-particle coefficients of 

frictions for the different fractions found in the sand sample were determined under the range 

of normal loadings applied (1-9N). The results show some discrepancies between the 

theoretical models commonly found in literature to describe either the normal or the 

tangential loading response, which are able to predict the trend of the force-displacement 

curves but using elastic moduli that are lower than those found in literature, especially in the 

case of tangential loading. Also, the results of particle crushing tests show quite consistent 

results (excluding one particle group), probably related to the similar mineralogy of all 

fractions, which are mainly constituted by silica.      

Keywords: sands; stiffness; friction; particle strength 
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1. Introduction 

The behaviour of granular materials regarded as discrete elements has been gaining 

acceptance and popularity since the work by Cundall and Strack [1] with the use of numerical 

tools to predict their mechanical response. Many researchers have developed new 

methodologies in order to include more factors and variables to make their numerical 

analyses closer to real problems, for both quasi-static [2] or dynamic conditions, such as the 

case of impact of aggregates [3], including sample scale effects [4], breakage of aggregates 

[5] and more complex particle shapes, such as superquadric particles [6] and irregular 

particle shapes [7].  

Previous experimental work has also investigated some of the main aspects related to the 

behaviour of sand particles at the micro-scale, in relationship with either breakage [8-10] or 

the contact mechanics [11-14]. Although there have been individual investigations of particle 

strengths in some sands and more recently some aspects of contact mechanics in others, more 

complete characterisations of various aspects of the micromechanics of one sand, including 

the differences between different particle types within that sand, have yet to be performed 

and that is the aim of this research. Another novel aspect of the current work is the 

investigation of the micro-contact mechanics of smaller sand particles than previously tested 

[13], which are more representative of commonly encountered sands. Also, the contact 

mechanics of particles have been studied by means of numerical analyses, using the 

Finite Element Method to predict the contact response of viscoelastic bodies in contact 

[15] or a viscoelastic sphere and a rigid wall [16].  

The sand investigated is a coarser fraction of the Eglin sand (particle diameter 0.8-1.8mm), 

which is commercially available as Quikrete Coarse Sand 1963 and is quarried in Pensacola, 

Florida. This is the smallest particle size that could be feasibly tested in the apparatus 
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described in this paper. Luo et al. [17] studied the dynamic compressive behaviour of a finer 

fraction of Eglin sand under very high confinement using a long split Hopkinson pressure bar 

at high strain rates for constitutive modelling and mesoscale simulations. Martin and Cazacu 

[18] investigated the mechanical behaviour of Eglin sand up to high pressures in the triaxial 

cell, studying its creep behaviour and developing a model based on their experimental results. 

Wang et al. [19] performed nanoindentation tests also on a finer fraction of Eglin sand, in 

order to study the behaviour of this material as ballistic protection for military structures. 

They determined a Young’s modulus of 72.4±2.8GPa and a hardness of 11.2±0.7GPa for a 

particle diameter around 0.7mm, although they did not distinguish between particle types as 

has been suggested here. Cole [14] performed shear and compression tests on particle 

pairs of Eglin sand by means of an experimental device applying sinusoidally varying 

shear forces or ramp tests, measuring coefficients of inter-particle friction of 25.6±12.4° 

for confining loads between 1 and 5N and 28.4±4° for confining loads between 7.5 and 

10N during the shear tests.  

Senatore et al. [20] used the Quikrete Medium Sand 1962 in order to study and predict the 

performance of lightweight vehicles for aerospace engineering purposes, comparing for this 

material with those obtained for the Mojave Martian simulant. These kinds of investigations 

are carried out by means of experiments using special test rigs [21-22], while the behaviour 

of vehicles over granular materials has been studied also through numerical tools, for 

example using the Discrete Element Method [23-24]. The Quikrete Medium Sand is slightly 

finer than that used in this work, but would be not possible to use in the contact 

micromechanics investigation described in this paper. However, given the similarity of 

geological origin it is believed that this investigation should be applicable also to those 

described previously.  
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2. Experimental equipment 

The contact tests between pairs of particles have been carried out by means of the Inter-

Particle Loading Apparatus, which is a custom-made device designed and built at the City 

University of Hong Kong [25]. The device has been recently upgraded and its current 

configuration is capable of applying combinations of either forces or displacement along 

three orthogonal directions [26]. Other important upgrades include the improvement of the 

accuracy of the displacement measurements and the increase of the apparatus’ stiffness, 

which also improves the accuracy and reliability of the measured displacements.  

The apparatus consists of a stainless steel loading frame, three loading arms and a stainless 

steel sled (Fig.1). Each loading arm is assembled connecting a micro linear actuator (a) and a 

load cell (b) by means of stiff mechanical parts. The vertical loading arm is connected to the 

loading frame, while the two horizontal ones are orientated along two orthogonal directions 

and are mounted on a stainless steel base. The two horizontal loading arms are also connected 

to the sled (c) by means of a special connection built using two orthogonal linear bearings. 

The end of the vertical arm and the sled are both equipped with wells that are used to mount 

brass holders with the two sand particles on their top (d). The particles were glued to the 

brass particle holders by means of super glue prior to being tested, waiting at least 24 hours to 

guarantee the hardening of the glue. The two particles were then gently brought into contact 

prior to being tested. Two digital micro-cameras (e) are used to determine and control the 

precise location and orientation of the contact area between the two sand particles and to 

record images during each test.  

The displacements are measured by means of eddy-current non-contact displacement sensors 

(f) that have a resolution of 10
-5

mm and a measuring range of 3mm. The two horizontal 
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transducers are mounted on the sled, in order to minimise any compliance effects of the 

apparatus. A low-pass filter has been built in order to ensure the highest possible resolution 

for the displacement measurements. The loads are measured using high-resolution load cells 

having a capacity of 100N. The vertical load cell is of a particularly stiff design, again to 

minimise compliance, which might influence the application of the horizontal loads.  

The whole apparatus is placed inside a Perspex chamber, in order to carry out the tests while 

varying the environmental conditions. These are controlled using a humidity controller that 

enables the control of the relative humidity inside the chamber within the range 15-85%. 

Also, tests using a small bath around the particles can be carried out in order to study the 

influence of fluids on the contact behaviour.  

The strength of Eglin sand grains have been studied by means of single-particle 

compression tests carried out by means of a custom-modified CBR apparatus at the 

City University of Hong Kong. More details about this device can be found in [10]. This 

apparatus consists of a loading machine, a stiff loading frame, a load cell and an LVDT 

for the displacement measurements. Each test was carried out compressing a single 

particle between two loading platens until its failure occurred.  

 

3. Material properties and procedures 

The Eglin sand sample tested is commercially available as the Quikrete Coarse Sand 1963 

(Fig. 2), a commercial material that is consistently graded, washed and kiln dried prior to be 

commercialised. This material consists of silica grains that are mainly characterised by five 

different colour groups: white, black, pink-yellow (later named as pink only), grey and 

transparent. Table 1 shows the results of the chemical characterisation that was carried out 
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by means of the Energy-Dispersive X-ray Spectroscopy (EDS). This procedure should be 

appropriate to characterise the chemical composition of the particles since each of them 

seemed to be constituted of a homogeneous material. Also, the mechanical tests carried 

out to characterise their contact behaviour involve only small portions of the particle 

surface and not their bulk. The analyses were repeated on several particles of each 

colour, confirming that colour was a suitable basis for selecting the particles because the 

data were consistent. Average values are given in Table 1. It can be observed that all the 

grain types are mainly constituted of silicon and oxygen. The white particles should be 

identified as feldspar (i.e. anorthoclase), while the transparent fraction appears to include 

both feldspar (i.e. orthoclase) and quartz particles, which seem difficult to identify by visual 

observation only. The black, grey and pink particles show more complex compositions, 

where potassium, sodium, magnesium and fluorine coexist along with the silicon, oxygen, 

aluminium and iron that are the main components of most of the particles. The black particles 

also include calcium and manganese fractions, while the pink particles contain small traces of 

calcium and titanium. The black particles were identified as hornblende, while from their 

complex composition those that are grey and pink should be fragments of igneous rocks such 

as granite and rhyolite.  

The particles were examined before testing, measuring their diameters along three orthogonal 

directions and estimating their shape parameters, roundness and sphericity, by means of 

visual observation using the Krumbein and Sloss chart [27]. The sphericity quantifies the 

similarity of the overall shape of a particle to a sphere, higher numbers being more spherical, 

while the roundness quantifies the sharpness of edges and corners, low values being more 

angular or less rounded. Table 2 illustrates the average values of diameter, roundness and 

sphericity for the five groups of particles that were identified according to their colour. These 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

data were obtained for all the particles that were tested, hence over 200 particles were 

examined.  

The RMS roughness (Sq) of a small number of particles was investigated through white light 

interferometry and the average values for each group are included in Table 2. An average 

overall value of about 0.53m was determined over areas around of 30x30m. The 

exceptions are the pink particles which are significantly less rough and the grey particles, for 

which areas of 16x16m had to be used because of difficulties related to the interferometry 

images of these. Generally, a smaller area should lead to a smaller roughness and so this 

probably means that the grey particles are slightly rougher. Figure 3 shows an image of the 

particle surface morphology of a black particle taken using the interferometer over a larger 

area of 106x106m. The RMS roughness measured for this particle is 1.21m over the whole 

area. These values of roughness are calculated by the software which subtracts the influence 

of the overall shape of the particle. The roundnesses are all fairly similar, with only the grey 

and pink particles being slightly less angular. Although there is some variability in roughness, 

the values are fairly similar for the five groups as they could potentially vary over an order of 

magnitude. It is therefore the differences in sphericity that are probably the most significant.  

Figure 4 shows SEM images of the particles and the details of their micro-surfaces using two 

different magnifications for each. Different particle outlines can be detected, observing that 

all of them exhibit some sharp edges, which is also related to the similar roundnesses shown 

in Table 2. SEM images of the white particles are not included as they are characterised 

by an appearance that is very similar to that of transparent particles.  The transparent, 

white and grey particles are characterised by a crystalline nature, which is also reflected 

by the sharp edges at the micro-scale observed in the SEM images, while the black and 

pink particles have an amorphous appearance. The high-magnification SEM pictures 
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show irregular particle morphologies for all the different minerals that can be related to the 

fairly similar roughnesses in Table 2.  

 

4. Results 

The laboratory tests were carried out in order to study both the normal and tangential loading 

response of pairs of particles at their contacts by means of the inter-particle loading apparatus 

along with particle strength using a simple compression apparatus. The normal loading tests 

were carried out compressing the particles at their contact along the vertical direction with no 

horizontal force, controlling the vertical displacement rate. The tangential loading tests were 

performed after reaching the normal load required and keeping it constant, shearing the 

particles at their contact along a linear horizontal path controlling the tangential displacement 

rate. All the test displacements were corrected for the compliance (i.e. flexibility) of the 

apparatus. Around 40 tangential loading tests were carried out. All the inter-particle contact 

tests presented here were carried out at relative humidity around 80% and temperatures 23-

25°C inside the Perspex chamber, which were controlled and monitored by means of the 

humidity controller, respectively. 

The particle crushing tests were performed loading each single grain until breakage. A 

displacement rate of is 0.1mm/min was used, which was the minimum allowed by the 

apparatus. Around 170 tests were carried out, more than 30 for each type of mineral.  

 

4.1 Normal loading 

Figure 5 shows the compression curves for pairs of particles having different colours. For 

some colours more than one test was conducted. Some of the grain pairs were loaded up to 
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5N and others up to 9N. All the pairs of particles were compressed using a displacement rate 

of 0.1mm/h. Qualitatively, these curves show the non-linear behaviour that is expected in 

compression for spherical or hemispherical bodies in contact following the Hertz theory [28], 

with some exceptions for some grains of the pink and grey types that exhibit brittle behaviour 

within the area of contact and a consequent drop of normal force after the occurrence of 

some breakage phenomena at the contact between the pairs of particles tested. The 

results exhibit some scatter and the stiffnesses of the curves are not clearly related to the 

different mineralogies determined for each fraction.  

Figure 6 shows the compression curves up to 9N previously given in Figure 1 along with two 

curves plotted using the Hertz theory of contact [28], where these curves overlap the 

experimental results for the stiffest (white) and the softest (transparent) pairs of particles. The 

theoretical curves were plotted using a radius R=0.7mm, which corresponds to the 

average of all the particles tested, a Poisson’s ratio =0.1 and Young’s moduli of 94GPa 

and 52GPa for the stiffest and the softest curves, respectively. It should be noted that 

the theoretical curves plotted in Figure 6 correspond to particles (white and 

transparent) made either of feldspars or quartz, whose elastic parameters are E=40.5-

68GPa and =0.32 and E=94-98GPa and =0.065-0.068, respectively [29]. The softest 

curve was plotted with an offset of 0.6m in order to fit the relative experimental curve. It 

can be observed that the theoretical model is able to describe the trend of the curves 

using Young’s moduli similar to those found in literature, but it is not able to reproduce 

the initial soft part of some force-displacement curves determined experimentally. This 

offset may result from the roughness of the particles at the contact as observed by 

Cavarretta et al. [12] for single particle compression tests on glass ballotini and 

Leighton Buzzard quartz sand, although it is very large compared to values in Table 2 and 

also shows no correlation with the mineral type. However, because of the limitations of 
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carrying out complex interferometry tests, surface roughnesses could only be determined for 

representative particles and not for each specific pair in contact. Also, these offset values are 

characterised by a magnitude that is clearly smaller than that observed by Cavarretta 

et al. [12], probably because of the higher precision and resolution of the Inter-Particle 

Loading Apparatus compared to the device they used for their compression tests, 

notably in that only one contact is tested between two particles rather than taking half 

the displacements measured when a single particle is loaded between two steel platens.  

 

4.2 Tangential loading  

The tangential loading tests were performed shearing the particles after applying different 

normal confining forces at the contact between each pair of particles. Some particles were 

sheared at 5N and some were sheared more than once at different load levels. These were 

applied following a geometric progression with common ratio 3, hence the loads applied were 

1, 3 and 9N. Figures 7 and 8 show the results of all the tangential loading tests carried out at 

3N in terms of force-displacement and stiffness-displacement, respectively. The stiffnesses 

are tangents, calculated as linear regressions over small intervals of displacement. The force-

displacement curves show a non-linear behaviour for very small displacements and a 

clear steady state could not be observed for large displacements for most of the particle 

pairs, probably because of the brittleness of the surfaces in contact which caused some 

evident drops of tangential force. This was observed frequently after the tests (Fig. 9). 

The data show some scatter for both friction coefficients and stiffnesses, but it can be noted 

that the feldspathic sands (white and transparent) have similar initial tangential stiffness.  

The tangential stiffness of Eglin sand does not show a well defined dependency on the 

normal load at the particles contact, unlike what was observed by Senetakis et al. [13] for 
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Leighton Buzzard quartz sand. Figures 10 and 11 illustrate the tangential test results in terms 

of force-displacement and stiffness-displacement, respectively, for all the black sand particles 

tested. The scatter of the curves is quite marked. For example, the particle pairs identified as 

MS9 and MS15 have stiffnesses that are completely different even if they were tested at the 

same load level. This suggests that the stiffnesses may depend on other properties directly 

related to the contact between the particles tested, perhaps roughness or local shape. The low 

stiffnesses of particles MS9 may be partially explained by the damage observed on their 

contact surface after the test.  

Figures 12 and 13 show comparisons between the experimental results for a pair of white 

particles and one of black particles along with the corresponding theoretical predictions using 

the Mindlin and Deresiewicz model [30]. Two theoretical curves were plotted: one was 

determined using the initial tangential contact stiffness KT following the expression: 

𝐾𝑇,0 = 8𝑎 (
2−𝜈1

𝐺1
+

2−𝜈2

𝐺2
)
−1

 (1) 

where a is the area of contact calculated using the Hertzian expression while 1, 2 and G1, 

G2 are the Poisson’s ratios and shear moduli of the two bodies in contact, the values being 

found in literature. Values of G=15GPa and =0.32 were used for the white particles (Fig. 

12), which are representative of feldspar [29] while G=27.1GPa and =0.25 were used to 

model the behaviour of the black particles (Fig. 13) as they were identified as hornblende 

[27]. The other theoretical curve was plotted using the initial stiffness determined 

experimentally. The agreement between the experimental curves and those plotted using the 

M&D model with the experimental initial stiffness is quite good, especially for the 

feldspathic (white) particles (Fig. 12). The two figures show a poorer agreement between the 

experimental curves and those plotted using the M&D model with initial stiffness calculated 

theoretically. It should be noted that the prediction with the calculated initial stiffness of the 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

initial reverse shearing curve is very close to that obtained experimentally, with a larger 

divergence afterwards. Also, the overall agreement between the experimental and the 

theoretical curves seems to be better for the black particles (Fig. 13). These discrepancies 

between the theoretical curves and the models can be ascribed to the rôle of particle 

roughness and its influence on the calculation of the area of contact between the two 

particles, the rôle of hardness of the particles surfaces and the complexity of particle 

geometry and their surfaces compared with that of homogeneous smooth spherical 

bodies, which is one of the main hypotheses of the theoretical M&D model. Another 

possible aspect that influences the contact behaviour of particles is their local radius of 

curvature at the contact location, which cannot be determined easily. 

Figure 14 illustrates the failure envelopes for each different mineral identified in the sand 

sample. There is again significant variability of the data, but it is evident that the white 

(feldspar) and transparent (feldspar and quartz) particles exhibit the higher friction 

coefficients, followed by the grey, black and pink particles. The lower values determined for 

these minerals might be explained by the observation of wear or surface damage on the 

surface of these particles after the tests, especially at higher normal confinements. Generally, 

an increase of the friction coefficient seems to follow an increase of roughness, with the 

exception of the grey particles. The overall mean inter-particle friction angle for all the pairs 

of particles is equal to 17.7±6.9° while the overall value obtained excluding those particles 

that were damaged during the tests is 19.1±5.7°. These values and their scatters are lower 

than those determined for Eglin sand by Cole [14], although his tests were carried out 

on pairs of particles from different mineral fractions, which probably added some more 

variability in the test results.    
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4.3 Particle crushing 

The survival probabilities of grain crushing for each kind of mineral are plotted along with 

the characteristic stress in Figure 15, following the work of Nakata et al. [9]. The stresses 

have been determined over an ideal elliptical area calculated using the minimum and the 

intermediate diameters of each particle [10, 32], which have been measured using a digital 

calliper that has an accuracy of ±0.01mm. These curves have been obtained from the results 

of thirty particle crushing tests for each type of mineral. The failure stresses at 37% survival 

probability calculated for all the different minerals appear quite consistent (grey: 21MPa, 

white: 28MPa, pink: 30MPa, black: 36MPa), apart from that for the transparent particles, 

which is much higher at about 64MPa, which might be influenced by the higher strength of 

the quartz particles that can be found in this fraction. The m-moduli have been determined for 

each mineral and are shown in Figure 16. These represent a measure of the variability in 

strength in Weibull statistics [33]. The graphs shows the consistency of the m-moduli for all 

the different sand minerals, where most of the values are included in the interval between 2 

and 3. Some scatter can be observed for the values corresponding to the maximum and 

minimum crushing probabilities, but otherwise the variability of strength is similar for the 

various minerals, despite the different strength of the transparent particles.  

 

5. Conclusions 

An experimental investigation of the micromechanics of the Eglin sand has been presented. 

The EDS showed that the sample seems to be made of different components, which 

corresponded to their colour and were feldspars, quartz, hornblende, and particles derived 

from granite and rhyolite.  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

The normal loading tests showed some variability but that the results can be fitted by 

the theoretical curves plotted using the Hertz’ theory [28] using Young’s moduli 

between 52 and 94GPa, which are values close to those determined from 

nanoindentation tests (72.4GPa) [19]. The tangential loading tests also showed some scatter 

in terms of stiffness and friction coefficient, probably related to wear and damage of particles 

during the tests, as observed after removing the particles from the apparatus. The 

experimental results agreed poorly with the Mindlin and Deresiewicz model [30] when the 

expression to calculate the initial tangential stiffness was used, while the theoretical curves 

plotted using the stiffness determined experimentally seem to fit more accurately. The 

average inter-particle friction angles vary between 14.0° and 20.4°, which are significantly 

larger than those determined for Leighton Buzzard Sand (9.9°) [34]. This may be related to 

the higher surface roughnesses measured for the Eglin sand compared with LBS 

(0.38±0.19μm). Even if the main component for both the two sands is silica, the more 

detailed analysis of the composition of the Eglin sand has revealed a more complex 

mineralogy.  

The particle crushing tests showed the consistency of the failure stresses for all the different 

minerals tested, while higher values were observed for the transparent particles, probably 

because of the predominant presence of stronger quartz particles in this fraction. Also, the m-

moduli determined for all the minerals are mainly within the range between 2 to 3, which are 

not far from those determined for quartz and feldspathic particles [9] of similar diameters.  

The key limitations of the work were firstly that these tests were conducted at the lower 

limit of particle size that could be used in the apparatus that had previously tested only 

particles with an average diameter of 2mm. The smallest load at which shearing could 

be conducted with accurate control was therefore only 1N. The load levels in strong 
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force chains are highly variable [35] but for such small particles it would have been 

desirable also to test with some smaller loads, although the typical loads used in Atomic 

Force Microscope friction tests [36] are far too small to be representative. The other key 

limitation is that a better understanding of the load-deflection behaviour might be 

obtained if the local contact geometry could be measured during the test, but techniques 

able to do this have yet to be developed.  
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Kong under the supervision of Prof. Matthew Coop. After his MSc at Politecnico di Bari 

where he worked on the mechanical behaviour of fissured clays through element testing, his 

current interests focus on the micromechanics of sands, with particular regard to the contact 

behaviour at the grain scale. This research is still in progress and it has been developed using 

a custom-made inter-particle loading apparatus was designed and built at City University of 

Hong Kong.    



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

Prof. Matthew R. Coop 

 

Professor Coop has over 30 years research experience, concentrating on the behaviour of 

soils and weak rocks as revealed through high quality laboratory testing. More recently his 

interests have turned towards the micromechanics of sand particles and their relationship to 

macroscopic behaviour. Following his Doctorate on the behaviour of piles in clays, he was 
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specialising in soil element testing and the micro-mechanics of inter-particle contacts. He 
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FIGURES 

 

Figure 1. Inter-particle loading apparatus: a) linear actuator; b) load cell; c) stainless steel 

sled; d) soil particles during a test; e) digital micro-camera; f) eddy-current displacement 

sensor. 
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Figure 2. Eglin sand 

 

 

Figure 3. Surface morphology of a black particle of Eglin sand.  
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Figure 4. SEM image of Eglin sand particles: a1-2) black; b1-2) grey; c1-2) pink; d1-2) 

transparent. 
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Figure 5. Normal loading test results for the Eglin sand particles.  

 

 

Figure 6. Normal loading test results plotted with curves obtained using Hertzian theory [28]. 
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Figure 7. Tangential force-displacement curves for Eglin sand particles under a normal load 

of 3N. 

 

Figure 8. Tangential stiffness-displacement curves for Eglin sand particles under a normal 

load of 3N. 
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Figure 9. Pink particles of Eglin sand: a) before testing; b) during the test; c) after testing.  

 

 

Figure 10. Tangential force-displacement curves for the black fraction of Eglin sand particles 

under different normal loads. 
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Figure 11. Tangential stiffness-displacement curves for the black fraction of Eglin sand 

particles under different normal loads. 

 

Figure 12. Comparison between the experimental curve obtained for a pair of white particles 

and those obtained for the Mindlin & Deresiewicz model [30] using initial stiffnesses 

determined theoretically and experimentally. 
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Figure 13. Comparison between the experimental curve obtained for a pair of black particles 

and those obtained using the Mindlin & Deresiewicz model [30] for initial stiffnesses 

determined theoretically and experimentally. 

 

Figure 14. Failure envelopes for the different fractions identified within the Eglin sand 

sample.  
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Figure 15. Survival probabilities for the different fractions of Eglin sand.  

 

Figure 16. Weibull m-moduli determined for the different fractions of Eglin sand. 
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TABLES 

Table 1. Composition of the fractions of Eglin sand according to their colour.  

 

Particle Type 

 

Black Grey Pink 
Transparent 

(feldspar) 
Transparent 

(quartz) 
White 

Si (%) 35.6 39.7 35.4 29.8 45.5 32.6 

O (%) 41.4 49.1 44.1 39.1 53.6 42.76 

Al (%) 5.5 3.2 8.4 14.0 0.9 11.6 

Fe (%) 7.9 4.6 2.2 1.5 - 1.2 

K (%) 0.8 0.3 1.4 9.6 - 8.2 

Na (%) 0.6 0.8 5.4 - - 3.7 

Mg (%) 2.6 0.7 0.6 - - - 

F (%) 2.4 1.5 1.8 - - - 

Ca (%) 2.6 - 0.3 - - - 

Mn (%) 0.4 - - - - - 

Ti (%) - - 0.3 - - - 

 

 

Table 2. Characteristics of the Eglin sand particles tested. 

Particle Type Average diameter (mm) Sphericity Roundness Sq Roughness (m) 

Black 1.40  0.5 0.4 0.54±0.07 

Grey 1.17 0.7 0.5 0.76* 

Pink 1.34 0.6 0.5 0.28±0.16 

Transparent 1.52 0.8 0.4 0.59±0.07 

White 1.55 0.6 0.4 0.69±0.12 

*: Sq roundness measured over an area of 16x16m. 
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Graphical abstract 
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Highlights 

 Different particles types were identified within the sample using EDS analyses.  

 The normal loading tests can be fitted by the Hertz’ theoretical model.  

 The shear tests show some scatter in terms of stiffness and friction coefficient. 

 The average angles of inter-particle friction vary between 14.0° and 20.4°. 

 The particle crushing test results show consistent failure stresses.    


