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Baryon acoustic oscillations in the early Universe are predicted to leave an as yet undetected signature on
the relative clustering of total mass versus luminous matter. A detection of this effect would provide an
important confirmation of the standard cosmological paradigm and constrain alternatives to dark matter as
well as nonstandard fluctuations such as compensated isocurvature perturbations (CIPs). We conduct the
first observational search for this effect, by comparing the number-weighted and luminosity-weighted
correlation functions, using the SDSS-III BOSS Data Release 10 CMASS sample. When including CIPs in
our model, we formally obtain evidence at 3.2σ of the relative clustering signature and a limit that matches
the existing upper limits on the amplitude of CIPs. However, various tests suggest that these results are not
yet robust, perhaps due to systematic biases in the data. The method developed in this Letter used with more
accurate future data such as that from DESI, is likely to confirm or disprove our preliminary evidence.
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Introduction.—In the hot and dense early Universe, the
interplay between the plasma pressure and the radiation
pressure resulted in “sound waves”: baryonic shells propa-
gating around each initial overdensity of matter. At the time
of recombination, approximately 370 000 years after the
big bang, these baryonic sound waves froze, leaving an
oscillatory signature in the distribution of baryons. After
recombination, in the absence of significant radiation
pressure, the distributions of baryons and cold dark matter
(CDM) grew increasingly similar due to their mutual
gravitational attraction. This resulted in a bump in the
two point correlation function of the positions of galaxies, a
signature known as “baryon acoustic oscillations” (BAOs).
This feature has served, since its detection in the 2dF
Galaxy Redshift Survey and the Sloan Digital Sky Survey
(SDSS) [1–3], as a precious cosmological tool to probe the
expansion of the Universe.
Another important aspect of BAOs, which has not yet

been detected, is a related imprint on the clustering of light
relative to mass. Indeed, while gravity helped the baryons
catch up with the CDM distribution after recombination,
this asymptotic process remains incomplete and the result-
ing scale dependence of the ratio of baryonic to total matter
contrasts, δb=δtot, should still be observable at present.

Detecting this scale dependence would offer a new angle to
compare the large scale distribution of light versus mass, an
effort that dates back to the 1980s [4,5].
Specifically, the detection of the scale dependence of

δb=δtot imprinted by BAOs is important for three reasons:
The detection of the effect would provide a direct meas-
urement of a difference in the large-scale clustering of mass
and light and, thus, a novel confirmation of the standard
cosmological paradigm (especially if the precise theoreti-
cally predicted form of the scale dependence is verified). It
would present a strong challenge to alternative theories of
gravity, specifically nondark matter models such as MOND
[6] and its extensions [7] or modified gravity [8]. Direct
evidence for the existence of dark matter includes the data
from the bullet cluster [9]. The measurement of the scale
dependence of δb=δtot from BAOs, would provide evidence
comparable to the bullet cluster, with the significant
advantage that this effect happens on linear scales and,
thus, may be easier to interpret [10]. The amplitude of the
effect would probe a novel aspect of galaxy formation,
specifically calibrating the dependence of the average
mass-to-light ratio of galaxies on the baryon mass fraction
of their large-scale environment. Finally, we show, in this
Letter, that such a detection would also constrain the
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amplitude of compensated isocurvature perturbations
(CIPs).
The measurement of the scale dependence of δb=δtot

requires one to compare observable tracers of δtot and δb. In
this Letter, we follow and extend [11] the proposal of
Barkana and Loeb [12] (BL11); i.e., we use the number
density δn of galaxies as a tracer of the total matter density
fluctuation δtot and the absolute luminosity density of
galaxies δL as a tracer of the baryonic density fluctuation
δb. The idea is as follows: The number density fluctuations
δn are driven by the underlying total matter density
fluctuation δtot, with a bias (i.e., ratio) bn;t, which should
be approximately constant on large scales. On the other
hand, an area with a higher baryonic mass fraction δb=δtot
than average is expected to produce more stars per unit total
mass, hence, more luminous matter, and to result in
galaxies with a lower mass-to-light ratio. As a result, the
luminosity-weighted density fluctuation, δL, traces a com-
bination of δtot and δb. Therefore, the scale dependence of
δb=δtot induced by BAOs should translate into a scale
dependence of δL=δn.
Predictions.—BL11 provide a model for the tracers δn

and δL of the quantities of interest δb and δtot

δn ¼ ðbn;t þ CbL;t þ CbL;Δ½rðkÞ − rlss�Þδtot; ð1Þ

δL ¼ ðbn;t þ ð1þDÞbL;t þ ð1þDÞbL;Δ½rðkÞ − rlss�Þδtot:
ð2Þ

Within this model, bias factors bn;t and bL;t reflect the
dependency of the number density and mean luminosity
fluctuations on the underlying matter density fluctuation
[13]. The mean luminosity fluctuations are also affected
separately by the baryon fluctuations because the lumi-
nosity depends on the gas fraction in haloes, which itself
depends—through the nonlinear process of halo collapse—
on the baryon fraction of the surroundings. The parameter
bL;Δ quantifies the effect we search for: It is an effective
bias factor that measures the overall dependence of galaxy
luminosity on the underlying difference Δ between the
baryon and total density fluctuations; C and D quantify
effects emerging in surveys where the observed sample is
flux limited (which introduces additional dependences on
galaxy luminosity); and rðkÞ is the fractional baryon
deviation rðkÞ ¼ δb=δtot − 1, which can be predicted from
the initial power spectra, and which approaches a constant
(i.e., scale-independent though redshift-dependent) value
rlss on scales below the BAOs. Equations (1) and (2) refer
to amplitudes at a given wave number k of Fourier-
decomposed fluctuation fields.
Compensated isocurvature perturbations.—The meas-

urement of the relation between dark matter and baryons is
related to the search for CIPs [14]. Measurements of
primordial density perturbations are consistent with adia-
batic initial conditions, for which the ratios of neutrino,

photon, baryon and CDM energy densities are initially
spatially constant. Indeed, the simplest inflationary models
predict adiabatic fluctuations [15,16]. However, more
complex inflationary scenarios [17–19] predict fluctuations
in the relative number densities of different species, known
as isocurvature perturbations. Cosmic microwave back-
ground (CMB) temperature anisotropies limit a matter
versus radiation isocurvature mode to a few percent of
the adiabatic modes [20]. CIPs, however, are, specifically,
perturbations in the baryon density δb that are compensated
for by corresponding fluctuations in the CDM δCDM (so that
the total density is unchanged).
Such fluctuations are hard to detect, since gravity (and its

effect on everything from galaxy numbers to CMB fluc-
tuations) only depends on the total density. The uniformity
of the baryon fraction of galaxy clusters [21] gives an upper
limit on CIPs corresponding to Δcl < 7.7%, where Δcl is
the rms fluctuation in the baryon to the CDM density ratio
on galaxy cluster scales. Nonlinear effects on the CMB give
a similar current limit, Δcl < 11% [14]. These constraints
may be improved with future cosmological 21-cm absorp-
tion observations [22]. In this Letter, we added possible
CIPs to the BL11 model under the standard assumption of a
scale-invariant power spectrum for this field.
Model in terms of correlation function.—The observable

quantities in galaxy surveys are not the fluctuations δn and
δL but rather the two point statistics of such tracers, namely,
the power spectrum or the two-point correlation function
(2PCF). We reformulate the observational proposal of
BL11 in terms of the 2PCF, defined as

ξðx; yÞ≡ 1

2π2

Z
k2PðkÞj0ðksÞdk; ð3Þ

where s ¼ jx − yj and PðkÞ is the matter power spectrum
defined by hδðkÞδðk0Þi≡ PðkÞδDðk − k0Þ. Following the
notation of BL11, we find that the observable 2PCFs ξn (of
the galaxy number density) and ξL (of the galaxy lumi-
nosity density) can be expressed with three theoretically
predicted functions, ξtot, ξadd, and ξCIP, the set of five BL11
parameters from Eqs. (1) and (2) and the parameter BCIP
(which determines the amplitude of CIPs). Defining total
effective bias parameters Bn;t¼bn;tþCbL;t, Bn;Δ ¼ CbL;Δ,
BL;t ¼ bn;t þ ð1þDÞbL;t, and BL;Δ ¼ ð1þDÞbL;Δ, our
model equations are

ξn ¼ B2
n;tξtot þ 2Bn;tBn;Δξadd þ B2

n;ΔBCIPξ̂CIP; ð4Þ

ξL ¼ B2
L;tξtot þ 2BL;tBL;Δξadd þ B2

L;ΔBCIPξ̂CIP; ð5Þ

where (unlike the other ξ terms) we have separated ξCIP into
its shape ξ̂CIP and its amplitude BCIP. In order to model the
correlation functions, we begin with linear perturbation
theory, for which ξtotðsÞ is given by Eq. (3),
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ξaddðsÞ ¼
1

2π2

Z
k2½rðkÞ − rlss�PðkÞj0ðksÞdk;

ξCIPðsÞ≡ BCIPξ̂CIPðsÞ ¼
BCIP

2π2

Z
j0ðksÞ

k
dk:

Our full model with the addition of corrections for non-
linear clustering and for systematic effects is presented in
the Supplemental Material [23].
Measurement.—In all this analysis, we use the latest

public data release from the SDSS-III Baryon Oscillation
Spectroscopic Survey (BOSS), DR10 [24] [25,26]. The
BOSS collaboration has analyzed a larger set of data,
denoted DR11 in [26], which will be publicly released with
the final BOSS data set. For both DR10 and DR11, the
BOSS collaboration has made public some “final prod-
ucts,” namely, their measurement of ξn and the associated
covariance matrix (but not ξL), and we checked that they
are in good agreement with our measurement of ξn and give
a reasonable fit to the ξn part of our model. Several practical
problems inhibit our ability to accurately measure the 2PCF
of the galaxy distribution. The discreet sampling by
individual galaxies of the smooth density field leads to
shot noise on small scales. Other difficulties arise from the
irregular shape of galaxy surveys in angular sky coverage,
due to dust extinction, bright stars, tracking of the tele-
scope, etc. In this work, the two-point correlation functions
ξn and ξL, are computed using the optimal Landy-Szalay
estimator [27] which requires the creation of a catalog of
random positions.
We calculate the two-point correlation function ξL of the

absolute luminosity density fluctuations using the same
estimator and algorithms as for ξn, but weighting each
object with its absolute luminosity. The absolute luminosity
is calculated using the i-band photometric data, from the
CMASS DR10 catalogs. We use a jackknife resampling
technique, as in Scranton et al. [28], to compute the full
covariance matrix for the joint measurement of ξnðrÞ and
ξLðrÞ. This technique differs from the method adopted by
the BOSS collaboration, where 600 mock catalogs were
produced and used to estimate the covariance matrix for the
fit [29,30]. Figure 1 shows our measurement of ξL and ξn
and our best-fit model, as detailed in the next section.
Model fitting.—We adopt the model-fitting formalism of

Hogg et al. [31] and assume that the only source for
deviation of our data points from the model described
by equations (4) and (5) is an offset in the ξ direction,
drawn from a Gaussian distribution of zero mean and
known covariances. We wish to get the set of parameters θ
that maximizes the probability of our model M given
the data D, i.e., the posterior probability distribution
PrðθjfD;MgÞ. We make a conservative choice of uniform
(not “informative”) priors for the parameters of our model:
The prior on BL;Δ ∈ ½−10; 10� is intentionally taken to be
broad, although BL11 forecasted it to be around 2.6.

The best current limits on Δcl correspond [14] to an upper
limit of BCIP ≈ 5 × 10−3 from clusters or 1.1 × 10−2 inde-
pendently from the CMB; we allowed a much broader
range and applied the prior BCIP ∈ ½−0.3; 0.3�. The other
priors are given in the Supplemental Material [32].
In the case of a noninformative prior, the optimization of

the likelihood function corresponds to the maximum of the
posterior probability distribution, i.e., the maximum a pos-
teriori value. To estimate the uncertainty in the maximum
a posteriori value of each parameter, we obtain the
distribution of parameters that is consistent with our data,
and marginalize over it to get the distribution of each
parameter. We did this using theMonte Carlo Markov chain
algorithm MultiNest [33,34], to sample from the posterior
probability distribution, and quote 1σ limits. We consider
two cases, corresponding to the presence or absence of
CIPs. In Figs. 1 and 2, we show the data and best fits for the
correlation functions r2ξn and r2ξL, and for a key quantity,
their difference r2ðξL − ξnÞ. We checked that all the
following conclusions are not significantly altered when
adding k corrections and evolutionary corrections and when
simulating the effect of the photometric errors on the
measurement of ξL.
Results.—When we allow CIPS, i.e., BCIP ≠ 0, we obtain

evidence at 3.2σ of BL;Δ > 0.4 (and evidence that jBL;Δj >
0.4 at 3.7σ), which indicates the presence of the effect we
search for, that of the baryon-CDM difference on galaxy
luminosity. Moreover, the 1σ range of 1.1 < BL;Δ < 2.8 is
consistent with the prediction of BL11 of BL;Δ ≈ 2.6 (our
maximum likelihood value is 3.9) [35]. In addition, our
best-fit value of BCIP is 2.3 × 10−3, with a 2σ upper limit of

FIG. 1. Our measurement of ξL (blue) and ξn (red) [times s2],
using 31 radial bins, and our best-fit maximum likelihood model
(allowing all parameters to be nonzero). The best fit corresponds
to χ2=d:o:f. ¼ 2.51, where d.o.f. is the number of degrees of
freedom in the fit. This high value of χ2=d:o:f: is partially due to
the highly correlated errors among the various binned measure-
ments and perhaps systematic errors (it drops to ∼1.5when using
21 bins), which also make the fits difficult to judge visually.
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BCIP ¼ 6.4 × 10−2, which is within an order of magnitude
of the best existing limits noted previously. A full tabu-
lation of our best-fit parameters, plus results with a smaller
number of data bins, is given in the Supplemental
Material [36].
To determine whether we detect a scale-dependent bias

of the luminosity correlation function requires answering
the following question: Do the data support the inclusion of
a nonzero extra parameter BL;Δ? Rather than a question of
parameter estimation, this is a question of model compari-
son between two modelsM, with or withoutBL;Δ. Within a
Bayesian framework [37], the key quantity for comparing
them is the evidence (or model-averaged likelihood),
E ¼ R

PrðθjMÞ PrðDjθ;MÞdθ. The ratio of the evidences,
also called the Bayes factor, can be calculated using the
multimodal nested sampling algorithm, MultiNest [33]. In the
BCIP ≠ 0 case, the evidence ratio is lnðEBL;Δ≠0=EBL;Δ¼0Þ ¼
6.08� 0.23, which we interpret as strong evidence for
BL;Δ ≠ 0 according to the slightly modified Jeffreys’ scale
[37–39].
However, we believe that the results are not yet robust

enough for making strong claims. For one thing, if we
model the data without allowing for CIPs (i.e., setting
BCIP ¼ 0), the evidence for a detection of nonzero BL;Δ
goes away. Our 1σ range of −1.0 < BL;Δ < 7.8 in that
case is consistent with the previous (BCIP ≠ 0) case and
with the BL11 prediction, but also with a value of zero.
This lack of evidence is reflected by the evidence ratio
lnðEBL;Δ≠0=EBL;Δ¼0Þ ¼ 0� 0.23, corresponding to no evi-
dence toward one model versus the other [40]. The high
value of χ2=d:o:f:, partially due to the high correlated errors
between the various binned measurements [41] points
at the need to eliminate systematic errors or try more

sophisticated models in future implementations of this
method. The fact that the parameter values are affected
by the choice of the number of radial bins is another sign of
the lack of robustness of our result. More generally,
disentangling the various effects is difficult, since the
model of Eqs. (4) and (5) shows that any ability to set a
limit on CIPs depends on a definitive detection of nonzero
BL;Δ (and/or Bn;Δ). Conversely, the presence of a signifi-
cant CIP term in the fit strongly affects the best-fit values of
BL;Δ and Bn;Δ. Trying to measure two novel effects (one of
them expected but with an uncertain amplitude, the other
highly speculative) when they are entangled in this way is
tricky. Another difficulty comes from the fact that ξ̂CIP has a
smooth shape (in contrast with BAO-scale features in ξtot
and ξadd), and such a slowly varying term may more easily
be emulated by systematic effects; we note that standard
BAO measurements (e.g., [30]) typically add several such
“nuisance” terms, which are necessary to get good fits to
the data, do not significantly affect the BAO peak or trough
positions, but are not theoretically well understood. We also
note that several of our best-fit parameters change strongly
between the zero and nonzero BCIP. Especially worrying is
that, in our full model, a strongly negative Bsys;L makes a
large negative contribution that is nearly canceled out by
large positive contributions from the other terms.
Conclusion.—We have compared the large-scale distri-

bution of total mass and luminous matter, through meas-
urement of the number-weighted and luminosity-weighted
galaxy correlation functions ξn and ξL in the latest public
data release from the SDSS-III Baryon Oscillation
Spectroscopic Survey (BOSS). We have shown that such
a measurement is potentially of great importance for
verifying the standard cosmological model and for putting
new limits on nonstandard possibilities. In particular, such a
measurement can be used to detect the large-scale modu-
lation from BAOs of the ratio of baryonic matter to total
matter. Within the framework of the model of Barkana and
Loeb [12], the effect of this modulation on galaxy surveys
is characterized by a parameter, BL;Δ, which we have
measured in the BOSS CMASS DR10 data. When includ-
ing nonstandard (but currently weakly constrained) CIPs in
our model, we obtain evidence at 3.2σ of the modulation
effect with a value of BL;Δ consistent with the theoretical
prediction, and an upper limit on the CIP amplitude that is
within an order of magnitude of the best existing limits.
However, current data limit the robustness of this test and
we believe our results only demonstrate that current data
are on the threshold of detecting the BAO-induced modu-
lation and setting strong limits on CIPs. Future observa-
tional efforts, such as the Dark Energy Spectroscopic
Instrument (DESI) [42], will provide more accurate data.
In particular, while we used ∼0.5M galaxies for this
analysis, DESI will have ∼20M galaxies, which will reduce
the statistical error on the correlation function measurement
and increase the redshift coverage. The better quality

FIG. 2. Our measurement of the difference ξL − ξn (times s2),
using 31 radial bins, and the same quantity in our best-fit model.
The red line corresponds to our full model, the blue line
corresponds to a model with BCIP ¼ 0, and the green line
corresponds to a model with BCIP ¼ BL;Δ ¼ 0.
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imaging will reduce the error on the luminosity measure-
ment and subsequently on ξL. We expect new data sets, as
well as more robust theoretical modeling, to improve the
robustness of the evidence and, thus, to definitively verify
or rule out the predicted effect.
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