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ABSTRACT  

Navigation and positioning is inherently dependent on the 

context, which comprises both the operating environment 

and the behaviour of the host vehicle or user. No single 

technique is capable of providing reliable and accurate 

positioning in all contexts. In order to operate reliably 

across different contexts, a multi-sensor navigation system 

is required to detect its operating context and reconfigure 

the techniques accordingly. This paper aims to determine 

the behavioural and environmental contexts together, 

building the foundation of a context-adaptive navigation 

system. 

Both behavioural and environmental context detection 

results are presented. A hierarchical behavioural 

recognition scheme is proposed, within which the broad 

classes of human activities and vehicle motions are 

detected using measurements from accelerometers, 

gyroscopes, magnetometers and the barometer on a 

smartphone by decision trees (DT) and Relevance Vector 

Machines (RVM). The detection results are further 

improved by behavioural connectivity. Environmental 

contexts (e.g., indoor and outdoor) are detected from 

GNSS measurements using a hidden Markov model. 

The paper also investigates context association in order to 

further improve the reliability of context determination. 

Practical test results demonstrate improvements of 

environment detection in context determination. 

 

1. INTRODUCTION 

Navigation and positioning systems are inherently 

dependent on the context, which comprises both the 

operating environment and the behaviour of the host 

vehicle or user [1]. Environments and behaviours reveal 

different aspects of context implicitly. Environmental 

context is concerned with the spatial information (e.g., 

indoor or outdoor) of the navigation system while 

behavioural context is more related to the mobility 

information (e.g., stationary, walking or running). For 

many applications, the context can change, particularly for 

smartphones, which move between indoor and outdoor 

environments and can be stationary, on a pedestrian, or in 

a vehicle. To meet the growing demand for greater 

accuracy and reliability in a wider range of challenging 

contexts, many navigation and positioning techniques have 

been developed or improved, such as Wi-Fi positioning 

[2][3], multiple-constellation global navigation satellite 

system (GNSS) [4], GNSS shadow matching [5][6] and 

pedestrian dead reckoning (PDR) using step detection 

[4][7]. However, no single current technique is capable of 

providing reliable and accurate positioning in all contexts. 

Therefore, in order to operate reliably across different 

contexts, a multi-sensor navigation system is required to be 

able to detect its operating context and reconfigure the 

technique it uses accordingly, which is referred to as 

context-adaptive navigation [1][8]. 

Figure 1 illustrates a possible architecture for a multi-

sensor context adaptive navigation or positioning system. 

In an autonomous context adaptive navigation system, 

behavioural and environmental context categories are 

identified independently and associated using available 

sensors in the mobile device. Based on the contexts 

detected, different sensors may be selected and their 

measurements may be processed in different ways within 

each subsystem. Consequently, the integration module can 

adapt itself and export positioning results by selecting 

proper subsystems and varying the tuning of the algorithms. 

Then the positioning results can be used for location based 

services and improvement of context detection. 
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Figure 1: An example of a context adaptive navigation 

system 

 

Environmental context is the central component of a 

contextual navigation or positioning system because it 

determines the types of signals available. For example, 

GNSS reception is good in open environments, but poor 

indoors and in deep urban areas. Wi-Fi signals are not 

available in rural area, in the air or at sea. In an underwater 

environment, most radio signals are not available at all. In 

addition, processing techniques also depend on the 

environments. Terrain referenced navigation typically 

determines terrain height using radar or laser scanning in 

the air, sonar or echo sounding at sea and a barometer on 

land [1]. In an open environment, non-line-of-sight (NLOS) 

reception of GNSS signals or multipath interference may 

be detected using consistency checking techniques based 

on sequential elimination [9]. In dense urban areas, more 

sophisticated algorithms are required for NLOS/multipath 

detection. 

Behavioural context is also important because it can 

contribute additional information to the navigation solution. 

It will help mobile devices to understand what the user is 

doing under particular circumstances [10]. A stationary 

pedestrian or a land vehicle indicates a fixed location and 

will not need to update its velocity and position. Land 

vehicles normally remain on the ground, effectively 

removing one dimension from the position solution. 

Similarly, boats, ships and underwater vehicles can all be 

on land, but only exhibit some specific types of behaviours. 

Within a GNSS receiver, the behaviour can be used to set 

the bandwidths of the tracking loop and coherent 

integration intervals, and to predict the temporal 

characteristics of multipath [11]. 

Previous work on contextual navigation and positioning 

has focused on individual positioning techniques. For 

instance, there has been substantial research into 

determining the motion types for indoor positioning 

applications [12][13]. Researchers have also investigated 

context-adaptive GNSS to adjust the processing strategies 

and parameters of GNSS receivers [11]. Moreover, despite 

contextual awareness having been applied for different 

tasks within a mobile device [14][15][16], most of the 

related services are provided for non-navigation purpose. 

Context frameworks designed in general may not be 

suitable for context adaptive navigation. A context 

framework for navigation and positioning must be 

designed especially in order to be fit for navigation purpose; 

otherwise, it serves no purpose. 

Recently, a number of researchers have investigated 

different approaches towards a context adaptive navigation 

system. The initial attempt was made in [17], in which a 

Location-Motion-Context (LoMoCo) solution was 

proposed using Bayes reasoning, to determine the users’ 

context information from the locations and motion states. 

In 2013, the concept and framework of ‘context adaptive 

navigation’ was first introduced systematically in [1] by 

UCL, with the preliminary behavioural and environmental 

context detection results following. Following the initial 

proof of concept, an adaptive activity and environment 

recognition algorithm for context model parameters was 

proposed in [16]. In [18], it was shown that a hidden 

Markov model (HMM) can be used to integrate the 

location based motion states for inferring the mobility 

context of pedestrians. In [19], a framework for inferring 

typical on-campus contexts was developed, which took 

locations, timespans and the user’s mobility contexts into 

consideration and achieved an 88.8% success rate using a 

Naïve Bayes classifier. 

Existing research have demonstrated the relevant context 

detection techniques and built the foundations of a context 

adaptive navigation system. To further carry on the 

research, many new lines of research are required to be 

pursued, including: 

 Definition of a set of context categories for navigation 

and positioning purposes; 

 Development of behavioural and environmental 

context detection algorithms using a wide range of 

sensors; 

 Development of a robust context determination 

algorithm; 

 The practical demonstration of a basic multi-sensor 

context adaptive integrated navigation system. 

This paper aims to determine behavioural and 

environmental context as whole with multiple sensors on 

the smartphone. Section 2 presents a study of behaviour 

recognition. The recognition framework and the 

performance of supervised machine learning classification 

algorithms are described, along with the temporal 

connectivity of behaviours. Section 3 proposes a new 

method for indoor-outdoor environmental context 

detection using GNSS measurements under a hidden 

Markov model. Section 4 considers behavioural and 

environmental context as whole and investigates context 

association to improve the reliability of context 

determination. Conclusions are presented in Section 5. 
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2. BEHAVIOUR RECOGNITION 

2.1. Framework 

The behavioural context may be divided into several broad 

classes: human activity, land vehicle, water vehicle, 

aircraft and spacecraft [1]. Each class contains detailed 

subdivisions. To provide robust and accurate classification 

of behaviours, a hierarchical detection frame is proposed to 

proceed from a coarse-grained recognition towards fine-

grained subtasks. The top level of classifier is designed to 

distinguish between the broad classes while the bottom 

level of classifiers is responsible for recognising the 

subclasses within each broad class. Compared with a single 

classifier dealing with all behavioural scenarios, this 

hierarchical framework has two benefits. Different features 

and machine learning algorithms can be used in different 

classifiers for better recognition performance. Moreover, a 

flexible scheme is offered as new classes (e.g. water 

vehicle, aircraft) or subclasses can be added within the 

framework, as illustrated in Figure 2. The classifiers and 

classes in solid boxes indicate those are already 

implemented within the current context determination 

framework, while those in dash boxes indicate potential 

future extensions. 

 

Figure 2: Extensive framework of behaviour detection 

 

To illustrate the effectiveness of the framework in the 

initial stage of the study, human activity and land vehicle 

classes are included within the scope of the research. The 

current detection system consists of three classifiers: a 

human-vehicle classifier, a human activity classifier and a 

vehicle motion classifier, which are organized into a 

hierarchy as in Figure 3. A human-vehicle classifier is 

designed at the start of the system to distinguish between 

motorised vehicle motions and non-motorised activities. 

When motorised transport is recognised, the detection 

system proceeds to the vehicle motion classifier for 

classification of different vehicle motions. Otherwise, it 

proceeds to the human activity classifier. A set of detailed 

categories currently included within each classifier are 

introduced in Table 1. Note that distinct from human 

activities, motorised land vehicles, propelled by internal 

combustion engines or electric motors, sometimes 

combinations of the two, can be identified by the vibrations 

from the frequency spectrum of the accelerometers. Engine 

vibration applies mainly to internal combustion engines, 

whereas road-induced vibration applies to all land vehicles. 

The vehicles covered in this study by now include diesel 

trains, diesel buses and underground trains. All 

underground trains are electric for safety reasons. The 

hybrid vehicles were not included in the current study. The 

mode of stationary vehicles with the engine on is included 

within the category because it can play a significant role in 

context association to minimise impossible behavioural 

context transitions, such as from a moving vehicle to 

another moving vehicle directly, or one human activities 

connected to a moving vehicle without intermediate 

categories. 

 

Figure 3: Overview of behaviour recognition system 

 

Human activity types Vehicle motion types 

Stationary; 

Walking; 

Running; 

Ascending stairs; 

Descending stairs. 

Stationary vehicles with the 

engine on; 

Moving diesel trains; 

Moving diesel buses; 

Moving underground trains. 

Table 1: Detailed types of behaviours 

2.2. Methodology 

Behavioural context recognition systems consist of four 

main phases: sensing, preprocessing, feature extraction and 

either training or classification. They are described as 

follows: 

1) Sensing: In this step, sensors collect the raw data at 

specific sampling rates. 

2) Preprocessing: Subsequently, the raw data can be 

processed in various ways, such as cleansing and 

filtering. Then, a windowing scheme is applied to 

segment the data into successive pieces for further 

calculation. 

3) Feature extraction: Various features, representing the 

main characteristics of behaviours, are extracted from 

the segmented data as the inputs of classifiers. 

4) Training and Classification: In the training stage, the 

recognition classifiers for classification are constructed 

and the parameters of the model are learned from 

training sets. In the classification stage, the trained 

classifiers are used to recognise different behaviours. A 

detailed description of the machine learning algorithms 

used in this study is presented in Section 2.2.4. 

2.2.1. Sensing 

As previous research [20][21] has already proved, among 

the sensors in a smartphone, measurements from the 
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inertial sensors are capable of taking the leading roles in 

motion recognition. The accelerometer and gyroscope 

signals are able to track kinematic motions indirectly by 

measuring the specific force and angular rate. Motion can 

also be inferred from some sensors that measure magnetic 

features. Magnetometers sense the Earth's magnetic field, 

enabling changes in heading to be detected. A barometer, 

also called a barometric altimeter, measures the ambient air 

pressure, from which the heights can be estimated and the 

changes in height can be derived [4]. Therefore, in this 

study, accelerometers, gyroscopes, magnetometers and a 

barometer, found in most smartphones, are used for 

behavioural recognition. 

2.2.2. Pre-processing 

Prior to feature extraction, the raw sensor data are divided 

into small segments using sliding windows. The selection 

of an appropriate window length is important, and different 

durations can be set for it. At a sampling frequency of 100 

Hz, a 500 sample window is suitable based on previous 

studies [22][23]. It was shown that a window length of four 

seconds was an effective and sufficient value for behaviour 

recognition, neither too short to capture enough features, 

nor too long to avoid mixing multiple contexts in a single 

window. A 4s sliding window with a 50% overlap is used 

for training and testing to avoid missing information 

between successive windows. Note that to get quicker 

responses, a 75% overlap is adopted in Section 2.4 and 4.2, 

thus context can be determined every second. 

For accelerometers, gyroscopes and magnetometers, they 

are made in three dimensions, referred to as the x-axis, y-

axis and z-axis. However, the recognition performance 

may be affected by orientation changes if the model is 

trained only for a specific orientation [20][24]. In order to 

minimise such effects, the magnitudes of the sensors are 

calculated from the outputs of three axes, x, y and z, thus 

 
2 2 2

magnitude x y z    . (1) 

However, the existence of a sequence with a non-zero 

mean can hide important information in the frequency 

domain, so the means of the magnitudes are removed from 

each segment prior to computing the frequency-domain 

features. 

2.2.3. Feature Extraction 

Once the data pre-processing is completed, features need 

to be extracted from the segmented data to be used for 

training and classification. A good set of feature 

measurements can often provide accurate and 

comprehensive descriptions of patterns from which the 

differences between context categories are easily discerned. 

In this study, both time-domain and frequency-domain 

features are extracted for behavioural recognition. 

Time-domain features describe temporal variations of 

motions during the epoch. The time-domain features 

selected include range, variance, skewness and kurtosis 

extracted from all sensors. The effectivenesses of these 

features for behaviour classification have been shown in 

different studies [20][25][26]. Zero-crossing rate (ZCR) is 

also extracted from the preprocessed accelerometer signals, 

which is used to differentiate different periods of human 

activity changing with the time. They are expressed as 

follows and summarized in Table 2: 
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where N is the length of the sample window, μ is the mean, 

xn represents the n-th epoch of data in the window and the 

indicator function 𝕀(. ) is 1 if its argument is true and 0 

otherwise. 
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Vehicle 
√ √ √ √  16 

Human 

Classifier 
√ √ √ √ √ 17 

Vehicle 

Classifier 
√ √ √ √  16 

Table 2: Time-domain features for each classifier. Range, 

variance, skewness and kurtosis are extracted from 

accelerometers, gyroscopes, magnetometers and the 

barometer respectively while ZCR is only extracted from 

the accelerometer signals. 

 

Frequency-domain features describe the periodic 

characteristics of motion during the sample window. In 

frequency-domain analysis, peaks are centered on different 

frequency values for different behaviours after a fast 

Fourier transform (FFT). For this reason, features in the 

frequency spectrum can reveal significant information on 

motion periods and vibrations. In the human-vehicle 

classifier and human activity classifier, the frequency of 

the largest peak and related spectrum peak magnitude of 

accelerometers and gyroscopes, are extracted to capture the 

differences between human and vehicles, and the main 

temporal periodicity of different human activities. 

Specifically, according to [1][8], the vehicles always 

exhibit one or more peaks between 20 Hz and 40 Hz due to 

vibration and little peaks below 10 Hz when the vehicle is 
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not moving. Thus all frequency domain features of vehicle 

classifier are estimated in the following sub-bands instead 

of the whole spectrum: 0-10 Hz, 10-20 Hz, 20-30 Hz, 30-

40 Hz and 40-50 Hz. 

The Power Spectral Density (PSD) of signals shows the 

strength of the energy distributed in the frequency 

spectrum, thus the PSD of accelerometers is adopted in the 

vehicle motion classifier to distinguish different vehicle 

motions with diverse vibrations. For finite time series xn 

sampled at discrete time ∆𝑡 for a total measurement period 

T = N∆𝑡, the PSD is defined by 
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A summary of the frequency domain features for each 

classifier is presented in Table 3. 
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Human-

Vehicle 
2 2  4 

Human 

Classifier 
2 2  4 

Vehicle 

Classifier 
10  5 15 

Table 3: Number of frequency-domain features for each 

classifier. In the human-vehicle and human activity 

classifier, the features are the frequencies of the largest 

peak and related spectrum peak magnitudes, extracted 

from accelerometers and gyroscopes, respectively. In the 

vehicle classifier, the largest peak magnitudes and the 

PSDs of the accelerometers and gyroscopes are estimated 

in the sub-bands. 

2.2.4. Supervised Machine Learning 

Supervised classification methods learn a model of 

relationships between the target vectors and the 

corresponding input vectors consisting of training samples 

and then utilize this model to predict target values for the 

test data [28]. Note that in the algorithms described in this 

section, assume that there are L possible behavioural 

categories C={Ck | k=1,2,···, L}. Given a training dataset 

X={Xi,j | i=1,2, ···, N; j=1,2, ···, M}, each sample Xi={Xi,1, 

Xi,2, ···, Xi,M} is assigned to a target value yi∈C. M is the 

number of features and N is the number of the samples in 

the dataset. 

Due to the limited space, only the algorithms used in the 

framework, decision tree and relevance vector machine, 

are introduced in detail. The reason why they are selected 

will be explained in Section 2.3.2. 

 

 Decision Tree (DT) 

A decision tree is a method that performs a recursive binary 

partitioning of the feature space to reach a decision. Given 

training samples and the corresponding class labels, the 

dataset is split into branch-like segments such that samples 

with the same labels are grouped together. The root is the 

starting point of the tree while the nodes without outgoing 

lines are the terminals. The samples are classified while 

navigating from the root down to the terminals. Along the 

path, the internal nodes split the data into two or more 

segments according to decision criteria based on features 

until all samples at a node belong to the same class.  

Let the training dataset at node m be represented by Q. For 

each split at the node, one feature value Xi,j and a threshold 

θ are required to partition the data into two subsets: 
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The impurity at node m, a measure of the homogeneity of 

the labels, is computed using an impurity function H(.), 

 ( , ) ( ( )) ( ( ))
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N N
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where Nm is the number of the samples at node m, and nleft 

and nright indicate the number of samples splitted into the 

left and right branch, respectively. To choose the 

thresholds that best splits the samples at each step, the 

parameters that minimise the impurity are selected. 

 
* ( , )argminG Q


    (10) 

This is repeated for subsets 𝑄𝑙𝑒𝑓𝑡(𝜃
∗) and 𝑄𝑟𝑖𝑔ℎ𝑡(𝜃

∗) until 

the maximum size of tree is reached, or Nm=1. Note that the 

choice of an impurity function depends on the task being 

solved. In this study, information entropy [27] is used for 

its computational simplicity: 

 
2

( )
mk mk

k

H Q p log p    (11) 

where pmk is the proportion of samples Q belonging to 

category Ck at node m. 

Amongst the supervised machine learning methods, the 

decision tree has various advantages. The model is simple 

and clearly explained by Boolean logic. Also, a large 

amount of data can be trained and tested within a 

reasonable time. However, the training process of decision 

tree methods cannot guarantee to return the globally 

optimal tree. Moreover, the method can create a biased tree 

if some classes dominate the training data. 

 Relevance Vector Machine (RVM) 

Fundamentally, RVM is a binary classifier (y∈{0,1}) under 

a Bayesian probabilistic framework [28]. The relationship 
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of the input vector and their real-valued predictions t(Xi) 

are modelled by a linearly weighted function 

 

1

( ; ) ( ) ( )
N

T
i i i i

i

t w


 X w X w X   (12)

where w denotes the weights of samples and ( )i X  is a 

nonlinear basis function. The input data samples Xi are 

classified according to the sign of t(Xi). To infer the 

function t(Xi), we need to define the basis function and to 

estimate the weights as well. In here, the radial basis kernel 

function is used, so that: 
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A Bayesian probabilistic framework infers a distribution 

over the weights. According to Bayes rule, the posterior 

probability of w is 
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where 𝐲 = (𝑦1, ⋯ , 𝑦𝑁)
T, αi represents the precision of the 

corresponding parameter wi, and 𝜶 = (𝛼1, 𝛼2,⋯ , 𝛼𝑀)
T . 

p(y|w,α) is the likelihood of the target values given the 

training dataset. The conditional prior probability 

distribution p(w|α) in Equation (14) is modelled by a 

Gaussian function where the parameters wi are weighted by 

parameters αi. 
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Because y∈ {0,1} is a binary variable, the likelihood 

function can be described by a Bernoulli distribution: 
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where σ(y)=1/(1+e-y) is the logistic sigmoid link function. 

Equation (14) with the probability densities given by (15) 

and (16) cannot be solved analytically. Therefore, a 

numerical method, the Laplacian approximation, is 

proposed to find the maximum a posterior (MAP) weights 

w* based on the training dataset, 
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where 𝐀 = 𝑑𝑖𝑎𝑔(𝛼𝑖). By computing the maximum value 

of (17) with respect to α and y, the mean w* and covariance 

Δ of the Laplacian approximation are obtained: 
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where 𝐁 = 𝑑𝑖𝑎𝑔(𝛽1, 𝛽2, … , 𝛽𝑁) is a diagonal matrix with 

𝛽𝑖 = 𝜎(𝑦𝑖)[1 − 𝜎(𝑦𝑖)]. After obtaining w*, the parameters 

α are iteratively updated using  
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where μi is the i-th posterior mean weight wi
* and Δii is the 

i-th diagonal element of the covariance. The procedure is 

repeated until it converges to a fixed value or the maximum 

number of iterations is reached. 

In order to tackle multiclass situations using the RVM 

method, two possible strategies could be used [28]. The 

first one is the ‘one-against-all’ strategy. L binary 

classifiers will be created for an L-class classification and 

each classifier is trained to separate one class from the 

others. The second strategy is ‘one-versus-one’. There are 

L(L-1)/2 binary classifiers created to separate every two 

classes. In this study, the first method is adopted as it is 

more computational efficient. 

2.3. Testing 

2.3.1. Datasets 

Behavioural data was collected from several individuals 

and different vehicles using a Samsung Galaxy S4 

smartphone. This comprised both human and land vehicle 

behaviours. About 30 minutes of data was collected for 

each behaviour. The behavioural motions were recorded 

using the 3-axis accelerometers, 3-axis gyroscopes, 3-axis 

magnetometers and barometer of the smartphone. In the 

data collection, a higher sampling rate provides more 

samples in each window but more processing is needed. By 

balancing the amount of data required per window and the 

power consumption, the accelerometers, gyroscopes and 

magnetometers were sampled at 100 Hz while the 

barometer was set at its maximum sampling rate, 6.25 Hz. 

For the human activity dataset, eight participants, including 

both females and males of age range 23 to 35, were 

enrolled to collect daily human activities, comprising 

stationary (including standing, sitting still and placed on a 

table), walking, running, climbing stairs and descending 

stairs. During each data collection, the smartphone was 

placed in the front pockets of the trousers and no 

instructions were given about its orientation. All 

participants were asked to perform each activity as flexibly 

as usual without any restrictions.  

For the vehicle motion datasets, data were collected 

separately on buses, underground trains and diesel trains. 

Data were collected in both dynamic and stationary (with 

the engine on) scenarios. During the collection, the 

smartphone was put on a seat within the vehicle, where 

noise conditions were typical. 
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2.3.2. Results 

 Comparisons with Different Algorithms 

To determine the most suitable algorithm for each classifier, 

a wide range of common supervised machine learning 

algorithms were compared. In addition to the DT and RVM 

described in Section 2.2.4, an artificial neural network 

(ANN), Bayesian network (BN), Naïve Bayes (NB) 

algorithm and support vector machine (SVM) were 

assessed. The ANN, BN, NB and SVM algorithms are 

described in [28] and their capabilities for sensing 

behavioural contexts are discussed in [29]. 

To carry out the evaluations for the comparison, a 6-fold 

cross-validation strategy was applied to train and test each 

of the three classifiers in the framework individually. 

Using this method, the database is randomly divided it into 

6 equally sized folders. Each time, 5 folders are used as 

training sets while the remaining one is used as a test set. 

This procedure is repeated 6 times to ensure that all the 

samples are used equally in testing, while maintaining 

independence of training and testing data for model 

learning. 

After each folder is tested, the algorithms are evaluated 

based on statistical metrics. Two commonly used measures 

are precision and recall: precision P is the number of results 

correctly attributed to the class divided by the total number 

attributed to that class, recall R is the number of results 

correctly attributed to the class divided by the number that 

truly belong to that class. In this research, the overall 

accuracy of the classification results is evaluated using F1 

score, the harmonic mean of precision and recall, defined 

in Equation (22). 

 P

P P

T
P

T F



  (20) 

 P

P N

T
R

T F



  (21) 

 1 2
P R

F
P R


 


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In the equations, Tp indicates the number of true positives 

or correctly classified results, FN is the number of false 

negatives and Fp is the number of false positives. 

Algorithm 
Human-

Vehicle 

Human 

Activities 

Vehicle 

Motions 

ANN 97.4 96.4 88.2 

BN 90.2 94.4 85.6 

DT 98.9 91.4 87.6 

NB 89.4 91.7 80.3 

RVM 96.4 97.6 91.0 

SVM 97.9 98.3 92.0 

Table 4: F1 score of different supervised machine 

learning algorithms for each classifier (%) 

 

The performance of the different supervised machine 

learning techniques in three classification tasks is 

presented in Table 4. Note that each result listed in the table 

is the best one achieved using that algorithm by tuning the 

parameters. For the human-vehicle classifier, the decision 

tree shows better performances than the others, achieving 

an F1 score of nearly 99%. As the decision tree is also 

simple structured and computational efficient for both 

training and testing, it is therefore selected for the human-

vehicle classifier. The classification results of the human 

and vehicle classifiers suggest that RVM and SVM are 

both excellent candidates, with SVM performing slightly 

better than RVM. However, the outputs of RVM are 

probabilities, while those of the SVM are Boolean, so the 

RVM provides an indication of the uncertainty of the 

classification decision, which is useful for context-adaptive 

navigation. Therefore, the RVM is chosen for both the 

human activity and vehicle motion classifiers. 

 Performance of Behavioural Classifier 

To evaluate the performance of the overall recognition 

system with three classifiers working together, the whole 

dataset was divided into two parts: 200 samples of each 

category in the dataset were randomly selected as test 

samples; the others (about 700 samples for each category) 

were used as training samples. The behaviour recognition 

results of our approach are shown in the confusion matrix, 

presented in Table 5. A confusion matrix is a classification 

result table with each row representing the true class and 

each column representing the class output by the 

classification algorithms. 

The results show that the system achieves an overall F1 

score of 95.1%, demonstrating that this approach can 

distinguish most of the behaviours. It can be observed from 

Table 5 that the misclassification rate between human 

activities and vehicle motions is less than 1% due to the 

hierarchical classification scheme. However, some 

categories are more difficult to detect. For example, many 

moving bus samples are misclassified as other vehicle 

motions due to the presence of similar road-induced and 

engine vibrations. 

Actual Predicted 

S W R A D V U T B 

S 192 0 0 0 0 8 0 0 0 

W 0 194 0 3 3 0 0 0 0 

R 0 0 200 0 0 0 0 0 0 

A 0 3 0 194 3 0 0 0 0 

D 0 3 0 5 192 0 0 0 0 

V 7 0 0 0 0 186 4 2 1 

U 0 0 0 0 0 5 183 7 5 

T 0 0 0 0 0 5 2 190 3 

B 0 0 0 0 0 10 2 8 180 

Table 5: Confusion matrix 

Note: S=stationary, W=walking, R=running, A=ascending 

stairs, D=descending stairs, V=stationary vehicles with the 

engine on, U=moving underground trains, T=moving trains, 

B=moving buses. 
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2.4. Behavioural Connectivity 

One way of reducing incorrect behaviour determination is 

to consider the likelihood of behaviour connectivity. 

Connectivity describes the temporal relationship between 

the current behaviour category and the previous ones. If a 

direct transition between two categories can occur, they are 

connected; otherwise, they are not [1]. For example, 

stationary vehicle and pedestrian behaviour can be 

connected directly, whereas moving vehicle behaviour is 

not because a vehicle must normally stop to enable a person 

to get in or out.  

Behavioural connectivity is represented in a probabilistic 

way. Comparing with Boolean results, there are two 

advantages. First, a Boolean implementation may 

occasionally result in the decisions being stuck on incorrect 

context categories following a faulty selection. This can 

occur when the correct context category is not directly 

connected to the incorrectly selected category and the other 

categories are poor matches to the measurement data. But 

probabilities are more flexible to increase the directly 

connected category and minimise the unlikely one. Second, 

a probabilistic scheme permits the transitions between 

context categories that are rare, but not impossible. 

To illustrate the temporal relationships, the likelihoods of 

connections between behaviours are listed in Table 6, 

where the permitted direct connections are set to 0.9 and 

the unlikely connections are set to 0.1. 

      Prev 

 Now       
H V U T B 

H 0.9 0.9 0.1 0.1 0.1 

V 0.9 0.9 0.9 0.9 0.9 

U 0.1 0.9 0.9 0.1 0.1 

T 0.1 0.9 0.1 0.9 0.1 

B 0.1 0.9 0.1 0.1 0.9 

Table 6: Behavioural connection matrix (C) 
Note: H = human activities, including stationary, walking, 

running, ascending and descending stairs; V=stationary vehicles 

with the engine on; U=moving underground trains; T=moving 

diesel trains; B=moving buses. 

As the behaviours between two concessive epochs are not 

independent, a straight smoothing method is first applied. 

As in Equation (23), the smoothed estimates are obtained 

by combining the normalised outputs from the 

classification algorithms at epoch k and the estimates at 

epoch k-1 using filter gain α. 

 1
ˆ ˆ(1 )k k k 

    x z x   (23) 

where 𝐱̂𝑘
−  and 𝐱̂𝑘−1  are, respectively, the estimates of 

behaviours at epoch k before connectivity updating and 

estimates at epoch k-1 and 𝐳𝑘 is the detected probability of 

behaviours at epoch k across the detection algorithms. 

α=0.5 is used here, which indicates the measurements at 

epoch k and the estimates at epoch k-1 are weighted equally. 

Then the relationships between estimates are constructed 

based on a linear assumption by a transfer matrix Ωk, as 

shown in Equation (24). 

 
1

ˆ ˆ
k kk




 x Ω x   (24) 

The transfer matrix is a quantitative representation to 

describe the response of estimate at epoch k to the previous 

one. However, connectivity implies that some transitions 

are more likely than others, thus the transfer matrix should 

be re-estimated using the connectivity constraints, as 

shown in Equation (25). 

 
1

ˆ ˆ( )
k kk




 x Ω C x   (25) 

In Equation (25), notation º denotes matrix element-wise 

multiplication, satisfying (𝛀 ∘ 𝑪)𝑖,𝑗 = 𝛀𝑖,𝑗𝐂𝑖,𝑗. Note that in 

most practical cases, the dimensions of vector 𝐱̂𝑘
− and 𝐱̂𝑘−1  

are larger than one, thus Equation (24) becomes an 

underdetermined equation. To obtain the transfer matrix, 

the minimum (Euclidean) norm of the transfer matrix 

constraint is imposed as it is able to control the propagation 

to the perturbations in the estimates [30][31]. To calculate 

the matrix, a Moore-Penrose pseudoinverse [32] of vector 

𝐱̂𝑘−1 is applied: 

 
†

1
ˆ ˆ( )

kk k



 Ω x x   (26) 

In Equation (26), superscript † is the operator of 

pseudoinverse (right inverse in this case), which satisfies 

 
†

1 1
ˆ ˆ( )k k  x x Ι .  (27) 

The final step is to re-scale the likelihood of each category 

to obtain a probability using 
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where 𝑥̂𝑘,𝑖 is the probability of behaviour i at epoch k. 

To test the performance of the proposed connectivity 

method, a piece of continuous underground train data was 

collected on a London underground train (District line) for 

about 5 minutes, with the vehicle moving and stopping at 

the stations. It was processed and classified using the same 

method described in Section 2.2. 

A comparison of context recognition results with and 

without connectivity is shown in Figure 4. Note that most 

of the misclassified samples are corrected to the right ones, 

showing that the connectivity constraint is able to reduce 

the number of incorrect context selections and improve the 

performance of behavioural detection. Comparing with the 

reference line, it can also be seen that there were one to 

two-second response delays after the behaviour changed. 
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Figure 4: Results of behaviour connectivity 

3. ENVIRONMENT DETECTION 

Generally, the environmental context may be divided into 

several different broad classes: on land, on water, 

underwater, air and space [1]. A good environment 

categorisation for navigation can provide an indication of 

the positioning techniques applicable for a context adaptive 

navigation system. As the smartphone is used as the 

context detection device in this study, it is not applicable to 

be used for positioning purposes underwater, in the air or 

in space. In this paper, the range of environmental contexts 

is limited to scenarios on land because a common mobile 

user spends most of their time in daily life on land. 

As the related research on environment detection is still in 

its infancy, locating whether the user is indoor or outdoor 

is considered as a prerequisite task of a navigation system 

because indoor and outdoor positioning depend on 

inherently different techniques. An effective indoor and 

outdoor detection algorithm can provide essential 

information for context adaptive navigation applications. 

For instance, if a stationary car with the engine on is 

detected outdoors, this may imply it is waiting at traffic 

lights while an indoor context may reveal it is located in a 

car park. 

Different smartphone sensors whose outputs vary with the 

environment can be potentially used as detectors and each 

sensor used for environment detection has its advantages 

and drawbacks respectively. A cellular module detects 

cellular signal strengths from a cellular network, but at the 

same time the signals strongly depend on the proximity of 

cellular base stations in the network. A Wi-Fi module can 

receive signals broadcast from access points. However, 

tests [1][8] show that it is not sufficient for indoor and 

outdoor detection based on the numbers of access points 

and the strengths of signals. A GNSS module (including 

GPS and GLONASS) is chosen as the main detector for 

this research, because the availability and accuracy of 

satellite signals tend to be less affected by factors other 

than the environment type. More importantly, the globally 

distributed properties of GPS and GLONASS ensure that 

we can infer environments from the availability and 

strength of GNSS signals anywhere on Earth. The main 

drawback of GNSS is its high power consumption 

compared to other smartphone sensors. As the research 

advances, other sensors can be added into the context 

determination framework to improve the detection of 

indoor and outdoor environments with GNSS signals. 

 

Figure 5: The portico of UCL’s Wilkins building, an 

example of the intermediate category 

In reality, the boundaries between indoor and outdoor 

environment can be ambiguous, rendering some scenarios 

hard to classify as either one. The portico of UCL’s Wilkins 

building in Figure 5 is a typical example. This is covered 

by the roof of the building, but there is only one wall and 

the other three sides of this area are open. For a practical 

detection system, an uncertain decision is better than a 

wrong classification. Because an uncertain environment 

decision can be used in other ways (e.g. environment 

connectivity, environment and behaviour association) to 

improve the classification, but a wrong classification 

cannot. Similarly, it is better to inform a context-adaptive 

navigation system that the environment is uncertain than to 

provide it with an incorrect context. Therefore, to have a 

smooth transition between indoor and outdoor categories 

and reduce the likelihood of wrong classification, a new 

environment category of “intermediate” is introduced to 

serve as a bridge between the indoor and outdoor 

categories. 

3.1. Overview of GNSS Signals 

GNSS measurements were collected at 1 Hz from both 

GPS and GLONASS signals received by the smartphone. 

The data was collected at different locations of various 

indoor and outdoor environments, such as deep indoor, 

urban, outer indoor and open sky. About 200s of static data 

was collected at each site. Figure 6 presents histograms 

showing the normalised distributions of signal-to-noise 

ratio (SNR) measurements from four types of environment. 

A number of trends may be identified from the histograms. 

A signal with a higher SNR is more likely to be LOS (Line-

of-Sight) than NLOS (Non-Line-of-Sight). As expected, 

the average received SNR is lower in indoor environments 

than in deep urban and open sky environments, which is 

useful for environmental context detection. By comparing 

the GNSS SNR distributions, it can also be seen that the 

proportions of signals weaker than 25 dB-Hz vary between 

different environment types. Almost all the signals 

received in deep indoor environments are weaker than 25 

dB-Hz while increasing proportions of signals stronger 

than 25 dB-Hz are observed for outer indoor, deep urban 

and open sky. 
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Figure 6: SNR measurement distributions under different 

environments 

 

3.2. GNSS Based Features 

The number of satellites received and the total measured 

SNR, summed across all the satellites received at each 

epoch, were also considered as features for the 

environmental classification algorithm. As normally the 

average number of satellites received indoor is no more 

than those received outdoor, the summed SNR is 

considered instead of the average value. These features are 

shown in Figure 7, based on the same set of data shown in 

Figure 6. Note that it takes time for a GNSS receiver to 

acquire satellite signals at the start of a test period, so there 

is an increase in satellite numbers during the first few 

seconds. It can be observed that open sky and deep indoor 

environments can be clearly distinguished from the others.  

However, it is hard to distinguish “outer indoor by the 

window” and “deep urban” from each other based on these 

observations. Approximately the same number of satellites 

was received and there were only slight differences in the 

total SNR measurements. Therefore, neither feature is a 

reliable metric for indoor and outdoor classification. 

 

 

Figure 7: Features derived from satellite signals 

 

As a larger percentage of weak signals (less than 25 dB-

Hz) are received indoors than outdoors, to enlarge the 

differences in the classification features between 

environments, these signals are deducted from the 

observations. Thus, two new features, numSNR25 and 

sumSNR25, are proposed, which are defined by 
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where SNRi indicates the SNR value of the i-th satellite 

received at the current epoch and the function H(.) is 

defined as: 
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Comparing the features plotted in Figure 8 with the ones in 

Figure 7, more satellites with signals above 25 dB-Hz are 

received in the deep urban environment than indoor by the 

window, leading to larger differences in the summed SNR 

features. Meanwhile, the deep indoor and open sky 

environments can still be clearly distinguished based on the 

observations. To verify the effectiveness of the features, 

they will be further tested using a dataset collected at 

different indoor and outdoor sites in Section 3.4. It is worth 

noting that sumSNR25 is typically less than 100 dB-Hz 

indoors and greater than 200 dB-Hz outdoors. For the 

observations between 100 and 200 dB-Hz, their 

environment types need to be distinguished using more 

information, such as measurements from other sensors or 

the temporal relationship. 
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Figure 8: Features based on signals above 25 dB-Hz 

 

3.3. Hidden Markov Model (HMM) 

The features numSNR25 and sumSNR25 can be computed 

sequentially from the outputs of a GNSS receiver module. 

A hidden Markov model is used in this study to determine 

the environmental context by integrating the observations 

over time. The HMM assumes a Markov process with the 

states that cannot be visible directly [28] (indoor, 

intermediate or outdoor environment in this study), so that 

it is capable of modelling the inherent dynamic temporal 

relationships of environments. In general, a HMM includes 

five elements as follows: 

1) The state space S that consists of N hidden states 

S={S1, S2,…, SN}. In this research, there are only three 

hidden states: indoor, intermediate and outdoor, which are 

denoted as S1, S2 and S3 respectively. At each epoch k, 

hidden states satisfy the condition 

 
1

( ) 1
N

k i

i

P X S


    (32) 

where Xk refers to the environmental context at that epoch. 

2) The set of observations at each epoch k, Zk= {z1,k, 

z2,k,…, zℓ,k,…, zm,k}, where zℓ,k is the ℓ-th observation at 

epoch k and m is the number of observations. In this study, 

z1,k refers to numSNR25 while z2,k is sumSNR25. 

3) The matrix of state transition probabilities 

A={Aij}. Each element of the state transition probabilities 

matrix, Aij, defines the probability that the state transits 

from a value Si at the immediately prior epoch to another 

value Sj at the current epoch. 

4) The vector of emission probabilities B={Bi(k)} 

that defines the conditional distributions P(Zk|Si) of the 

observations from a specific state. 

5) An initial state probability distribution Π={Πi} 

that defines the probability of being state Si at the first 

epoch. 

 

  

Figure 9: Structure of a first-order HMM 

 

In this paper, we use the first-order HMM, which assumes 

the current environmental context is only affected by the 

immediate previous context. Figure 9: Structure of a first-

order HMM is an illustration of a first-order hidden 

Markov model. Given the sequence of the observations, the 

most likely sequence of hidden states can be inferred using 

the Viterbi algorithm [28][33]. The probabilities of the 

model are determined as follows. 

Transition probability. When a user was previously 

indoor, the current state is highly likely to be indoor and 

might be intermediate, but is not likely to be outdoor. 

Because the user rarely moves directly from indoor to fully 

outdoor. It is similar when a user is at door. However, when 

the user is at the intermediate state, he/she can move 

directly to either of the other states. Based on the above 

assumptions and tuning the parameters, the transition 

probabilities are listed in Table 7. 

                  k 

 k+1 
Indoor Intermediate Outdoor 

Indoor 2/3 1/3 0 

Intermediate 1/3 1/3 1/3 

Outdoor 0 1/3 2/3 

Table 7: Transition probabilities of HMM 

 

Initial probability. As there is no prior information about 

the initial state, we have to make a judgement based on the 

available initial observations. On one hand, if the 

observations may enable either an indoor or outdoor 

environment to be determined with high confidence, the 

algorithm shall allow the initial state to follow the 

determination based on the initial observations. Thus, the 

initial probability of either indoor or outdoor shall not be 

set to zero. On the other hand, if the observations at the 

initial epoch cannot disclose the state confidently, the 

initial state is preferred to be uncertain. In this case, the 

initial state is presumed to be most likely the intermediate 

state, so that it offers an equal probability of transiting to 
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the indoor or outdoor states at the next epoch. Therefore, 

the initial probabilities are set as follows: 

 
   

 

1 1 1 3

1 2

0.25

0.5

P X S P X S

P X S
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 
  (33) 

Emission probability. The emission probability describes 

the measurement likelihood of making an observation in 

different states. Our observations are modelled by 

Gaussian process, whose means and variances are fitted to 

the dataset collected at different indoor and outdoor sites, 

which covers different kinds of environment scenarios. 

Note that the Normal distribution in Equation (34) and (35) 

is denoted by N(μ, σ2) with mean μ and variance σ2. 
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3.4. Test Results 

Four different kinds of environment types were chosen to 

test the detection ability of the proposed detection method 

under different GNSS reception conditions. The data for 

open sky (outdoor), deep urban (outdoor), outer indoor and 

deep indoor environments are as depicted in Figure 6. 

Figure 10 presents the detection results of the static 

experiments in different environments. In the case of open 

sky and deep indoor, the detection results are very accurate 

as all samples of these scenarios are successfully detected 

with almost 100% probability. Deep urban is a little 

challenging for the detector as more signals are blocked or 

reflected by the tall buildings around. It can be observed 

from the figure that most samples are classified to outdoor 

correctly but with some intermediate states occasionally 

appearing among them. A similar thing happens for the 

outer indoor environment by a window. As some direct 

signals can still be received by the window, the 

measurements between 20s and 30s are erroneously 

classified as an outdoor environment. 

 

 

Figure 10: Static experiment results of the environment 

detection algorithm 

 

4. ASSOCIATION OF ENVIRONMENTAL AND 

BEHAVIOURAL CONTEXT 

Although behavioural and environmental context are 

treated separately in the proposed context detection 

framework, they are not completely independent in reality. 

Certain activities are associated with certain environments 

[1]. For example, land vehicles normally remain on the 

road instead of in the sky; boats or ships can be on land, 

but only exhibit some specific types of behaviours. As 

more contexts are included in the framework, this 
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information can be used to eliminate combinations of 

environment and behaviour that are not associated in 

practice, which reduce the chances of the context 

determination system selecting an incorrect context. 

4.1. Mathematical Model 

The update process of context association is expressed 

mathematically as follows. The likelihoods of the 

environmental and behavioural context categories are 

reweighted to take into consideration of association 

information. It is assumed that only associated 

combinations of vehicle motions and human activities are 

considered. The reweighted likelihoods of environment i 

and behaviour j, Λ𝑖,𝑒 and Λ𝑗,𝑏, respectively, are given by 
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


  (36) 

where 𝑝𝑜𝑙𝑑,𝑖,𝑒 and 𝑝𝑜𝑙𝑑,𝑗,𝑏  are the probability of 

environment i and behaviour j before association. 𝑎𝑖,𝑗 is the 

association likelihood of environment category i and 

behaviour category j, given in Table 8. Note that the 

parameters in the table are based on daily experience and 

their reliability may be further enhanced by location-

dependent association. 

              Behav. 

 Envir.       
H V U T B 

Indoor 1.0 1.0 0.9 0.6 0.9 

Intermediate 1.0 0.8 0.6 0.4 0.6 

Outdoor 1.0 1.0 0.8 1.0 1.0 

Table 8: Association factors (ɑ) 

Note: H=human activities, V=stationary vehicles with the 

engine on, U=moving underground trains, T=moving diesel 

trains, B=moving buses. 

Finally, the probabilities of environments and behaviours 

are updated, respectively, using 
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4.2. Experimental Results 

To assess feasibility of the proposed method, a practical 

test was conducted on a bus. The bus was driven along 

South Colonnade Street in the Canary Wharf district of 

London and stopped at the bus station under the bridge for 

about 10 seconds, as shown in Figure 11. This route was 

designed to incorporate both indoor and outdoor 

environments, as well as moving and stationary vehicle 

motions. 

 
Figure 11: An aerial view of the experiment route 

(satellite image from Google Earth) 

The results of behaviour detection are presented in Figure 

12. Significant improvements can be observed that most 

misclassified samples are corrected by connectivity. As 

there is no degradation or further improvement of 

performances after association, only the results with 

connectivity and association are plotted in red in the figure. 

The corresponding environment detection probabilities 

before and after association are illustrated in Figure 13. 

Using association, some slight improvements of the results 

can be observed when the detected probabilities of the 

correct environment are not high. This shows that the 

association mechanism, to some extent, helps enhance the 

robustness of context determination.  

 

Figure 12: Performance of behavioural context detection 
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Figure 13: Comparisons of performances of environment 

detection before and after context association 

 

 

5. CONCLUSION 

This paper demonstrates the determination of both the 

operating environment and the behaviour of a host vehicle 

or human user using multiple sensors on a smartphone, 

building the foundation of a context-adaptive navigation 

system. 

Detection of behavioural context using accelerometers, 

gyroscopes, magnetometers and the barometer has been 

presented. A hierarchical recognition scheme has been 

demonstrated, within which the behaviours are classified 

from broad classes to detailed types by decision trees and 

relevance vector machines respectively. The results have 

shown that the system achieves an overall F1 score of 

95.1%, with some vehicle motions easier to distinguish 

than others. It has also been shown that the performance 

can be further improved by considering behavioural 

connectivity. 

Environmental context detection has focused on indoor and 

outdoor classification. The properties of GNSS signals 

under indoor and outdoor environments have been 

analysed and two features are extracted for classification. 

Then a detection scheme under a hidden Markov model has 

been applied to indoor and outdoor classification. It has 

been shown that this method can be used to distinguish 

indoor and outdoor environments under different GNSS 

reception conditions. 

In addition, context association provides a way of linking 

environments to behaviours. Results of practical results 

have demonstrated that this can slightly improve the 

environment detection within the context determination 

process. 
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