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Background: Tracking the spread of antimicrobial-resistant Neisseria gonorrhoeae is a major priority for national
surveillance programmes.

Objectives: We investigate whether WGS and simultaneous analysis of multiple resistance determinants can be
used to predict antimicrobial susceptibilities to the level of MICs in N. gonorrhoeae.

Methods: WGS was used to identify previously reported potential resistance determinants in 681 N. gonorrhoeae
isolates, from England, the USA and Canada, with phenotypes for cefixime, penicillin, azithromycin, ciprofloxacin
and tetracycline determined as part of national surveillance programmes. Multivariate linear regression models
were used to identify genetic predictors of MIC. Model performance was assessed using leave-one-out cross-
validation.

Results: Overall 1785/3380 (53%) MIC values were predicted to the nearest doubling dilution and 3147 (93%)
within +1 doubling dilution and 3314 (98%) within 42 doubling dilutions. MIC prediction performance was
similar across the five antimicrobials tested. Prediction models included the majority of previously reported re-
sistance determinants. Applying EUCAST breakpoints to MIC predictions, the overall very major error
(VME; phenotypically resistant, WGS-prediction susceptible) rate was 21/1577 (1.3%, 95% CI 0.8%-2.0%) and
the major error (ME; phenotypically susceptible, WGS-prediction resistant) rate was 20/1186 (1.7%, 1.0%-2.6%).
VME rates met requlatory thresholds for all antimicrobials except cefixime and ME rates for all antimicrobials ex-
cept tetracycline. Country of testing was a strongly significant predictor of MIC for all five antimicrobials.

Conclusions: We demonstrate a WGS-based MIC prediction approach that allows reliable MIC prediction for five
gonorrhoea antimicrobials. Our approach should allow reasonably precise prediction of MICs for a range of bac-

terial species.

Introduction

Antimicrobial-resistant Neisseria gonorrhoeae is a risk to public
health, particularly as emerging resistance to available treatment
such as azithromycin and ceftriaxone leaves few treatment op-
tions.! Treatment and control strategies depend on reliable moni-
toring of trends in N. gonorrhoeae antimicrobial resistance, which
are a major focus of national surveillance programmes, such as
GRASP (England and Wales),? Euro-GASP (Europe),® GISP (USA)*
and the Canadian national programme.”

Several studies have demonstrated the potential of WGS to pre-
dict antimicrobial susceptibilities across a range of pathogens,
including N. gonorrhoeae,®’ Staphylococcus aureus,® Enterobac-
teriaceae” and Mycobacterium tuberculosis.'® N. gonorrhoeae anti-
microbial resistance mechanisms are well described,'" allowing
their identification using WGS from national surveillance collec-
tions,” cohorts with cefixime'? and azithromycin resistance,® and
reference collections.’® However, the reported ability of WGS to
predict antimicrobial susceptibilities in N. gonorrhoeae has been

©The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.
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by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
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variable, e.g. single-resistance determinants accurately predict
cefixime, but not azithromycin susceptibilities.”

Most WGS studies predict antimicrobial susceptibility categoric-
ally as ‘susceptible’ or ‘resistant’. While useful for managing indi-
vidual patients, this provides less surveillance information than
phenotypic MIC measurements, which allow trends over time, and
the development and spread of resistance to be monitored with
more precision. This is particularly important where prevalent
strains have antibiotic MICs near clinical breakpoints.

WGS has been successfully used to predict B-lactam MICs
in Streptococcus pneumoniae*'® and azithromycin MICs in
N. gonorrhoeae.® Therefore, using sequence collections from
England, the USA and Canada, we investigated whether WGS and
simultaneous analysis of multiple resistance determinants using
multivariate regression can be used to predict antimicrobial sus-
ceptibilities to the level of MIC for multiple drugs in N. gonorrhoeae.

Methods

Sample collections and antimicrobial
susceptibility testing

Three collections, from Brighton, England,'® the USA'? and Canada® with
antimicrobial susceptibilities determined as part of national surveillance
programmes, and WGS from previous studies, were studied. The Brighton
samples were unselected consecutive clinical isolates from 3 months of
each calendar year, the US samples were enriched for cefixime resistance
and the Canadian samples for azithromycin resistance. MICs were deter-
mined by agar dilution, for Brighton using the GRASP method,'” and in the
USA' and Canada using CLSI methods.® Quality control was performed
using the 2008 WHO gonorrhoea reference strain panel'® and ATCC 49226,
with MICs and sequences obtained for these strains in Canada used in the
final analysis. The distribution of MICs of cefixime, penicillin, azithromycin,
ciprofloxacin and tetracycline was sufficient to determine predictors of re-
sistance. There were insufficient numbers of samples with ceftriaxone re-
sistance, and therefore insufficient numbers with important resistance
determinants, to include it in the analysis. EUCAST breakpoints were used
to categorize samples as susceptible and resistant: azithromycin, <0.25
and >0.5; cefixime, <0.125 and >0.125; ciprofloxacin, <0.03 and >0.06;
penicillin, <0.06 and >1; and tetracycline, <0.5 and >1 mg/L.?°

Genetic determinants of antimicrobial susceptibility

Previously reported genetic determinants conferring reduced antimicrobial
susceptibility to the different agents are shown in Table 1. Using WGS, SNPs
and resultant amino acid substitutions were determined following map-
ping to the NCCP11945 reference genome (NC_011035.1) and quality filter-
ing as in De Silva et al.,*® with the exception of the penA and penB genes
and mtrR promoter variants, which were more variable, and were therefore
identified from Velvet?* de novo assemblies using BLAST and subsequently
aligned using MUSCLE.?? BLAST searches of de novo assemblies were used
to determine the presence/absence of accessory genes. To identify rRNA
variants, sequence reads were mapped against a single copy of the
NCCP11945 23S RNA gene using BWA mem?® with default settings. Base
counts were determined using SAMtools,?* enabling estimation of the pro-
portion of gene copies with relevant mutations.

Statistical methods

Multivariate linear regression models were used to identify genetic pre-
dictors of MIC. Measured MIC values were converted to a log, scale, such
that a one-unit change is equivalent to a single doubling dilution,
e.g. logy(MIC) =3 represents MIC = 8mg/L and log,(MIC) = 4 represents

MIC =16mg/L. Log,(MIC) values were used as the (approximately nor-
mally distributed) outcome in multivariate linear regression models, and
the Table 1 genetic determinants as potential predictors, such that the
model coefficients associated with each genetic determinant can be used
for MIC prediction. The models are additive on the log, scale, i.e. the
log,(MIC) value is predicted by adding the coefficients for each genetic de-
terminant to the model constant term [which is equivalent to the WT
log,(MIC)]. The predicted MIC is then 2 to the power log,(MIC). Predicted
MICs are presented rounded to the nearest doubling dilution, rounding
log,(MIC), prior to conversion back to the absolute scale.

Where phenotypic MIC values were observed to be below or above the
quantification limits, e.g. <0.06 or >16 mgl/L, the actual MIC was assumed
to be the adjacent doubling dilution, e.g. 0.03 and 32 mg/L, respectively, for
the purposes of model fitting. For genetic determinants with multiple non-
WT alleles, where there were <10 observations for a given allele, the vari-
able was collapsed to a binary WT/non-WT variable, identifying amino acid
substitutions by the mutation site only. Otherwise, determinants were
included as categorical variables with each non-WT allele specified separ-
ately. The only exception made to this was for a single isolate in the dataset
with penA A501P,%° as this, combined with penA XXX1V, confers high-level
cefixime resistance. A separate coefficient for penA A501P is presented in
the results, but not used for model predictions, as only a single sample was
available.

penA alleles were determined using a maximum likelihood phylogenetic
tree of previously published penA alleles and those available in GenBank. The
closest matching published penA allele was identified for each sample using
BLAST. Where <10 samples matched a given allele, this allele was merged
with the nearest neighbour on the tree, and the process repeated until all al-
leles considered had >10 samples (Figure S1, available as Supplementary
data at JAC Online). Previously reported SNPs in penA were also considered
as potential additional predictors, as individual SNPs may affect resistance,
against a background of otherwise identical/similar penA alleles.?®

Univariate regression coefficients were calculated for all antimicrobial-
relevant/specific genetic determinants listed in Table 1. Given the large
number of potential genetic determinants, to reduce model over-fitting,
the final model was chosen using backwards selection, starting from the
model including all genetic determinants, and then removing one deter-
minant at a time, until the lowest possible Akaike information criterion (AIC)
was obtained. AIC was used rather than more stringent P value thresholds
(such as P>0.05) because a priori determinants were considered plausibly
resistance associated. Alleles were considered as categorical variables, i.e.
all alleles were included if the factor as a whole improved the AIC. The rRNA
A2059G mutation was only present at O or 4 copies and was therefore
treated as a categorical variable. The rRNA C2611T mutation was present
at0, 1, 2,3 and 4 copies, and was modelled as a continuous variable, after
ensuring model fit using the AIC was not improved by treating it as a cat-
egorical variable. Excluded determinants were added back one at a time to
the final model to check this did not improve the AIC; any that did were re-
tained in the final model. Interactions between genetic determinants were
then tested, e.g. to detect a saturation effect, where further determinants
in the same pathway do not increase the MIC beyond a threshold, or con-
versely for synergy between determinants. Pairwise interactions between
all model terms were tested, initially one at a time; all interactions with a
Wald P value <0.01 were added to the model, and backwards selection re-
peated, requiring multivariate Wald P values <0.01 to include an interaction
in the final model. This pre-specified approach to interactions is deliberately
more conservative than the AIC, which is used to identify main effects, to
account for multiple potential interaction pairs tested and minimize over-
fitting. Errors and model MIC predictions were estimated using leave-one-
out cross-validation, where the final model (including interaction terms) is
fitted using all samples except one, which is then used to predict the out-
come for the excluded sample, repeated over all samples in the dataset.
Analyses were performed using STATA version 14.1 (StataCorp, College
Station, TX, USA).
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Table 1. Susceptibility-modifying genetic elements.?

Gene/element Characteristic Summary Reference  AZM  CFX CIP PEN  TET
penA allele reduced B-lactam acetylation of 11,3233 v/ v/
PBP2
SNPs: A311V, 1312M, V316T, penA alleles were defined as 11,25 v
V316P, T483S, A501V, N512Y, described in the Methods sec-
G545S, A501P, A501V, A501T, tion, and represent commonly
G542S, P551S, P551L occurring combinations of SNPs
SNPs: D345a, F504L, A510V, additional contributions of individ- 11,34 v/
A516G, H541N, P551S, P551L, ual SNPs were also investigated
P552V, K555Q, 1556V, 1566V,
N573a, A574V, A311V, 1312M,
V316T, V316P, T483S, A501V,
N512Y, G545S, A501P, A501V,
AS501T, G542S, P551S, P551L
mtrR promoter deletion of A in repeat (-35A) overexpression of MtrCDE efflux 35,36 v v v v
disruption A — Cinrepeat (-38) pump 637
2 bp insertion 36
mtr120 novel promoter for MtrCDE efflux 38 v v/ v/ v
pump expression
mtrR A39T overexpression of MtrCDE efflux 39 v v v/ v
G45D pump 39
truncation 13
penB G120K reduced influx 40 v/ v v
(porB1b) A121D/N 40
ponA L421P reduced B-lactam acylation of 41 v v/
(ponA1l allele) PBP1
pilQ E666K reduced influx via pore-forming se- v/ v/
cretin PilQ
blarem blarem-1/blargm-135-encoding penicillinase 43,44 v/
plasmids
23S rRNA 26117 four copies of these genes present, ~ “° v
A2059G increasing resistance with 46
increased number of copies with
SNPs via decreased binding to
50S ribosome
erm(B), erm(C), erm(F)  presence methylate 23S RNA to block “7 v/
binding
macAB promoter mutation efflux pump overexpression “8 v
mef presence efflux pump 49 v
ere(A), ere(B) presence macrolide esterase 37 v
gyrA S91F reduced quinolone bindingto DNA 1330 v
D95N/G gyrase 13,50
parC D86N reduced quinolone binding to topo- ~ ** v/
S87R/I/W isomerase IV 13
$88p 13,50
E91K 13,50
norM promoter mutation overexpression of efflux pump o1 v
rpsJ V57M reduced affinity of 30S ribosome 52 v
for tetracycline
tetM Dutch/American TetM resembles elongation factor 33,54 v
plasmid plasmid G, binds 30S ribotype and pre-

vents tetracycline binding

AZM, azithromycin; CFX, cefixime; CIP, ciprofloxacin; PEN, penicillin; TET, tetracycline.
Ticked boxes indicate that the genetic determinant affects the indicated antimicrobial. The A — C nucleotide substitution 38 bases upstream of mtrR
is found in WHO-P like and mosaic Neisseria meningitidis-like mtrR promoter sequences.®
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Results

Two hundred and forty-nine isolates from Brighton (July 2004-
February 2014), 186 from the USA (January 2009-December
2010), 237 from Canada (January 1989-July 2014) and the 8
WHO 2008 and ATCC 49226 reference strains were included. The
distribution of 681 measured MICs for cefixime, penicillin, azithro-
mycin, ciprofloxacin and tetracycline is shown in Figure 1: 110
(16%) samples were resistant to cefixime, 264 (39%) to penicillin,
305 (45%) to azithromycin, 377 (55%) to ciprofloxacin and 528
(78%) to tetracycline based on EUCAST breakpoints. Only cipro-
floxacin had a clear bimodal distribution in MICs divided by an MIC
breakpoint.

Using WGS, all genetic determinants present in the 2008 WHO
reference strain panel'**® were recovered with 100% concord-
ance. The univariate coefficients for each genetic determinant and
the final multivariate model for each antibiotic are given in
Table S1. The numbers of samples included in the final multivariate
model with completely determined genotypes were 670 for cefix-
ime, 672 for penicillin (2 ambiguous penA alleles; relevant penA
SNPs not determined for 9 and 7 samples, respectively, due to in-
complete de novo assemblies), 676 for ciprofloxacin (5 samples
without parC variants determined) and 681 for azithromycin and
tetracycline.

For cefixime, penA allele, and mtrR45, penA501/512, mtr120
and penB mutations were independent predictors of MIC, with
penA XXXIV associated with the greatest MIC increase, 8.3-fold
(multivariate regression coefficient 3.06, 95% CI 2.19-3.98,
P <0.001; MIC fold increase calculated by 2 to the power of the re-
gression coefficient, i.e. 2°%°). The single sample with A501P,
showed a predicted MIC increased by a further 26.7-fold. penA XV
had a negative coefficient (-0.44), indicating this lineage may rep-
resent WT MIC, rather than the closely related M32091 (Figure S1)
chosen as the baseline allele. penB121 mutations also had a nega-
tive coefficient, but as this finding was based on three samples it
may represent model over-fitting. All potential determinants of
penicillin MIC were included in the final model with the exception
of penB121; the blamgm B-lactamase increased MICs the most,
23.4-fold (coefficient 4.55, 3.80-5.31, P< 0.0001). rRNA mutations
were the strongest determinants of azithromycin MIC, along with
erm genes (although these were only found in three isolates), and
mtrR mutations and promoter disruption. The rRNA A2059G allele
was present in either zero or four copies, four copies increased
MICs 375-fold (coefficient 8.55, 7.69-9.40, P< 0.001), and C2611T
rRNA mutations present in between zero and four copies,
increased MICs 2.9-fold (coefficient 1.52, 1.25-1.79, P < 0.001) per
copy. gyrA and parC mutations predicted ciprofloxacin MIC, with
gyrA95 mutations having the greatest effect, 16.8-fold MIC in-
crease (coefficient 4.07, 2.86-5.29, P < 0.001). Finally, tetracycline
MICs were most impacted by the presence of tetM, resulting in a
126-fold MIC increase (coefficient 6.98, 6.36-7.60, P< 0.001), but
also by penB and rpsJ mutations and mtrR mutations and pro-
moter disruption.

In addition, the study country [a composite of the testing la-
boratory and method: CLSI versus GRASP, the isolate origin, and
the sampling frame (US samples enriched for cefixime resistance,
and Canadian samples for azithromycin resistance)] was inde-
pendently predictive of MIC for all agents, and not just those en-
riched for in the sampling frame. Compared with England,

cefixime, penicillin and azithromycin MICs were all higher for the
USA and Canada (all P< 0.001), ciprofloxacin MICs were lower for
the USA (P <0.001) and tetracycline MICs were lower for the USA
and Canada (P < 0.001). For example, cefixime MICs were 2.6-fold
(coefficient 1.36, 1.18-1.54, P<0.001) and 1.5-fold (coefficient
0.60, 0.42-0.78, P<0.001) higher for the USA and Canada, re-
spectively, compared with England.

Several interaction terms had negative coefficients (Table S1),
i.e. the combination of two genetic determinants produced a
smaller increase in MIC than the multiple (sum on the log scale) of
their effects when found alone. For example, for tetracycline with
rpsJ 57 and tetM, the addition of rpsJ 57 to tetM does not further in-
crease MIC [6.3-fold increase in MIC with rpsJ 57 alone (coefficient
2.66), 126-fold with tetM alone (coefficient 6.98) and 124-fold
with both (coefficients 2.66+6.98 - 2.69)]. Other examples include
tetM with mtrR 45 and mtrR promoter deletion, for ciprofloxacin
parC87 and 91 mutations. Positive interaction coefficients indicate
potential synergy, e.g. for tetracycline, the combination of
penB120 and mtrR promoter deletion increases MIC an additional
1.5-fold (coefficient 0.55) compared with the multiple of their ef-
fects alone.

The accuracy of predicted MICs, determined using the cross-
validation, is shown in Figure 2 and summarized in Table 2. Overall
1785 (53%) of 3380 log,(MIC) values were predicted to the nearest
whole number, 3147 (93%) within +1 doubling dilution and
3314 (98%) within 4 2. Exact matches between the predicted and
observed MICs were obtained for 52%, 47%, 44%, 58% and
53% of cefixime, penicillin, azithromycin, ciprofloxacin and tetra-
cycline tests, respectively, and matches within +1 doubling
dilution for 91%, 91%, 93%, 94% and 96%, respectively. The cor-
responding cross-validated root-mean-squared errors (the aver-
age difference between MIC predictions and measured phenotypic
MICs) and pseudo-R? values (the proportion of variation in MIC ex-
plained by the model) were 0.89, 0.97, 0.96, 0.96 and 0.73, and
0.81,0.79,0.85,0.96 and 0.80, respectively.

The overall very major error (VME; phenotypically resistant, WGS-
prediction susceptible) rate was 21/1577 (1.3%, 95% CI 0.8%-2.0%)
and the major error (ME; phenotypically susceptible, WGS-prediction
resistant) rate was 20/1186 (1.7%, 1.0%-2.6%). VME rates for cefix-
ime, penicillin, azithromycin, ciprofloxacin  and tetracycline
were 16.4% (95% CI 10.0%-24.6%), 0% (0.0%-1.4%), 0.7%
(<0.1%-2.3%), 0.0% (0.0%-1.0%) and 0.2% (<0.1%-1.0%) respect-
ively. Hence, for all antimicrobials, except cefixime, regulatory
thresholds for antimicrobial susceptibility performance were met
(target 95% CI <1.5%-7.5%).?® ME rates were 1.3% (0.5%-2.6%),
0% (0.0%-7.7%), 1.7% (0.5%-4.3%), 0.7% (<0.1%-2.4%) and
13.0% (5.4%-24.9%), respectively, meeting regulatory thresholds
(<3%) with the exception of tetracycline. Of the VMEs for cefixime,
13/18 (72%) fell near the breakpoint (Figure 2a); however, excluding
samples where the discrepancy in predicted MIC was only a single
doubling dilution, the VME rate was still 4.5% (1.5%-10.3%).

If epistasis, beyond simple pairwise interactions, involving mul-
tiple known determinants were to explain the majority of the vari-
ation not captured by the models, fixed combinations of known
variants would be expected to produce fixed MICs. Therefore, for
each antimicrobial, and for each combination of genetic determin-
ants with >10 samples, we plotted observed MICs (Figures S2-56),
demonstrating similar variability within these fixed combinations
to that seen in the model residual plots (Figure 2).
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Figure 1. Distribution of measured MICs by country. EUCAST breakpoints for susceptibility and resistance (shown as dashed lines) are: azithromycin,

<0.25 and >0.5; cefixime, <0.125 and >0.125; ciprofloxacin, <0.03 and >0.06; penicillin,

We also investigated if analysis of single determinants could
better explain which isolates were resistant for cefixime. In keep-
ing with previous reports'? and other data,” penA XXXIV was a sen-
sitive predictor of resistance, present in 106/110 resistant strains
[sensitivity 96%, VME rate 3.6% (95% CI 1.0%-9.0%)]. However,

<0.06 and >1; and tetracycline, <0.5 and >1 mg/L.*°

taken alone it lacks specificity when all included cohorts, including
those not selected on the basis of their cefixime susceptibility, are
considered, with 83/560 susceptible strains (42 Brighton, 34
Canada, 7 USA) also containing penA XXXIV [specificity 85%, ME
rate 14.8% (12.0%-18.0%)]. Additionally, other resistance
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Figure 2. Accuracy of predicted MICs. The difference between the measured and predicted MICs is shown on a log; scale, such that a difference of 1
represents a difference of 1 doubling dilution. A VME is where the predicted susceptibility is susceptible when the measured susceptibility is resistant;
an ME is where the predicted susceptibility is resistant, but the measured susceptibility is susceptible; and minor errors denote where the phenotype
is susceptible and the prediction intermediate, or the phenotype is intermediate and the prediction is resistant, or vice versa in both cases. S, suscep-
tible; I, intermediate; R, resistant; ME, major error; VME, very major error.

determinants contributed to the final predicted MICs; in phenotyp-  compared with 2 (1-3) [0-5] in susceptible isolates. Similarly, with
ically resistant isolates the median (IQR) [range] number of resist-  penicillin there was evidence of multiple factors contributing to re-
ance determinants present as main effects in the final model  sistance, with 4 (4-4) [2-6] determinants other than the penA al-
(excluding country) other than penA allele was 4 (4-4) [2-5] leleinresistant isolates and 1 (0-2) [0-4] in susceptible isolates. A
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Table 2. Summary of model predictions

Phenotype % MIC match Cross-validation

n S I R 0 % +1 % +2 % RMSE pseudo-R?
Cefixime 670 560 110 350 52 613 91 657 98 0.89 0.81
Penicillin 672 46 365 261 315 47 610 91 657 98 0.97 0.79
Azithromycin 681 233 143 305 303 bt 633 93 666 98 0.96 0.85
Ciprofloxacin 676 293 11 372 459 68 638 94 660 98 0.96 0.96
Tetracycline 681 54 98 529 358 53 653 96 674 99 0.73 0.80
Overall 3380 1186 617 1577 1785 53 3147 93 3314 98

Genotype concordance
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Cefixime 553 99 92 84 7 1.3 0.5,2.6 18 16.4  10.0,24.6
Penicillin 25 54 320 88 237 91 90 13 0 0.0 0.0,7.7 0 0.0 0.0, 1.4
Azithromycin 193 83 72 50 245 80 165 24 4 1.7 0.5,4.3 2 0.7 <0.1,23
Ciprofloxacin 291 99 0 0 372 100 11 2 2 0.7 <0.1,2.4 0 0.0 0.0,1.0
Tetracycline 32 59 53 54 515 97 73 11 7 13.0 5.4,24.9 1 0.2 <0.1,1.0
Overall 1094 92 445 72 1461 93 339 17 20 1.7 1.0,2.6 21 1.3 0.8,2.0
Genotype concordance, allowing phenotype variation +1 doubling dilution
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Cefixime 553 99 105 95 7 1.3 0.5,2.6 5 4.5 1.5,10.3
Penicillin 35 76 352 96 253 97 32 5 0 0.0 0.0, 7.7 0 0.0 0.0, 1.4
Azithromycin 218 94 135 94 301 99 21 3 4 1.7 0.5,4.3 2 0.7 <0.1,23
Ciprofloxacin 291 99 11 100 372 100 0 0 2 0.7 <0.1,2.4 0 0.0 0.0,1.0
Tetracycline 46 85 94 96 528 100 5 1 7 130 5.4,24.9 1 0.2 <0.1,1.0
Overall 1143 96 592 96 1559 99 58 3 20 1.7 1.0,2.6 8 0.5 0.2,1.0

S, susceptible; I, intermediate; R, resistant; RMSE, root-mean-square error.

The top panel summarizes the observed phenotype for each antimicrobial, and the number and percentage of isolates with a matching MIC predic-
tion within 0, +1 and 42 doubling dilutions. Indicators of model fit are given based on leave-one-out cross-validation. The middle panel shows the
concordance between the phenotypic susceptibility (susceptible, intermediate, resistant) and the genetic prediction based on the MIC prediction and
EUCAST breakpoints.’® A VME is where the predicted susceptibility is susceptible when the measured susceptibility is resistant; an ME is where the pre-
dicted susceptibility is resistant, but the measured susceptibility is susceptible; and minor errors denote where the phenotype is susceptible and the
prediction intermediate, or the phenotype is intermediate and the prediction is resistant, or vice versa in both cases. The bottom panel presents the
same analysis as the middle panel, but allowing for the true phenotype to be + 1 doubling dilution from the observed phenotype. penA genotypes
could not be determined for two samples; these samples were excluded from the cefixime and penicillin models. A further nine and seven samples
were excluded from the cefixime and penicillin models, respectively, as the penA SNPs could not be determined due to incomplete de novo assem-
blies. parC variants could not be determined for five samples; these samples were excluded from the ciprofloxacin model.
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single mechanism may be sufficient to explain some azithromycin
resistance, with multiple other mechanisms required to explain
other resistance: 1 (1-2) [0-3] in resistant isolates and 1 (0-1) [O-
2] in susceptible isolates. Of 305 resistant isolates, 165 (54%) had
>1 rRNA mutation copy (either C2611T or A2059G) and 203 (67%)
had mtrR promoter disruption compared with 1 (0.4%) and 95
(41%), respectively, in 233 susceptible isolates. In phenotypically
ciprofloxacin-resistant isolates, the number of resistance deter-
minants was 3 (3-3) [1-4] compared with 0 (0-0) [0-3] in suscep-
tible isolates. Of the ciprofloxacin-resistant isolates, 319/372
(86%) had non-WT variants at gyrA91, 95 and parC87. Finally,
tetracycline-resistant isolates had 3 (2-3) [1-5] resistance deter-
minants compared with 0.5 (0-2) [0-3] in susceptible isolates.

Discussion

We demonstrate a WGS-based MIC prediction approach and show
that it allows reliable MIC prediction for five gonorrhoea antimicro-
bials. We predicted MIC within one doubling dilution for 93% of
samples, and within two for 98%. This is comparable to routine
phenotypic performance: acceptable variation in MIC measure-
ment for type strains in national surveillance programmes is typic-
ally +1 doubling dilution and sometimes greater.?’

Combining MIC predictions and clinical breakpoints resulted in
VME and ME rates within requlatory targets,”® with the exception
of VME rates for cefixime and ME rates for tetracycline. The major-
ity of cefixime errors arose from single doubling dilution discrepan-
cies in MIC prediction near the breakpoint. Using an alternative
approach,”* based on the presence/absence of penA XXXIV as a
determinant of cefixime resistance, VMEs approached acceptable
levels [3.6% (95% CI 1.0-9.0%)], but at the expense of increased
MEs (14.8%). Almost identical VME/ME rates (3.6%/15.2%) were
obtained using a breakpoint one doubling dilution lower than the
EUCAST value with the predicted MICs. Some of the very marked
phenotype/prediction differences may also be the result of labora-
tory labelling errors, but we were unable to re-phenotype and re-
sequence all suchisolates in this study.

We detected MIC variation based on the country of testing, des-
pite phenotypes being determined using gold-standard methods
in national reference laboratories. This variation might be partly ex-
plained by the sampling frames used, with US isolates enriched for
cefixime resistance and Canadian isolates enriched for azithromy-
cinresistance. These isolates might be more likely to contain other-
wise unexplained resistance to cefixime and azithromycin,
respectively, which is attributed to the country of testing. However,
we observed variation across all antimicrobials investigated, and
with by-country in MICs following different directions by antimicro-
bial MICs: higher MICs for cefixime, penicillin and azithromycin in
North America, and lower MICs for ciprofloxacin and tetracycline.
The differences could also be due to differences between the CLSI
testing methods used in North America (coefficients for the USA
and Canada tended to be similar), and the GRASP methods used in
England and Wales. We chose to model the study country rather
than the testing method to be transparent with respect to any pos-
sible biases introduced by the country-specific sampling frames.
However, there were also differences between the USA and
Canada despite the same testing method being used, which may
be due to differences in unmeasured strain background in these
countries, but may also represent inter-laboratory measurement

variation. Determining the exact contribution of each mechanism
to differences between countries is not possible with the current
study; however, the differences highlight a potential benefit from
greater standardization of phenotyping to facilitate evaluation of
trends globally.

The genetic determinants with the greatest impact on MIC are
broadly in keeping with previously published observations.®!
It should be noted that the approach taken does not necessarily
define the mechanistically most important resistant determinants,
but simply those that are statistically most informative to predict
MIC. Where multiple mechanisms typically coexist, this collinearity
may lead to only one mechanism remaining in the final model,
and its associated coefficient represents the overall effect of these
multiple mechanisms.

Our data demonstrate that several different mechanisms can
together contribute to determine MICs: a strength of the multivari-
ate regression approach used is that these mechanisms can be ac-
counted for simultaneously. We noted examples where the
presence of the same mechanism can result in a MIC just above or
below the breakpoint, either due to the presence/absence of other
mechanisms as observed for azithromycin in this study, or poten-
tially due to testing methods, e.qg. for cefixime. While breakpoints
are selected across all strains, based on the likelihood of clinical
treatment success, it remains to be seen if some mechanisms are
more important than others in determining efficacy of treatment.
Wider deployment of WGS may facilitate determination of the ex-
tent to which mechanism or absolute MIC is more important in
determining treatment success.

The pseudo-R? values of 0.80-0.96 obtained suggest that our
models explain most of the MIC variation. The residual, unex-
plained, variation probably relates to a combination of inherent
phenotypic variability (which would not be addressed by a better
model) and unidentified resistance determinants (or their inter-
actions). Repeat testing of the same collection/subcollection of iso-
lates would allow the former to be measured, and should ideally
form part of future studies, to allow the latter to be estimated.

A limitation of the current modelling framework and sampling
frames is that the available power allowed only determination of
the effect of relatively common resistance determinants. For ex-
ample, we did not have sufficient numbers of resistant isolates to
formulate a similar model for ceftriaxone resistance. To avoid
model over-fitting we selected the predictors in our final models
based on the AIC; as such, it is possible that exclusion from the
model of less common variants may be due to lack of power rather
than lack of a true effect. An alternative approach would have
been to retain all potential predictors identified a priori in the final
model, albeit with anincreased risk of model over-fitting.

Another related limitation is that the models are only as good
as the resistant determinant catalogue on which they are based.
Uncommon, but known, variants may have been excluded, as
were likely multiple unknown resistance determinants. These un-
known determinants have been referred to as ‘“factor X’ in trans-
formation experiments, where penA, mtrR and penB determinants
increase resistance, but do confer donor levels of resistance to
penicillin or extended-spectrum cephalosporins.?® Future WGS has
the potential to identify novel resistance determinants through
genome-wide association studies.”® The dataset used also re-
stricts the resistance determinants for which coefficients can be
determined. Several known resistance determinants were not
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present in our WGS dataset, and we were unable to determine
their impact on MIC. One approach that might bridge this short-
coming would be to fit the model in a Bayesian framework where
prior information from strains not previously subject to WGS, but
with a known mechanism and MIC increment, e.g. from laboratory
experiments with isogenic mutants, informs the final model as
well as paired phenotypic and WGS data. There is also a need to
derive models on more diverse datasets, e.g. many of the
cefixime-resistant strains in this study are from a single clone dis-
persed throughout North America and England,’*'® and other
mechanisms of cefixime resistance may be common elsewhere.
Similarly, our approach of assigning each sequence to the most
closely related penA allele grouping for cefixime and penicillin MIC
prediction is only likely to be appropriate where similar alleles have
been previously identified, and therefore sufficiently diverse deriv-
ation datasets are required to ensure the probability of encounter-
ing a very divergent novel allele is low.

The current study does not include an independent validation
dataset, as we chose to include all available samples to maximize
power. However, a further independent validation should be
undertaken before applying our method to patient care.

WGS may become part of routine diagnostic microbiology
workflows in the next 5-10 years.’® The approach taken in this
study could be adopted, with sequencing following culture simul-
taneously providing information about antimicrobial susceptibil-
ities and strain relatedness. Alternatively, if reliable inferences can
be made from sequencing clinical samples directly this might offer
further advantages, such as allowing culture-negative samples to
be analysed and reducing turnaround times. However, further
work will be required to develop methods to undertake WGS-
based MIC prediction from clinical samples, including accounting
for coexisting human and potentially similar commensal Neisseria
species DNA.

In summary, WGS allows MIC prediction for a range of anti-
microbials for N. gonorrhoeae. The approach taken here should
allow reasonably precise prediction of MICs from genetic data fora
range of bacterial species, at least to levels of variation considered
acceptable for routine diagnostics. If WGS becomes a widely used
diagnostic tool, large amounts of surveillance data may become
available from routine clinical activity. WGS may therefore provide
reproducible and readily exchangeable data on the spread of anti-
microbial resistance, alongside providing informative data on the
strains that are carrying it and how resistance is being transmitted.

Data deposition

NCBI short-read archive accession numbers for sequences used in
this publication and associated phenotypes and MIC predictions
can be found in Table S2.

Acknowledgements

We acknowledge Gwenda Hughes and Cathy Ison (from PHE) for their
assistance.

Funding

The research was funded by the National Institute for Health Research
Health Protection Research Unit (NIHR HPRU) in Healthcare Associated
Infections and Antimicrobial Resistance at the University of Oxford in
partnership with Public Health England (PHE) (HPRU-2012-10041), the
NIHR Oxford Biomedical Research Centre and the Health Innovation
Challenge Fund [a parallel funding partnership between the Wellcome
Trust (grant WT098615/2/12/Z) and the Department of Health (grants
WT098615 and HICF-T5-358)]. D. W. E. is an NIHR clinical lecturer. D. W. C.
and T. E. A. P. are NIHR senior investigators.

Transparency declarations

None to declare.

Disclaimer
The views expressed are those of the authors and not necessarily those
of the NHS, the NIHR, the Department of Health or PHE.

Supplementary data

Figures S1-S6 and Tables S1 and S2 are available as Supplementary data
at JAC Online.

References

1 Barbee LA. Preparing for an era of untreatable gonorrhoea. Curr Opin Infect
Dis 2014; 27:282-7.

2 PHE. Surveillance of Antimicrobial Resistance in Neisseria gonorrhoeae: Key
Findings from the ‘Gonococcal Resistance to Antimicrobials Surveillance
Programme’ (GRASP) and Related Surveillance Data, 2014. 2015. https://iwww.
gov.uk/government/uploads/system/uploads/attachment_data/file/476582/
GRASP_2014 report_final_111115.pdf.

3 ECDC. Gonococcal Antimicrobial Susceptibility Surveillance in Europe
2014. 2016. http://ecdc.europa.eu/en/publications/Publications/gonococcal-
antimicrobial-susceptibility-surveillance-Europe-2014.pdf.

4 Kirkcaldy RD, Harvey A, Papp JR et al. Neisseria gonorrhoeae Antimicrobial
Susceptibility Surveillance—The Gonococcal Isolate Surveillance Project, 27
sites, United States, 2014. MMWR CDC Surveill Summ 2016; 65: 1-19.

5 Public Health Agency of Canada. National Surveillance of Antimicrobial
Susceptibilities of Neisseria gonorrhoeae Annual Summary 2014. 2015. http://
healthycanadians.gc.ca/publications/drugs-products-medicaments-produits
/2014-neisseria/alt/surveillance-gonorrhoeae-2014-eng.pdf.

6 Demczuk W, Martin I, Peterson S et al. Genomic epidemiology and molecu-
lar resistance mechanisms of azithromycin-resistant Neisseria gonorrhoeae
in Canada from 1997 to 2014. J Clin Microbiol 2016; 54: 1304-13.

7 Grad YH, Harris SR, Kirkcaldy RD et al. Genomic epidemiology of gonococcal
resistance to extended spectrum cephalosporins, macrolides, and fluoro-
quinolones in the US, 2000-2013. J Infect Dis 2016; 214: 1579-87.

8 Gordon NG, Price JR, Cole K et al. Prediction of Staphylococcus aureus anti-
microbial resistance by whole-genome sequencing. J Clin Microbiol 2014; 52:
1182-91.

9 Stoesser N, Batty EM, Eyre DW et al. Predicting antimicrobial susceptibilities
for Escherichia coli and Klebsiella pneumoniae isolates using whole genomic
sequence data. J Antimicrob Chemother 2013; 68: 2234-44.

1945


Deleted Text: ,
Deleted Text: without 
Deleted Text:  to date
Deleted Text: for 
Deleted Text: &thinsp;
Deleted Text: in 
Deleted Text: ,
Deleted Text: -
Deleted Text: -
Deleted Text:  
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/476582/GRASP_2014_report_final_111115.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/476582/GRASP_2014_report_final_111115.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/476582/GRASP_2014_report_final_111115.pdf
http://ecdc.europa.eu/en/publications/Publications/gonococcal-antimicrobial-susceptibility-surveillance-Europe-2014.pdf
http://ecdc.europa.eu/en/publications/Publications/gonococcal-antimicrobial-susceptibility-surveillance-Europe-2014.pdf
http://healthycanadians.gc.ca/publications/drugs-products-medicaments-produits/2014-neisseria/alt/surveillance-gonorrhoeae-2014-eng.pdf
http://healthycanadians.gc.ca/publications/drugs-products-medicaments-produits/2014-neisseria/alt/surveillance-gonorrhoeae-2014-eng.pdf
http://healthycanadians.gc.ca/publications/drugs-products-medicaments-produits/2014-neisseria/alt/surveillance-gonorrhoeae-2014-eng.pdf

Eyre et al.

10 Walker TM, Kohl TA, Omar SV et al. Whole-genome sequencing for pre-
diction of Mycobacterium tuberculosis drug susceptibility and resistance: a
retrospective cohort study. Lancet Infect Dis 2015; 15: 1193-202.

11 Unemo M, Shafer WM. Antimicrobial resistance in Neisseria
gonorrhoeae in the 21st century: past, evolution, and future. Clin Microbiol Rev
2014;27:587-613.

12 Grad YH, Kirkcaldy RD, Trees D et al. Genomic epidemiology of Neisseria
gonorrhoeae with reduced susceptibility to cefixime in the USA: a retrospect-
ive observational study. Lancet Infect Dis 2014; 14: 220-6.

13 Unemo M, Golparian D, Sdnchez-Busé L et al. The novel 2016 WHO
Neisseria gonorrhoeae reference strains for global quality assurance of la-
boratory investigations: phenotypic, genetic and reference genome charac-
terization. J Antimicrob Chemother 2016; 71: 3096-108.

14 LiY, Metcalf BJ, Chochua S et al. Penicillin-binding protein transpeptidase
signatures for tracking and predicting B-lactam resistance levels in
Streptococcus pneumoniae. MBio 2016; 7: e00756-16.

15 Metcalf BJ, Chochua S, Gertz RE et al. Using whole genome sequenc-
ing to identify resistance determinants and predict antimicrobial
resistance phenotypes for year 2015 invasive pneumococcal disease
isolates recovered in the United States. Clin Microbiol Infect 2016; 22:
1002.e1-e8.

16 De Silva D, Peters J, Cole K et al. Whole-genome sequencing to determine
transmission of Neisseria gonorrhoeae: an observational study. Lancet Infect
Dis 2016;16: 1295-303.

17 Chisholm SA, Alexander S, Desouza-Thomas L et al. Emergence of a
Neisseria gonorrhoeae clone showing decreased susceptibility to cefixime in
England and Wales. J Antimicrob Chemother 2011; 66: 2509-12.

18 CDC, US Department of Health and Human Services. Gonococcal Isolate
Surveillance  Project (GISP) Protocol. http://www.cdc.gov/std/gisp/GISP-
Protocol07-15-2010.pdf.

19 Unemo M, Fasth O, Fredlund H et al. Phenotypic and genetic characteriza-
tion of the 2008 WHO Neisseria gonorrhoeae reference strain panel intended
for global quality assurance and quality control of gonococcal antimicrobial
resistance surveillance for public health purposes. J Antimicrob Chemother
2009;63: 1142-51.

20 EUCAST. Clinical Breakpoints—Bacteria (v 6.0). 2016. http://www.eucast.
org/fileadmin/src/media/PDFs/EUCAST _files/Breakpoint_tables/v_6.0_Break
point_table.pdf.

21 Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res 2008; 18: 821-9.

22 Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and
high throughput. Nucleic Acids Res 2004; 32: 1792-7.

23 Li H, Durbin R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 2009; 25: 1754-60.

24 LiH, Handsaker B, Wysoker A et al. The sequence Alignment/Map format
and SAMtools. Bioinformatics 2009; 25: 2078-9.

25 Unemo M, Golparian D, Nicholas R et al. High-level cefixime- and
ceftriaxone-resistant Neisseria gonorrhoeae in France: novel penA mosaic al-
lele in a successful international clone causes treatment failure. Antimicrob
Agents Chemother 2012; 56: 1273-80.

26 US Department of Health and Human Services, FDA, Center for Devices
and Radiological Health. Class II Special Controls Guidance Document:
Antimicrobial Susceptibility Test (AST) Systems. 2009. http://www.fda.gov/
downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocu
ments/ucm071462.pdf.

27 CDC, US Department of Health and Human Services. Neisseria gonor-
rhoeae Reference Strains for Antimicrobial Susceptibility Testing. 2005. https:/
www.cdc.gov/std/gonorrhea/arg/b88-feb-2005.pdf.

28 Unemo M, Nicholas RA. Emergence of multidrug-resistant, extensively
drug-resistant and untreatable gonorrhea. Future Microbiol 2012; 7:
1401-22.

29 Earle SG, Wu C-H, Charlesworth J et al. Identifying lineage effects when
controlling for population structure improves power in bacterial association
studies. Nat Microbiol 2016; 1: 16041.

30 Didelot X, Bowden R, Wilson DJ et al. Transforming clinical microbiology
with bacterial genome sequencing. Nat Rev Genet 2012;13: 601-12.

31 Guindon S, Dufayard J-F, Lefort V et al. New algorithms and methods to
estimate maximum-likelihood phylogenies: assessing the performance of
PhyML 3.0. Syst Biol 2010; 59: 307-21.

32 OhnishiM, Golparian D, Shimuta K et al. Is Neisseria gonorrhoeae initiating
a future era of untreatable gonorrhea?: Detailed characterization of the first
strain with high-level resistance to ceftriaxone. Antimicrob Agents Chemother
2011;55:3538-45.

33 Bharat A, Demczuk W, Martin I et al. Effect of variants of penicillin-
binding protein 2 on cephalosporin and carbapenem susceptibilities
in Neisseria gonorrhoeae. Antimicrob Agents Chemother 2015; 59:
5003-6.

34 Spratt BG. Hybrid penicillin-binding proteins in penicillin-resistant strains
of Neisseria gonorrhoeae. Nature 1988; 332: 173-6.

35 Cousin SL Jr, Whittington WLH, Roberts MC. Acquired macrolide resist-
ance genes and the 1bp deletion in the mtrR promoter in Neisseria gonor-
rhoeae. J Antimicrob Chemother 2003; 51: 131-3.

36 Zarantonelli L, Borthagaray G, Lee EH et al. Decreased susceptibility to
azithromycin and erythromycin mediated by a novel mtr(R) promoter muta-
tion in Neisseria gonorrhoeae. J Antimicrob Chemother 2001; 47: 651-4.

37 Jacobsson S, Golparian D, Cole M et al. WGS analysis and molecular
resistance mechanisms of azithromycin-resistant (MIC >2mg/L) Neisseria
gonorrhoeae isolates in Europe from 2009 to 2014. J Antimicrob Chemother
2016;71:3109-16.

38 Ohneck EA, Zalucki YM, Johnson PJT et al. A novel mechanism of high-
level, broad-spectrum antibiotic resistance caused by a single base pair
change in Neisseria gonorrhoeae. MBio 2011; 2: e00187-11.

39 Warner DM, Shafer WM, Jerse AE. Clinically relevant mutations that cause
derepression of the Neisseria gonorrhoeae MtrC-MtrD-MtrE efflux pump sys-
tem confer different levels of antimicrobial resistance and in vivo fitness. Mol
Microbiol 2008; 70: 462-78.

40 Olesky M, Hobbs M, Nicholas RA. Identification and analysis of amino acid
mutations in porin IB that mediate intermediate-level resistance to penicillin
and tetracycline in Neisseria gonorrhoeae. Antimicrob Agents Chemother
2002; 46:2811-20.

41 ZhaoS, Duncan M, Tomberg J et al. Genetics of chromosomally mediated

intermediate resistance to ceftriaxone and cefixime in Neisseria gonorrhoeae.
Antimicrob Agents Chemother 2009; 53: 3744-51.

42 Zhao S, Tobiason DM, Hu M et al. The penC mutation conferring anti-
biotic resistance in Neisseria gonorrhoeae arises from a mutation in the
PilQ secretin that interferes with multimer stability. Mol Microbiol 2005;
57:1238-51.

43 Ohnishi M, Ono E, Shimuta K et al. Identification of TEM-135 B-lactamase
in penicillinase-producing Neisseria gonorrhoeae strains in Japan. Antimicrob
Agents Chemother 2010; 54:3021-3.

44 Palmer HM, Leeming JP, Turner A. A multiplex polymerase chain reaction
to differentiate B-lactamase plasmids of Neisseria gonorrhoeae. J Antimicrob
Chemother 2000; 45: 777-82.

45 Chisholm SA, Dave J, Ison CA. High-level azithromycin resistance occurs
in Neisseria gonorrhoeae as a result of a single point mutation in the 23S rRNA
genes. Antimicrob Agents Chemother 2010; 54: 3812-6.

46 Ng L-K, Martin I, Liu G et al. Mutation in 23S rRNA associated with
macrolide resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother
2002; 46: 3020-5.

47 Roberts MC, Chung WO, Roe D et al. Erythromycin-resistant Neisseria gon-
orrhoege and oral commensal Neisseria spp. carry known rRNA methylase
genes. Antimicrob Agents Chemother 1999; 43: 1367-72.

1946


http://www.cdc.gov/std/gisp/GISP-Protocol07-15-2010.pdf
http://www.cdc.gov/std/gisp/GISP-Protocol07-15-2010.pdf
http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_6.0_Breakpoint_table.pdf
http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_6.0_Breakpoint_table.pdf
http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_6.0_Breakpoint_table.pdf
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm071462.pdf
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm071462.pdf
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm071462.pdf
https://www.cdc.gov/std/gonorrhea/arg/b88-feb-2005.pdf
https://www.cdc.gov/std/gonorrhea/arg/b88-feb-2005.pdf

WGS to predict antibiotic MICs for N. gonorrhoeae

JAC

48 Rouquette-Loughlin CE, Balthazar JT, Shafer WM. Characterization of the
MacA-MacB efflux system in Neisseria gonorrhoeae. J Antimicrob Chemother
2005; 56: 856-60.

49 Luna VA, Cousin S, Whittington WL et al. Identification of the conjugative
mef gene in clinical Acinetobacter junii and Neisseria gonorrhoeae isolates.
Antimicrob Agents Chemother 2000; 44: 2503-6.

50 Belland RJ, Morrison SG, Ison C, Huang WM. Neisseria gonorrhoeae ac-
quires mutations in analogous regions of gyrA and parC in fluoroquinolone-
resistant isolates. Mol Microbiol 1994; 14:371-80.

51 Rouquette-Loughlin C, Dunham SA, Kuhn M et al. The NorM efflux pump
of Neisseria gonorrhoeae and Neisseria meningitidis recognizes antimicrobial
cationic compounds. J Bacteriol 2003; 185: 1101-6.

52 Hu M, Nandi S, Davies C et al. High-level chromosomally mediated tetra-
cycline resistance in Neisseria gonorrhoeae results from a point mutation in
the rpsJ gene encoding ribosomal protein S10 in combination with the mtrR
and penB resistance determinants. Antimicrob Agents Chemother 2005; 49:
4327-34.

53 Morse SA, Johnson SR, Biddle JW et al. High-level tetracycline resistance
in Neisseria gonorrhoeae is result of acquisition of streptococcal tetM deter-
minant. Antimicrob Agents Chemother 1986; 30: 664-70.

54 Gascoyne DM, Heritage J, Hawkey PM et al. Molecular evolution
of tetracycline-resistance plasmids carrying TetM found in Neisseria
gonorrhoeae from different countries. J Antimicrob Chemother 1991; 28:
173-83.

1947



	dkx067-TF1
	dkx067-TF2
	dkx067-TF3
	dkx067-TF4

