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What impact do assumptions about
missing data have on conclusions? A
practical sensitivity analysis for a cancer
survival registry
M. Smuk1* , J. R. Carpenter2,3 and T. P. Morris2,3

Abstract

Background: Within epidemiological and clinical research, missing data are a common issue and often over looked
in publications. When the issue of missing observations is addressed it is usually assumed that the missing data are
‘missing at random’ (MAR). This assumption should be checked for plausibility, however it is untestable, thus inferences
should be assessed for robustness to departures from missing at random.

Methods: We highlight the method of pattern mixture sensitivity analysis after multiple imputation using colorectal
cancer data as an example. We focus on the Dukes’ stage variable which has the highest proportion of missing
observations. First, we find the probability of being in each Dukes’ stage given the MAR imputed dataset. We use
these probabilities in a questionnaire to elicit prior beliefs from experts on what they believe the probability
would be in the missing data. The questionnaire responses are then used in a Dirichlet draw to create a Bayesian
‘missing not at random’ (MNAR) prior to impute the missing observations. The model of interest is applied and
inferences are compared to those from the MAR imputed data.

Results: The inferences were largely insensitive to departure from MAR. Inferences under MNAR suggested a smaller
association between Dukes’ stage and death, though the association remained positive and with similarly low p values.

Conclusions: We conclude by discussing the positives and negatives of our method and highlight the importance
of making people aware of the need to test the MAR assumption.
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Background
The occurrence of missing values is inevitable in epi-
demiological and clinical research but often overlooked
in publications [1]. Any analysis of incomplete data then
makes assumptions about the missing data, intentional
or unwitting. It is thus important to engage with the
assumptions, consulting with experts in the substantive
area, and feed these into analyses.
Multiple imputation (MI) is an increasingly popular

tool for analysis of incomplete data, drawing several

plausible values from an appropriate imputation distri-
bution and combining results [2]. Software generally
implements MI under the assumption of ‘Missing At
Random’ (MAR) [3, 4]. This assumption states that the
missing data mechanism is independent of the missing
observations conditional on the observed data. If incor-
rect, analysis under MAR can be biased [5]. The MAR
assumption is also inherently untestable and so it is crit-
ical to assess the sensitivity of inferences under alterna-
tive assumptions when data are assumed ‘Missing Not
At Random’ (MNAR). The MNAR assumption states
that the missing mechanism depends on the missing
observations, even conditional on the observed data: the
probability of missing observations depends on some
unseen, underlying value. Inferences are generally more
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biased when the MNAR mechanism is dependent on the
outcome verses covariate dependency [6], however this
is not the only kind of MNAR mechanism [7].
In the statistical literature there are two broad ap-

proaches to analysing data under MNAR assumptions: a
selection model [8, 9] or a pattern-mixture model [10].
A selection model contains a component which defines
the probability of observations being missing and links
this to the potentially missing variables. A pattern-mixture
model creates a difference between the distributions of
observed and missing data by specifying a distinct model
for each pattern. These specified models can be then used
to create MNAR inferences. When applying a pattern-
mixture model in practice, one approach is to estimate the
Bayesian predictive distribution for imputations under
MAR but, before drawing the imputations, alter the distri-
bution by a random draw from a prior distribution. The
prior encodes specific assumptions about the difference
between MAR and MNAR for this pattern. The result is
imputed data with a mixture of potentially different impu-
tations across different missing data patterns, hence the
name ‘pattern-mixture’.
Carpenter and Kenward (2013) [11] found that the

pattern-mixture approach is more readily understood by
non-statistically trained experts than the selection ap-
proach as the assumptions can be represented graphic-
ally. However, standard statistical software and tutorials
tend to assume MAR, and MI in practice tends to also
assume MAR.
Routine use of Sensitivity Analysis (SA) in applied re-

search is lacking and may be held back by lack of clear
practical methods and examples. This paper aims to ad-
dress these issues by providing such an example, lower-
ing the barrier to more widespread adoption of SA.
Using colorectal cancer registry data, we explicitly per-

form analysis under departures from the MAR assump-
tion. We describe pattern-mixture models, elicit beliefs
from experts in the field, which are used to inform ana-
lyses under these MNAR beliefs, and implement MI
under a pattern-mixture model where the Bayesian im-
putation model uses these priors.

Methods
The National Cancer Data Repository (NCDR) [12] and
the Hospital Episode Statistics (HES) [13] database pro-
vide our motivating dataset. The data were collected to
“assess the variation in risk-adjusted 30-day postoperative
mortality for patients with colorectal cancer between hos-
pital trusts within the English NHS” (p.806) [14]. The
dataset was comprised of individuals who underwent a
major resection for their diagnosed primary colorectal
cancer in any NHS English hospital between January 1998
and December 2006. These individuals were identified in

the HES dataset and linked to the NCDR dataset to
extract more detailed information.
The final dataset contains information on patient

demographics, Dukes’ stage and 30-day postoperative
mortality. Dukes’ cancer tumour stage is a measure of
how far the cancer has spread, with four stages from A
to D. Stage A is the least severe, meaning the cancer is
only in the innermost lining of the bowel or slightly into
the muscle, while stage D is the most severe, meaning
the cancer has spread to other areas of the body.
The data consisted of 160,920 patients, of whom

10,704 (6.7%) died within 30 days after surgery. Data
were complete for approximately 85% (136,040) of the
patients. Missing observations occurred in three vari-
ables: Dukes’ stage had 15% of its observations missing;
quintile index for multiple deprivation (IMD) had 0.25%
missing; and the emergency admissions indicator (EAI)
had 0.05% missing.
The aim of the study was to investigate risk-adjusted

surgical outcome for patients with colorectal cancer at a
population level described by Morris et al. (2011) [14].
We began by estimating the missing values under the
assumption of MAR through MI by fully conditional
specification (FCS) using Stata’s user-written program
ice [4, 15]. The single level imputation model was
chosen to match the model used in Morris et al. (2011)
[14], to check that we could reproduce their results. We
generated 10 imputed datasets (with 10 cycles). The
imputation model included: postoperative mortality within
30 days (MORT), sex, hospital trust (organisation within
NHS), median annual workload of each hospital trust,
Dukes’ stage, IMD, age at diagnosis, year of diagnosis, year
of operation, Charlson co-morbidity score, resection type
(elective or emergency), EAI type (elective or emergency),
cancer registry and site of initial primary tumour.
By default, the ice command assumes that missing

observations are MAR. To apply sensitivity analysis we
aim to alter the imputation assumptions to represent an
MNAR mechanism.
To assess the sensitivity of the MAR assumptions, we

compare the inferences from a multilevel binary logistic
regression model created to analyse factors associated
with 30-day postoperative mortality (substantive model)
under different assumptions. This substantive model,
also chosen to match that used in Morris et al.(2011)
[14], had three hierarchical levels (level 1 patients, level
2 hospital trust and level 3 networks). The dependent
variable is 30 day postoperative mortality and the co-
variates are age (per year increase), sex, site of the ini-
tial colorectal primary, IMD, year of diagnosis, Dukes’
stage at diagnosis, Charlson co-morbidity score and
resection type.
We focus our sensitivity analysis on Dukes’ stage for

simplicity, and because the missing information in IMD

Smuk et al. BMC Medical Research Methodology  (2017) 17:21 Page 2 of 9



and EAI are negligible by comparison. Our approach is
as follows:

1. Find predictors for Dukes’ stage being missing which
are also strong predictors of Dukes’ stage.

2. Given each predictor from the previous step, we
calculate the probability of being in each stage under
the MAR assumption..

3. The above probabilities are then given to experts in
a questionnaire. We elicit information from the
experts by saying, ‘given these probabilities in the
observed data what do you think are the
probabilities in the missing data?’.

4. The estimated probabilities from the questionnaire
are used to estimate the parameters of a Dirichlet
distribution. Draws from the distribution are then
used to impute under the MNAR assumption.

5. The substantive model is applied to the MNAR
imputed data, inferences are compared to the MAR
inferences to see how robust they are.

To identify possible predictors for Dukes’ stage being
missing, we created a binary indicator for Dukes’ stage be-
ing missing and used it as an outcome in a logistic regres-
sion model, regressing it on all other available variables in
a complete case analysis. We then used selected predictors
to form a questionnaire to elicit information on the miss-
ing data distribution. Because this needs to be accessible,
we do not consider UK National Health Service Trust,
network, year of diagnosis, year of operation and medium
annual workload for a trust as covariates in the model.
A backwards elimination procedure was used to select

covariates out of the logistic regression, using a 1% level,
with categorical variables with more than two categories
tested using a joint parameter test. The final model had
three covariates: age at diagnosis, 30-day postoperative
mortality and tumour site. To reduce elicitation com-
plexity we moved forward with the two most predictive
covariates for missing Dukes’ stage, which were age at
diagnosis (OR 0.92(0.91, 0.93) p < 0.001, per 10 years)
and 30-day postoperative mortality (alive 30 days post-
surgery: OR 1.84(1.76, 1.93) p < 0.001).
Age at diagnosis (AGE) was dichotomised as 0 when

the patient is less than or equal to 70 years old and 1
otherwise. This was done as it would be extremely diffi-
cult to elicit information by year. We checked to see if
AGE and MORT (1 if postoperative mortality within
30 days, other 0) were also good predictors of Dukes’
stage itself using a multinomial logistic regression. Both
were strongly associated with the observed values of
Dukes’ stage (p <0.001). Table 1 gives the proportion of
missing Dukes’ stage data by AGE and MORT.
Table 1 shows that the majority of the missing obser-

vations occurred when patients are dead 30 days after

surgery and ≤70 years old. As AGE and MORT are both
binary variables, we label the cells in Table 1 by r for
simplicity. Let r = 1 if AGE = 0 and MORT = 0, r = 2 if
AGE = 0 and MORT = 1, r = 3 if AGE = 1 and MORT = 0
and r = 4 if AGE = 1 and MORT = 1.
To re-impute the data under an MNAR assumption

we specified the probability of being in each Dukes’ stage
given r. This was achieved by applying a multinomial
logistic model with MORT and AGE as covariates for
each imputed dataset and combining using Rubin’s rules.

LOG
P Dukes

0
Stage j

� �

P Dukes0Stage 1ð Þ

 !

¼ αj þ βj1 MORT þ βj2AGE

j ¼ 2; 3; 4:

Hence:

P̂ ij ¼ P Dukes
0
Stagei ¼ j

� �

¼
exp αj þ

X
k¼1

2
βjkXik

� �� � 1−δ1jð Þ

1þ
X

h¼2

4
exp αh þ

X
k¼1

2
βhkXik

� �

Where i = 1,..,160, 920 indexes patients, j = 1,…, 4
indexes the categories of Dukes’ stage, X is the covariate
data and δ1j = 1 if j = 1, or 0 otherwise. Here β and α are
unknown parameters that can be estimated.
Next we can calculate the probability of being in a

stage given r as P̂rj:

P̂rj ¼ E P̂ijjr
� �

The probabilities P̂rj were used to elicit priors π̂ rj ,
representing experts’ opinions on the true distribution of
Dukes’ stage for those with Dukes’ stage missing. To do
this we created a questionnaire in Microsoft Excel. The
questionnaires were sent out electronically and were
accompanied by information on the data and sensitivity
analysis concept (see Additional file 1 for details).
Having elicited prior beliefs, we computed the means

Ê[Prjv] (denoted as π̂ rj) and variances dVar Prjv
� �

(denoted

as V̂ rj ) of the opinions, where r = 1,…,4, j = 1,…,4 and
v = 1,…,K, K is the number of experts. We used a
Dirichlet prior distribution [16] because it is a conjugate
prior of the categorical distribution (see Additional file 2
for details).

Table 1 Proportion (frequency) of missing observations in
Dukes’ stage by dichotomised age and postoperative mortality

30 Day Postoperative Mortality

Age at Diagnosis Alive Deceased

Less than or equal to 70 years old 0.16 (11,453) 0.25 (548)

Greater than 70 years old 0.14 (10,539) 0.22 (1,894)
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Values drawn from the Dirichlet with γrj = E[Srj] * πrj,
were used to replace the MAR imputed values. Hence
creating an MNAR assumption for the missing data as
the observed and missing data distributions are no longer
the same. The substantive model was applied to the
MNAR imputed data using Rubin’s combining rules. The
inferences were then compared to the inferences from the
MAR imputed data and the subset of complete cases.

Results
The questionnaire was completed by 6 people, 4 of
whom had seen the study data as they had worked on
the 2011 publication by Morris et al.[14]. The individual
probability responses from the questionnaire and the P̂rj

probabilities are graphically shown in Fig. 1, the two
responders whom had not seen the study data have been
represented by shaded circles.
Figure 1 shows that the individual responses are quite

varied. Questionnaire responders whom had seen the study
data appear to be on average closer to the MAR estimate.
The number of experts who completed the questionnaire
was low as many experts replied saying they did not have
the knowledge to give estimates for the probabilities being
requested. The advantage that four of our sample had
worked directly with the data meant they had a good
understanding. However, this may mean that their prob-
abilities were based on what they had seen in the data (data
dependency) which may mean their elicited probabilities
are unduly influenced by the published MAR analysis.
The means π̂ rj and variances V̂ rj from elicited prob-

abilities for each Dukes’ stage and r are listed in Table 2.

Fig. 1 MAR probabilities and 6 reviewer estimates (reviewer 4 and 6 had not previously seen the data)

Table 2 Dukes’ stage probabilities given age and mortality,
estimated under MAR and the elicited mean (variance)

Characteristic Dukes’ stage
probabilities
under MAR

Elicited Dukes’ stage
probabilities
Mean (variance)

Alive 30 days after surgery and age ≤ 70

Dukes’ stage A 0.13 0.21 (0.008)

Dukes’ stage B 0.35 0.32 (0.010)

Dukes’ stage C 0.39 0.28 (0.005)

Dukes’ stage D 0.12 0.19 (0.045)

Dead 30 days after surgery and age ≤ 70

Dukes’ stage A 0.08 0.05 (0.001)

Dukes’ stage B 0.31 0.17 (0.002)

Dukes’ stage C 0.41 0.38 (0.002)

Dukes’ stage D 0.20 0.40 (0.001)

Alive 30 days after surgery and age > 70

Dukes’ stage A 0.13 0.24 (0.013)

Dukes’ stage B 0.43 0.37 (0.016)

Dukes’ stage C 0.36 0.23 (0.009)

Dukes’ stage D 0.08 0.17 (0.046)

Dead 30 days after surgery and age > 70

Dukes’ stage A 0.07 0.08 (0.003)

Dukes’ stage B 0.39 0.26 (0.010)

Dukes’ stage C 0.39 0.36 (0.012)

Dukes’ stage D 0.14 0.29 (0.025)
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Table 2 shows that the elicited probabilities for Dukes’
stage D given any r, are larger than those implied under
MAR. The experts believe on average that the probability
of being in Dukes’ stage D is higher than estimates derived
from the observed data and imputation model. The elicited
probabilities decrease Dukes’ stage B and C given any r and
Dukes’ stage A tends to be increased for three of the four r
categories.
The results from the multivariable analyses estimating

the adjusted odds of death within 30 days of surgery are
shown in Table 3.
Table 3 shows that results from MAR and MNAR are

broadly similar. The largest absolute differences in ad-
justed odds ratios (OR) can be observed for the Dukes’
stages. For Dukes’ stage B, the OR decreases by 7.3%,
from 1.24 to 1.15; stage C decreases by 16.2%, from 1.54
to 1.29; and stage D decreases by 26.6%, from 2.48 to

1.82. It is important to note that the OR’s from the
MAR imputation for Dukes’ stage C and D fall outside
the confidence interval for the corresponding Dukes’
stage under MNAR, suggesting the OR’s differ however
the direction of risk and p values remain the same. The
imputation under the assumption of MNAR reduces the
effect of Dukes’ stage on 30-day postoperative mortality.
By contrast, the OR for elective vs. emergency surgery is
3.4% higher. This suggests that if the experts’ views are
correct, Dukes’ stage is a less important predictor than
suggested by the analysis assuming MAR, while emer-
gency surgery is a more important predictor.

Discussion
This paper has demonstrated one practical approach to
sensitivity analysis which involves elicitation of opinions
from experts and feeding these into a prior used to draw

Table 3 Adjusted odds ratios (AOR) for death within 30 days of surgery

Multiple Imputation (MAR) Multiple Imputation (MNAR)

Characteristic AOR (95% CI) p value AOR (95% CI) p value

Age at diagnosis (per 10 years) 2.12 (2.07–2.17) <0.001 2.08 (2.03–2.13) <0.001

Year of diagnosis (per advancing year 0.97 (0.97–0.98) <0.001 0.98 (0.97–0.98) <0.001

Sex

Female 1.00 1.00

Male 1.21 (1.16–1.26) <0.001 1.21 (1.16–1.26) <0.001

Operation

Elective 1.00 1.00

Emergency 2.67 (2.53–2.82) <0.001 2.76 (2.61–2.91) <0.001

Dukes’ stage at diagnosis

A 1.00 1.00

B 1.24 (1.14–1.35) <0.001 1.15 (1.04–1.26) 0.005

C 1.54 (1.42–1.68) <0.001 1.29 (1.18–1.42) <0.001

D 2.48 (2.25–2.73) <0.001 1.82 (1.66–2.00) <0.001

IMD income category

1 (Most affluent) 1.00 1.00

2 1.03 (0.96–1.10) 0.429 1.03 (0.96–1.10) 0.417

3 1.11 (1.04–1.19) <0.001 1.12 (1.04–1.19) 0.002

4 1.21 (1.13–1.30) <0.001 1.22 (1.14–1.30) <0.001

5 (Most deprived) 1.32 (1.23–1.42) <0.001 1.32 (1.23–1.42) <0.001

Cancer site

Colon 1.00 1.00

Rectosigmoid 0.88 (0.82–0.96) 0.003 0.88 (0.82–0.96) 0.003

Rectum 0.94 (0.89–0.99) 0.018 0.91 (0.86–0.96) 0.001

Charlson comorbidity score

0 1.00 1.00

1 2.05 (1.94–2.17) <0.001 2.06 (1.95–2.19) <0.001

2 2.43 (2.25–2.62) <0.001 2.42 (2.24–2.61) <0.001

≥3 4.39 (3.99–4.83) <0.001 4.35 (3.96–4.79) <0.001
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Fig. 2 Screenshot of electronic questionnaire
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MI. The work was motivated by a colorectal cancer
dataset collected and analysed by Morris et al. [14]. The
publication handled the missing data by MI under MAR
without performing any sensitivity analysis. Taking the
substantive and imputation model from this their article,
we replicated the results before extending the analysis,
carrying out sensitivity analysis using pattern mixture
models.
We received and used six experts’ responses to our

questionnaire, which were modelled using a Dirichlet
distribution to multiply impute data under the resulting
distribution. We then applied the substantive model to
each MNAR imputed data set and combined the results
using Rubin’s rules. The elicited prior is useful as four of
the six responders had a good knowledge of the data,
however, more expert responses may have strengthened
our conclusions.
Broadly speaking, the results were similar to those

from the analysis under MAR. However, the effect of
Dukes’ stage was reduced under MNAR, with estimates
for Dukes’ stage C and D fully outside the MAR-based
95% confidence interval.
The method we have proposed and the associated soft-

ware to implement it allows us to take into account in-
formatively missing data in the analysis. This allows the
sensitivity of inferences to the MAR assumption to be
evaluated. The main difficulty of this method is in
obtaining prior information that is reliable and accurate.

First, we found not all experts were comfortable with
giving their opinion, in line with [17]; second, it is
unclear who exactly is an appropriate ‘expert’. We used
electronic communication to elicit information from
experts; however face to face meetings would almost
certainly have aided this process as it would give more
freedom to question and clarify concepts. Thus the
accuracy of the information cannot be ascertained, more
research into the reliability and methodology of collect-
ing prior information is needed. Further research into
the number of experts who need to be consulted should
also be done, as it is not currently clarified in literature.
A further point of interest concerns the standard error

of the parameter estimates under MNAR, and how they
compare to those obtained under MAR. Ideally we
would like them to be greater under MNAR, reflecting
the extra uncertainty relative to MAR. However, this is
not guaranteed under our approach - it depends on the
variability of the imputation distribution derived from
expert opinion relative to that under MAR. The standard
errors in Table 3 suggest this is not an issue here.
Lastly, neither our MAR or MNAR imputation has

allowed for the multilevel structure (multilevel by trust
and registry) of the data and hence the clustering vari-
ability has not been incorporated, resulting in possible
inference bias. This is because we wished to reproduce
the inferences in Morris et al. [14], who did not use
multilevel MI.

Fig. 3 Dukes’ stage Dirichlet variances (circles) and empirical variance of responders (horizontal lines) for S3.
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MI software is becoming more accessible and the
default assumption for the missing data is MAR. If infer-
ences are sensitive to this, those to whom the research is
presented (e.g. journal readers) should be aware of this.
As the MAR assumption is untestable, additional ana-
lysis to explore the sensitivity of inferences to the MAR
assumption are desirable. However this extra work can
be time consuming, so a limitation of our method is the
time it takes to elicit the prior information possibly put-
ting analysts off. However an advantage of this approach
is that it is computationally simple once the prior has
been elicited. Unlike under the selection modelling
approach, the missingness mechanism model does not
need to be jointly modelled with the substantive model,
which can be computationally demanding.
In our setting we only selected two predictive vari-

ables, age at diagnosis and 30 day postoperative surgery
mortality to frame the elicitation process. This was done
to simplify the questionnaire. However in some situa-
tions this simplification would not be appropriate, making
the elicitation of information difficult.
Of course, this approach is no substitute to collecting

data fully. We do however believe that the process of eli-
citing information helps raise awareness of the potential
loss of information and possible bias caused by missing
data. This is turn leads to more emphases minimising
missing data in future study designs.

Conclusions
In summary, we believe the approach described here is a
computationally feasible, accessible and practical approach
to sensitivity analysis within epidemiology. We hope it
may find application in the area where missing data are
often an issue, because the data were collected for direct
clinical need, not with research in mind.
Our research demonstrates a practical, computationally

feasible, multiple-imputation based approach for investi-
gating the robustness of scientific conclusions to the as-
sumption that data are Missing at Random. We encourage
readers faced with non-trivial proportions of missing data
to consider this approach.

Additional files
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responses (Fig. 2). (DOCX 1055 kb)

Additional file 2: Contains information on the Dirichlet distribution and
how to find the precision of the distribution so that the variance is similar to
the questionnaire responses (Fig. 3). (DOCX 16 kb)
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