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Abstract 

Phenotypic plasticity can mitigate adaptive trade-offs in fluctuating environments but how 

plasticity arises is little known. New research documents this process in a bacterial system. 

We highlight remarkable parallels to the evolution of sexual dimorphism and argue that their 

approach can aid our understanding of adaptive conflicts between the sexes.  

 

Main text 

Virtually all organisms are subject to varying environmental conditions, be it seasonal 

differences in climate, different stages of the life cycle, or phases of population growth. 

These environmental fluctuations can create varying and sometimes conflicting demands on 

the phenotype. One way of accommodating these is to modulate the phenotype according to 

environmental conditions, a phenomenon known as phenotypic plasticity. A large body of 

literature has been dedicated to exploring the conditions under which plasticity is selectively 

favourable, and empirically documenting the extent to which plasticity occurs and has a 

heritable genetic basis (1). 

 

What is less well known is how the gene regulatory networks that mediate phenotypic 

plasticity evolve in response to opposing selection pressures. A recent article by Yi and 

Dean now sheds some light on these questions (2). They used an experimental evolution 

approach to explore adaptation in Escherichia coli to a cyclical environment that alternated 

between two selection pressures, one for rapid growth and one for chemotaxis. These 

contrasting regimes pose opposing demands on the phenotype, generating a trade-off in 

energy allocation between cell division and motility. Using models of population growth as a 

function of division rate in the growth-environment and motility in the chemotaxis-

environment, Yi and Dean were able to construct a fitness landscape on which to map the 

evolutionary trajectory of the experimental populations (3). They found that adaptation 

proceeded in three phases (Figure 1). In phase 1, populations moved quickly up the fitness 

gradient as they adapted to the specific experimental setup. In phase 2, further adaptation 

was constrained by the trade-off between growth and chemotaxis. Here, mutations that 

improved fitness in one of the environments decreased fitness in the other, with populations 

moving principally along the fitness isocline while changing minimally in overall fitness. 

Finally, the evolutionary constraint imposed by the trade-off was overcome in phase 3, 

where the populations were able to occupy novel regions of the fitness landscape. 



 

Analysis of the evolving populations revealed that the trade-off between growth and 

chemotaxis was broken by the emergence of increased plasticity in motility, which was 

reduced during the logistic growth phase and increased in the stationary phase, when 

chemotaxis selection occurred. The authors were further able to determine the genetic basis 

of this novel plastic response, identifying a single non-synonymous substitution in FLiA - a 

transcription factor gene which plays a central role in the chemotaxis network - to be 

responsible. 

 

Yi and Dean’s results demonstrate how experimentally tractable microbial systems can be 

exploited to elucidate the adaptive solutions and genetic mechanisms by which trade-offs 

can be overcome. Integrating genetic work of this type with existing evolutionary theory and 

phenotypic or quantitative genetic data will clarify the relationship between the evolution of 

plasticity and its underlying molecular sensory and regulatory machinery. 

 

However, the impact of this kind of research goes beyond understanding plastic responses 

to external conditions, and applies to other cases where plastic responses can 

accommodate opposing selection pressures—a point not made by Yi and Dean. One such 

instance is the evolution of sexual dimorphism (4). Akin to varying external conditions, the 

sexes constitute different genetic environments that impose divergent selection pressures 

and adaptive trade-offs on genes as they pass through males and females over successive 

generations (5, 6). These trade-offs constrain adaptation in a manner equivalent to Yi and 

Dean’s phase 2, where populations are unable to simultaneously optimise both sex-specific 

phenotypes. Instead, they are expected to accumulate alleles with opposing effects on male 

and female fitness – i.e. ‘sexually antagonistic’ genetic variation (Figure 1). This evolutionary 

impasse can only be overcome by the emergence of molecular mechanisms, equivalent to 

the substitution in FLiA during Yi and Dean’s phase 3. These enable the uncoupling of male 

and female phenotypes, leading to increased plasticity in sex-specific phenotypes, the 

resolution of sexual antagonism, and hence sexual dimorphism.  

 

Exploiting parallels between external and sex-specific genetic environments will yield a 

better understanding of plastic phenotypes and the evolution of the genotype-phenotype 

map. The key questions to pose in this context include: how do adaptive constraints arise, 

what are their consequences for the genetic load and levels of standing genetic variation of 

populations, and finally, how are constraints resolved?   

 

The presence of adaptive constraints implies that genetic variation for their resolution is 

neither readily available nor remains unavailable for long enough to lead to a state of 

detectable maladaptation. The factors limiting selectable variation will depend on the nature 

of the traits under selection and should, a priori, be similar in the case of environments or the 

sexes. If selection acts on the context-dependent expression levels of individual genes, then 

adaptation could be limited by epistatic interactions between regulatory mutations, as shown 



in elegant work on E. coli by Poelwijk et al. (7). Selection on coding variants might be even 

more constrained, as resolution most likely requires both gene duplication and regulatory 

divergence (8, 9). 

 

The maintenance of genetic variation and the associated genetic load has been a major 

focus of research on sexual antagonism. Extending this to fluctuating environments would 

provide an interesting avenue of research, in particular if linked to molecular analysis of 

constraints and their eventual resolution. This would also allow to study the longer-term 

dynamics of antagonistic variation and emerging plasticity. One outstanding question here is 

whether the resolution of adaptive constraint allows for periods of rapid adaptation by 

increasing plasticity or whether populations evolve via repeating cycles of adaptive 

constraint and partial resolution (Fig. 1). Care is needed, however, when analysing genetic 

variation in response to environmental selection, because fluctuating environments can also 

favour the coexistence of fixed strategies, as diversifying bet-hedging strategies (10, 11), 

even where plasticity is not selectively favoured.  

 

Finally, more data on the resolution of adaptive conflicts will provide insights into how 

genomes accommodate opposing selective demands on the phenotype, and whether these 

differ between responses to the environment and the sexes. The basic adaptive task is the 

same for environment- and sex-specific selection pressures: sensory information relating to 

each external or genetic environment needs to be converted into the expression of a specific 

set of gene products. Accordingly, one might expect plasticity and sexual dimorphism to rely 

on the same mechanisms to resolve adaptive conflicts, e.g. regulatory changes, gene 

duplication, or epigenetic effects. The mechanisms used in individual cases may depend 

predominantly on the genetic particularities of the traits under selection, but systematic 

differences between plasticity and dimorphism are also imaginable. For example, the 

predictability of fluctuations in selection pressures (higher in sexual than external 

environments) or the reliability with which the current environment can be sensed (again 

potentially higher with genetic or hormonal cues of sexual identity) will also influence which 

mechanisms can effectively resolve the conflict. In the long term, empirical data from studies 

like that by Yi and Dean and related theoretical work will help us establish the extent to 

which phenotypic plasticity and sexual dimorphism are analogous phenomena, as well as 

delineate the areas in which they diverge. 
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Figure legend 

 

Figure 1: Hypothetical evolutionary trajectory on an adaptive landscape across two 

environments, either external or genetic (i.e., sexes). Each dot represents the fitness 

distribution of a population at a given time-point. Blue contours represent fitness isoclines 

(lines of equal fitness), where darker shades equate to higher fitness. Populations evolve 

quickly up the fitness slope (phase 1) until they encounter fitness trade-offs (phase 2). Here, 

further fitness increases slow and we observe a build-up of genetic variance with opposing 

effects in the two environments (purple/blue). Further increases in mean fitness across 

environments are possible by the emergence of mutations that break the trade-off (phase 3). 

The trajectory of further evolution could either consist of repeated cycles of phases 1-3 or 

rapid adaptation following the successful uncoupling of fitness in the two environments.  




