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A B S T R A C T

Magnetoencephalography (MEG) enables non-invasive real time characterization of brain activity. However,
convincing demonstrations of signal contributions from deeper sources such as the hippocampus remain
controversial and are made difficult by its depth, structural complexity and proximity to neocortex. Here, we
demonstrate a method for quantifying hippocampal engagement probabilistically using simulated hippocampal
activity and realistic anatomical and electromagnetic source modelling. We construct two generative models,
one which supports neuronal current flow on the cortical surface, and one which supports neuronal current flow
on both the cortical and hippocampal surface. Using Bayesian model comparison, we then infer which of the two
models provides a more likely explanation of the dataset at hand. We also carry out a set of control experiments
to rule out bias, including simulating medial temporal lobe sources to assess the risk of falsely positive results,
and adding different types of displacements to the hippocampal portion of the mesh to test for anatomical
specificity of the results. In addition, we test the robustness of this inference by adding co-registration error and
sensor level noise. We find that the model comparison framework is sensitive to hippocampal activity when co-
registration error is < 3 mm and the sensor-level signal-to-noise ratio (SNR) is > −20 dB. These levels of co-
registration error and SNR can now be achieved empirically using recently developed subject-specific head-
casts.

Introduction

Magnetoencephalography (MEG) is a non-invasive neuroimaging
technique that measures electromagnetic brain activity with millise-
cond temporal resolution. In order to localise the spatial origin(s) of
such activity, anatomical and electrophysiological information is used
to constrain the solution space. Whilst this general framework is well-
established for neocortical sources (Gross et al., 2003; Hämäläinen
et al., 1993; Henson et al., 2009; Lopes da Silva, 2013; Vrba and
Robinson, 2001), reconstruction of deep sources remains controversial
(Hämäläinen et al., 1993; Mikuni et al., 1997; Riggs et al., 2009;
Stephen et al., 2005). This is partly because the signal strength, and
consequently also the spatial resolution, rapidly decreases with dis-
tance from the sensors (Hillebrand and Barnes, 2002), and partly
because it is unclear whether cell features of deeper structures render
them magnetically silent (Hämäläinen et al., 1993).

Despite its well-characterized oscillatory properties (for reviews see

Buzsáki, 2006; O’Keefe, 2007), it is often assumed that the hippocam-
pus is difficult if not impossible to detect with MEG, an assumption
which has only recently begun to receive critical reappraisal (Attal and
Schwartz, 2013; Riggs et al., 2009). The hippocampus is a small curved
bilateral structure constituting part of the archeo-cortex in the medial
temporal lobe. It is ~5 cm long in adult humans (Schultz and
Engelhardt, 2014), and in our simulations the distance between the
centroid of the hippocampal mesh and the nearest sensor is 8.70 cm.
Although it is thus deep relative to neocortical structures, it is more
superficial than other structures successfully imaged empirically using
MEG, such as the thalamus and brainstem (Attal and Schwartz, 2013;
Coffey et al., 2016; Papadelis et al., 2012; Parkkonen et al., 2009;
Wibral et al., 2013). Moreover, recent evidence suggests that the
current source density generated by the hippocampal pyramidal cell
layer is at least twice that of the neocortex, which might compensate to
some degree for its distance to the sensors (Attal et al., 2012;
Murakami and Okada, 2015, 2006).
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Indeed, cumulative evidence suggests that hippocampal sources can
be identified in MEG, an observation made both in simulations (Attal
and Schwartz, 2013; Chupin et al., 2002; Mills et al., 2012; Quraan
et al., 2011; Stephen et al., 2005), and empirical data (Adjamian et al.,
2004; Backus et al., 2016; Cornwell et al., 2012, 2008; Engels et al.,
2016; Guitart-Masip et al., 2013; Hillebrand et al., 2016; Kaplan et al.,
2012; Korczyn et al., 2013; Mills et al., 2012; Moses et al., 2011; Poch
et al., 2011; Quraan et al., 2011; Riggs et al., 2009; Tesche and Karhu,
2000). Despite this body of theoretical support and empirical evidence,
the sufficiency of the spatial precision of MEG for deep source
reconstruction is still being debated (Mikuni et al., 1997; Mills et al.,
2012; Riggs et al., 2009). One reason is that arguments for hippocam-
pal involvement typically rely on the spatial location of a statistical
peak in traditional group level volumetric inference. Consequently,
factors which have led such findings to be toned down from ‘hippo-
campus’ to ‘medial temporal lobe’ include image smoothness at this
depth (Gross et al., 2003), intra-subject variability, head movement,
and in particular, co-registration error.

Another argument against hippocampal detectability is that its
cylindrical geometry could cause signal cancellation (Baumgartner
et al., 2000; Mikuni et al., 1997; Stephen et al., 2005). However, it
has been demonstrated that the cancellation is lower than expected
even when sources on opposing subfields are simulated (Stephen et al.,
2005).

The aim of this paper is to demonstrate a method to infer not where
an activation peak appears to be, but rather whether a model which
includes the hippocampus does a significantly better job than a
hippocampus-free model (i.e., a “null” model) at explaining activity
from the hippocampus. We address this question by comparing two
generative models: one comprised of the neocortex alone, and one
which includes both the neocortex and hippocampus. A generative
model is an account or hypothesis describing the putative origins of the
measured signal. The models therefore enable formulation of compet-
ing hypotheses, and direct comparison hereof. This work echoes
previous papers on the suitability of fMRI priors (Henson et al.,
2009) and distinction between cortical laminae (Troebinger et al.,
2014a), where for a given dataset we evaluate the evidence for two
competing generative models. These models differ with respect to their
anatomy, and therefore also with respect to their ability to account for
the data when this portion of the anatomy is engaged. In this
simulation study, we focus on explaining the method and testing its
performance under different empirical constraints. We know from
previous work that mesh-based generative models are extremely
sensitive to co-registration error (Hillebrand and Barnes, 2011, 2003;
López et al., 2012; Troebinger et al., 2014b) which therefore con-
stituted our main factor of interest.

Here we propose an anatomically and electrophysiologically realis-
tic generative model of hippocampal activity which accounts for
geometry, depth and cell type. Through model comparison, this allows
us to make categorical statements about which generative model is
most likely for a given dataset – one with the hippocampus explicitly
modelled, or one without. Although we focus on the hippocampus in
this work, the approach should generalize to other brain structures
with similar morphological and structural features. Here the modelling
is motivated by the hippocampus' pyramidal cell layer's similarity to
the pyramidal cell layer V in neocortex (which is the main generator of
the MEG signal (Murakami and Okada, 2006)). Firstly, the pyramidal
cells are morphologically identical in neocortex layer V and hippocam-
pus (see Fig. 1A). Secondly, the pyramidal cell layer follows the surface
curvature of the hippocampus, which means that it can be modelled as
such. Thirdly, individual cells have dendritic trees oriented in parallel
and with rich recurrent connectivity, causing magnetic fields to arise
perpendicularly to the surface when synchronously active.

The main advantage of an explicit generative model is that it makes
it possible to exploit not only the information from the estimated
source location, but also its orientation (and other parameters such as

current density and local coherence, although these are not considered
here). We show that this allows us to differentiate the hippocampus
from even the most proximal cortical sources.

In order to obtain probabilistic and comparative estimates of how
good the two generative models are with respect to the data, we
approximate their model evidence and compare the relative values in a
Bayesian model comparison framework. This allows direct quantifica-
tion of competing models’ abilities to explain the same data while
avoiding over-fitting. Thus, building models equates to specifying prior
beliefs about what could be expected from the data. In this case, the
priors pertain to the anatomical locations and orientations of the
potential sources. The priors can also pertain to functional properties
of the sources, e.g. how the neural activity is structured, such as how
sparse or smooth the sources are. These priors are specified in the form
of different ‘functional’ priors or inversion schemes and we also test
several of these to assess the robustness of our inferences across
functional assumptions.

To approximate the model evidence for dataset inverted using a
given model, we use Free energy (F), which is a lower bound on the true
model evidence. Free energy rewards models which accurately fit the
data, but penalizes models if they are overly complex (and therefore
likely to over-fit). The logic in this context is that if electrical current
was generated on the hippocampus but the hippocampus is not part of
the generative model used to reconstruct the data, then a more
extensive (and thus complex) mixture of cortical sources is required
to explain the data equally well. Because of this increased complexity
(see Wipf and Nagarajan 2009 on how the volume of the model
covariance acts as penalty or sparsifying term), the cortical/hippocam-
pus-free model will have a lower model evidence (or Free energy) value
than the combined model which includes the hippocampus and there-
fore explains the data using fewer sources.

The paper proceeds as follows: we first describe the generative
models, and then the simulation and source reconstruction parameters
used. We then compare the two models across different scenarios with
increasing co-registration error and signal-to-noise ratios (SNR). We
do this across three different sets of popular functional priors:
Minimum Norm Estimate (MNE), Empirical Bayes Beamformer
(EBB), and Multiple Sparse Priors (MSP). This allows us to interrogate
the model comparison framework from multiple angles, as there is no
single superior functional prior since the performance depends both on
the experimental question(s), performance criteria, and data (Hauk
et al., 2011). Moreover, this allows us to address the consistency of
results across functional assumptions.

Methods

Anatomical modelling of the hippocampus

The independent variable of our generative model is the hippo-
campal surface mesh. The pyramidal cells found in neocortex layer V
and Cornu Ammonis (CA) subfields of the hippocampus are morpho-
logically indistinguishable (Fig. 1A). In both pyramidal cell layers, the
principal neuronal axes of the dendritic trees are arranged in parallel,
and perpendicularly to the surface envelope. At a population level we
therefore model current flow along the principal neuronal axis (red
arrow) in the same way as per convention for the neocortex. Although
the hippocampal pyramidal cells point in the opposite direction to
those in neocortex, this does not influence the shape or extent of the
magnetic fields produced and therefore need not be explicitly modelled.
Thus, we constrain the sources to be oriented perpendicularly to the
hippocampal mesh surface (Fig. 1B shows the surface envelope
extracted from an MRI image). The hippocampus’ location is derived
from the same anatomical MRI image as the neocortex. The hippo-
campus is shown overlaid on an MRI in Fig. 1C, and with respect to the
extracted cortical mesh in Fig. 1D. As the hippocampus bulges into the
floor of the (inferior horn of the) lateral ventricle, its medial surface
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extends more medially than that of the cortical surface. Apart from this,
the hippocampus is nested inside the cortical manifold.

We extracted the left hemisphere's cortical and hippocampal
surfaces for a single subject using FreeSurfer's (Reuter et al., 2012)
automated image segmentation of individual T1-weighted MRI images
(3 T Siemens Magnetom). We limited the simulations and re-construc-
tions to the left side of the brain for simplicity. FreeSurfer gave a
cortical mesh of the left hemisphere which we used directly, and a
hippocampal volume file which we converted into a tessellated surface
mesh. The resultant hippocampal surface was more densely tessellated
than the cortical, so we smoothed and downsampled it such that the
mean vertex-vertex distances were matched (mean values were 3.73
and 3.69 mm for the cortical and hippocampal meshes respectively).
The number of vertices in the cortical and hippocampal meshes were
10595 and 162 respectively. This approach is consistent with the Deep
Brain Activity model proposed by (Attal and Schwartz, 2013).

Simulation set-up

The simulation and reconstruction pipeline consisted of three steps:
first, we simulated a single dipole perpendicularly to the hippocampal
surface with a sinusoidal waveform of 20 Hz for 300 ms (six cycles) and
a total effective dipole moment of 20 nAm (Fig. 2A). The simulation
locations were randomly drawn from the 162 hippocampal vertices and
were simulated with a full-width half-maximum of 6 mm. Each
simulated dataset had a sampling rate of 600 Hz with the mean
sensor-level SNR set to either 0, −5, −10, −15 or −20 dB, specified
by adding Gaussian white noise to the data. We carried out 30

hippocampal and 30 cortical simulations at each SNR level (co-
registration error is added at the inversion stage). This gave a core
set of simulated data with known ground truth (i.e. whether or not the
source was hippocampal).

In the second step (Fig. 2B), we mimicked the effect of co-
registration error between functional (MEG) and anatomical (MRI)
images by adding 0, 1, 2 or 3 mm standard deviations of error to each
of three fiducial points in each of the three spatial dimensions. This
shifted the surface mesh used for reconstruction (in red) relative to the
surface mesh used to generate the simulation (in black). Co-registra-
tion error levels commonly seen empirically in MEG recordings are
usually ~5 mm or more even with the best compensation tools, be they
bite-bars (Adjamian et al., 2004; Singh et al., 1997) or algorithmic
movement corrections (Whalen et al., 2008). However, using head-
casts it is possible to bring it down to < 1.5 mm (Meyer et al., 2017;
Troebinger et al., 2014b).

After having perturbed the idealized data by adding sensor noise
and co-registration error, we inverted the data using two different
anatomical models and three different inversion schemes. One anato-
mical model was, per convention, just the cortical surface (Fig. 2C,
cortical model), while the other model additionally included the
hippocampal surface envelope (Fig. 2C, combined model). Each
anatomical model was inverted using three different inversion schemes
embodying functional (source covariance) assumptions. These were
Minimum Norm Estimate (MNE) (Hämäläinen et al., 1993), Empirical
Bayesian Beamforming (EBB) (Belardinelli et al., 2012) and Multiple
Sparse Priors (MSP) (Friston et al., 2008a). We thus obtained six
inversion solutions per simulated dataset; three inversion algorithms,
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Fig. 1. Hippocampal cell morphology, surface structure and location. A Morphology and similarity of pyramidal neurons in cortex and hippocampus. Postsynaptic potentials occurring
at the apical dendrites or tuft give rise to the primary intracellular current (red arrow) which is measureable outside the head given a sufficiently large synchronously firing cell
population. CA: Cornu Ammonis subfield of hippocampus. Cells pictured are from the rat. Image modified from (Spruston, 2008). B FreeSurfer-derived tessellated envelope of the left
hippocampus. We model the sources to be perpendicular to mesh vertices, consistent with the pyramidal cell orientation. C Sagittal view of FreeSurfer hippocampal region of interest on
a sample 1.5 T T1-weighted MR image from the FreeSurfer Image Analysis Suite. Blue colour shows the extent of hippocampal region of interest. Image adapted from (Hostage et al.,
2013). D Source space representation of the combined generative model consisting of FreeSurfer-derived cortical (purple) and hippocampal (red) meshes. For more detailed description
of this model, see Fig. 3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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each giving one solution per anatomical model. This lets us examine
the difference between generative models across different assumptions
about the nature of the activity – how sparse, how co-varying, how
smooth etc. Each such inversion returns a Free energy value, which
approximates the model evidence for generative model. This set-up
allows us to quantify the difference in model evidence when the
hippocampal mesh is included in the generative model. Our hypothesis

was that there would be an improvement in model evidence only if the
simulated source was hippocampal. This model comparison approach
has successfully been demonstrated elsewhere (Henson et al., 2011,
2009; Lopez et al., 2013; López et al., 2014; Penny, 2012; Stevenson
et al., 2014; Troebinger et al., 2014a). Here we use log Free Energy to
quantify the difference between anatomical models: ΔFanatomical =
Fcombined – Fcortical. A positive difference means that the combined

A Simulate single hippocampal source

B Add co-registration error without changing data

C Invert data with two anatomical models 

Cortical model Combined model

Fig. 2. Overview of the simulation pipeline. A A single dipole source is simulated at a random location on the hippocampal surface as a temporal waveform with a sinusoidal frequency
of 20 Hz. Gaussian white noise is added to the sensor level data (in this case −10 dB). On the right, a representative subset of the resulting 274 time-varying waveforms simulated are
shown as coloured traces. B To simulate the effects of co-registration error, we add a displacement of 1, 2, or 3 mm standard deviation of error in each spatial dimension to each of the
three standard fiducial points. The data themselves are left unchanged. The displacement shown here is exaggerated (2 cm) for illustration. C Next we invert the simulated data twice,
using two different generative models. One with only the cortical surface (cortical model) and one with both cortical and hippocampal surfaces (combined model). We repeat this double
inversion procedure on each dataset across three different reconstruction algorithms.
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model is
e
1

1 + F∆ more likely than the cortical. If ΔF = 0 then the two

models are equally likely, and if ΔF = 3 then the combined model is
approximately twenty times more likely. All simulations and analyses
were carried out using SPM12 http://www.fil.ion.ucl.ac.uk/spm/.

Specification of anatomical priors

The schematic in Fig. 3 illustrates the two anatomical models and
how they were implemented. The key difference is that MSP priors can
be user-defined within subsections of the source space. Conversely,
EBB and MNE make use of the complete source space. Left panels (A
and C) show the cortical models and right panels (B and D) show
combined models (with hippocampal priors). For EBB and MNE, the
addition of hippocampal priors simply involves an addition to the
source space which increases from 10595 vertices to 10757 vertices
(Fig. 3A versus B). For MSP on the other hand, we kept the source
space constant by using the combined model with 10757 vertices, but
specified 100 spatial priors (patches of cortex) which either did or did
not include the hippocampus. These spatial priors effectively con-
strained the solution space. The 90 blue asterisks mark cortical priors
shared across the two models. The ten red dots distributed across the
cortex mark cortical priors unique to the cortical model (Fig. 3C). The
ten red dots on the hippocampus mark hippocampal priors unique to
the combined model (Fig. 3D). Note that because we carried out 30
hippocampal simulations, we used three different sets of ten MSP
hippocampal priors (keeping the 90 cortical priors constant). For each
of these three sets of ten hippocampal priors, we matched the set of
simulated hippocampal sources with the set of hippocampal priors . In

all cases, we used a Nolte single shell (Nolte, 2003) to model the inner
skull boundary.

The basic source code for the specification of anatomical priors, as
well as simulation and reconstruction of the activity as outlined below
is available on GitHub, as detailed in the Supplementary material
alongside this article (see Appendix B).

Source inversion

The empirical Bayes source inversion scheme has been described in
detail elsewhere (Belardinelli et al., 2012; Friston et al., 2007; Henson
et al., 2011; López et al., 2012; Phillips et al., 2005; Troebinger et al.,
2014a). For a review, see (López et al., 2014). Here we elaborate on
implementation issues and empirical applications (but see Appendix A
for a more detailed account of how the algorithms used here differ with
respect to specification of the prior source covariance).

All three algorithms require estimation of both a source and sensor
level covariance matrix. In all cases we used an identity matrix to
represent sensor level covariance as uncorrelated white noise. With
respect to the source level covariance, the main difference between the
three algorithms is that the MNE and EBB solutions require the
optimization of a single source level covariance prior, whereas MSP
requires optimization of multiple covariance priors. In MNE this
matrix is also an identity matrix (such that one assumes that all
sources have equal prior variance and are uncorrelated); whereas for
the EBB algorithm it is derived directly from the data. For EBB and
MNE, the algorithm must also estimate two (hyper) parameters which
specify the weightings of the sensor- and source-level priors.. The MSP

Without hippocampal priors:
Cortical model

With hippocampal priors:
Combined model 

M
S

P
E

B
B

 &
 M

N
E

Fig. 3. Anatomical models with and without hippocampal priors. A Implementation of the cortical model in the EBB and MNE algorithms. The tessellated cortical surface envelope is
comprised of 10595 vertices. B Implementation of the combined model in the EBB and MNE algorithms. This model which includes a nested hippocampal manifold and contains 10757
vertices. C and D show the cortical and combined model implementations for MSP. The full source space is specified in both models such that each includes the nested hippocampal
mesh and the number of vertices is 10757. Instead of vertices, the solution space is constrained by the spatial priors. In both models, 90 blue asterisks mark identical cortical prior
locations. In C, an additional ten cortical priors are specified, marked here as red dots. In D, an additional ten hippocampal priors are specified, marked also as red dots. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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algorithm on the other hand takes a more general form and allows the
source distribution to take the form of a combination of multiple source
level covariance components. Each of these covariance components is a
locally coherent patch of cortical activity.

The ensuing optimisation (to maximize Free energy) can be thought
of as a process to minimize the number of patches while ensuring that
the solution explains the maximum amount of data. This optimization
consists of mixing and pruning of anatomical priors, which means that
for large numbers of priors the optimisation can potentially get trapped
in local extrema. One practical solution to avoid this is to run the same
algorithm many times with different sets of priors (Troebinger et al.,
2014a). However, as we were not interested in the optimisation per-se,
but rather in finding the best possible solution, we used (only) 100
priors for MSP and simulated sources at a subset of these locations.
Note that there was thus a clear advantage for the MSP algorithm
relative to EBB and MNE, because the best solution is fixed to lie in the
space of MSP priors, which is much smaller than the EBB or MNE
space (i.e. all the vertices; see Fig. 3). This advantage is elaborated
upon in the discussion and is relevant for both hippocampal and
cortical simulation results. More specifically, in case of the hippocam-
pus, the ten MSP priors included in the MSP generative model always
include the patch used the generate the simulated dataset. Although the
simulation patch is also included in the EBB/MNE combined gen-
erative model, the latter also includes the remaining 161 hippocampal
vertices in the hippocampal mesh. Similarly, for the cortical simula-
tions, the solution space was defined by 90 anatomical priors for MSP,
again including the simulated patch(es), versus all 10595 cortical
vertices specified for the EBB/MNE algorithms. Importantly, in addi-
tion to the anatomical model comparisons, it is also possible to directly
compare the inversion schemes by keeping both the data and model
constant, and varying the algorithm (see Supplementary Figure 4).

We did not use any spatial dimension reduction (i.e. all 274
functioning MEG channels were used) but we decomposed the time
series into a single temporal mode. We used three different forms of
functional priors (MNE, EBB and MSP) and two sets of anatomical
priors (cortical versus combined model). Sample inverse solutions for
all six prior combinations are shown in Fig. 4A. We carried out 30
iterations of each hippocampal and cortical simulations at each SNR
level.

Dipole localisation error

In order to provide a frame of reference between the model
evidence-based approach used here, and those approaches other
simulation studies we also calculated the dipole localisation error
(DLE). The DLE equates to the distance between the true simulation
location and source distribution maximum of the inversion. We
calculated DLEs separately for the combined and the cortical models
used to invert 30 hippocampal and cortical simulation scenarios using
EBB.

Results

Variance explained and free energy

In order to demonstrate the basic logic behind our analysis Fig. 4A
shows a representative single-simulation source reconstruction for
each combination of anatomical and functional priors. We can compare
the algorithms qualitatively with respect to accuracy and complexity
because we know the true source location. First, spatial accuracy can be
assessed by looking at how far the simulation vertex (red circle) is from
the peak (darkest vertex) of the estimated current distribution. Second,
complexity is reflected in the spread of the source estimates. Note that
when the correct anatomical model is used (Fig. 4A, top row), for EBB
and MSP, the source estimates are generally accurate and focal. The

increase in spatial spread or complexity (most noticeable for MSP and
EBB) in the bottom row (inversions using just the cortical model)
occurs because it requires more non-hippocampal sources to describe
MEG data arising from a single hippocampal source than would be
needed if the true source were modelled.

We find that as expected, MNE gives the most diffuse solution and
MSP and EBB give the most focal. Nonetheless, it is encouraging to
note that although the algorithms have different functional assump-
tions, the estimated activity is in approximately the same place
throughout.

In contrast to Free energy, percentage variance explained is not
penalized for complexity and consequently is not discriminative of the
correct model. Fig. 4B illustrates the mean percentage of variance
explained for the two models across 30 iterations of hippocampal
simulations with SNR −5 dB while Fig. 4C illustrates the mean Free
energy. Note that the mean variance explained is > 99.5% for all
algorithms, and that the best model in terms of Free energy (MSP) does
not explain the most variance. This is because there is less over-fitting
of the noise.

Given that the Free Energy value does not rely on information
about the true source location, it is ideally suited not only for simulated
data to avoid over-fitting, but particularly for empirical data where the
true source location is now known. Furthermore, it has been shown
previously that Free energy correlates with cross-validation accuracy
(Penny and Roberts, 1999), and with conventional reconstruction
evaluation measures such as dipole localization error (Belardinelli
et al., 2012). Thus, although we do have access to the ground truth
in these simulations, we will nonetheless rely on Free energy as a
goodness of fit criterion while also evaluating the dipole localisation
error for comparison. The main focus will be evaluation of anatomical
and functional Free energy (F) differences, calculations of which are
shown in Fig. 4C. We first compare anatomical priors by subtracting
the two F values obtained using different anatomical models with the
same algorithm. This is shown for MSP where ΔFanatomical = Fcombined –
Fcortical. We then compare functional priors by subtracting the two Free
energy values obtained using the same anatomical model (e.g. the
combined model) but different algorithms, e.g. ΔFfunctional MSP vs EBB
= FMSP – FEBB. This metric tells us how good the functional assump-
tions are (how smooth/sparse etc.), because the data and anatomical
model are constant (the results of these tests are shown in
Supplementary Figure 4).

The main emphasis of this paper is on ΔFanatomical, and thereby
quantifying hippocampal engagement probabilistically through com-
parison of generative models. With respect to single-simulation
ΔFanatomical values corresponding to solutions shown in Fig. 4A, we
find that for all three algorithms, the combined (true) model has a
higher Free energy value than the cortical model; single simulation
ΔFanatomical MNE = 1.4, EBB = 10.6, MSP = 73.2. We find that the
average ΔFanatomical values across 30 simulations (Fig. 4C), are lower
but somewhat similar (mean ΔFanatomical MNE = 1.0, EBB = 6.0,
MSP = 23.1). Note that only EBB and MSP pass the significance
threshold of three (log units) where the combined model is 20 times
more likely than the cortical. Thus, even without knowledge about
true simulated source locations, Bayesian model comparison can be
used to distinguish whether the source location is hippocampal or
not based on the model evidence difference. Interestingly, in this
example EBB appears (from the source level maps) to perform
equally well for both anatomical models. One explanation for why
the peak of the cortical model solution appears to be in/on the
hippocampus when it is not explicitly modelled (Fig. 4A), is that the
cortical and hippocampal mesh surfaces are very close together (few
mm on average, see Fig. 3B). Since EBB can distribute variance
across all source vertices, those on the medial temporal lobe could
therefore appear hippocampal. This issue is directly addressed later
in Fig. 8.
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Anatomical model comparison

We evaluated two variations of the same basic generative model,
one that includes a nested hippocampal manifold and one which does
not. To first verify that the combined model helps to explain hippo-
campal activity, we simulated 30 hippocampal sources and compared
the Free energy values obtained with the two anatomical models for
each simulated dataset (ΔFanatomical = Fcombined – Fcortical). Fig. 5A
shows the positive ΔFanatomical values from across 30 simulated
hippocampal datasets with SNR of −5 dB and zero co-registration

error. As a first control, we then tested whether this Free energy
difference was specific to hippocampal activity, or could be driven
simply by an increase in vertices in the combined model, regardless of
the location of the source. To test this, we simulated sources on the
cortical surface and evaluated them in the same way as before. The
prediction is that if the hippocampal mesh is selectively beneficial only
when evaluating hippocampal sources, and not generally introducing
bias, then there should be no difference between models in the case of
cortical sources. The cortical sources simulated to test this were
randomly distributed across the cortical mesh and again the simulation

Fig. 4. Sample source reconstructions and model comparison. A Single-trial reconstructions of a hippocampal source (red circles) with MNE, EBB and MSP priors using the combined
model (top row) and the cortical model (bottom row). EBB and MSP accurately capture the true source location. Glass brains show estimated current source density with the grey scale
proportional to the darkest (maximally active) vertex location. Sample source simulated with SNR −5 dB and no co-registration error. B Variance explained by different anatomical and
functional priors when simulated sources are hippocampal. Bars encode mean percentage variance explained across 30 hippocampal simulations ( ± SEM). Note that the y axis only
spans 99–100%. For this metric there were no significant differences between models with EBB (t(29) = 1.0842, p = 0.287) or MNE (t(29) = 0.1591, p = 0.875). For MSP in contrast,
there was a significant difference in the percentage variance explained (t(29) = −8.6310, p < 0.001), but favouring the incorrect (cortical) model. C Same as B, but showing Free energy
values and Bayesian model comparison methods. Free energy (F) is used to approximate the model evidence of a given solution. Bars encode mean Free energy values over 30
simulations, normalized to MNE cortical. Differences between anatomical priors we denote ΔFanatomical whereas differences arising from different functional priors we denote ΔFfunctional.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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locations equated to (30 of the) cortical MSP priors. Given that the
locations of the cortical priors (sparse in the case of MSP and mesh-
wide in the case of EBB and MNE) were identical in the cortical and
combined models, we expected to find no difference in F between
anatomical models. Fig. 5B shows the null ΔFanatomical values for data
simulated on the cortical surfaces.

Effect of co-registration error

We then examined the effect co-registration error on our ability to
identify the correct (combined) model when sources were hippocam-
pal. To do this, we simulated co-registration error by adding 1, 2 or 3
mm standard deviation of error to each of three fiducial locations in
each of three dimensions before inverting the model (see Fig. 2B). Note
that the shift and data were always the same for the two models which
therefore only differed with respect to the inclusion of a hippocampal
mesh. Fig. 6A-C shows the Free energy differences obtained for the 30
hippocampal simulations described previously but with different levels
of co-registration error, including zero. As expected, the difference
values decrease as co-registration error increases, demonstrating that
uncertainty about head location compromises our ability to discrimi-
nate between models. We also found that the variability of the Free
energy differences increases, illustrated most clearly with MNE
(Fig. 6C).

To quantify the decrease in reliability of the results as a function of
increased variability, we used a random effects analysis (Stephan et al.,
2009) to estimate the probability that the correct (combined) model
would win given a randomly drawn simulation (light grey lines,
Fig. 6D-F). Consistent with the Free energy difference decreases in
the top panel, this probability decreases as co-registration error
increases. Thus, if we were to select a dataset at random, we would
expect to make the correct decision (i.e. identify the combined model as
better and infer the presence of a hippocampal source) ~95% of the

time with MSP, regardless of co-registration error. With the EBB this
chance would decrease to ~75% at 3 mm of error and with MNE, we
would be at chance level with 2 mm of error. One interesting but subtle
problem with this inference is that there is an underlying assumption
that one model is better than another; that the model frequencies
across this set of simulations are not equal. In order to derive a
conservative bound on where the models truly differed, we therefore
computed the Bayes Omnibus Risk (BOR) which quantifies the
probability that the null hypothesis is true and any observed differences
between models are due to chance (Rigoux et al., 2014). BOR
probabilities (dark grey lines in Fig. 6D-F) of less than 0.05 (red lines)
mean that the null hypothesis can be rejected. This analysis shows that
even 3 mm of co-registration error (which is far less than what is
commonly found in standard experimental set-ups) abolishes our
ability to distinguish between anatomical models with EBB and
MNE. With MSP, there is still a reliable difference between models at
3 mm of co-registration error, but the priors are well-known (which is
not realistic empirically). In sum, increased co-registration errors of ~3
mm or larger blur out existing differences between the anatomical
models. Note that the closer the functional prior to the ground truth
(compare MSP and MNE), the more robust it will be to co-registration
error.

Effects of co-registration error and sensor-level SNR

We next investigated the interaction between sensor level noise and
co-registration error. We added different amounts of uncorrelated
white noise to obtain 0, −5, −10, −15 and −20 dB SNR at sensor level.
Fig. 7 takes the same form as Fig. 6 but includes an added SNR
dimension. The upper panel (Fig. 7A-C) shows mean ΔFanatomical over
30 hippocampal simulations where positive values show evidence in
favor of the combined model. As expected, we find that as both co-
registration error and noise increase, ΔFanatomical decreases. The lower
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Fig. 5. Anatomical model comparison for hippocampal and cortical (control) sources. (A) Dots show ΔFanatomical = Fcombined - Fcortical values for sources simulated on the hippocampus.
ΔFanatomical is positive because the combined model explains more data using a simpler solution (fewer hippocampal priors). The black line marks zero where there is no difference
between models. The green line marks a positive difference of three which, because Free energy is on a log scale, means that the combined model is > 20 times more likely than the
cortical. MSP outperforms the other algorithms while MNE fails to reach significance. (B) Shows the results for the simulated cortical sources or control condition (note that exactly the
same comparison between full and cortical models is made). There is little if any difference between models because the two generative models contain the same cortical mesh (all 10595
cortical vertices for EBB and MNE) or cortical priors (90/100 priors for MSP where the hippocampal priors are redundant and therefore pruned away in the combined model). For the 30
hippocampal and 30 cortical simulations shown, SNR is −5 dB and no co-registration error is added.
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panel (Fig. 7D-E) shows the Bayes Omnibus Risk (BOR) quantified
based on 30 hippocampal simulations at each combination of SNR and
co-registration error. Blue bar tops mark values BOR< 0.05 where we
can reject the null hypothesis that the models are equivalent, red bar
tops indicate no significant difference between models (even if the Free
energy difference is significant on average). In general, we find that
poor SNR is less detrimental to our ability to differentiate models than
co-registration error is (seen most clearly with MSP). As before, we
conclude that co-registration error must be < 3 mm to make reliable
identification of hippocampal activity with EBB and MNE. As expected
(or defined by our simulations), the MSP outperforms the other two
algorithms at all levels of co-registration error and SNR tested here. See
Supplementary Figure 2 for the same analysis using the Low
Resolution Electromagnetic Tomography (LORETA) method.

Closest cortical neighbours

As spatial resolution decreases rapidly with depth in MEG, there is
a risk that higher Free energy values for the combined model could
arise from nearby but non-hippocampal sources, yet be misinterpreted
as hippocampal activity through this inference scheme. In other words,
one might worry that medial temporal lobe sources will cause false
positive results.

We tested this by simulating activity on the nearest cortical vertices
to each of the 30 hippocampal vertices used in the original simulations

and inverting these data with both the cortical and combined models to
calculate the Free energy difference for each cortical location.
Reassuringly, we found the average Free energy difference for the
closest cortical neighbour simulations to be 1.75 and thereby non-
significant (Fig. 8A, grey dots). Conversely, the hippocampal simula-
tions gave positive and significant (ΔF > 3, mean = 6.0) evidence in
favour of the combined model (as shown in Fig. 5). Critically, the
average distance between neighbouring hippocampal and cortical
vertices was only 2.14 mm (Fig. 8B). We focused here on EBB because
its performance was mid-range and because it does not require
specification of priors.

Effects of shifting the hippocampus

To ensure that the Free energy differences were specific to the
correct model and not simply to having a deep structure added, we
carried out a set of inversions with models that had the hippocampus
(slightly) offset relative to the correct location. For this analysis, we
used the same simulated hippocampal data as described previously
(i.e., activity simulated on the hippocampal surface in its original
location), but inverted these data using combined anatomical models
with the hippocampal mesh slightly offset from the correct location
(0.5, 1, 1.5 and 2 cm shifts) in three dimensions (medial-lateral,
anterior-posterior, dorsal-ventral), and two directions (positive and
negative) giving 24 different models with a shifted hippocampus

Fig. 6. Effect of co-registration error on anatomical model comparison. Inversion results from simulated hippocampal dipoles with SNR −5 dB and co-registration error simulated as 0,
1, 2 or 3 mm standard deviation of error added to each of the three fiducial locations in each dimension. Top panel (A-C): Dots represent ΔFanatomical for the same 30 simulations at
each co-registration error level. There is an increased spread of values, and an increased number of negative ΔFanatomical values (false negatives) as a function of co-registration error.
Green line marks the significance threshold of three, black line marks no difference. Y-axes of EBB and MNE plots are adjusted for visibility. Lower panel (D-F) is structured in the
same way as upper panel but depicts two measures of the reliability of the model comparisons shown above. Light grey line marks the expectation of the posterior; the probability that
the combined model supersedes the cortical model. Dark grey line marks the Bayes Omnibus Risk (BOR), the probability that there is no difference between models. We can reject this
null when the BOR metric is below 0.05 (red-line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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(Fig. 9). In all models, the cortical portion of the combined model
stayed the same. As with other control analyses, we focused here on
EBB and used simulations with SNR −5 dB and no co-registration
error. We inverted each of the 30 datasets with each of the 24 shifted
models and compared the resulting Free energy values to those
obtained with the standard cortical model as well as standard
combined model. Only in cases where there is no shift (i.e. the correct

combined model is used, middle bars), is the model comparison with
the cortical significant. This demonstrates specificity of the model
comparison approach to correct hippocampal modelling, and the
ability of this approach to identify the correct model among a set of
subtly offset alternative models. In other words, despite the physical
overlap between the cortical and hippocampal surfaces when the
hippocampus is shifted, the disparity in the surface orientations mean

Fig. 7. Effects of noise and co-registration error on anatomical model comparison. The figure is similar to Fig. 6 with an added dimension of noise. Top panel (A-C) shows negative
effects of co-registration error and noise: ΔFanatomical decreases as a function of both (and of either alone). Each bar encodes average ΔFanatomical of 30 reconstructed hippocampal
simulations. Lower panel (D-F) shows roughly the same effects on the Bayesian Omnibus Risk, the probability that anatomical model frequencies are equal. Co-registration error
above 0 and 1 mm are detrimental for MNE and EBB model comparisons respectively. Bar top colours signify when the null hypothesis, that there is no difference between models, can
be rejected (BOR values < 0.05, blue bar tops) and not rejected (BOR> 0.05, red bar tops). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 8. Closest cortical neighbour control analysis: activity is simulated on closest neighbouring cortical vertex for each hippocampal vertex location used as a source. (A) Dots reflect the
Free energy difference (ΔF) when activity is simulated on the hippocampal mesh (orange dots; 30 different sources) and nearest cortical vertex (grey dots; 30 different sources). Dots are
vertically aligned in pairs of closest neighbours. Simulating hippocampal simulations sources gives significant ( > 3, green line) ΔF values, whereas simulating on the nearest cortical
neighbour generally does not. Parameters used were no co-registration error, SNR −5 dB and EBB. (B) Simulation locations visualised on two views the hippocampal mesh. Orange dots
are on the hippocampal surface, grey are on the cortical surface (not visualised). Average distance between closest neighbours is 2.14 mm. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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that these shifted surfaces are poor generative models compared to the
correct one. Supplementary Figure 1 shows the opposite comparison to
Fig. 9; ΔF = Fstandard combined – Fshifted. This comparison shows that the
standard combined model is significantly better than the shifted. See
also Supplementary Figure 3 for a similar approach where the
hippocampus is rotated instead of shifted but results are similar.

Dipole localisation error

We also performed a more traditional analysis by calculating the
dipole localisation error (DLE) between the simulated and recon-
structed sources (Fig. 10). As expected, both the average DLE and its
variance increases as co-registration error increases (Fig. 10A) or SNR
decreases (Fig. 10B). Furthermore, we found that in accordance with
our Free energy results (Figs. 6 and 7), DLE is more affected by co-
registration error than by SNR. By definition, DLE can only be
calculated when the true source location is known, i.e. in simulations.
Critically therefore, the correspondence between the DLE and Free
energy supports the notion that Free energy is valid and informative
when the true source location is not known, i.e. in empirically recorded
data.

Furthermore, we quantified how often the hippocampal simulations
have source distribution maxima on the hippocampal mesh (the true
positive rate or sensitivity), and how often cortical simulations have
maxima on the cortical mesh (the true negative rate or specificity). At
SNR −5 dB and no co-registration error, we find that the sensitivity is
93.33% and specificity is 100%.

Multiple sources

One further question is whether this approach is robust to situa-
tions containing a mixture of cortical and hippocampal sources. Fig. 11
shows the relationship between ratio of cortical-to-hippocampal
sources, and Free energy differences between the combined and
cortical models. As expected, the greater the proportion of sources

within the hippocampus, the greater the model evidence in favour of
the combined model. However, the mean Free energy difference only
reaches significance ( > 3) when all four dipoles are hippocampal. Note
also that we simulated hippocampal sources with twice the dipole
moment as cortical sources to reflect the higher density of the
pyramidal cells in this structure (Attal et al., 2012; Murakami and
Okada, 2015, 2006). Importantly this analysis also reassures us that
(multiple) purely cortical sources (condition 4 C) do not lead us to
infer, incorrectly, that the hippocampus was involved (Fig. 5B).

Discussion

We show that it is possible to reliably infer specifically hippocampal
(rather than medial temporal lobe) activity through comparison of two
generative models, one with and one without the hippocampus
explicitly modelled. For this inference to be reliable, uncertainty about
the location of the brain relative to the sensors must be minimized to
below 3 mm.

Bayesian model comparison

The approach presented here works on the basis of the following
rationale: a generative model of the data with the hippocampus
explicitly modelled will be better at explaining hippocampal activity
in the sense that it provides a more parsimonious solution than would a
model without the hippocampus. Consequently, this model will be
penalized in terms of its model evidence. Therefore, although the
cortical and combined models may explain the same amount of
variance in the data (Fig. 4B), the cortical model must use more
sources to do so, resulting in a lower Free energy value (Fig. 4C).

The most immediate advantage of the Bayesian model comparison
method is that it allows us to make use of much more prior information
when making the same inference. For example, instead of simply
looking at the location of the peak in an image, we can use a generative
model to test whether the orientation of the source is what we would

Fig. 9. Effect of shifting the hippocampal mesh on Free energy. We compare different combined models with shifted hippocampal meshes to the standard cortical (hippocampus-free)
model. Bars represent average Free energy differences (mean Fshifted – Fcortical) across 30 different hippocampal simulations. Top panel shows medial-lateral shifts, middle panel
anterior-posterior, bottom panel dorsal-ventral. While the no shift comparison (standard combined – cortical) gives a significant average Free energy difference ( > 3), shifting the
hippocampus in any dimension or direction renders the model comparison non-significant (difference < 3, except for 0.5 cm lateral). Light green line at F=3 marks the significance
threshold where the combined (with or without hippocampal shift) model is > 20 times more likely than the cortical.
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have expected.
This raises the question of what the level of detail required in the

hippocampal model is for evaluation of empirical data. It would be
interesting for example to test whether for such data we can distinguish
between canonical and individual models of the hippocampus (similar
to work on the cortex, see (Henson et al., 2009; Troebinger et al.,
2014a)). We are so far encouraged by the sensitivity of our inference to
hippocampal location (Fig. 9, Supplementary Figure 1) and orientation
(Supplementary Figure 3). Here we have focused on the distinction

between cortical and hippocampal surface sources (Fig. 5, Fig. 8) but
we hope to eventually incorporate structural features of hippocampal
subfields and close-by structures (retrosplenial cortex, parahippocam-
pal cortex, entorhinal cortex, amygdala, etc) into the modelling of
neuronal current flow. This would allow the uncertainty to be further
reduced and for us to begin to distinguish between hippocampal
subfields and different subcortical structures in MEG, and thereby
begin to study their real-time interactions non-invasively and with a
temporally resolved method.

The approach we have presented relies heavily on Occam's razor -
more parsimonious models will always be favoured if they explain the
same data. For example, see Fig. 4 where the combined model
represents a simpler solution and is therefore favoured (Fig. 4C,
Fcombined > Fcortical), even though it explains less variance (Fig. 4B).
Similarly, we are consistently able to distinguish the true hippocampal
source from the array of sources in the temporal lobe (Fig. 8) due to the
increased simplicity of the solution obtained using the correct (com-
bined) model. An important caveat is therefore that were the true
source pattern to be distributed over medial temporal lobe and produce
measured data consistent with a single hippocampal source, our
method would erroneously categorize this activity as hippocampal.

Although the spatial resolution is inevitably poorer at deep loca-
tions in the brain (Hillebrand and Barnes, 2002), we have shown that
the approach presented here is sensitive enough to discriminate
between hippocampal and neighbouring cortical sources, even when
these are as close together as ~2 mm (Fig. 8). We attribute this
discriminability to the different orientations of the local surfaces which
give us leverage to distinguish between models not commonly available
in more traditional voxel-wise inference where only location informa-
tion can be used. As such, Bayesian model comparison is distinct, and
complementary to standard group level voxel-wise statistics in which
we traditionally look for a peak location within a specific structure. The
key difference here is that for each subject we have anatomical models
which constrain not only source locations but also orientations (and
potentially in the future also expected current densities (Helbling et al.,
2015)) which give us an extra dimension with which to distinguish
between models.

0 1 2 3
0

5

10

15
D

ip
ol

e 
lo

ca
lis

at
io

n 
er

ro
r (

m
m

)

Co-registration error (mm)
0 -5 -10 -15 -20

0

5

10

15

SNR (dB)

EBB combined
EBB cortical

BA

Fig. 10. Dipole localisation errors as a function of co-registration error and SNR when sources are hippocampal. AMean dipole localisation error ( ± SEM) against co-registration error.
SNR −5 dB. Dotted yellow lines show results for EBB using the cortical model; orange solid lines used for combined. The cortical model gives higher and more varied DLE values than the
combined. For the combined model, DLE and variability starts to increase when co-registration error exceeds 1 mm. B Mean dipole localisation error ( ± SEM) across SNR levels. Again
the cortical model gives higher and more varied DLE values irrespective and does not vary with SNR. For the combined model, both error and variability increases when sensor-level
white noise exceeds −15 dB. No co-registration error added. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Multiple sources simulation. To test whether the model comparison framework
would generalise with more than one dipole, we simulated four simultaneous dipoles at
different ratios of sources on cortex (C) and on hippocampus (H). Orange dots at each
ratio of source locations represent 30 Free energy differences for EBB inversions. The
blue line marks the mean Free energy difference at each proportion of hippocampal
dipoles. As the proportion of hippocampal sources increases, the mean Free energy
difference increases. This mean difference only reaches significance ( > 3, green line)
when all four dipole locations are hippocampal. Each source was simulated with band-
limited white noise waveforms between 1–80 Hz for 300 ms and the effective dipole
moment was set to 100 nAm for cortical sources, and 200 nAm for hippocampal sources
The simulation locations were the same as used previously (which were drawn at
random). Each simulated dataset had a sampling rate of 600 Hz with the sensor-level
white Gaussian noise level now defined as an absolute value of 10 root mean squared
(rms). Due to the range of frequencies simulated, we used 16 temporal modes (as
opposed to a single mode previously) to describe the data. We added no co-registration
error to these inversions. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Assumptions, implications, and limitations of simulation choices

We simulated data using one set of functional priors (suited to
MSP) and reconstructed data using this and two other commonly used
covariance assumption sets (beamforming and minimum norm). The
MSP performs the most robustly and sensitively of these three. This is
unsurprising, given that the simulated activity was sparse, a character-
istic that matches with the MSP assumptions. Another important point
is that we pre-selected the correct set of priors (spatial patches) for
MSP and therefore side-stepped a potentially computationally inten-
sive search over possible patches which would be necessary for
empirical data (for example see (Troebinger et al., 2014a) where we
used 32 random patch sets per dataset and cortical model). This means
that while MNE and EBB had the same large search space, only MSP
was given priors to start the search from which exactly matched the
actual simulation location.

Overall we were encouraged to find that all three algorithms showed
a preference for the correct anatomical model (Fig. 3B-D, Fig. 9,
Supplementary Figures 1 and 3) and gave somewhat similar estimates
of the true source distribution (Fig. 4A). Importantly, as the true
functional priors will never be known, the Free energy equation also
allows us to select the most likely functional priors (Supplementary
Figure 4). Given that the EBB algorithm did not have the advantages of
the reduced MSP prior space, yet performed well, and given the wealth
of previous hippocampal studies using (volumetric) beamformers
(Cornwell et al., 2012; Guitart-Masip et al., 2013; Kaplan et al.,
2012; Poch et al., 2011), we think this is a promising avenue for
further work.

We note that the inversion algorithms used here are somewhat
generic and not individually optimized. For example, many centres
define a baseline period or empty room recording which allows an
estimate of the optimal regularization parameter. Likewise, there is no
depth re-weighting in the MNE estimates. Here all regularization (the
balance between the source and sensor level covariance matrices) was
set based on a Free energy optimization (Friston et al., 2008a). We also
make no use of any dimension reduction on the lead-field structure or
the data (Engemann and Gramfort, 2015; Friston et al., 2008a). We
avoided this to remove any bias between competing models with
different lead-field structures. We have also used rather fine meshes
(10757 vertices for the combined model which includes one hemi-
sphere and one hippocampus) as compared to those commonly
employed in packages such as Freesurfer (https://surfer.nmr.mgh.
harvard.edu/) or MNE (Gramfort et al., 2014): MNE uses Freesurfer
meshes and gives users the choice of mesh density: 1026, 2562, 4098
(used as example), or 10242 sources per hemisphere.

It is also important to consider the main limitations and assump-
tions related to using Bayesian model comparison and Free energy.
Firstly, as is true for any model comparison scheme, we cannot
evaluate how good the individual models are in absolute terms; we
can only infer how good they are relative to one another. It is therefore
not possible to make inferences or predictions about whether alter-
native models might be better without constructing and testing such
models. It follows that if the true activity arises from a neighbouring
structure (such as the amygdala), but we have not included a model of
the amygdala in the generative model, then we may make an incorrect
inference.

However, we found evidence that the models employed here
perform well both in terms of Free energy, and in terms of identifying
the correct simulated source location (Fig. 4 and Fig. 10). More
specifically, while both models perform well, the combined model
performs better. Nonetheless, there is a risk of having local maxima in
the cost function (in this case the Free energy) if the number of sources
and/or hyper-parameters is very large (Wipf and Nagarajan, 2009).
This would mean that models could converge on non-optimal solutions
and thereby render the F value an invalid reflection of the model or
algorithm's optimal parameter settings. That said, it has been shown

elsewhere using simulated data that Free energy correlates with cross-
validation accuracy using machine learning approaches (Penny and
Roberts, 1999), and with conventional reconstruction evaluation
measures such as dipole localization error (Belardinelli et al., 2012).
We also find this to be true in our data (Fig. 10). It follows that
maximization of Free energy can be used to fine-tune features of the
generative model used for analysis, such as number of equivalent
current dipoles (Kiebel et al., 2008), forward model (Henson et al.,
2009), or cortical layer giving rise to the measured signal (Troebinger
et al., 2014a). However, perhaps the greatest advantage of Free energy
is that it provides a framework for reliably evaluating hypotheses
without knowledge of ground truth.

As with all simulations, these data represent well-defined perturba-
tions to an ideal situation – as such, the estimates obtained (such as
how much co-registration error is tolerable given the SNR range used)
are effectively best-case scenarios. Thus, these simulations provide best
case scenario lower bounds for future empirical work. For example, this
approach will not work empirically when co-registration error is
greater than a couple of mm, even if everything else is optimal.

We emphasize that there are parameters which we have not fully
investigated the effects of. For example, it would be interesting to
evaluate the algorithms using different types of correlated noise
(although see Fig. 11 in which correlated noise is effectively introduced
through multiple sources). Ultimately, there are therefore still unre-
solved questions related to the assumptions implicit in the algorithms
and simulation parameters used here. Given the use of dipolar sources
in our set-up, it is thus an empirical question whether the inversion
algorithms and generative model will help in reconstructing true
hippocampal sources when both spatially distributed simultaneous
sources of interference and potentially also more distributed hippo-
campal activity are present in real data. Nonetheless, we show that
irrespectively of these assumptions, source reconstruction of hippo-
campal activity depends upon accurate co-registration between MRI
and MEG data.

Another factor, related to co-registration error, is the accuracy of
the parcellation of the hippocampus from the anatomical MRI. In order
to simulate errors in this parcellation we added small amounts of shift
(Fig. 9 and Supplementary Figure 1), or lateral rotation to the
hippocampal structure (Supplementary Figure 3). We find that errors
of as little as 0.5 cm or 2 degrees give rise to a significant detriment to
the model evidence. One could also see this sensitivity to modelling
error as a very positive thing - enabling us to test out new parcellation
algorithms (where certain sub-fields are included or excluded for
example) and compare them based on model evidence. These rotated
hippocampi could also provide an elegant control condition for future
empirical studies; for example, one could test if there is more evidence
for the aligned versus rotated or shifted hippocampal structure based
on the MEG data. Interestingly, compared to the combined models
with a straight hippocampus, the rotated hippocampal models are
inherently biased to explain more MEG data from artefacts, other brain
sources, etc. (see eigenvalue spectra in Supplementary Figure 3) which
sets them apart from the cortical models. Therefore, when the correctly
aligned hippocampal mesh explains more data it is a yet more
compelling demonstration that the source is of hippocampal origin.

Outlook

The central question of whether significantly higher Free energy for
the combined model is specific to hippocampal activity is supported by
three lines of converging evidence: a) Free energy is not higher for the
combined model when the source(s) is/are cortical (Fig. 5B and
Fig. 11), even when simulating activity on the nearest portion of
medial temporal lobe (Fig. 8), b) significant Free energy improvement
is specific to models with the correct location and orientation of the
mesh (Fig. 9, Supplementary Figures 1 and 3), and c) the correct source
is identified when the correct model is used: the dipole localisation
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error is ~0 mm at low co-registration error and high SNR (Fig. 10).
Thus, the extent to which Free energy differences can be used to infer
hippocampal activity is dependent on the accuracy of the solution
obtained with the combined model (i.e. when there is too much co-
registration error or SNR is too poor, the Bayes Omnibus Risk shows
that model differences are unreliable).

We find that the most important empirical factor when attempting
to unambiguously determine the presence or absence of hippocampal
activation is minimization of co-registration error, and that this is true
largely irrespective of noise added at sensor level. Notably, we base the
detection of hippocampal on six cycles of oscillatory activity here
(20 Hz simulation frequency and 300 ms duration). Having more data
would increase the detectability by improving the SNR (Brookes et al.,
2008).

The outstanding issue therefore is whether the proposed generative
model will be useful in practice. We know from these simulations that
the main empirical constraint will be co-registration error which we
can now reduce to < 1.5 mm using flexible and subject-specific head-
casts for MEG (Meyer et al., 2017). Moreover, the head-casts reduce
head movement during recording to < 0.25 mm which gives way to
higher SNR data through repeating larger number of trials with the
head location kept constant. We are now working on providing
empirical validation of the model comparison approach presented
using these devices in conjunction with a paradigm known to modulate
hippocampal activity (Doeller et al., 2008).

However, with regards to implementing this scheme in analysis
pipelines of real data, a few considerations are worth noting. For
example, it is not clear how to most clearly demonstrate that this
method works empirically. This is made more challenging by the fact
that it is non-trivial to get a good control condition. The question is,
when is the hippocampus consistently not active? Ideally one would
have two task conditions, one designed to preferentially activate the
hippocampus and one designed to not do so. However, although the
hippocampus may well be more active during one of these phases, it is
very unlikely that it will be quiescent during the other. In other words,
it may be difficult to show an interaction between task and hippocam-
pal model. That said, one can imagine that with a cognitive task known
to engage the hippocampus (for example Doeller et al., 2008), there
would be several stages to the analysis. Firstly it would be important to
demonstrate that the hippocampal structure is essential to explain the
measured data; and then one could look at whether the power in the
theta band (for example) within this structure modulates with task
demands as observed elsewhere (Bush et al., 2015). Further, it would
be interesting to examine whether the hippocampal mesh manipula-
tions shown here reveal selective advantages when inverting using the
correctly aligned model.

The roles of the hippocampus in cognition has been emphasized in
both humans (for example, Burgess et al., 2002; Lega et al., 2012;
Rutishauser et al., 2010; Zhang and Jacobs, 2015), and animals
(Kahana et al., 2001; Logothetis et al., 2012). Our work suggests that
by using new recording techniques, namely head-casts (Meyer et al.,
2017; Troebinger et al., 2014b) we have the ability to selectively study
human hippocampal dynamics non-invasively.
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