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Abstract: Microscale technology has been increasingly used in chemical synthesis up to production
scale, but in biocatalysis the implementation has been proceeding at a slower pace. In this work, the
design of a low cost and versatile continuous flow enzyme microreactor is described that illustrates
the potential of microfluidic reactors for both the development and characterization of biocatalytic
processes. The core structure of the developed reactor consists of an array of capillaries with 450 µm of
inner diameter with their inner surface functionalized with (3-aminopropyl)triethoxysilane (APTES)
and glutaraldehyde where Saccharomyces cerevisiae invertase was covalently bound. The production
of invert sugar syrup through enzymatic sucrose hydrolysis was used as model system. Once the
microreactor assembly reproducibility and the immobilized enzyme behavior were established, the
evaluation of the immobilized enzyme kinetic parameters was carried out at flow rates ranging from
20.8 to 219.0 µL·min−1 and substrate concentrations within 2.0%–10.0% (w/v). Despite the impact
of immobilization on the kinetic parameters, viz. Km(app) was increased two fold and Kcat showed
a 14-fold decrease when compared to solution phase invertase, the immobilization proved highly
robust. For a mean residence time of 48.8 min, full conversion of 5.0% (w/v) sucrose was observed
over 20 days.

Keywords: microchannel reactor; biocatalysis; enzyme immobilization; sucrose hydrolysis;
continuous processing

1. Introduction

The use of microscale technology in chemical synthesis, biomedical devices, analytics and point
of care diagnostic systems has long been established and continuous to grow at great pace [1–6].
This fact is due to the high set of benefits that arise from the use of microscale platforms both at the
product development and production stages. The high throughput required at the different stages
of process development is easily achieved due to the high level of parallelization obtained with
microscale platforms resulting in a faster transfer from the development stage into market; when
compared with conventional platforms, miniaturized devices present a higher surface to volume ratio
which significantly enhances heat and mass transfer due to the short diffusion paths; and solutions
typically flow in laminar regime resulting in increased spatial and temporal reaction control; the energy
requirements and reagent consumption decrease considerably, contributing to an overall reduction of
the costs and environmental impact; transfer from bench scale to production scale may be achieved by
simply numbering up rather than scaling up [7–10].
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Microreactors have already become a key component in chemical synthesis, yet its potential in
biocatalysis, with the exception to the microwell format in process development, has not been fully
capitalized, although their application in some relevant reaction systems supports the validity of the
approach [11]. This is partly related to the ability of biocatalysts to operate under mild conditions
where the generation of toxic and/or explosive compounds does not occur and therefore safety issues
are usually not relevant. Nonetheless, on the quest for high performance/sustainable manufacturing
technologies, the combination of biocatalysis and microscale technology display a wide set of appealing
features and new opportunities worth to embrace, such as the separation of unstable intermediates
from the reaction media [7,9,10,12].

Continuous flow processing offers substantial benefits when compared to standard batch
operation mode, especially regarding the overall reduction of operation costs, the possibility to
maintain product quality standards along with the operation time, and the implementation of coupled
reaction pathways. In order to further reduce the operation costs and increase biocatalyst productivity
(kgproduct/kgbiocatalyst), biocatalysts are preferentially used in the immobilized form [13–17]. Numerous
methods have been developed to immobilize biocatalysts in conventional reaction systems [18] and
the same methodologies may be applied in microscale platforms. Nonetheless, in microfluidic devices,
special attention has been given to both: the immobilization of biocatalysts onto particulate supports
and their loading on a packed bed reactor configuration [13,14,19,20]; and to the immobilization of the
biocatalyst on the inner surface of microchannels, so called wall-coated microreactors [15–17,21,22].
While back pressure issues and the complex liquid flow pattern observed on packed bed reactors
are clear drawbacks that can limit scale-up, lower volumetric productivity may result of the use of
wall-coated microreactors due to the lower reactive surface area available for reaction [17]. Nonetheless,
the latter can be easily tackled by increasing the number of channels of the biocatalytic platform,
increasing in this way the overall activity density.

The present work is within the framework of the development of biocatalytic continuous flow
processes in microfluidic environments. A low cost and easy to assemble and disseminate microchannel
reactor constituted by an array of capillaries was developed. To the authors knowledge, this specific
configuration, reminiscent of a hollow fiber reactor that can be assembled in a reproducible manner
using commonly available materials and methodologies, has not been disclosed for enzymatic
microreactors. The inner capillary wall was functionalized firstly by the introduction of amine
groups via silanization with 3-aminopropyl)triethoxysilane (APTES) followed by the introduction of
the bi-functional cross-linking reagent glutaraldehyde where the biocatalyst was covalently bound.
Covalent binding of the enzyme to the support is a well-established method, often used when avoiding
enzyme leakage from the support is a primary concern [23]. Within this particular approach for
enzyme immobilization, glutaraldehyde is one of the most disseminated cross-linking agents to bind
the enzyme to the support, mostly through the formation of both Schiff bases and Michael-type
additions [24,25]. Accordingly, it has also been used when enzymatic microreactors are addressed,
in monolith [26], packed bed [13,20,27] and wall-coated configurations [16,17,21]. The developed
microreactor assembly methodology proved to be highly reproducible, which led to the establishment
of optimal operational conditions under varying conditions of pH and temperature. Robustness was
assessed in continuous mode of operation by the study of the effect of substrate concentration and flow
rates on the product yield, the evaluation of kinetic parameters under flow conditions and analysis of
mass transfer effects. Long-term operational stability in continuous mode was assessed throughout a
30 days period.

Due to both the extensive data available in the literature [28–33] and commercial relevance [34],
the biocatalytic system used on the present work was the hydrolysis of sucrose catalyzed by
Saccharomyces cerevisiae invertase yielding an equimolar mixture of glucose and fructose (invert sugars).
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2. Results and Discussion

2.1. Microchannel Reactor Assembly and Enzyme Immobilization Reproducibility

The present study aimed to develop and characterize an easy to assembly and low cost
microchannel reactor. In Figure 1, the activity profiles of sucrose hydrolysis catalyzed by immobilized
invertase in three microchannel reactor replicas are presented. Full conversion of a 5.0% (w/v)
sucrose solution was achieved on all reactor replicas after roughly 6 h of reaction. Moreover, the
conversion profiles observed are similar. Therefore, reactor assembly and capillary inner wall enzyme
immobilization protocol proved to be highly reproducible. The microreactor was operated as a
differential reactor, in full recirculation mode. Under the chosen mode of operation, corresponding
to a residence time of approximately 7 s, conversion with each pass through the reactor is minimal,
but with the multiple passes conversion increases steadily with time. Given the prolonged time span,
the differential recirculation reactor behaves as a batch reactor. Still, in the former, the reaction only
takes place in a small fraction of reaction medium, whereas, in the later, it takes place in all of the
reaction medium.
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Figure 1. Conversion profiles of sucrose hydrolysis catalyzed by immobilized invertase in three
microchannel reactor replicas. Five milliliters of a 5.0% (w/v) sucrose solutions pH 4.5 were fed to the
microchannel reactors in recirculation mode at a flow rate of 3.50 mL·min−1. Runs were performed at
50 ◦C in triplicates. Error bars represent standard deviation.

2.2. Effect of pH and Temperature on the Catalytic Activity of the Free and Immobilized Invertase

Both temperature and pH of the reaction media strongly influence the catalytic performance of
enzymes and the corresponding activity profiles have been widely reported to change as the outcome
of immobilization [13,28,35–37]. The temperature and pH activity profiles for the hydrolysis of sucrose
with free and immobilized invertase are presented in Figure 2. Regarding pH, the free invertase
presented the highest catalytic activity at pH 5.0 and retained roughly 56% and 83% of activity at pH
values of 3 and 6, respectively (Figure 2a); whereas the immobilized enzyme showed to be more active
at lower pH values, presenting the highest activity at pH 4.5 and maintaining approximately 70%
of activity at pH 3.0 and 71% at pH 6 (Figure 2a). Invertase immobilization resulted in an increased
endurance towards higher temperatures; the optimal temperature for the immobilized form was
observed to be 60 ◦C, whereas the free form presented higher catalytic activity at 55 ◦C (Figure 2b).

Similar effect of pH and temperature has already been reported for the immobilization of
laccase [38,39] and invertase [13] onto aminated silicone dioxide based carriers using glutaraldehyde
as crosslinking agent. These catalytic behavior deviations upon immobilization are usually assigned
to: (i) the stabilization of the tertiary structure of the enzyme that result from the attachment to the
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immobilization carrier, leading to a decrease in structure flexibility [40]; and (ii) alterations of enzyme
microenvironment that improves the retention of activity at extreme pH values [41].
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Figure 2. Effect of pH (a); and temperature (b) on the hydrolytic activity of the free (closed
squares) and immobilized (open squares) enzyme. pH was evaluated in the range of 3.0 to 6.0,
at a temperature of 50 ◦C and temperature was assessed at temperatures ranging from 40 to 70 ◦C
at pH 4.5. Experiments were performed in triplicates, at a flow rate of 3.5 mL·min−1, and error bars
represent the standard deviation.

2.3. Operational Stability in Recirculation Mode

Heterogeneous biocatalysis renders the possibility to perform a reaction in continuous mode
without constant supply of biocatalyst while reducing the complexity and costs associated with the
downstream process. Nonetheless, the immobilized biocatalyst must also present adequate operational
stability that enables the operation for extended periods of time or in consecutive reaction cycles.
The lack of operational stability seriously compromises the effort to implement biocatalytic processes
at the production scale. In order to have some insight on the retention of catalytic activity and assess
enzyme leakage under operational conditions, some runs were performed in full recirculation mode.

Along four consecutives reaction cycles the invertase immobilized on the inner wall of the
capillaries was able to catalyze the full conversion of a 5.0% (w/v) sucrose solution in roughly 6 h
(Figure 3).

Moreover, with the exception from the first reaction cycle, where higher reaction rate was observed,
similar reaction rates were detected (Figure 3). The reaction rate decrease from the first to the second
cycle is assigned to the leakage of physically adsorbed enzyme that has not been properly washed out
on the last step of the assembly of the biocatalytic platform. This fact was confirmed by the detection
of trace amounts of protein in solution at the end of the first reaction cycle; nonetheless, no protein
leakage was detected on the following cycles (data not shown). Negligible, if any, enzyme leakage of
the support upon cross-linking with glutaraldehyde was also reported in other works [25]

The developed microchannel reactor was successfully employed for the rapid evaluation of the
operation stability of the immobilized biocatalyst. The results revealed that the immobilization strategy
used is highly robust. Therefore, further characterization was carried out in continuous flow operation.
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Figure 3. Conversion profiles and corresponding reaction rates of the immobilized invertase. Data
represent four consecutive reaction cycles. Five milliliters sucrose solution (5.0% (w/v) at pH 4.5) was
fed to the microchannel reactor in recirculation mode at a flow rate of 3.50 mL·min−1. Runs were
performed at 50 ◦C. At the beginning of each cycle, fresh substrate solution was added. Experiments
were performed in triplicates and error bars represent the standard deviation.

2.4. Immobilized Invertase Kinetic Parameters in Continuous Flow

Enzyme immobilization may be associated with several phenomena that strongly influence
the enzyme kinetic parameters, viz. steric hindrance, deactivation, presence of charged groups
on the support, support hydrophilicity/hydrophobicity and mass transfer limitations [13,18,42–44].
Frequently, enzyme kinetics is evaluated in transient or pre-steady state conditions by stopped-flow
or chemical quench-flow methods [42,45,46]. However, when the development and characterization
of continuous flow reaction system is aimed, such methodologies fail to achieve adequate kinetic
evaluation because flow rates affect the rate of diffusion of substrate into the surroundings of the
enzyme [13,15,47,48]. In order to overcome this issue, Lilly et al. introduced a model that allows
evaluating the kinetic parameter of a biocatalyst in continuous mode [48]. Additionally, this model
assesses the impact of flow rates on the mass transfer effects. The model is an adaptation of the
standard Michaelis–Menten enzyme kinetic model and was originally developed for packed bed,
assuming plug flow and negligible inhibition. Nonetheless, it has also been applied for the evaluation
of the kinetic parameters of enzymes immobilized on the inner walls of capillaries assuming negligible
residence time distribution (RTD) broadening due to the occurrence of axial dispersion and to the
parabolic flow profile [15,17,49]. In fact, according to Commenge et al., microchannel reactors will
likely exhibit reduced RTD dispersion when compared to equivalent packed bed reactors [50]. This fact
can be justified by the hydrodynamic singularities encountered in packed beds, namely the successive
constriction and broadening of the fluid volume and the bed tortuosity. Furthermore, when enzymatic
reactor modeling is envisaged, it has been observed by Carrara et al. that accurate prediction of reactor
behavior is more dependent on the use of the correct kinetic reaction mechanism than the characteristics
assumed of the flow distribution [51]. Accordingly, in the present work, the Lilly–Hornby model
has been employed to evaluate the immobilized invertase kinetic parameters in continuous flow.
The model is summarized by the following equation:

f [A0] = Km(app) ln(1 − f ) +
C
Q

(1)

where f is the fraction of substrate converted to product during the reaction, [A0] the initial substrate
concentration, Km(app) is the apparent Michaelis–Menten constant, C is the reaction capacity of the
microreactor (C = Vmax × Volumevoid) and Q is the flow rate of the substrate.
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The evaluation of the immobilized enzyme kinetic parameters was carried out at flow rates
ranging from 20.8 to 219.0 µL·min−1 (corresponding to a mean residence times in the range of 1.78
to 18.75 min) and substrate concentrations in the range of 2.0%–10.0% (w/v). The reducing sugar
concentration was measured at the outlet of the microchannel reactor. The results for the conversion of
sucrose to reducing sugars obtained in the aforementioned conditions are presented in Figures 4 and 5.

Conversion profiles showed the expected trend, already observed in previous work [13], where
conversion yields increased proportionally to the feed concentration (Figure 4a) and residence time
(Figure 4b). The obtained data were used to plot the Lilly–Hornby model, where f [A0] against ln(1 − f )
results in a straight line with a slope equal to Km(app) (Figure 5a). Over the tested range of flow rates,
the slopes of the fitted lines did not present statistically significant differences (Figure 5b), showing
that the Km(app) value is not flow rate dependent. According to the Lilly–Hornby model, such behavior
is justified by the absence of substrate diffusional limitations. The same trend has been reported
by Vodopivec et al., while studying the kinetic behavior of lactate dehydrogenase immobilized on a
monolith reactor [52]. Furthermore, several authors observed that when Km(app) is flow rate dependent,
an increase in the flow rate usually leads to a decrease on Km(app) [13,14,17,48] This is credited to the
fact that the transport rate of the substrate through the diffusion layer surrounding the immobilized
enzyme is inversely proportional to its thickness; and the diffusion layer thickness is proportional to
the flow rate [48].

Accordingly, increasing flow rates will result in a less pronounced diffusional effect, eventually
until a point where mass transfer resistances are absent and Km(app) values level off [13,14]. On the
other hand, Km(app) values have also been reported to increase with increasing flow rates as a result of
the presence of strong mass transfer effects associated with the use of fast enzymatic reactions [15,53].

Km(app) revealed a two fold increase when compared to the values obtained for the free enzyme,
shifting from 14.6 to 28.2 g·L−1. The corresponding Kcat of the immobilized invertase under
continuous flow (mass of invertase in the capillary microreactor = 3.06 × 10−5 g) revealed to be
roughly 14 times less than that observed for the free form, 2.5 and 36.6 s−1 respectively. From
the comparison of the kinetic parameters it is concluded that the immobilization procedure both
decreased the affinity of the enzyme towards the substrate and the catalytic performance. These
observations are well known from the literature and when no diffusional limitations are detected
are often assigned to: (i) several events that may occur during the immobilization procedure, viz.
alteration of enzyme conformation, imperfect immobilization chemistry, enzyme deactivation and
steric hindrance [45,47,52,54]; and/or (ii) to the nature of the immobilization support, viz. presence
of charged groups and hydrophilicity/hydrophobicity [44]. Moreover, when using amorphous
materials as immobilization carrier combined with protocols involving the formation of self-assembly
monolayers, non-uniform distribution and formation of enzyme aggregates is likely to occur often
as the result of molecular polymerization phenomena and surface nucleation. These events will also
affect the apparent kinetic parameters because substrate may not be available at the same extent to
every immobilized enzyme molecule. In the present case, the results obtained seem to rule out mass
transfer limitations, the increase in Km(app) indicating a decrease in enzyme–substrate complexation rate
as compared to the free enzyme, could be ascribed to conformational changes due to the binding of the
enzyme to the support. This leads to a less favorable configuration of the active site [45,55,56]. Besides
conformational changes, the decrease in Kcat can also be ascribed to steric hindrances [13,55–57].
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Figure 4. Bioconversion in the microchannel reactor using flow rates in the range of 20.8 to 219.0
µL·min−1 (a); and substrate concentrations ranging from 2.0% to 10.0% (w/v) (b).

Figure 5. Determination of the Michaelis–Menten constant (Km(app)) using the Lilly–Hornby model:
(a) fitting of data to the model where the slope of the linear regression corresponds to the Km(app);
and (b) Km(app) values for the immobilized invertase (average = 28.2 ± 1.1 g·L−1) and Km for the free
invertase (14.6 g·L−1).

2.5. Mass Transfer Effects

Further evaluation of the mass transfer effects was conducted through the determination of the
Damköhler number (Da) for the several operational conditions used, viz. flow rate and substrate
concentration in the range of 20.8–219.0 µL·min−1 and 2.0%–10.0% (w/v) respectively. The values
of Reynolds number (NRe, revealing that for the all conditions the flow is in the laminar regime),
Sherwood number (NSh) and the liquid film mass transfer coefficient (KL) corresponding to the flow
rates applied are presented in Figure 6.
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Figure 6. Determination of the Reynolds (NRe) and Sherwood (NSh) number and corresponding liquid
film mass transfer coefficient (KL) values for flow rates in the range of 20.8 to 219.0 µL·min−1.

In Figure 7, the Da values are presented and the impact of both flow rate and substrate
concentration on Da is shown.

Therefore, since substrate concentration is decreasing along the length of the reactor due to
its conversion into reducing sugars, Da was calculated for the initial (Figure 7a), final (Figure 7b)
and average substrate concentration (Figure 7c). All Da values are much smaller than the threshold
criterion 1, indicating that under all conditions the system is being operated on the reaction rate limited
regime. Moreover, as expected the highest Da values were obtained while operating the reactor at
both the lowest substrate concentrations and flow rates. Increasing the value of the aforementioned
conditions resulted in a noticeable decrease on the Da values. The obtained results corroborate the
data attained from the Lilly–Hornby kinetic analysis. However, the kinetic model data interpretation
only links the diffusional effects to the flow rates at which the reactor is being operated and lacks at
describing the substrate concentration as an important driving force in molecular diffusion.



Catalysts 2017, 7, 42 9 of 18
Catalysts 2017, 7, 42 9 of 18 

 

 

Figure 7. Damköhler numbers calculated for the operation of the microchannel reactor at flow rates 
and substrate concentrations in the range of 20.8–219.0 µL·min−1 and 2.0%–10.0% (w/v), respectively. 
Substrate values considered in the calculation: (a) substrate concentration at the inlet; (b) substrate 
concentration at the outlet; and (c) average substrate concentration. 

  

Figure 7. Damköhler numbers calculated for the operation of the microchannel reactor at flow rates
and substrate concentrations in the range of 20.8–219.0 µL·min−1 and 2.0%–10.0% (w/v), respectively.
Substrate values considered in the calculation: (a) substrate concentration at the inlet; (b) substrate
concentration at the outlet; and (c) average substrate concentration.
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2.6. Operational Stability on Continuous Mode

As previously mentioned, operational stability is of paramount relevance when the
implementation of a biocatalytic process at the full scale is envisage. Although this feature has
been evaluated previously in recirculation mode, in immobilized enzymatic reactors continuous mode
of operation is privileged. The developed microchannel reactor was continuously fed during 30 days
with a 5.0% (w/v) sucrose solution at a flow rate of 8.0 µL·min−1 and kept at constant temperature
of 50 ◦C. In these conditions, full substrate conversion was obtained. The immobilized invertase
retained roughly 100% of its initial activity during 23 days decreasing to around 90% at the end of
the trial (Figure 8), overall resulting in a space time yield of roughly 69.0 g·L−1·h−1 and a biocatalyst
productivity (kgproduct/kgbiocatalyst) of 6.32 × 105. Furthermore, no protein was detected in the samples
taken along the total time of the trial. Taking into consideration other systems for sucrose hydrolysis
using immobilized invertase, space time yield compares favourably with that obtained previously
under covalent binding to controlled porosity carrier (44.82 g·L−1·h−1) [13], although is lower than that
obtained in a polyvinyl chloride tubing in a flow-through reactor (126 g·L−1·h−1) [58] and in a small
fixed bed reactor (1 g catalyst) packed with active Montmorillonite K-10 particles (200 g·L−1·h−1) [31].
However, in the two latter approaches, 10% and 25% of the initial activity was lost after two and four
days, respectively.
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reactor. The 5.0% (w/v) sucrose solution pH 4.5 was continuously fed during 30 days to the
microchannel reactor at a flow rate of 8.0 µL·min−1. Trial was performed at a constant temperature of
50 ◦C. Experiments were performed in triplicates. Standard deviation did not exceed 5%.

3. Materials and Methods

3.1. Materials

Saccharomyces cerevisiae invertase (Maxinvert L 10000, batch number 611181801) was from DSM
Food Specialties (Delft, The Netherlands). The 5.0 M Sodium cyanoborohydride solution, analytical
grade fructose, 70.0% nitric acid and Bradford reagent were acquired from Sigma-Aldrich (Sintra,
Portugal). Dipotassium hydrogen phosphate (purity ≥ 99.0%) and glacial acetic acid (purity ≥ 99.7%)
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were obtained from Panreac (Cascais, Portugal). Analytical grade sucrose was acquired from Fisher
Chemicals (Madrid, Spain). Sodium acetate (purity ≥ 99.0%) and sodium dihydrogen phosphate
dihydrate (purity ≥ 98.0%) were purchased from VWR (Lisboa, Portugal). Pierce BCA Protein Assay
Kit was acquired from Thermo Scientific (Madrid, Spain) and AT-cut piezoelectric quartz crystal
sensors with a thin silicon dioxide film were obtained from Q-Sense (Valbom, Portugal).

3.2. Hydrolytic Activity of the Free Enzyme

Free enzyme trials were performed in 25 mL batch system with magnetic stirring (600 rpm)
containing 10 mL of a 5.0% (w/v) sucrose solution prepared in 100 mM acetate buffer pH 4.5 and
incubated at 50 ◦C. Ten microliters of invertase was used in each trial. Ten-microliter samples were
collected periodically and quenched in dinitrosalicylic acid (DNS) reagent and analyzed for reducing
sugars quantification. All trials were performed at least in triplicates.

3.3. Optimum pH and Temperature Determination for the Free Enzyme

Runs were performed as described in “Hydrolytic activity of the free enzyme”. The effect of pH
on the hydrolytic activity of the free enzyme was assessed in the range of 3.0 to 6.0, at 50 ◦C. The effect
of temperature was evaluated at temperatures ranging from 40 to 70 ◦C at pH 4.5. Values are presented
in terms of relative activity and were calculated as follows:

Relative activity (%) =
Observed activity

maximum observed activity
× 100 (2)

3.4. Free Enzyme Kinetic Parameters

Runs were performed as described in “Hydrolytic activity of the free enzyme”. Free enzyme
kinetic parameters were calculated using sucrose solutions with concentrations ranging from 0.5% to
10% (w/v) prepared in 100 mM acetate buffer pH 4.5 at a temperature of 50 ◦C. Ten-microliter samples
were collected until a maximum of 10% substrate conversion was achieved and the corresponding
initial reaction rates were calculated. Kinetic parameters, Vmax and Km, were obtained through
Hyper32® software (v1.0, University of Liverpool, Liverpool, UK, 2011).

3.5. Microchannel Reactor Assembly

Glass capillaries with 5 mm of internal diameter were heated and stretched in order to obtain
thinner capillaries with internal diameter of approximately 450 µm, which were accurately selected
under the microscope. An array of 40 glass capillaries (450 µm of internal diameter and 6.1 cm
of length) were placed within a poly(methyl methacrylate) housing void with internal diameter of
4.0 mm and outer diameter of 6.0 mm (Figure 9). The glass capillaries and housing were glued with a
methacrylate resin and incubated at room temperature for 24 h. The extremities of the assembly were
capped in order to avoid capillary inner surface contamination. The obtained microchannel reactor
presented a volume of approximately 390 µL and a total inner surface area of 34.5 cm2.

3.6. Enzyme Covalent Immobilization

Prior to reactor assembly and in order to remove surface contaminations, the capillaries were
incubated in boiling nitric acid for 30 min, followed by thorough rinsing with Milli-Q water and
drying with a nitrogen stream. After reactor assembly, invertase was immobilized in the inner walls of
the capillaries via the APTES + glutaraldehyde methodology as described elsewhere [59]. Following
immobilization, the microchannel reactor was stored at 4 ◦C until further use. The immobilization
methodology is presented in Figure 9.
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Figure 9. Microchannel reactor scheme and invertase immobilization methodology. The microchannel
reactor constituted by an array of 40 glass capillaries placed within a poly(methyl methacrylate)
housing void.

3.7. Hydrolytic Activity of the Immobilized Enzyme

Unless stated otherwise, 5 mL of a 5.0% (w/v) sucrose solution in 100 mM acetate buffer pH 4.5
were fed to the microchannel reactor in recirculation mode at a flow rate of 3.50 mL·min−1 through
the use of a peristaltic pump (Watson-Marlow 205 S, ERT, Lisboa, Portugal) using silicone rubber
tubing (internal diameter = 1.59 mm, outer diameter = 3.18 mm and total length = 50 cm). Runs were
performed at 50 ◦C using a temperature controlled water bath. A schematic of the set up employed is
depicted in Figure 10. Samples were collected periodically and assayed for quantification of reducing
sugars and protein content. All trials were performed at least in triplicates.

3.8. Microchannel Reactor Assembly and Enzyme Immobilization Reproducibility

In order to evaluate the reproducibility of both the microchannel reactor assembly and the
enzyme immobilization protocol, the sucrose solution was recirculated through three reactors during
6 h. Trials were performed at pH 4.5 and at a temperature of 50 ◦C.

3.9. Optimum pH and Temperature Determination for the Immobilized Enzyme

The effect of temperature and pH on the hydrolytic activity of the immobilized enzyme was
investigated within the same conditions used for the free enzyme. Results are presented in terms of
relative activity.

3.10. Operational Stability in Recirculation Mode

In order to probe the operational stability of the immobilized invertase, four consecutive 6 h trials
were performed. Experiments were carried out at pH 4.5 and at a temperature of 50 ◦C. After each trial
the microchannel reactor was rinsed with acetate buffer 100 mM pH 4.5 and fresh substrate solution
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was added. The initial reaction rate Vi for the immobilized enzyme in the microchannel reactor was
calculated accordingly to Helfferich [60]:

Vi =
vr
vv

. [P]
t

(3)

where vr is the reaction volume, vv is the reactor void volume, P is the product concentration and t is
the time of the reaction.

3.11. Continuous Flow Operation

In the continuous flow operation mode of the developed microchannel reactor, substrate solutions
were prepared in 100 mM acetate buffer pH 4.5 and fed into the reactor through the use of a peristaltic
pump (Watson-Marlow 205 S, ERT, Portugal) using silicone rubber tubing (internal diameter = 1.59 mm,
outer diameter = 3.18 mm). The system was kept at a constant temperature of 50 ◦C. The schematic of
the set up employed is presented in Figure 10. Samples were collected at the outlet of the reactor once
steady state was achieved and assayed for reducing sugars.

Figure 10. Schematic of the employed recirculation and continuous mode set ups. Substrate solutions
were fed through the use of a peristaltic pump using silicone rubber tubing and temperature was
controlled via immersion of the microchannel reactor in a water bath.

3.12. Effect of Flow Rate and Feed Concentrations on Product Yield

The effect of flow rate and feed concentration on product yield was assessed under flow rates in
the range of 20.8 to 219.0 µL·min−1 and sucrose concentrations ranging from 2.0% to 10.0% (w/v).

3.13. Mass Transfer Effects

Mass transfer effects were assessed through the Damköhler number (Da), which establishes the
ratio of the maximum reaction rate to the maximum rate of diffusion [61]:

Da =
Vmax

KL Sb
(4)
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where KL is the liquid phase mass transfer coefficient, and Sb is the bulk substrate concentration. For
values of Da >> 1, the system is operating on the mass transfer limited regime, whereas, when Da
<< 1, the reaction rate is limiting the system. When Da ≈ 1, the mass transfer and reaction rate are
considered of comparable magnitude.

According to Carbonell et al., KL can be expressed using the following dimensionless numbers [62]:

Reynolds number = NRe =
dh v ρ

u
(5)

Schmidt number = NSc =
u

ρ DS
(6)

Sherwood number = NSh = 1.62
(

dh
L

NRe NSc

) 1
3

(7)

where dh is the diameter of the capillary; v is the velocity of the fluid; ρ and µ are the density and the
dynamic viscosity of the fluid, respectively; L is the capillary length; and Ds is the diffusion coefficient
of sucrose in water. The KL was calculated accordingly to:

KL =
NSh DS

dh
(8)

3.14. Operational Stability under Continuous Flow

The operational stability of the developed microchannel reactor was evaluated during 30 days.
A 5.0% (w/v) sucrose solution was continuously fed into the reactor at a flow rate of 8.0 µL·min−1.
Samples were taken on a daily basis and assayed for reducing sugar and protein content.

3.15. Analytical Methods

Quantification of the immobilized enzyme was performed through quartz crystal microbalance
analysis, viz. Q-Sense E4 apparatus (Q-Sense AB, Gothenburg, Sweden), accordingly to
Carvalho et al. [59]. Reducing sugar quantification was performed by the DNS method [63].
Bicinchoninic acid (BCA) method [64] was used for the quantification of the total protein present on
the invertase stock solution and was used whenever reducing sugars were present.

4. Conclusions

In the present work, the development and characterization of a low cost and easy to assemble
microfluidic reactor for continuous biotransformations with immobilized enzyme is reported.
The microreactor was fabricated from an array of glass capillaries assembled within a poly(methyl
methacrylate) housing void and invertase immobilization was carried out at the inner surface of
the capillaries through the APTES + glutaraldehyde methodology. Both reactor assembly and
immobilization protocol proved to be highly reproducible and similar conversion profiles were
observed in microreactor replicas. Immobilization methodology did not alter significantly both
the optimum catalytic pH and temperature; furthermore, it revealed to be highly robust allowing the
operation of the microreactor in 4 consecutive reaction cycles while maintaining roughly the same
conversion profile and initial catalytic rate.

The developed biocatalytic platform was operated in continuous mode with flow rates and
substrate concentrations ranging from 20.8 to 219.0 µL·min−1 and 2.0%–10.0% (w/v), respectively.
The immobilized enzyme presented both decreased affinity towards the substrate (Km= 14.6 g·L−1

and Km(app) = 28.2 ± 1.1) and catalytic performance (Kcat free enzyme = 36.6 s−1 and Kcat immobilized
enzyme = 2.5 s−1); moreover, the calculated Km(app) values showed no flow rate dependency within the
range of conditions used, indicating that the system is not likely affected by mass transfer limitations.
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Further evaluation of the diffusional effects was conducted through the calculation of the Damköhler
number where the conclusions obtained with the kinetic model were corroborated.

Lastly, when the microreactor was operated continuously over a period of 30 days, the
immobilized invertase presented remarkable operation stability, retaining roughly 100% of its initial
activity during 23 days and around 90% at the end of the trial, leading to a space time yield of roughly
69.0 g·L−1·h−1 and a biocatalyst productivity (kgproduct/kgbiocatalyst) of 6.32 × 105.

The obtained results together with the low cost nature of the developed microchannel reactor
clearly validate its use as a versatile tool for bioprocess development/characterization.
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