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Jet production rates are measured in pþ p and dþ Au collisions at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV recorded in 2008

with the PHENIX detector at the Relativistic Heavy Ion Collider. Jets are reconstructed using the R ¼ 0.3
anti-kt algorithm from energy deposits in the electromagnetic calorimeter and charged tracks in multiwire
proportional chambers, and the jet transverse momentum (pT ) spectra are corrected for the detector
response. Spectra are reported for jets with 12 < pT < 50 GeV=c, within a pseudorapidity acceptance of
jηj < 0.3. The nuclear-modification factor (RdAu) values for 0%–100% dþ Au events are found to be
consistent with unity, constraining the role of initial state effects on jet production. However, the centrality-
selected RdAu values and central-to-peripheral ratios (RCP) show large, pT-dependent deviations from unity,
challenging the conventional models that relate hard-process rates and soft-particle production in collisions
involving nuclei.

DOI: 10.1103/PhysRevLett.116.122301

Jet cross-sectionmeasurements in dþ Au collisions at the
Relativistic Heavy Ion Collider (RHIC) are crucial for
benchmarking the effects of the so-called cold-nuclear-
matter environment, where jet production rates are expected
to be sensitive to the modification of the nuclear parton
densities [1] or to the energy loss of fast partons in the nucleus
[2–4]. Recent observations of collective behavior in small

collision systems at the Large Hadron Collider (LHC)
and RHIC [5–8] suggest that jet quenching in a possibly
formed quark-gluon plasma [9] may play a role as well.
Measurements of jet production as a function of centrality, an
experimental proxy for the impact parameter of the deuteron
with respect to the nucleus, are particularly important. They
may reveal the impact parameter dependence of the nuclear
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parton densities [10], of nonlinear quantum chromodynam-
ics (QCD) effects at very high parton densities [11,12], or of
energy loss. More generally, they test the applicability of
geometric models that describe how soft observables and
hard process rates in heavy ion collisions are related [13]. At
RHIC energies, jet spectra have previously been reported
only in pþ p collisions [14,15].
Modifications to jet production rates from the vacuum

expectation are quantified through the nuclear-modification
factor RdAu ≡ ðdNcent=dpTÞ=ðTcent

dAudσ=dpTÞ, where the
numerator is the per-event jet yield as a function of
transverse momentum (pT) in a given class of dþ Au
collisions (“cent”), and the denominator is the jet produc-
tion cross section in pþ p collisions scaled by the
corresponding mean value of the nuclear-overlap function
TdAu. Because TdAu cannot be directly determined exper-
imentally, it is typically calculated within a Glauber model
of relativistic nuclear collisions. RdAu values of unity mean
that the jet rate in dþ Au collisions is consistent with that
in pþ p collisions after correcting for the larger degree of
partonic overlap. The double ratio of the RdAu in central
(large TdAu) events to that in peripheral (small TdAu) events,
RCP, quantifies the relative modification between dþ Au
event classes.
Previous measurements of hadron production at mid-

rapidity in dþ Au collisions [16,17] found that RdAu is
consistent with unity at pT ¼ 5–10 GeV=c for all central-
ities, implying that hard-process yields scale with the
overlap of the incoming partons and constraining the role
of nuclear effects. The data further suggested that RdAu for
pT > 10 GeV=c deviates from unity [16], but with small
statistical significance. Recent measurements of pT ≳
100 GeV=c jet and dijet production in pþ Pb collisions
at the LHC showed a large, unexpected sensitivity to the
collision centrality [18,19]. A number of novel explan-
ations [20–22] have been proposed for these effects, which
are generally expected to persist to RHIC energies, but at
large pT where previous measurements have lacked stat-
istical precision. This Letter presents the centrality depend-
ence of jet production in an asymmetric collision system
over a kinematic range previously not measured at RHIC.
Jets were measured in one of the PHENIX central

spectrometers (the “East” arm) [23] during data taking in
2008. The spectrometer provides a pseudorapidity aperture
of jηj < 0.35, π=2 coverage in azimuth, and is situated
outside a 0.9 Taxial magnetic field. Charged-particle tracks
are measured by a set of multiwire proportional chambers,
including an inner drift chamber and multiple outer pad
chambers that together provide a resolution of σp=p ¼
0.7%⊕1%p where p is in GeV=c. Energy deposits from
neutral particles are measured by the finely segmented
electromagnetic calorimeter, composed of two lead-glass
Čerenkov and two lead-scintillator sectors, which have a
resolution determined by beam tests [24] to be σE=E ¼
5.9%=

ffiffiffiffi

E
p

⊕0.8% and 8.1%=
ffiffiffiffi

E
p

⊕2.1%, respectively,

where E is in GeV. Calibration was performed through
the reconstruction of neutral pion decays. The calorimeter
further provides a trigger signal initiated by the presence of
at least 1.6 or 2.1 GeV of energy deposited in one of the
groups of overlapping 4 × 4 towers in the lead-glass or
lead-scintillator modules, respectively. In addition to the
spectrometer, a pair of beam-beam counter detectors
situated along the beam line at 3.0 < jηj < 3.9 provide
the minimum-bias trigger signal and reconstruct the z
position of the primary vertex.
The analyzed pþ p and dþ Au data sets were carefully

chosen, and the single central armwas used, to ensure a large,
stable and uniform acceptance for jets, and corresponded to
2.0 pb−1 and 23 nb−1 (equivalent to an integrated nucleon-
nucleon luminosity of 9.1 pb−1), respectively. The centrality
of dþ Au collisions was characterized using the total charge
deposited in the Au-going beam-beam counter. A Glauber
Monte Carlo [13,25] description of dþ Au collisions was
used, along with the hypothesis that this charge increased
linearly with the number of nucleon-nucleon collisions [26],
to determine the fractionofdþ Aucollisions accepted by the
minimum-bias trigger, 88%� 4%, and to estimate the mean
value of the nuclear-overlap function Tcent

dAu for 0%–100%
centrality events, as well as those defined by the centrality
intervals (“cent”) of 0%–20%, 20%–40%, 40%–60%, and
60%–88%. The relationship between the Au-going charge
and the collision geometry has been validated through, for
example, an analysis of forward neutron production in dþ
Au collisions, and analyses of pþ p collisions indicate that
it should hold for events that produce pT ¼ 20 GeV
hadrons [26].
In this analysis, the final-state jet definition is specified

by applying the anti-kt algorithm [27,28] with radius
parameter R ¼ 0.3 to electromagnetic clusters (in the
calorimeter) and charged-particle tracks (in the drift and
pad chambers), each with a minimum pT of 0.4 GeV=c.
The anti-kt algorithm clusters outward from the hard core
of the jets, reducing the sensitivity to detector edges. A
detailed set of criteria designed to select charged particles
with a well-measured momentum while ensuring a large
and uniform acceptance were applied to candidate recon-
structed tracks. Clusters consistent with arising from the
same particle as a reconstructed track were rejected to avoid
double counting jet constituent energy. Jets which are
dominated by reconstructed tracks with a large, erroneously
measured pT [29] were rejected by requiring at least three
constituent particles and by requiring at least one quarter of
the momentum to arise from clusters. To ensure that the
core of the jet is fully contained within the detector, the jet
axis was required to be separated from the edge of the
acceptance by 0.05 units in pseudorapidity and azimuth.
Detector-level jets, defined as those passing the above

criteria, were used to form a transverse momentum spec-
trum (prec

T ) in each event class. The contribution of the
small underlying event background was not subtracted on a
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jet-by-jet basis, but was corrected for in the unfolding
procedure described below. Jets were selected from the
triggered data if a jet constituent fell into the same region of
the calorimeter that provided the trigger signal. The trigger
efficiency was estimated for each event class by checking
this condition as a function of prec

T in minimum-bias events.
The prec

T -level spectra were corrected for this efficiency,
which rose monotonically with prec

T and was approximately
70% (98%) at 10 GeV=c (25 GeV=c).
Monte Carlo simulations were used to determine the

response of the detector to jets and to correct the measured
spectra. In simulation, jets are defined by applying the anti-kt
algorithm to long-lived primary particles, resulting in jets
with a particle-level transverse momentum (pT). The PYTHIA
6.4event generator [30] with the D6T tune [31] and CTEQL1

parton distribution function set [32] was used to generate
hard scattering pþ p events with a jet within the acceptance
of the East arm. Six separate samples with exclusive
selections on the hard-scattering momentum transfer in
PYTHIA, consisting of 105 events each, were weighted
according to their partial cross section and combined to
form apT spectrum from8 to 80 GeV=c. The response of the
detector was simulated with GEANT3[33] and the resulting
events were analyzed identically to the data. To understand
the effects of the underlying event in dþ Au collisions, jet
reconstruction was also performed on the simulated events
after they were embedded into minimum-bias dþ Au data
events of each centrality. In each event class, particle-level
jets were matched with detector-level jets and the corre-
spondence between the true pT and the measured prec

T was
collected into a response matrix RðpT; prec

T Þ.
The reconstruction and selection efficiency, ϵðpTÞ, for

particle-level jets within jηj < 0.3 rose with pT and was
≈35% (50%) at 10 GeV=c (25 GeV=c) in pþ p colli-
sions. The inefficiency was dominated by the minimum
requirement on the calorimetric fraction of the jet momen-
tum. For a given selection on the particle-level jet pT , the
mean value of the prec

T =pT distribution ≈0.65–0.70 resulted
from missing neutral hadronic energy and tracking ineffi-
ciency. The width of this distribution was ≈20%–25%, rose
slightly with pT , and was driven by jet-by-jet fluctuations
in the neutral hadronic momentum fraction and not by the
resolution on the constituent momenta. In the dþ Au event
classes, the impact of the underlying event on the response
decreased systematically with increasing jet pT . For pT ¼
20 GeV=c jets in 0%–20% centrality dþ Au events, the
underlying event background increased the efficiency by
2%, the average prec

T by 0.1–0.2 GeV=c, and the prec
T

resolution by 1%, relative to that in pþ p events.
The prec

T -level spectra were corrected for the detector
response and the presence of the underlying event in dþ
Au collisions through the singular-value-decomposition
unfolding method [34,35]. For an observed spectrum
dN=dprec

T , this method inverts the equation dN=dprec
T ¼

RdN=dpT by expressing dN=dpT as a linear combination

of the left singular vectors of R, with coefficients deter-
mined by dN=dprec

T . This inversion is regularized by
keeping the contribution only from the k vectors with
the largest singular values. The contribution from the
remaining vectors is truncated to ensure that dN=dpT is
unaffected by statistical fluctuations.
Following standard techniques [34], kwas fixed at 5, and

the results were validated by comparing dN=dpT , propa-
gated through R, to dN=dprec

T , and by examining the
curvature of dN=dpT with respect to the simulated pT
spectrum used to populate R. The iterative Bayesian
method [36] gave consistent results. The statistical uncer-
tainties on dN=dpT were evaluated by resampling
dN=dprec

T according to its uncertainties and observing
the changes in dN=dpT . Finally, the dN=dpT spectra were
corrected for the reconstruction efficiency ϵðpTÞ. At low pT
in 0%–20% events, the RdAu after unfolding was lower than
the detector-level RdAu by ≈20%, while the two are
comparable at high pT or in peripheral events.
The pþ p differential cross section was constructed [16]

via 2πσppNjetðpTÞ=ϵppNevtϵðpTÞΔpTΔηΔϕ, where σpp ¼
23.0� 2.2 mb is the minimum-bias cross section, ϵpp ¼
0.79� 0.02 is the fraction of jet events meeting the
minimum-bias condition, and 2π=ΔpTΔηΔϕ are phase-
space factors. Figure 1 shows the dþ Au yields and the
pþ p cross section, which compares well with a pertur-
bative QCD calculation [37,38].
The measured spectra and nuclear-modification factors

are subject to systematic uncertainties from a variety of
sources. For most sources, the effects on the results were
determined by modifying the simulation sample, the event
or jet-selection criteria, or the unfolding procedure itself,
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FIG. 1. (a) Measured anti-kt, R ¼ 0.3 jet yields in dþ Au
collisions, and the measured and calculated jet cross section in
pþ p collisions, with the data series offset by multiplicative
factors. Total systematic uncertainties, including overall normali-
zation uncertainties, and statistical uncertainties are shown as
shaded bands and vertical bars, respectively. (b) The pþ p data
and perturbative QCD calculation [37,38] are divided by a fit to
the data.
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and repeating the analysis. The variations were applied
simultaneously in the analyses of the dþ Au and pþ p
spectra to allow for their full or partial cancellation in the
RdAu and RCP quantities, with the exception of the variation
of k, described below.
The impact of uncertainties on the detector energy scales

was determined by varying the momenta of the recon-
structed tracks and clusters in simulation. The cluster
energies were varied by 3%. The track momenta were
varied by a track pT -dependent amount, which was 2% for
pT ≤ 10 GeV=c and increased linearly to 4% for
pT ¼ 30 GeV=c. The sensitivity of the results to the jet
selection was evaluated by varying the maximum and
minimum requirement on the calorimetric content of the
jet, and by raising the required number of jet constituents.
The uncertainty in the jet acceptance was evaluated by
doubling the fiducial distance between jets and the edges of
the detector, and by restricting the vertex z position to a
narrower range. The uncertainties associated with the
unfolding procedure were evaluated by changing the power
law index of the simulated pT spectrum by �1, and by
increasing and decreasing the value of k. Because they are
statistical in nature, the effects on the spectra from varying
k were treated as uncorrelated between the event classes.
The sensitivity to the underlying physics model was
evaluated by performing the corrections with a sample
of PYTHIA events analogous to the nominal one but
generated with TUNE A [39] and the CTEQ5L [40] set. A
2% uncertainty, uncorrelated between event classes, was
assigned to the spectra below 25 GeV=c to cover possible
defects in modeling the trigger efficiency.
For each observable, the magnitudes of the resulting

changes were added in quadrature to obtain a total
systematic uncertainty. The total uncertainty on the spectra
increased from 12% at pT ¼ 12 GeV=c to 30% or higher at
pT ¼ 50 GeV=c and was dominated at all pT by the energy
scale. Because the reconstruction procedure in dþ Au and
pþ p collisions was identical, and the performance,
corrections, and resulting spectra are very similar, the
effects of the variations on RdAu and RCP canceled to a
large degree. The uncertainties on this quantity ranged from
4% at pT ¼ 12 GeV=c (with no single source dominating)
to 15% or higher (dominated by unfolding and physics
model) at pT ¼ 50 GeV=c.
Additional normalization uncertainties on the pþ p

cross section of 10% arose from the uncertainty on
σpp=ϵpp. Uncertainties in the determination of TdAu con-
tributed to the RdAu and RCP, such that the total uncertainty
on these ranged from 3% to 13%.
Figure 2 summarizes the measured RdAu and RCP

quantities. The 0%–100% RdAu is consistent with unity
at all pT values and is pT independent within uncertainties.
The data are consistent with a next-to-leading order
calculation [41–44] incorporating the EPS09 [1] nuclear-
parton-density set, suggesting that nuclear effects are small

at high Q2 in the nuclear Bjorken-x range ≈0.1–0.5. When
compared to calculations over a range of energy loss rates
in the cold nucleus [4], the data favor only small momen-
tum transfers between the hard-scattered parton and nuclear
material, providing constraints on initial-state, or any
additional final-state, energy loss.
In contrast, the centrality-dependent RdAu values

strongly deviate from unity, manifesting as a suppression
(RdAu < 1) and enhancement (RdAu > 1) in central and
peripheral collisions, respectively, which increase in mag-
nitude with pT . Accordingly, the RCP is < 1 in most
selections and decreases systematically with pT and in
more central events. While the suppressed RdAu in 0%–
20% events is consistent with a calculation incorporating
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modest energy loss, an enhancement in 40%–88% events,
which coincidentally cancels with the suppression to
produce an unmodified minimum bias rate, is challenging
to understand as a distinct physics effect.
If jet production is unmodified but a physics bias enters

into the centrality classification, this could naturally explain
the RdAu results. In fact, measurements of centrality-
dependent yields are understood to be biased by the
increased multiplicity in hard-scattering nucleon-nucleon
events [26,45–47], which generally increases (decreases)
the yield in central (peripheral) collisions. The results have
been corrected for this bias following Ref. [26], thus
slightly increasing the magnitude of the modifications.
On the other hand, if the charged particle multiplicity
several units of rapidity away in the Au-going direction
were suppressed instead of enhanced in pT > 12 GeV=c
jet events, this would reverse the sign of the correction and
could result in the observed modifications. The jet pT
dependence of this correlation has been studied in pþ p
data and in HIJING [48], where it is well reproduced. The
decreased multiplicity results in modest changes (< 5%) in
the correction factors for events with pT ¼ 20 GeV=c
hadrons [26], a much smaller effect than what is needed
to describe the RdAu data. Thus, no feature of elemental
pþ p collisions can explain the data alone, indicating the
relevance of the large nucleus and the need for successful
models to describe the correlation between soft and hard
processes in pþ p and dþ Au.
At midrapidity, jet production in pþ Pb collisions at the

LHC [18] follows a similar modification pattern in the
Bjorken-x range, xp ∼ xPb ≳ 0.1. However, the RpPb in
those results scales with proton x, suggesting a scenario in
which the modifications arise from a novel feature of the
proton wave function at large x [20–22]. For example, if
high-x deuteron configurations have a weaker than average
interaction strength and strike fewer nucleons in the Au
nucleus [21], this would result in the unmodified, sup-
pressed, and enhanced RdAu in minimum-bias, central, and
peripheral events, respectively. If so, the observed centrality
dependence of forward hadron production [49–52] in
dþ Au collisions may arise from the same mechanism
as the results presented here, because both are kinemati-
cally associated with the scattering of a large-x parton in the
deuteron. Finally, using an alternate estimate of TdAu
provided by applying the Glauber-Gribov color fluctuation
model [53,54] to the data would increase the deviation of
RdAu in the most central and peripheral events from unity
by 10% and 5%, respectively.
This Letter presents the first measurement of high-pT jet

production in dþ Au collisions at RHIC. The jet rate in
inclusive collisions is broadly consistent with expectations,
providing constraints in a new kinematic regime on
modifications to the parton densities in nuclei and on
the energy loss of fast partons in the nuclear medium.
When compared to the expectation from geometric

considerations, the rates in centrality-selected events
strongly deviate from unity, featuring suppression and
enhancement patterns in central and peripheral events,
respectively. These deviations grow with increasing pT ,
but cancel in the overall jet rate, and challenge the
conventional pictures of how hard-process rates and soft-
particle production are related in collisions involving
nuclei.
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