Seamless Support of Low Latency Mobile
Applications with NFV-Enabled Mobile Edge-Cloud

Binxu Yang, Wei Koong Chai and George Pavlou

University College London, United Kingdom

Email: {binxu.yang.13, w.chai, g.pavlou}@ucl.ac.uk

Abstract—Emerging mobile multimedia applications, such as
augmented reality, have stringent latency requirements and high
computational cost. To address this, mobile edge-cloud (MEC)
has been proposed as an approach to bring resources closer to
users. Recently, in contrast to conventional fixed cloud locations,
the advent of network function virtualization (NFV) has, with
some added cost due to the necessary decentralization, enhanced
MEC with new flexibility in placing MEC services to any nodes
capable of virtualizing their resources. In this work, we address
the question on how to optimally place resources among NFV-
enabled nodes to support mobile multimedia applications with
low latency requirement and when to adapt the current resource
placements to address workload changes. We first show that
the placement optimization problem is NP-hard and propose an
online dynamic resource allocation scheme that consists of an
adaptive greedy heuristic algorithm and a detection mechanism
to identify the time when the system will no longer be able to
satisfy the applications’ delay requirement. Our scheme takes
into account the effect of current existing techniques (i.e., auto-
scaling and load balancing). We design and implement a realistic
NFV-enabled MEC simulated framework and show through ex-
tensive simulations that our proposal always manages to allocate
sufficient resources on time to guarantee continuous satisfaction
of the application latency requirements under changing workload
while incurring up to 40% less cost in comparison to existing
overprovisioning approaches.

I. INTRODUCTION

Over the last decade, advances in wireless access tech-
nologies (e.g., WiFi and LTE) have enabled an explosion
of resource-hungry mobile applications, challenging current
mobile devices’ processing ability. In particular, mobile mul-
timedia applications with low latency requirements (of the
order of hundreds of milliseconds (ms) [1]), such as video
streaming, gaming, augmented reality and face recognition, are
computationally expensive for today’s mobile devices resulting
in fast exhaustion of battery life and long processing delays
[2]. Mobile edge-cloud (MEC) [3] approaches (e.g., cloudlet
[4], Telco cloud [5], follow-me cloud [6]) were initially devised
to address the aforementioned issue [2], [4]. Micro-clouds are
installed at fixed locations such as access points (APs) to
which mobile users offload computationally expensive tasks
to leverage additional resources from virtual machines (VMs).
However, such solutions require deployment of micro-clouds
in a large number of fixed locations in order to achieve low
delay and incur significant operational costs [2]. By limiting
the number and capacity of micro-clouds to save costs in
turn sacrifices the performance of such solutions (e.g., long

Konstantinos V. Katsaros
Intracom Telecom, Greece
Email: konkat@intracom-telecom.com

latency). Thus, there is a tradeoff between cost efficiency and
service quality (e.g., response time).

Recently, with the advent of network function virtualization
(NFV) [7] and software defined networking (SDN) [8], the
concept of NFV-enabled MEC emerged [8] whereby services
can be hosted at any conventional network node that has
virtualized resources (e.g., APs, routers, etc.). NFV was first
proposed to facilitate network function deployment for Internet
Service Providers (ISPs). It decouples network functions from
the underlying hardware by leveraging virtual resources pro-
vided by commodity servers. Here, we consider an NFV use
case for supporting both network functions and MEC services.
Using NFV to support MEC services allows ISPs to rent
their network infrastructure in the form of VMs to application
service providers (ASPs). At the same time, SDN facilitates
network configurations by decoupling the control and data
planes. The combination of NFV and SDN enables flexible
service-hosting node deployment (i.e., VMs instantiation).
This allows ISPs to flexibly instantiate and shutdown service-
hosting node strategically based on user demands, thereby
improving cost efficiency.

However, such an NFV-enabled MEC still needs to address
the aforementioned cost vs. performance tradeoff whereby
the number of NFV-enabled nodes serving as service-hosting
nodes should be kept low while service disruption due to
service elasticity is minimized. Current mitigation techniques,
such as auto-scaling and load balancing (ALB) [9], [10], could
cope with service elasticity only to the extent before the ca-
pacity limit of service-hosting nodes is reached. Subsequently,
new service-hosting node locations are required to provide
more physical capacity. These locations need to be carefully
derived such that the distance between users and resources
is small and the physical capacity is enough to avoid long
network access and queueing delays at VMs respectively.
Therefore, it is challenging to dynamically place service-
hosting nodes among NFV-enabled nodes to simultaneously
achieve both cost efficiency and low latency over time.

The placement of service-hosting nodes in MEC envi-
ronments has been investigated as an offline static network
planning problem' on how to optimally place a fixed number
of micro-clouds in the network to minimize the network access

'We refer to such an offline formulation as static placement problem
hereafter.

latency [11], [12] assuming known / predicted unchanged load.
On the other hand, work on the resource allocation in an online
MEC system has focused on the dynamic routing of user
requests to fixed clouds [11], [12], [13]. Locations of physical
micro-cloud hardware are first fixed (e.g., after solving the
static placement problem), and the dynamic problem studied is
the mapping of user requests to these predetermined locations
where VMs are hosted. These prior works did not consider the
flexibility afforded by the NFV-enabled MEC where service-
hosting node locations can be changed over time.

In this work, we study the problem of online dynamic
placement of service-hosting nodes in order to minimize ISPs’
operational costs while satisfying the service-level response
time requirements. We take a longitudinal view and investigate
not only how service-hosting nodes should be instantiated
but also when this should happen while explicitly taking into
account the added help provided by ALB. We first introduce
an SDN based NFV-enabled MEC model and formulate our
dynamic problem by adopting integer programming in Section
IL. In Section III, we first show that the problem formulated is
NP-hard and then, we detail our solution that consists of (1)
a capacity violation detection (CVD) mechanism to estimate
the time when ALB cannot cope with service elasticity and
(2) an online adaptive greedy (OAG) heuristic algorithm to
dynamically choose the locations of service-hosting nodes and
associated network paths based on the most current service-
hosting node deployment. In Section IV, using real mobility
traces [14] and a three-level metropolitan scale cellular net-
work [11], we present our evaluation results obtained from
a packet-level simulator. We show that our approach satisfies
the service-level response time requirement while achieving a
cost saving of up to 40% in comparison to current practices.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

We consider stateless mobile multimedia applications (e.g.,
face recognition, augmented reality, etc.) to be pre-installed
into VMs in service-hosting nodes. Mobile users send raw
files (e.g., picture frames) to VMs allocated in service-hosting
nodes for processing rather than executing application in-
stances locally in their mobile devices. These application
instances are hosted at VMs that are instantiated beforehand
at the network planning stage and VMs’ sizes are derived
according to the expected user demand for the service.

We define “service-hosting node” to be any NFV-enabled
network nodes that has virtualized resources. We depict in
Fig. 1 the three-level hierarchical wireless metropolitan area
network considered in this work . Let G = (V, E, P) denote
the network, where V is the set of NFV-enabled nodes, F
is the set of links and P is the set of paths between pair of
nodes in V. The three-level network consists of APs (denoted
by b € B and B C V), aggregation nodes and metropolitan
level core network nodes. Each node v has limited virtual
resources, k, (e.g., CPU, memory) and could serve as service-
hosting nodes by allocating resources to VMs. We assume all

Network link
Internet

=/ =
=/ 18ms" A

I==1"Service-hosting node SDN link

&2 NFV enabled node

Core level

& Corer Router
€ o
=) 10Gbps
W Aggregation 10ms, A
10
!%J SDN controller L ms Aggregation level
AP e [/ 0Gbps @ =—\ e———————
5ms 300Mbps Sm;: I\300"’"’ps Access level

= faay - ———

————
EE G—— ==
——

Fig. 1: Three-level Hierarchical MEC System Model.

nodes have the same capacity, k,. Each AP is connected to a
single aggregation node and all user requests from an AP are
served by a single NFV-enabled service-hosting node through
the same path, py, € Py, between AP b and v (v is selected to
host service). If a handover occurs, the involved user’s requests
will be routed to the new service-hosting node without service
migration since we consider stateless applications. Further, we
consider discrete time, ¢ € T. The total load incurred by
mobile users at AP, b, at time slot, ¢, is denoted by AZ.

The network configuration of service-hosting nodes and
NFV-enabled nodes is conducted by a centralized SDN con-
troller that has a global view of resource utilization in all
nodes and network links. It monitors the system and applies
configurations (e.g., service deployment, network path set-up
depicted as dash lines on Fig. 1).

B. Problem Statement

For the considered system model, mobile users move be-
tween APs and change request rate or workload over time.
VMs in service-hosting nodes may be overloaded, leading to
increased waiting time during request processing. However, for
interactive low latency applications, it is crucial to respond to
user requests promptly as users are sensitive to latency and
may quit their applications. From an ASP’s point of view,
losing users due to long queueing delays along the network
path and service-hosting node, leads to loss of revenue. This
also results in the decrease of ISP revenue at the same
time. Overprovisioning solves the problem of latency but it
is obviously not cost-efficient for both ASPs and ISPs. In
general, the operational cost of ISP is a function of the
number of active servers, and cost savings can be achieved
by cloud consolidation [15]. Alternatively, ALB can alleviate
overloading due to minor changes to the overall workload
but is always limited by the physical capacity of existing
NFV-enabled nodes. Hence, allocation of new NFV-enabled
nodes as service-hosting nodes will be needed in such cases
to alleviate increased delays.

From an ISP’s perspective, given time varying workload
(Zf Al Wt), the question is then on how to allocate VMs
(e.g., service-hosting node) within its NFV-enabled infrastruc-
ture at different time instances for ASPs’ services so that
profit is maximized (i.e., satisfying user requests) while the

operational cost is minimized. We use integer programming to
formulate the problem with two binary decision variables, Y,!
and thn,,,» which represent respectively the location of service-
hosting node (i.e., va' = 1 if at time ¢, v is chosen as the
location of a service-hosting node) and the path between b
and v (i.e., X;,bu =1 if py, is chosen). We use ¢, to denote

the operational cost for a chosen NFV-enabled node, v.

To satisfy the latency requirement, we decompose the

service-level response time into the following:

1) Network access time — Denote by w! the bandwidth
consumption of flows departing from AP b. As long as
w} does not exceed any link capacity, BW,, we can
represent access delay and application delay requirement
in terms of number of network hops. Then, to satisfy
application’s network access latency requirement, D, we
simply need to constrain the number of hops between b
and v, dp,, to be below D, (i.e., dp, < D).

2) Service processing time — We refer to the time unit a VM
serves a request. We assume that as long as there is an
available resource unit, the processing delay is bounded
and can be represented by a mean expected value, pu.

The integer programming problem is formulated as below?:

Min Y e,V VteT, (1)
veV
Subject to
Z Z ApXL — kY <0,Yoe Ve,)

PovEPyy bEB

)IDIEEDD

beEB vEV pyy (e)EPpy(€)

wiX!, (o < BWe,Ye€ BVt e T,

bo (€

3)

Z Z X!, =1VbeBVteT,)
Pbw € Ppy VEN

X! € (0,1),vb€ BVt €T, 5)

Y€ (0,1),Yv e V,VteT, (6)

Constraint (2) guarantees the aggregated resource demands

> > AjX,, from APs that are served by v is no more
pepbv. bEB
than its physical capacity limit k,. This ensures a fixed service

time at all time by allocating a dedicated resource unit for each
uploading demand A}. Constraint (3) guarantees that for all
edges, the aggregated bandwidth consumption is less than the
link capacity, where P, (e) denotes all paths between b and v
that traverse edge e; (4) guarantees that flows from the same
b are assigned to the single v where Ny = {v|dp, < D} and
the distance is no more than D. Constraints (3)-(4) ensure the
network access latency is within D while constraints (2)-(4)
guarantee a bounded service-level response time. Constraints
(5) and (6) limit the decision variable to be either O or 1.

Our problem is NP-hard since a special case of the problem
without bandwidth capacity constraints can be reduced from

Note that by fixing 7' = {t(}, the problem is reduced to a static placement
problem mentioned in Section I.

the capacitated set covering problem (CSCP). Since the CSCP
problem is NP-hard [16], our problem is NP-hard too.

III. DYNAMIC RESOURCE ALLOCATION APPROACH

Due to the NP-harness, our problem cannot be solved in
polynomial time for both static and dynamic versions of the
problem and thus, we turn to heuristics. Some heuristics [16]
have been proposed to solve the static CSCP by relaxing it
further into a capacitated plant location problem. However,
we highlight that such offline approach is infeasible when we
consider optimality of the system in real-time system when the
stringent latency requirement of the considered applications
does not allow for constant re-computation and re-deployment
of service-hosting nodes.

A. Approach Overview

In our solution, we take into account existing techniques
for coping with service elasticity (i.e., ALB) and find the time
point when these mitigation tools will reach their limits (e.g.,
due to increasing load) and cause the MEC system to violate
the service-level requirement of the considered application(s).
A new service-hosting node deployment must be computed
and put in place in time before service quality starts to degrade.

We propose a solution composed of (1) a capacity detection
violation mechanism that takes into account the effect of ALB
to address the question on when re-optimization is required and
(2) a fast adaptive heuristic algorithm to address the question
on how to cost efficiently adjust the current service-hosting
node deployment based on the predicted increased load. The
procedures of our approach are as follows.

1) We derive the initial optimal static planning in an offline
fashion by solving the static placement problem at time
to using CPLEX [17].

2) We exploit ALB to cope with service elasticity based on
the initial placement.

3) When the workload reaches a preset cloud capacity
threshold, the system triggers our capacity violation
detection based on the projected workload over a time
window At = t' —t where t’ is the prediction time slot.

4) If it is detected that the ALB’s limit will be reached
within a time horizon, At, our adaptive greedy heuristic
is invoked to derive the desired new service-hosting
nodes’ locations based on the previous placement so-
lution.

B. Auto-Scaling and Load Balancing

Auto-scaling and load balancing are two current techniques
to prevent MEC systems from constantly performing re-
optimization due to workload variations. We adopt a reactive
auto-scaling approach that is triggered once a specific capacity
threshold is reached. However, auto-scaling incurs additional
delays which could affect service-level response times. This
effect can be mitigated by setting a smaller auto-scaling
threshold to invoke the auto-scaling mechanism in advance.

For load balancing, we adopt a proximity-aware approach
that considers both the residual capacity in service-hosting

Algorithm 1 Capacity Violation Detection (CVD)

Input: G(V,E), B, S(X,Y,t), A" v/, ky
Output: t' and L, or no re-optimization

if Y Y APX! > kY then
Ppo’ E/\Pbgl beB ,
2 S(X,Y,) = VALB(S(X,Y,), G(V, E), A")
3 it Y Y AX] > kyY) then
Py € Pyyr bEB b R
4: Ly= > Y AX) —koY)
Dot € Py DEB by
5 trigger OAG algorithm return t', L,/
6 else
7: Break
8: end if
9: end if

nodes and the topological proximity between service-hosting
nodes and APs, so that the network latency is always bounded
by the maximum number of hops allowed, D. In this approach,
a flow from an AP to the overloaded service-hosting node
will only be redirected when the new service-hosting node v
is within the distance cover, [V, and the residual capacity is
enough to accommodate the load A} at time ¢.

C. Capacity Violation Detection (CVD)

The aforementioned techniques have their limits, after
which further increase in the request rate will incur increasing
queuing delays at service-hosting nodes. The core idea of CVD
is to identify early enough the time when such limitations
are reached to allow the system to proactively allocate new
resources. We first assume that we can reasonably predict
the workload AY = Upe BAf)/ in advance based on existing
workload prediction techniques [9], [18]. Given current sys-
tem state, S(X,Y,t), we predict over time window At the

aggregated workload Y., Y AE,X;b’, at v' (ie., v is
Py €Pyr bEB Y
the service-hosting node that invokes the detection) and check

if the predicted workload results in a capacity violation at v’
(Line 1 in Algorithm 1) for the current state. If the current
state cannot accommodate future workload, we estimate the
future system state by virtually running ALB on the current
system state with the predicted workload.

After applying virtual ALB (VALB), CVD derives a new
routes X for the virtual state S(X,Y,t') where the service-
hosting node locations Y are the same as Y from S(X,Y,t)
(Line 2). We check if the resulting routing X from S(X,Y,t)
still fails to accommodate A' (i.e., violating the upfront
capacity limit at v") (Line 3). If yes, it means ALB will reach
its limit and it records the excess load that cannot be served by
v’ as L,s. The online OAG heuristic is triggered then. It must
be stressed that the new state S(X,Y,#') is only estimated
without actual ALB taking place.

D. Online Adaptive Greedy (OAG) Heuristic

The idea of OAG (Algorithm 2) is to search for a new
service-hosting node location (i.e., within the distance con-
straint) that can accommodate the excess flow, L,., in the
projected time but also one that can satisfy as many flows as
possible to increase potential gain via load balancing to the

new service-hosting node. Our OAG algorithm simultaneously
determines the new placement of service-hosting node(s) and
the corresponding routes. The heuristic is adaptive as it takes
into account the current system state and evolves to a new
state with the newly selected service-hosting node. Then,
OAG greedily chooses the node v that has simultaneously the
highest number of APs within its distance cover, denoted by
benefit(v) and can satisfy the excess load L,.. We denote
Ry = {bldpy < D,dpy < D,b € B} as the set of APs
within the distance cover of both v and v/ (node that invoked
CVD). We then denote the chosen node by v, € V\v'.
The details of the OAG algorithm are described below.

1) Line 4-8 find the set of APs, B, = {b|dp, < D,b €
B}, within the coverage of v'.

2) For each network location, v € V, line 9-19 derive the
corresponding bene fit(v) (i.e., the number of APs that
could benefit from adding service-hosting node v). We
add APs that belongs to v’ but are also located within
the distance constraint of v into R,,,.

3) Line 20-29 record the total load from APs in R, L.

4) For each AP in the new set b, € B,:, we search v from
Ny, = {v|dy,,» < D,v €V} and find vy, that has
the highest bene fit(v) and can support excess load L.

5) If no vy, has been found due to L,/, we assign the v
that has the largest L, as vUpmq. This means no single
node location that can host all excess flows L, from
v'. Then, OAG will be triggered again with a reduced
L, =L, —L to find the next location to add
(Line 28-30).

6) We direct flows in Ry, from v’ to vy, and solve the
routing problem by max-min fairness [19].

Vomax

IV. PERFORMANCE EVALUATION
A. Simulation Setup

We implement a packet-level MEC framework based on an
openflow module [20] of OMNeT++ [21]. We consider an
augmented reality application [22] with 1,800 mobile users
following the mobility traces of San Francisco taxi [14] within
an area of 46km?. For simplicity, we assume homogeneous
requests of the same size. Users upload street views (each
frame is of size 0.5MB [22]) captured by mobile devices and
wait for the notations (e.g., building name, available parking
places, etc.) to be returned from MEC. Following the three-
level network in Fig. 1, we set up 30 APs, 5 aggregation
nodes and 5 core network nodes. The bandwidth and additional
network delays [23] caused by background traffic are shown
in Fig. 1. Once a frame arrives at the service-hosting node,
it requires p = 230ms for a VM with 600MHz CPU to
process [22] after which, a response packet of 4KB will be
sent to users. For this considered scenario, we aim to achieve
a response time requirement of less than 480ms [1].

We further consider two different service-hosting node sizes
[24] in this work: (Full) a service-hosting node of 21 servers
supporting a maximum of 132 VMs and (Half) a service-
hosting node of 10 servers supporting a maximum of 66 VMs.

Algorithm 2 Online Adaptive Greedy (OAG)

Input: G(V,E),B,D,S(X,Y,t),v', L, A
Output: S(X,Y,t)
Vbmaz <
v

Yo € ‘/7 Rv/v < @
for all b € B do

if d%),v) < D then

/4 By Ub
end if

<)

benefit(v) < benefit(v) + 1
if b,, € B, then
Ryry < Ryryy U by
L,«+ L,+ A4},
end if '
end if
end for

end for
for all b, € B, do

DO bt i e
PORND NhEYR 20N D =

21: for all v € N, , and v # v' do

22: if L, > L, then

23: if benefit(v) > benefit(vpmas) then
24: Vpmaxz < U

25: end if

26: end if

27: end for

28: end for

29: if Vpmar == 0 then

30: Vbmaz < argmax(L,)

31 trigger OAG with L, = L,y — Ly, ..
32: end if

33 X MazxMinFaireness(Vomaz, Rorvy,, ..)
34: Y <Y Utpmga
35: return S(X,Y,t)

Each server has a 2.1GHz CPU of 18 cores. The initial node
capacity, placement and routes are derived by CPLEX solver in
an offline manner given the aforementioned CPU consumption
of each frame, initial locations of mobile users and user-to-
AP association. In addition, a maximum of four hops from
AP to service-hosting node is set (i.e., D = 4) to constrain
the network access delay. Solving the static placement problem
described above, we get two service-hosting nodes (72 and 108
VMs) at core network level for full service-hosting node and
three service-hosting nodes (60, 61, 59 VMs) at core network
level for the half service-hosting node size respectively.

Simulation duration is set to 1 hour. It starts from the afore-
mentioned initial state. We gradually increase the workload
of the network starting from 0.3FPS to 3.0FPS in steps of
0.1FPS every 400s. Whenever the VM size reaches a threshold
of 80%, VM auto-scaling is triggered with an instantiation
time of 10ms-600ms [25]. For Algorithm 2, we also set the
workload prediction time window, At = 400s [9]. Moreover,
we assume the network bandwidth is sufficient so that there are
no network bottlenecks®. Hence, we only consider queueing
delays incurred at service-hosting nodes.

B. Evaluation Results

For evaluation, we compare the following schemes:

3We leave bandwidth violation detection for our future work in which we
could apply a network calculus approach similar to [26].

TABLE I: Performance Comparison.

Full service-hosting node | Half service-hosting node

QoS| Max [Nb|Saving(%)|QoS| Max |Nb|Saving(%)
Overprovision | Yes |480ms|3,3 0% Yes | 472 (6,6 0%
ALB No | 132s {2,2| 42.6% | No | 175s |3,3| 51.5%
OAG+CVD | Yes [480ms|2,3| 33.6% | Yes |478ms|3,6| 38.4%
OAG+Threshold| No |758ms|2,3| 34.4% | No | 1.28s [3,6| 41.2%
OAG+Reactive | No |758ms|2,3| 34.3% | No | 1.23s |3,6] 41.2%

1) Overprovisioning — We first solve the static placement
problem and then, for each chosen location, we overpro-
vision the maximum possible physical capacity to serve
user requests. ALB are never needed in this case. We
denote this by Overprovision in Table 1.

2) Simple ALB — ALB uses the initial solution from the
static placement problem. The network performs ALB
on the initial service-hosting locations when needed but
without further re-optimization. We denote this by ALB.

3) OAG with CVD — Our proposed solution, combining
Algorithm 1 and 2. We denote this by OAG+CVD.

4) OAG with threshold-based detection — This adopts
OAG but applies a threshold-based detection mecha-
nism that invokes OAG when reaching 80% of service-
hosting node’s physical capacity. We denote this by
OAG+Threshold.

5) Reactive OAG — This adopts OAG but only invokes the
OAG when the service-hosting node’s physical capacity
is full. We denote this by OAG+Reactive.

Table I shows our results with respect to satisfaction of
the response time requirement (“QoS” column), maximum
response time (“Max” column), number of resulting service-
hosting nodes at the start and end of the simulation (“Nb”
column) and the savings of allocated resources in comparison
to Overprovision (“Saving” column). Besides the costly Over-
provision approach, only our proposal, OAG+CVD, manages
to satisfy the delay requirement of the application. We show
the cumulative distribution function (CDF) in Fig. 2(a) and
Fig. 2(b) that OAG+CVD overlaps with the Overprovision
approach in both cases, which indicates the seamless transition
to the new system state without crossing the 480ms application
constraint. In contrast, OAG+Reactive and OAG+Threshold
exceed this 480ms threshold due to the late detection. We
observe that ALB results in lowest number of service-hosting
nodes, but it comes with delay penalties. When we compare
the allocated virtual resources over time against Overprovision,
ALB achieves respectively a saving of 42.6% and 51.5%
in full and half service-hosting node settings. In contrast,
our OAG+CVD leads to a more modest saving (i.e., 33.6%
and 38.4% respectively in the two cases) but achieves the
latency requirement. We also observe from Table I that all
approaches involving OAG add new service-hosting nodes
based on the initial ones. For the full size setting, the service-
hosting node number changes from 2 to 3 and for half size
setting, it increases from 3 to 6 in response to the increased
workload. Both OAG+Threshold and OAG+Reactive achieve
lower costs compared to OAG+CVD because they fail to
instantiate new service-hosting nodes on time to satisfy the

1 7 <Reactive and threshold-based T
I
0.8+]
u_O.G r EQ\Overlaps OAG approaches and Overprovision B
Q Overprovision ----
00.4 H ALB e |
F OAG+CVD —
| OAG+Threshold -~ i
0.2 oo OAG+Reactive
i Threshold -
00 Te+0

100 10000 100000
glesponseQPime (ms)

(a) CDF Response Time of Different Approaches (Full Size)

1 ,E'-“' ~"Reactive and thre’shold-based ,,....-»«-'""'"
0.8} P |
”N,.,.,.-w""' ‘
0.6 - verlaps OAG approaches and Overprovision 4
LL
o il Overprovision ----
Co.4f = |
i OAG OAG+CVD —
r AG+Threshold - |
o Hi OAG+Reactive
Threshold -
400 100000 1e+0

1 00& 10000
esponse Time (ms)
(b) CDF Response Time of Different Approaches (Half Size)

Fig. 2: (Color Online) CDF Response Time

applications latency requirements.

V. CONCLUSIONS

We address the challenge of seamless support for delay
sensitive mobile multimedia applications within an NFV-
enhanced mobile edge-cloud (MEC) environment. Specifically,
we formulate an optimization problem for placing MEC ser-
vices at NFV-enabled nodes so that resources are optimally
allocated to satisfy the applications latency requirements while
incurring minimum costs to ISPs. Since the problem is NP-
hard, we designed an online adaptive greedy heuristic (OAG)
algorithm to find the best placement of MEC services so
that sufficient resources are always available to ensure no
latency violation. While most previous work has focused on
optimizing the system for a specific time snapshot, we are
also concerned with the system performance over time when
the workload may change significantly. To address this, we
propose a capacity violation detection (CVD) mechanism that
estimates the time when current existing mitigation tools (i.e.,
auto-scaling and load balancing) will fail to cope with service
load elasticity. Using this projected time, we can invoke our
proposed OAG to pre-emptively allocate new virtual resources
near users to ensure continuous satisfaction of the applications
requirements. Using a realistic NFV-enabled MEC simulation
framework, we evaluated our proposal against the current best
practices. Our detailed packet-level results show that only
our proposal always ensure MEC services respond to user
requests on time. Our flexible service-hosting node solution
also offers up to 40% cost saving in comparison to a costly
overprovisioning approach at a fixed location and solves the

latency violation problem when the number and capacity of
service-hosting nodes is reduced for cost saving purposes.

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the CHIST-ERA/EPSRC UK project CONCERT
(EP/LO1835/1), the EU FP7 Flamingo Network of Excel-
lence project (318488) and the EC H2020 UMOBILE project
(645124).

REFERENCES

[1] P.Jain, J. Manweiler, and R. Roy Choudhury, “Overlay: Practical mobile
augmented reality,” in ACM MobiSys, 2015, pp. 331-344.

[2] K. Ha et al., “The impact of mobile multimedia applications on data
center consolidation,” in IEEE Conf. on IC2E, 2013, pp. 166—176.

[3] M. ETSIL, “Mobile-edge computing,” Introductory Technical White Pa-
per, Sept., 2014.

[4] M. Satyanarayanan et al., “The case for vm-based cloudlets in mobile

computing,” IEEE Pervasive Computing, vol. 8, no. 4, pp. 14-23, 2009.

J. Soares et al., “Toward a telco cloud environment for service func-

tions,” IEEE Commun. Mag., vol. 53, no. 2, pp. 98-106, 2015.

T. Taleb and A. Ksentini, “Follow me cloud: interworking federated

clouds and distributed mobile networks,” IEEE Network, vol. 27, no. 5,

pp. 12-19, 2013.

R. Mijumbi et al., “Network function virtualization: State-of-the-art and

research challenges,” IEEE Commun. Surveys & Tutorials, 2015.

[8] N. Bouten et al., “Towards nfv-based multimedia delivery,” in Symp. on

IEEE IM, 2015, pp. 738-741.

D. Niu et al., “Quality-assured cloud bandwidth auto-scaling for video-

on-demand applications,” in JEEE INFOCOM, 2012, pp. 460-468.

[10] Y. Zhu and Y. Hu, “Efficient, proximity-aware load balancing for dht-
based p2p systems,” Parallel and distributed systems, IEEE Trans. on,
vol. 16, no. 4, pp. 349-361, 2005.

[11] A. Ceselli, M. Premoli, and S. Secci, “Cloudlet network design opti-
mization,” in IFIP Networking, 2015.

[12] Z. Xu et al., “Capacitated cloudlet placements in wireless metropolitan
area networks,” in /EEE LCN, 2015, pp. 570-578.

[13] S. Wang et al., “Dynamic service migration in mobile edge-clouds,” in
IFIP Networking, 2015.

[14] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser, “A parsi-
monious model of mobile partitioned networks with clustering,” in [EEE
Communication Systems and Networks and Workshops, 2009, pp. 1-10.

[15] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers,” Concurrency
and Computation: Practice and Experience, vol. 24, no. 13, 2012.

[16] J. Current and J. Storbeck, “Capacitated covering models,” Environment
and Planning B, vol. 15, pp. 153-164, 1988.

[17] 1. I. CPLEX, “V12. 1: User manual for cplex,” International Business
Machines Corporation, vol. 46, no. 53, p. 157, 2009.

[18] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the cloud
using predictive models for workload forecasting,” in IEEE CLOUD,
2011, pp. 500-507.

[19] B. Radunovi¢ and J.-Y. L. Boudec, “A unified framework for max-
min and min-max fairness with applications,” IEEE/ACM Trans. on
Networking, vol. 15, no. 5, pp. 1073-1083, 2007.

[20] D. Klein and M. Jarschel, “An openflow extension for the omnet++ inet
framework,” in ICST Conf. on Simulation Tools and Techniques, 2013.

[21] A. Varga, OMNeT++ Simulator Home Page, http://www.omnetpp.org.

[22] R. LiKamWa and L. Zhong, “Starfish: Efficient concurrency support for
computer vision applications,” in ACM MobiSys, 2015, pp. 213-226.

[23] K. Wang et al., “Mobiscud: A fast moving personal cloud in the
mobile network,” in ACM Workshop on All Things Cellular: Operations,
Applications and Challenges, 2015, pp. 19-24.

[24] Q. Xia, W. Liang, and W. Xu, “Throughput maximization for online
request admissions in mobile cloudlets,” in Conf. on IEEE LCN, 2013.

[25] A. Madhavapeddy et al., “Jitsu: Just-in-time summoning of unikernels,”
in 12th USENIX Symp. on NSDI, 2015, pp. 559-573.

[26] B. Yang et al., “Cost-efficient low latency communication infrastruc-
ture for synchrophasor applications in smart grids,” IEEE Syst. J.,
DOI:10.1109/JSYST.2016.2556420.

[5

[ty

[6

)

[7

—

[9

—

