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A B S T R A C T

When training predictive models from neuroimaging data, we typically have available non-imaging variables
such as age and gender that affect the imaging data but which we may be uninterested in from a clinical
perspective. Such variables are commonly referred to as ‘confounds’. In this work, we firstly give a working
definition for confound in the context of training predictive models from samples of neuroimaging data. We
define a confound as a variable which affects the imaging data and has an association with the target variable in
the sample that differs from that in the population-of-interest, i.e., the population over which we intend to apply
the estimated predictive model. The focus of this paper is the scenario in which the confound and target variable
are independent in the population-of-interest, but the training sample is biased due to a sample association
between the target and confound. We then discuss standard approaches for dealing with confounds in predictive
modelling such as image adjustment and including the confound as a predictor, before deriving and motivating
an Instance Weighting scheme that attempts to account for confounds by focusing model training so that it is
optimal for the population-of-interest. We evaluate the standard approaches and Instance Weighting in two
regression problems with neuroimaging data in which we train models in the presence of confounding, and
predict samples that are representative of the population-of-interest. For comparison, these models are also
evaluated when there is no confounding present. In the first experiment we predict the MMSE score using
structural MRI from the ADNI database with gender as the confound, while in the second we predict age using
structural MRI from the IXI database with acquisition site as the confound. Considered over both datasets we
find that none of the methods for dealing with confounding gives more accurate predictions than a baseline
model which ignores confounding, although including the confound as a predictor gives models that are less
accurate than the baseline model. We do find, however, that different methods appear to focus their predictions
on specific subsets of the population-of-interest, and that predictive accuracy is greater when there is no
confounding present. We conclude with a discussion comparing the advantages and disadvantages of each
approach, and the implications of our evaluation for building predictive models that can be used in clinical
practice.

1. Introduction

There has been substantial interest in recent years in using multi-
variate regression models to predict clinical and psychometric scales
from neuroimaging MRI (Stonnington et al., 2010). There remains
however, some uncertainty as to how to incorporate variables such as
age and gender in predictive modelling (Brown et al., 2012). Such
variables, which are highly correlated with the imaging data but which
are uninteresting from a clinical perspective, are commonly referred to
as ‘confounds’.

In the context of predictive modelling in neuroimaging, there does
not appear to be a precise definition of ‘confound’. Even so, the
standard approach to dealing with variables such as age and gender,
is to ‘regress out’ their contribution to the image data (Dukart et al.,
2011; Abdulkadir et al., 2014) before estimating the predictive model.
Here, we fit a linear model for each image feature using the confounds
as predictors, and consider the residuals to be the image data after
‘adjusting’ for the confounds. The adjusted image data is then used as
the input features in the predictive model. The aim is to remove
variability in the image features associated with the confounds, thereby
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improving predictions while also producing a model that can be
interpreted as being driven solely by the image data. As an alternative
to using adjusted images, we can utilise the confounds by including
them as predictors along with the original image features during
predictive modelling (Rao et al., 2015). The principle underlying this
approach is that all variables should be included in the model and their
contribution to the final predictive model will be recovered during
model training, without the need for any prior procedure such as
adjustment. The resulting model will then explicitly be a multivariate
function of the image data and the confounds. Finally, we can choose to
perform a ‘matching’ of subjects based on the values of the confounds,
rather than alter the modelling procedure using image adjustment or
including the confounds as predictors. This is typically employed
during binary classification tasks where it is relatively simple to select
a subset of subjects that has the same distribution of age/gender in the
two groups. Matching, however becomes much more difficult as the
number of confounds increases or when the target variable is contin-
uous as in regression tasks. In addition, matching necessarily involves
discarding subjects in order to create the matched sample, which can
be considered wasteful from a machine learning perspective, whilst
also undesirable given the financial and labour costs of acquiring data.

In other disciplines such as epidemiology, the concept of confound-
ing is well established but there the goal is to estimate group
differences in the presence of confounding rather than develop
predictive models. In this paper, we will use the following explicit
working definition for confound, which is motivated specifically by
issues that arise with predictive modelling:

Definition. For a given data sample D, a confound is a variable
that affects the image data and whose sample association with the
target variable is not representative of the population-of-interest. The
sample D is then said to be biased (by the confound), with respect to
the population-of-interest.

An important component of the above definition is the idea of a
‘population-of-interest’, which is the population over which we wish to
apply the model that is estimated from the data sample D. Note that if a
variable affects the image data but its association with the target
variable is representative of the population-of-interest, we would then
consider the sample to be unbiased, and the variable is not a true
confound. While our definition of confound is general, in this paper we
will focus on a particular type of confounding where the confound and
target variable are independent in the population-of-interest, but the
training sample is biased due to a sample association between the
target and confound. Such a situation may occur if e.g., we would like
our predictive model to predict a clinical score equally well for both
male and female subjects across the values of the clinical score, but our
training sample shows a significant difference between the values of the
clinical score for each gender. In that case, the training sample can be
considered as biased by gender, with respect to the population-of-
interest. This is illustrated in Fig. 1, where we also show an example of
an unbiased sample in this scenario. Note that for unbiased samples,
we no longer consider gender to be a confound (by definition) even
though it explains variability in the image data.

Our definition differs from the common usage of ‘confound’ with
respect to predictive neuroimaging models, where ‘confound’ is often
used to describe an uninteresting variable that affects the imaging data,
without considering its relationship with the target variable we want to
predict. For example, Kostro et al. (2014) use image adjustment to
improve the classification accuracy of Huntington's disease when using
data acquired from different scanners of subjects with differing age,
sex, and total intracranial volume. In that work, the scanner and
demographic variables were described as ‘covariates’, although the
method used to remove variability in the images associated with the
covariates was described as ‘removing confounding effects’ without
regard to possible associations between the covariates and the target
variable, i.e., a diagnosis of Huntingdon's Disease. A recent work
(Wachinger and Reuter,), does not explicitly refer to confounds, but

discusses an Alzheimer's Disease classification scenario in which the
image data available for training is not all from the same study as that
of the test set. Although the differences in image data between the
training and test data were characterized using variables such as age
and gender, the authors neither explicitly refer to confounding relation-
ships between these variables and the target variable, nor propose a
solution that can deal with biased datasets that contain confounds. In
Linn et al. (2015), confounding is defined from the perspective of
causality and relationships between the potential confound and the
target variable are considered. The authors describe and evaluate an
algorithm that deals with confounding in classification problems, by
essentially weighting observations in a biased training sample to
artificially create an unbiased training sample that is representative
of the population-of-interest. Although their derivation of the weight-
ing scheme explicitly refers to binary targets, and hence classification
problems, it should be noted that similar weighting schemes have been
derived outside neuroimaging that are appropriate for the estimation of
causal effects with continuous targets (Hirano et al., 2004). However,
the authors of Linn et al. (2015) do not consider the prediction of
continuous targets such as clinical scores, nor do they investigate the
qualitative and quantitative impact of confounding on predictive
accuracy.

The overall aim of this paper will therefore be to discuss and
evaluate methods for building predictive neuroimaging models using
biased training samples that can perform optimally on an unbiased
dataset that is representative of the population-of-interest. For a given
dataset, this will require us to create biased samples for training, which
are then used to predict unbiased samples over which we determine
evaluation metrics of predictive performance. Our evaluation frame-
work contrasts with previous works that mention confounding such as
Dukart et al. (2011), Kostro et al. (2014), in which either the training
samples are unbiased, or the test samples are themselves biased with
respect to the population-of-interest. Our framework also facilitates an
analysis of how the relationship between confound and target variable
affects the distribution of prediction errors in the unbiased test
samples. In addition to evaluating image adjustment and the inclusion
of confounds as predictors, we will motivate and evaluate the use of
‘Instance Weighting’ that attempts to directly model the relationship
between the confound and the target in the biased sample, and uses
this to weight training examples in the predictive modelling to improve
predictive performance on unbiased data. This approach to dealing
with confounding is similar to the algorithm described in Linn et al.
(2015), but in contrast to that work, our evaluation focuses on the
prediction of continuous targets where the number of features is
greater than the size of the training sample.

Section 2 now describes standard approaches for dealing with
confounds, while Section 3 motivates the use of Instance Weighting for
dealing with confounding through Empirical Risk Minimization.
Experiments with image data from the ADNI and IXI databases are
presented in Section 4, and we conclude with a discussion of the
evaluated approaches, and the implications for building predictive
models that are useful in clinical practice.

2. Standard approaches for dealing with confounds

We have a sample of n observations consisting of image features
g gg ≡ ( , …, ) ∈i i id

d
1 G

G, confounds c ∈i
dC and target variables yi that

we wish to predict. These are collected into the corresponding matrices
G ∈ n d× G, C ∈ n d× C and y ∈ n. The complete sample G C y, , will

be referred to by the symbol D, and the population-of-interest will be
denoted by . We will assume that the confounds c are independent of
the target variables y in .
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2.1. Use images only

If we choose to ignore the confounds C, then we learn the predictive
function f

ygf( ) → (1)

from the sample G y, , using our algorithm of choice e.g., kernel ridge
regression. This is the default method if we do not try to control for
confounding.

2.2. Image adjustment by confounds

Image adjustment aims to remove variability in each image feature
associated with the confounds, giving adjusted data that can be
considered as having been produced by subjects with identical con-
found values. For example, if the confound is gender, image adjustment
aims to change the image data so that it is as if all subjects were male. If
successful, the resulting sample will now be unbiased, and the relation-
ship between the adjusted data and targets can then be learned in the
usual manner.

Adjusted images are usually produced by firstly fitting a linear
model to each image feature in turn:

βg c= ^ + ϵij i j ij (2)

where j d∈ {1, …, }G is the index of the image feature, and ĉi is ci
augmented with a 1 to account for the intercept term. The adjusted
image feature gij

A for subject i at image feature j is then given by

βg g c= − ^ .ij ij i j
A

(3)

We can use the following matrix procedure to simultaneously perform
a least squares fit of the parameters βj for each image feature in Eq. (2),
and adjust the features according to Eq. (3):

G G C C C C G= − ( ) ,
T TA

−1
(4)

where C is C augmented with a column of ones. In Eq. (4), the jth

column of C C C G( )
T T−1

gives the least squares estimates for βj, and the
above corresponds exactly to the kernel residual forming framework
given in Chu et al. (2011). The ith row of GA gives the adjusted image
data for subject i, and we now learn the predictive function

ygf( ) →A (5)

from G y,A using our algorithm of choice.
Note that the model in Eq. (2) is sometimes fit using a selected

subset of subjects S, followed by an adjustment of the complete set of
data via Eq. (3). This can be performed using the following modifica-
tion to Eq. (4)

G G C C C C G= − ( )
T TA
S S

−1

S S (6)

where G C,S S are the rows of G C, corresponding to the subjects S. For
example, if we are evaluating the performance of a regression/
classification model in a training-test paradigm, we may choose to
determine the adjustment model using only the training sample, in
which case S is the set of training subjects. Adjustment using a subset
of the data is also often used in the classification of Alzheimer's disease
from grey matter volume images derived from structural MRI, where S
is taken to be the set of healthy controls. The motivation for this is that
a confound such as gender may affect grey matter volume differently in
a subject with Alzheimer's disease to that of a healthy subject. If we
were to include diseased subjects in the fitting, this could therefore
potentially worsen the adjustment model for the healthy subjects. In
this paper, we restrict ourselves to the case of adjusting with all
available data as in Eq. (4), as this is the more general case and does
not require us to make assumptions about how the effects of a
confound on image data change as the value of the target varies.

Fig. 1. A schematic of an example illustrating biased and unbiased samples from a population-of-interest. Here, the target variable y is a clinical score, and each ellipse represents the
brain of a subject, with larger ellipses indicating a larger brain volume. Gender, indicated by red/blue, plays the role of the confounding variable, with males tending to have larger brains
than females due to increased head size. In the population-of-interest, each clinical score y is equally likely, and overall there is an even distribution of gender. There is also no
association between clinical score and gender, as gender is evenly distributed for every clinical score. In the population-of-interest, decreases in brain size are associated with increases in
y, and we wish to recover this predictive model of y using samples taking from this population. The biased sample, however, contains a correlation between gender and y that is not
present in the population-of-interest, with males tending to have higher values of y than the females. In contrast, the unbiased sample has an even split of males and females for each
value of the target y, and thus is representative of the population-of-interest.
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2.3. Incorporating confounds as predictors

In this approach, the confounds are explicitly included as predictors
in the model and we learn the predictive function

yg cf( , ) → (7)

using the complete data D. Here the confounds are treated in a similar
fashion to the image features and allowed to model the target variable
in an unrestricted manner. The advantage of this approach is that, in
practice, we may not know whether or not the population-of-interest
contains associations between c and y. For example, it could be that
females are more likely to have a higher clinical score than males in our
sample, and that this is also true in our population-of-interest, i.e., the
sample is unbiased. It may then be advantageous to include c, i.e.,
gender as a predictor. Alternatively, if the population-of-interest does
not contain this association, ie., the sample is biased, including c as
predictors should not reduce predictive performance provided the
conditional relationship in the sample between the target y and the
complete set of input features g c{ , } is representative of the population-
of-interest. This approach therefore puts everything into the model and
trusts the model training procedure to recover a model that predicts
well regardless of possible bias in the training sample.

This approach may run into problems, however, due to the
phenomenon known as covariate shift, which occurs when the
distribution of the predictor features in the training sample does not
match the distribution in the population-of-interest. In the presence of
confounding, covariate shift will arise because associations between
confounds and the target variable in the training sample cause the
image data to be unrepresentative of the population-of-interest. If the
predictive model is also misspecified, i.e., if the ‘true’ predictive model
is not one of the candidate models considered during model fitting,
covariate shift will cause the recovered model to focus on particular
examples in the training sample rather than the population-of-interest
(Shimodaira, 2000). Although a number of different approaches have
been proposed in the machine learning literature for dealing with
covariate shift e.g., Bickel et al. (2009), Sugiyama et al. (2008), Gretton
et al. (2009), Pan et al. (2011), the focus was not on the specific type of
covariate shift that occurs due to confounding. Moreover, those
methods were generally applied to datasets that did not have the
extremely high ratio of feature dimension to training sample size that
we typically face in neuroimaging. In A.1 we demonstrate the con-
sequences of covariate shift with a synthetic example in which a single
image feature is used to predict a continuous target in the presence of a
single confound. There, we show that if the model is correctly specified,
including the confound as a predictor gives models that predict
unbiased samples equally well, regardless of whether the training
sample is biased or unbiased: Even though the biased sample contains
a correlation between the confound and the target that is not present in
the population-of-interest, including the confound as a predictor does
not degrade predictive performance. However, when we repeat the
experiment under model misspecification, predictive accuracy is much
worse with the biased training sample than with the unbiased training
sample. This has practical consequences for performing predictive
modelling in neuroimaging in the presence of confounding, where the
modelling is typically exploratory, and we do not know the best model
‘a-priori’. Hence, there will always be a degree of model misspecifica-
tion, and so including confounds as predictors in an attempt to control
for confounding may give models that perform poorly on unbiased
data. Nevertheless, this approach is often used as a comparator method
to other approaches (Kostro et al., 2014) so we consider it in this work.

Although the example in A.1 focuses on models in which the
confounds are included as predictors, model misspecification means
that, in practice, confounding may degrade the predictive performance
of any predictive modelling procedure, including the ‘Images Only’ and
‘Adjusted Images’ approaches. This is because even if we do not
explicitly include the confounds in the model, we still wouldn't know

a priori the appropriate form for the image-features part of the model
and so there will be a degree of model misspecification. The combina-
tion of model misspecification and covariate shift associated with the
confounding will then once again reduce predictive accuracy. In the
following section we derive an approach based on ‘Instance Weighting’,
which attempts to deal with the specific type of covariate shift
associated with confounding in order to reduce the impact of model
misspecification. In principle, this approach can then be used with any
supervised learning problem where there is confounding in an attempt
to improve predictive accuracy.

3. Adjusting for confounds using instance weighting

3.1. Empirical risk minimization

We firstly describe Empirical Risk Minimization (ERM) which is the
standard frequentist framework for supervised learning (Vapnik,
1992). In ERM, we aim to obtain the optimal model f* within a model
class , for the probability distribution P YX, under a loss function l by
minimizing the expected risk (Vapnik, 1992):

∫ l y dPxf* = argmin (f( ), ) ,
y

Y
x

X
f∈ ( , )∈ ×

,
(8)

where x consists of any feature set rather than specifically the image
features as described in previous sections. This can be rewritten in
terms of the corresponding density P yx( , ) as Scholkopf and Smola
(2002)

∫ l y P y d dyx x xf* = argmin (f( ), ) ( , ) .
yxf∈ ( , )∈ × (9)

We now return to our situation in which we wish to predict targets y
using image features g and (potential) confounds c, so now x g c≡ ( , ).
The optimal function is then given by

∫ l y P y d d dyg c g c g cf* = argmin (f( , ), ) ( , , )
yg cf∈ ( , , )∈ × (10)

where P refers to the joint density of the image features, confounds,
and targets in the population-of-interest. In practice, we do not know
the density P , but instead have a training sample of n observations. In
standard ERM we compute the average loss with respect to the
empirical cumulative distribution function of g c y( , , ):

∑
n

l yg cf* = argmin 1 (f( , ), ).
i

n

i i i
f∈ =1 (11)

The above equation is essentially what was used to fit the least-squares
models in A.1, and it ignores any potential bias in the training sample.

3.2. Instance weighting

When confounding is present, not only do we not know the full
density of the population-of-interest P , but we aim to learn the
predictive function using a biased sample from . In contrast to
standard ERM learning, we address bias in the sample by considering it
to be a random sample drawn from a different density P to that of the
population-of-interest. We then express P yg c( , , ) in terms of
P yg c( , , ) as follows:

P y P y
P y

P y

P y P y
P y P y

P y

g c g c
g c

g c

g c c
g c c

g c

( , , ) = ( , , )
( , , )

( , , )

= ( | , ) ( , )
( | , ) ( , )

( , , )
(12)

We then make the following important assumption:

P y P yg c g c( | , ) = ( | , ) (13)

which means that given a particular value of the target and the
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confound variables, the probability density of the image data is the
same in P and the population-of-interest. Effectively we are saying
that there is no systematic difference between the image data of a
subject drawn at random from P , i.e., the image data in our sample,
and the population-of-interest when restricted to subjects with the
same combination of target and confound values: It is the difference in
the relationship between the targets and the confounds in the two
densities that needs to be accounted for. Given this assumption we can
write Eq. (10) as

∫ l y P y
P y

P y d d dyg c c
c

g c g cf* = argmin (f( , ), ) ( , )
( , )

( , , ) .
yg cf∈ ( , , )∈ × (14)

As with standard Empirical Risk Minimisation, we use estimates for the
probability densities giving

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥∑

n
P y

P y
l y

c

c
g cf* = argmin 1 ( , )

( , )
(f( , ), )

i

n
i i

i i
i i i

f∈ =1 (15)

where P y P yc c( , ), ( , )i i i i are estimates of the densities P yc( , ),
P yc( , ) , evaluated at the ith training point. We can see that the above
expression is similar to that for standard ERM learning in Eq. (11), but
now the minimisation is of a weighted version of the loss function over
the training set, where the weight associated with training point i is

equal to
⎡
⎣⎢

⎤
⎦⎥

P y

P y

c

c

( , )

( , )

i i

i i
. The weighting therefore scales the contribution of

the training point to reflects its density in the population-of-interest ,
although now we need to calculate the weights. This weighting of the
loss function is similar in spirit to those derived in the machine
learning covariate-shift literature e.g., Shimodaira (2000), Sugiyama
SUGI et al. (2007). A direct application of those methods, however,

results in weightings of the form
⎡
⎣⎢

⎤
⎦⎥

P

P

g c

g c

( , )

( , )

i i

i i
, i.e., they would require an

estimate of the ratio between two densities of extremely high dimen-
sion due to the inclusion of the image features g. Instead, by use of the
factorisation in Eq. (12) and the specific assumption of Eq. (13), we
derive the appropriate weights in terms of the joint densities of the
target variable and confounds, which are much easier to estimate due
to the relatively small number of confounds. Note that as in the
weighting approaches of Shimodaira (2000), Sugiyama SUGI et al.
(2007), we assume that the support of the numerator density is
contained in the support of the denominator density in Eq. (15).

As mentioned in Section 1, the focus of this work is the case in
which the confounds and targets are independent in the population-of-
interest. Under this assumption we can further simplify the weights
giving

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥∑

n
P P y

P y P
l y

c

c c
g cf* = argmin 1 ( ) ( )

( | ) ( )
(f( , ), )

i

n
i i

i i i
i i i

f∈ =1 (16)

where we have also factorized the denominator. If we also assume that
the marginal distributions of the confounds and targets are identical in

and , we have

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥∑

n
P y

P y
l y

c
g cf* = argmin 1 ( )

( | )
(f( , ), ).

i

n
i

i i
i i i

f∈ =1 (17)

Finally, note that the form of the predictive function f , i.e., the model,
is flexible. For example, we could choose to employ a model in which
the predictive function does not depend on c so that the optimal
function is given by

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥∑

n
P y

P y
l y

c
gf* = argmin 1 ( )

( | )
(f( ), ).

i

n
i

i i
i i

f∈ =1 (18)

Although this removes the role of the confound from the predictive

model, the motivation and derivation of the weighting scheme is still
applicable: The weighting will continue to focus the predictions on the
population-of-interest .

3.3. Applying instance weighting

In practice, using Instance Weighting proceeds in two stages. In the
first stage, the weights

w
P y

P y c
=

( )

( | )
i

i

i i (19)

in Eq. (17) need to be determined from the available training data
G C y, , , which is considered to be a random sample from P . This
involves estimating the ratio of the marginal and conditional distribu-
tions P y P y c( ), ( | ), from the data, and then evaluating Eq. (19) at each
training point i. In the second stage, we solve the weighted problem
given in Eq. (17) or (18), with a choice of loss function l that is
appropriate for our problem domain. A.2 demonstrates how Instance
Weighting improves the predictive accuracy when training with biased
samples in our simulated example. It is worth noting that the weights
given in Eq. (19) correspond to those given in the causal inference
literature for estimating continuous treatment effects (Imai and
Ratkovic, 2014).

We now go on to describe our evaluation of all the presented
methods for dealing with confounds with real imaging data.

4. Experiments with imaging data

4.1. Materials

The first dataset consisted of the MP-RAGE images of 592 unique
subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in 2003 as a
public-private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission tomography
(PET), other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer's disease (AD). Up-
to-date information is available at http://www.adni-info.org. The data
was preprocessed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/
software/spm12/) and consisted of grey matter segmentation and
group-wise registration using Dartel to a study-specific template. The
aligned images were transformed to the 2 mm MNI template and
smoothed with a Gaussian kernel of 2 mm FWHM. A mask was applied
to select voxels that had a probability of being grey matter above 0.025,
giving a set of images that provide the 157026 image features g in the
matrix G. In our experiments, the image features will be used to predict
the MMSE (Mini-Mental State Examination) score which is a measure
commonly used to diagnose and assess dementia. The MMSE score is
therefore the target variable y, and gender will play the role of the
confounding variable c.

The second dataset consisted of the T-1 images of 580 healthy
subjects from the IXI database http://brain-development.org/ixi-
dataset/. These images were acquired from 3 different sites with
varying scanner properties: Guy's Hospital (Philips 1.5 T),
Hammersmith Hospital (Philips 3 T), and the Institute of Psychiatry
(GE 1.5 T). The images were preprocessed using SPM8 (http://www.fil.
ion.ucl.ac.uk/spm/software/spm8/) and consisted of grey matter
segmentation, normalisation to the 2 mm MNI template and
smoothing with a Gaussian kernel of 10 mm FWHM. A mask was
applied to select voxels that had a probability of being grey matter
above 0.05, giving a set of images that provide the 210539 image
features g in the matrix G. For the IXI data, the image features will be
used to predict the age of the subjects which is therefore the target
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variable y, and acquisition site will play the role of the confounding
variable c. Acquisition site has been shown to affect imaging data even
when the same make and specification of scanner is used in each site
(Focke et al., 2011; Takao et al., 2013), and although is unlikely that we
would want to predict age from T1 images in a clinical setting, this
dataset still enables us to compare the different approaches for dealing
with confounding using real high-dimensional imaging data. Since the
IXI data contains a mixture of young and old participants, we restrict
the subjects to be those above the age of 47. We also only include
subjects from Guy's Hospital and the Hammersmith Hospital as these
have the greatest numbers of subjects, so that c has two possible values.
The resulting initial pool of IXI data consists of 274 subjects.

While we consider each dataset to be confounded by a single
discrete variable in our experiments, in practice we often have to deal
with datasets with multiple confounds consisting of a mixture of
discrete and continuous variables. Here, we restrict ourselves to the
single discrete variable case in order to maximise the size of the
datasets used in the experiments, and to ease the interpretation of the
effects of confounding on predictions. The models that we now
describe, however, can still be applied when there are multiple
confounds, and we emphasise this generality by denoting confound
variables using the vector c in what follows.

4.2. Models used

We use Gaussian Process Regression (GPR) to evaluate the methods
in Sections 2 and 3 for dealing with biased training samples. Gaussian
Processes provide a flexible Bayesian framework for model estimation
and they have recently gained popularity for building predictive
neuroimaging models for regression and classification (Marquand
et al., 2010; Doyle et al., 2013; Young et al., 2013). In our application
of GPR, the probabilistic nature of the modelling is only utilized when
determining kernel hyperparameters and weights for the Instance
Weighting described in Section 3.2: The final predictions are taken as
the mean of the resulting posterior distribution which is exactly
equivalent to kernel ridge regression, a popular non-Bayesian ap-
proach.

Gaussian processes impose a multivariate Gaussian prior on a set of
latent variables fi, where the mean and covariance of the prior are
functions of the inputs xi:

E f m Cov f f

k

x

x x

( ) = ( ) ( , )

= ( , ).
i i i j

i j (20)

We assume a zero mean function m x( ) ≡ 0i throughout this work, as is
commonly done (Rasmussen, 2006). The covariance function k x x( , )i j ,
also referred to as the kernel function, describes how the values of the
latent variables covary across the input space, and it has a set of
associated kernel parameters θ. The targets yi are related to the latent
variables fi through the likelihood function. We use the Gaussian
Likelihood below for all methods apart from ‘Instance Weighting’:

P y f
σ π

e( ) = 1
2i i
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σ
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( − )

2
i i

2

2

(21)

where σ > 0 is the standard deviation of the noise. We can thus
consider the latent variables fi to be the unobserved ‘noiseless’ versions
of the targets yi, related to the targets via Eq. (21), and with a Gaussian
prior distribution defined by Eq. (20). With the above likelihood, the
posterior distribution of the target y* of a test point x*, given the
training data, then has the closed form

y y Var y

y K σ I

Var y k K σ I σ

X y x

k y

x x k k

* , , * ∼ ( *, ( *))

where * = *( + )

( *) = ( *, *) − *( + ) * +T

2 −1

2 −1 2
(22)

in which K is the n×n matrix of training set covariances, K k x x= ( , )ij i j ,
and k* is the n-dimensional row vector of test-training covariances,

kk x x* = ( *, )i i . We take the predictive function f to be the mean of the
posterior y* at test point x*, i.e.,

K σ Ix k yf( *) = *( + ) .2 −1 (23)

Note that Eq. (23) is precisely the predictive equation for kernel ridge
regression. The values of the parameters θ in the covariance function k,
and the likelihood parameter σ, are estimated by maximising the
marginal likelihood where θP σy X= ( , , ) is the probability of the
data given the model. The marginal likelihood automatically incorpo-
rates a trade-off between model fit and model complexity and so is
commonly used to estimate hyperparameters in Bayesian models
(Rasmussen, 2006). Maximizing is equivalent to maximizing the
log marginal likelihood log , which for the Gaussian Likelihood is
given by Rasmussen (2006)

θ θK σ I K σ I

n π

y ylog = − 1
2

( ( ) + ) − 1
2

log ( ) +

−
2

log2 .

T 2 −1 2

(24)

We now describe our implementation of the standard methods for
dealing with confounding described in Section 2 which all use the
likelihood and predictive function described above. This is followed by
a description of our implementation of the Instance Weighting
described in Section 3, which uses a slightly different likelihood and
predictive function. For all models, the outputs of the corresponding
predictive function xf( *) were taken to be the predictions of age for the
IXI data, while for the ADNI data, we round xf( *) to the nearest whole
number within the range of the MMSE score (0-30). In addition, all
features were standardized to have zero mean and unit variance using
just the training data, before model training.

4.2.1. Images only
The baseline model is one where only the image features are used

for prediction, so each input x g≡i i. In this case, we use a linear kernel
plus bias for training and prediction:

k
l

bx x
g g

( , ) = +i j
i j

T

2
2

(25)

where the kernel hyperparameters are θ l b≡ ( , ). The use of the above
kernel essentially means that the predictive function given in Eq. (23)
is a linear model of the image features, which is the most common
model used in predictive neuroimaging.

4.2.2. Adjusted images
We produce confounds-adjusted images using Eq. (4), in which

both training and test data are used to build the adjustment model and
adjusted data is used during training and prediction. GPR training and
prediction is then performed using the kernel from Eq. (25), but with
inputs x g≡i i

A:

k
l

bx x
g g

( , ) = + .i j
i j

TA A

2
2

(26)

As for the ‘Images Only’ model, the kernel hyperparameters are
θ l b≡ ( , ).

4.2.3. Images & confounds
The confounds are incorporated into the predictive model by

appending them to the image features, so that each input to the GPR
is x g c≡ [ , ]i i i . We use a kernel that is the sum of the kernel in Eq. (25)
and a linear Automatic Relevance Determination (ARD) kernel applied
to the confounds only (Rao et al., 2015):
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where ΛARD is a diagonal matrix with entries , …,
l l
1 1

dC1
2 2 . The hyperpara-

meters l l, …, d1
2 2

C
scale the confounds so that their contribution to the

kernel, and hence, the predictive function, is controlled. The kernel
hyperparameters for this model are θ l b l l≡ ( , , , …, )d1 C

. The resulting
predictive function is then a linear model of the image features and the
confounds. Note that the kernel in Eq. (27) is only appropriate for
confounds which are continuous or discrete with less than three levels.
For discrete confounds with more than two levels, one possible
approach is to apply an ARD squared-exponential kernel to a “1-hot”
encoding of the discrete confound (Duvenaud, 2014), and add the
resulting kernel to that in Eq. (27).

4.2.4. Images only with instance weighting
In order to perform instance weighting, we firstly need to estimate

the weights wi

w
P y

P y c
=

( )

( | )
i

i

i i (28)

from Eq. (15). This requires estimating the ratio of the densities of P(y)
and P y c( | ) from the training sample. In this work, we do this by
estimating each of P(y) and P y c( | ) using an independent GP, and
dividing them. For P(y), we use a GP with a kernel consisting only of a
bias term:

k bx x( , ) =i j
2

(29)

, i.e., θ b≡ and the Gaussian Likelihood in Eq. (21). The values of θ σ,
are determined by maximising the marginal likelihood in Eq. (24), and
then Eq. (22) gives the full posterior for y*. Since Eq. (29) does not
contain either the image features nor the confounds, this procedure is
similar to fitting a normal distribution to the marginal distribution
P(y). We then evaluate the posterior at each training point i to give the

value of P y( )i . Similarly, we estimate P y c( | ) with a GP using an ARD
kernel applied only to the confounds, and a bias term:

k b Λx x c c( , ) = +i j i j
T2 ARD

(30)

, i.e., θ b l l≡ ( , , …, )d1 C
, with a Gaussian Likelihood. Once again, the

ARD parameters and the bias are determined by maximising the
marginal likelihood. This kernel is the same as the one in Eq. (27) in
Section 4.2.3, but without the image features, and so fitting this GP
effectively learns a linear relationship between the confounds c and the
target variable y, in which the contribution of each confound to the
kernel is controlled via the estimated ARD parameters. Discrete
confounds with a number of levels greater than two can be incorpo-
rated into the kernel as described in Section 4.2.3. We can then
evaluate the posterior (22) at each training point to give the value of

P y c( | )i i . We can now directly calculate the instance weights for each
training example using Eq. (28).

The estimates for the weights in Eq. (15) are clearly dependent on
the modelling procedure that is used to determine them. In this work,
they were obtained by independently fitting GPs to P(y) and cP y( | )
using the described kernels and Gaussian Likelihood, and taking the
ratio of the corresponding posterior densities from Eq. (22), which
incorporates uncertainties in the estimated model parameters (which
have priors placed on them due to the nature of GPs), given the training
data. Whichever method is used, however, it should ideally result in a
weighting of the sample to produce a pseudo-sample in which the
association between y and c has been removed. This observation
regarding the property of the weights was noted in Linn et al. (2015),
which describes a similar algorithm to the one presented but applied to
classification problems, and in the literature pertaining to the estima-
tion of causal effects with continuous treatments (Imai and Ratkovic,

2014). During each application of instance weighting, we therefore
check for an improvement in balance of the weighted samples
compared to the original samples.

Since in this work, the confound is a discrete variable with two
levels (gender for ADNI data, site for IXI data), we do this by
calculating the weighted standardized difference (Austin and Stuart,
2015) in the target variable between the two levels of the confound.
This is determined as:
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where Yk refers to the subset of training subjects with level i of the

discrete confound c, and mY
Wtd
k

, sY
2 Wtd
k

refer to weighted means and
weighted sample variances of the target variable over these subjects:

∑

m
wy

w

s
w

w w
w y m

=
∑

∑

=
∑

( ∑ ) − ∑
( − )

Y
i Y i i

i Y i

Y
i Y i

i Y i i Y i i Y
i i Y

Wtd ∈

∈

2 ∈

∈
2

∈
2

∈

Wtd

k
k

k

k
k

k k k
k

Wtd

(32)

Note that Eq. (31) reduces to the usual standardized difference when
the weights are equal for all samples. A decrease in the absolute value
of the weighted standardized difference after Instance Weighting
implies a reduction in the difference between the mean of the target
variable y across gender/site, as we would wish.

We now need to perform the weighted prediction in Eq. (17), for
which we use the following heterogenous Gaussian Likelihood:
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in which σ =i
σ
wi
. It is possible to show that for a test point x* the

predictive function yf ≡ * for this likelihood is given by

K σ Wx k yf( *) = *( + )2 −1 (34)

where W is a diagonal matrix with entries
w
1
i
, and K is the kernel used

for doing the Instance Weighted predictions. This is then equivalent to
a weighted kernel ridge regression, in which the loss associated with
training point i is weighted by wi. We set K using the kernel function in
Eq. (25), and estimate kernel hyperparameters θ l b≡ ( , ) and noise
parameter σ by maximizing the marginal likelihood for the hetero-
genous Gaussian Likelihood.

All models were implemented using the GPML toolbox available
through http://www.gaussianprocess.org/gpml/code/matlab/doc/.
This required determining derivatives of the heterogeneous likelihood
in Eq. (33), in order to apply the Instance Weighting. These are given in
Appendix B.

4.3. Evaluation methodology

The first aim of our experiments is to assess how well the methods
described in Sections 2 and 3 perform in the presence of confounding,
in terms of predictive accuracy. This requires us to train each model
using biased training samples, but test them on unbiased samples that
are representative of the population-of-interest. Cross-validation is
therefore an inappropriate scheme for evaluating models in the
presence of confounding, since in that case the test sample is the same
as the training sample, and so cannot be an unbiased sample. Although
this point is mentioned in Kostro et al. (2014), where it was noted that
using cross-validation may give misleadingly high predictive accuracies
if confounds are included as predictors in the model, it is important to
appreciate that the standard application of cross-validation is, in
general, inappropriate for evaluating predictive accuracy when using
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methods that attempt to control for confounding: The test set must be
an unbiased sample, representative of the population-of-interest, in
order to assess the predictive accuracies of different approaches.

The second aim of our experiments is to assess the impact of
confounding on the predictions, and so we perform an additional
analysis without confounding in which we use the same unbiased test
samples but train with unbiased training samples that are representa-
tive of the population-of-interest. This enables us to not only compare
predictive accuracies with and without confounding, but also to assess
the impact of confounding on the distribution of predictive accuracies
across the population-of-interest.

4.3.1. ADNI validation scheme
The orange squares in Fig. 2 give the overall schematic for the

evaluation with ADNI data, which we now describe.
We firstly produced our ‘population-of-interest’ by selecting 400

subjects from the original 592 subjects in which gender is not
significantly associated with the MMSE score (2-sided Student's t-test,
p = 0.45). Fig. 3(a) shows the distribution of the MMSE score for each
gender over the 400 subjects. These subjects are then half-split into 2
folds of data F F,1 2 each of which is an unbiased sample of size 200
from the population-of-interest.

For model evaluation under confounding, we sample 4 biased
training sets B B, …,1

1
4
1 of size 100 from F1, each with significant

associations between gender and MMSE (2-sided Student's t-test,
p < 0.05), such that being male is associated with a higher MMSE
score. These samples, shown in Fig. 4, are produced by sampling from
F1 non-uniformly according to a model in which males are more likely
to be chosen than females as the MMSE score increases. For a given
model, we train using each Bj

1 and predict the unbiased sample F2,

giving four sets of predictions y{ }i
j,2 where i indexes over the subjects in

F2, and j = 1, …, 4 indexes the biased training sample. This procedure
is repeated after switching the roles of F1 and F2, giving four more sets
of predictions y{ }i

j,1 where i indexes over the subjects in F1, and

j = 1, …, 4 refers to a biased training sample Bj
2 drawn from F2. For

evaluating predictive performance when there is no confounding, we
repeat the whole procedure but here each of the 8 samples Bj

k is an

unbiased sample from Fk , in which there is no significant association
between MMSE score and gender. The unbiased samples are produced
by uniform random sampling of each fold Fk .

4.3.2. IXI validation scheme
The evaluation for the IXI data proceeds in an analagous manner to

that for the ADNI data, and is shown in the green squares of Fig. 2.
Here, the initial pool of 274 subjects already contains no association
between site and the age of the subjects, but we remove a subject with a
poor segmentation and randomly remove one more subject to given an
even size for the population-of-interest. Site is not significantly
associated with age in the resulting 272 subjects (2-sided Student's t-
test, p = 0.77), and Fig. 3(b) shows the distribution of age for each site
over the 272 subjects. The two folds of data F F,1 2 are now of size 136,
and the samples Bj

k are of size 80. For the experiment in the presence of

confounding, the samples Bj
k are biased and contain a significant

association between site and age (2-sided Student's t-test, p < 0.05),
with subjects from Guy's tending to be older than those from
Hammersmith's Hospital. These samples, shown in Fig. 5, are pro-
duced by creating a linear relationship between site and age (consider-
ing site as a continuous variable), and then sampling from each Fk non-
uniformly to prefer subjects that fit this relationship. The correspond-
ing samples for the experiment without confounding do not have a
significant association between site and age, and these are produced by
uniform random sampling from each Fk. Note that in the population-
of-interest, the ratio of the number of subjects from Guy's Hospital to
the number from Hammersmith Hospital is approximately 2:1. We
approximately preserve this ratio in our samples, with a geometric
mean ratio of 1.75:1 in the biased samples, and 1.89:1 in the unbiased
samples.

4.3.3. Prediction metrics
For each dataset and each analysis, we calculate a number of

different metrics using the 8 sets of predictions yi
j k, . Firstly we

determine the mean-squared-error (MSE) for each of the 8 sets:

∑MSE
F

y y= 1 ( − )j k
k

i F
i i

j k,

∈

, 2

k (35)

Fig. 2. Schematic for the evaluation of each model using ADNI and IXI data. The sizes of each sample and evaluation measures are shown in orange in for the ADNI data, and green for
the IXI data. The figure shows the procedure when testing the models in the presence of confounding. The same procedure is used for testing the models when there is no confounding,
but there the samples Bj

k are unbiased.
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where MSEj k, is the MSE when predicting fold Fk using the j th training
sample, and Fk is the size of the fold. The 8 MSE values are then averaged
to give MSE which summarizes the predictive accuracy of a model when
predicting unbiased samples from either biased samples (evaluation under
confounding), or unbiased samples (evaluation without confounding.)

The simulated example in Appendix A shows that bias in the
training sample can alter how the prediction errors vary across the
population-of-interest with respect to the values of the confound and
the target variable. We therefore calculate additional measures to
explore this phenomenon with both the ADNI and IXI experiments.
For the ADNI data, we do this by partitioning each of the folds Fk into 2
subsets R R,k k

1 2 by MMSE score:

R i F y

R i F y

= { ∈ : < = 28}
= { ∈ : 29 < = < = 30}.

k k
i

k k
i

1

2 (36)

We choose 28 as the partition threshold because it is the median of the
MMSE scores of the 400 subjects, and Table 1 shows the number of
females/males within each Rl

k . We also define the set of females/males
in each fold Fk to be C k

0 and C k
1 respectively. The gender-balanced test

errors for each subset Rl
k when using training sample j are calculated

as
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where nqlk is the number of subjects in subset Rl
k with gender q. The

measures GbMSEl
j k, are summarized by the number GbMSEj k, :

∑GbMSE n GbMSE= 1
200

×j k

l
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=1

2
,

(38)

where nlk is the number of subjects in subset Rl
k . This quantity is the

weighted average of the gender-balanced test errors for each subset of
subjects Rl

k , where the weights are the size of each subset. We average
GbMSEj k, over all 8 sets to give the overall gender-balanced error
GbMSE . In addition to the gender-balanced errors, we determine the
difference in the errors for males and females over the MMSE scores.
Unlike MSE andGbMSE , these gender-difference errors do not measure
prediction accuracy, but instead enable us to assess whether one
gender is being predicted better than the other as the value of the
MMSE score changes. We define the signed gender-difference error for
each subset Rl

k when using training sample j as the signed difference
between the MSE for females and males:
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The measures SgGdMSEl
j k, are summarized by the weighted average of

their absolute values

∑GdMSE n SgGdMSE= 1
200

×j k

l
lk l
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=1

2
,

(40)

where the absolute value is used to prevent positive and negative values
cancelling each other in the weighted sum. We then average GdMSEj k,

over all 8 sets to give the overall gender-difference error GdMSE , which
describes the magnitude of the difference between how well each
gender is predicted over the range of the MMSE score.

We determine corresponding measures for the IXI data by parti-
tioning each of the folds Fk into 2 subsets by age:

R i F y

R i F y

= { ∈ : < = 61.54}
= { ∈ : > 61.54}

k k
i

k k
i
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2 (41)

where the threshold of 61.54 is the median of the ages of the 272
subjects. The number of subjects from each site within each of the
subsets Rl

k for each test fold is given in Table 2. Site-balanced errors
SbMSEj k, are given by

∑SbMSE n SbMSE= 1
136

×j k

l
lk l

j k,

=1

2
,

(42)

where nlk is the number of subjects in subset Rl
k , and SbMSEl

j k, is
calculated in the same way as GbMSEl

j k, , but with q referring to site
instead of gender in Eq. (37). The overall site-balanced error SbMSE is
then determined by averaging SbMSEj k, over the 8 datasets. Site-
difference errors SdMSEj k, are given by

∑SdMSE n SgSdMSE= 1
136

×j k

l
lk l

j k,

=1

2
,

(43)

Fig. 3. This figure shows the distribution of the target variables by confound for the
ADNI data (a) and IXI data (b). For the ADNI data, there is no significant difference
between the MMSE scores of each gender, and there is approximately the same number
of females and males in the 400 subjects. In the IXI data, there is no significant difference
between the ages of subjects from each site, and there is approximately twice as many
subjects from Guys Hospital as there are from Hammersmith Hospital in the 272
subjects. The overall means, standard deviations of the target variables in each dataset
are ADNI (MMSE): 27.07, 3.32 and IXI (age): 62.35, 8.14.
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Fig. 4. This figure shows the distribution of the MMSE score by gender for each of the biased training samples drawn from the ADNI data. In these samples, males tend to have a higher
MMSE score than females.

Fig. 5. This figure shows the distribution of age by site for each of the biased training samples drawn from the IXI data. In these samples, subjects from Guys tend to be older than
subjects from Hammersmith.
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where SgSdMSEl
j k, is calculated in the same way as SgGdMSEl

j k, , but
with q referring to site instead of gender in Eq. (40). The overall site-
difference error SdMSE is determined by averaging SdMSEj k, over the 8
datasets.

4.3.4. Significance testing
Permutation tests are used to determine whether the predictive

performance of the models, as measured by MSE , GbMSE (ADNI data)
and SbMSE (IXI data), are significantly better than chance. These are
performed by calculating MSE , GbMSE and SbMSE after training with
the values of the targets in the 8 training/test pairs randomly shuffled.
During the shuffling, we ensure that the target values in both the
training data and the test data are permuted within gender for the
ADNI data, while for the IXI data they are permuted within site. The
motivation for this relabelling scheme is that it preserves the con-
founding association between the targets and the confound, while
breaking the relationship between the imaging data and the targets.
Such a permutation test is an example of one with restricted permuta-
tions (Good, 2005), where the relabellings ensure that the targets are
exchangeable under the null hypothesis of there being no relationship
between the targets and the imaging data, given the confound, i.e., the
targets are conditionally independent of the imaging data given the
confound. This modification to the standard permutation scheme used
when assessing predictive models in neuroimaging enables us to test
whether, in the presence of confounding, the predictive model is
learning ‘real’ information that is useful for predicting the target rather
than information that is associated with the confound. To the best of

our knowledge, we have not seen such a permutation test proposed for
assessing predictive performance in the presence of confounding. We
perform five hundred (including the true targets) permutations and
count how many times the models give metrics that are less than or
equal to the metrics with the true targets. This number is then divided
by 500 to give a p-value for whether the model is learning real
predictive information from the imaging data.

4.4. Results with ADNI data

4.4.1. Prediction errors
Table 3(a) gives the measures of predictive accuracy, MSE and

GbMSE , for the different models using biased training samples. We can
see that all models perform better than chance and so the models are
able to learn information that is useful for prediction of the unbiased
data despite the presence of confounding. Instance weighting does not
appear to have improved predictive accuracy compared to using the
original images and, in fact, gives identical sets of predictions in 3 of
the 8 samples to those of the baseline model. However, we do see a
reduction in the absolute value of the weighted standardized difference
of the MMSE score across gender in the biased samples after Instance
Weighting, as shown in Fig. 6. This indicates that the reweighting of
subjects in the biased samples according to the Instance Weights
produces a more balanced pseudo-sample for training. Using adjusted

Table 1
Partitioning of each fold of test data by range of MMSE score and gender.

F1 F2

n within Rl
k R1

1 R2
1 R1

2 R2
2

Females 52 40 49 54
Males 64 44 57 40

Table 2
Partitioning of each fold of test data by range of age and site.

F1 F2

n within Rl
k R1

1 R2
1 R1

2 R2
2

Guys 48 40 44 50
Hammersmith 26 22 18 24

Table 3
Prediction errors for the different models when predicting MMSE.

(a) Biased Training Samples

Model MSE GbMSE

Im. Only 8.02* 8.05*

Adj. Im. 7.94* 8.20*

Im. & C. 8.43* 8.42*

Inst. Wt. 8.02* 8.05*

(b) Unbiased Training Samples

Model MSE GbMSE

Im. Only 7.58* 7.69*

Adj. Im. 7.64* 7.83*

Im. & C. 7.57* 7.69*

Inst. Wt. 7.61* 7.72*

* indicates better performance than chance, p < 0.05.

Fig. 6. Absolute standardized difference of MMSE score across gender in each of the
eight biased samples. The blue bars show the values in the original samples, while the
brown bars show the values using the weighted samples calculated according to Eq. (31).

Table 4
Gender-Difference errors for the Prediction of MMSE for the different models.

(a) Biased Training Samples

Model GdMSE

Im. Only 4.79
Adj. Im. 6.20
Im. & C. 4.84
Inst. Wt. 4.56

(b) Unbiased Training Samples

Model GdMSE

Im. Only 4.70
Adj. Im. 4.67
Im. & C. 4.71
Inst. Wt. 4.70
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images shows a small improvement with respect to MSE but a small
degradation with respect to GbMSE . The ‘Images & Confounds’ model
gives much worse predictions than all the other models: The combina-
tion of covariate shift and model misspecification appears to have
affected this model particularly badly. The corresponding measures
using unbiased training samples are shown in Table 3(b) and once
again, all models perform better than chance. We find that both MSE
and GbMSE improve for all models, including the baseline ‘Images
Only’ model, when using unbiased rather than biased training samples.
This suggests that it is important to use unbiased training samples
when building predictive models in order for them to perform
optimally on the population-of-interest.

4.4.2. Gender-difference & signed gender-difference errors
Table 4 shows the summary gender-difference measure GdMSE for

the different models. We can see that for the baseline ‘Images Only’
model, this measure is similar whether the training samples are biased
or unbiased. The same is true for the ‘Images & Confounds’ model,
while the adjusted images model gives relatively high GdMSE measures
when the training sample is biased. Conversely, the ‘Instance Weighted’
model gives a similar GdMSE measure to the baseline model with
unbiased samples, but a reduced measure when the training sample is
biased.

The impact of confounding on the difference between the prediction
accuracies for each gender can be further analysed by examining the

boxplots in Fig. 7. Here, each boxplot shows the signed gender
difference errors for low MMSE scores on the left, SgGdMSE j k

1
, , and

the corresponding metric for high MMSE scores on the right,
SgGdMSE j k

2
, . (Note that, for clarity of exposition, Fig. 7 presents the

results using unbiased training samples before those using biased
samples.).

If we firstly consider the results for the baseline ‘Images Only’
model (shown in pink) when using the unbiased training samples,
shown in Fig. 7(a), we can see how predictive accuracies vary across
gender and MMSE score: For subjects with a low MMSE score, males
appear to be much better predicted than females, while for subjects
with a high MMSE score, males are still better predicted but to a lesser
degree. We can see the impact of confounding on the distribution of
prediction errors if we now consider the corresponding results using
biased training samples in Fig. 7(b). Recall that in the biased training
samples, being male is associated with a higher MMSE score than being
female. For the ‘Images Only’ model, we can see that for subjects with
low MMSE scores, the signed difference between the MSE for females
and that for males decreases compared to the corresponding result in
Fig. 7(a), i.e., the predictions move in a direction that favours the
prediction of females rather than males. This corresponds with the bias
in the training samples, where females tend to have lower MMSE
scores. Conversely, for subjects with high MMSE scores, the signed
difference between the MSE for females and males increases compared
to the corresponding results with the unbiased training samples, so the

Fig. 7. Signed difference between the MSE for females and MSE for males, over the different ranges of the MMSE Score. The data points in each box plot are the 8 predictions performed
for a particular model. Results using unbiased training samples are shown in (a), while results using biased training samples are shown in (b). In the biased samples, males tend to have
higher MMSE scores.
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predictions move in a direction that favours the prediction of males
rather than females. This again corresponds with the bias in the
training samples, where males tend to have higher MMSE scores.
The bias in the training samples therefore causes a shift in the
difference between how well each gender is predicted over the range
of targets, in the direction of this bias. Note that this shift occurs even
though gender has not been included as a feature in this model. A
similar shift is seen with the ‘Instance Weighted’ model, while the shift
is amplified with the ‘Images & Confounds’ model, again demonstrat-
ing that including a confound in a predictive model can potentially have
undesirable effects.

Lastly, we consider the impact of confounding on the prediction
accuracies for the ‘Adjusted Images’ model by comparing the boxplots
in Fig. 7. In contrast to the other approaches, we find that bias in the
training samples causes shifts in the difference between how well each
gender is predicted over the range of targets in the opposite direction to
the bias in the training sample: For subjects with low MMSE, the
signed difference between the MSE for females and males increases
when using biased training samples, while for subjects with high
MMSE, the corresponding measure decreases. One may therefore
consider image adjustment to have in some sense ‘overcompensated’
for the bias during model training.

4.4.3. Weight vectors
For illustration, Fig. 8(a) shows the average weight vectors for each

model when using the biased training sample, with hot colours
indicating positive weights and cool colours indicating negative
weights. A positive/negative weight at a voxel v indicates an in-
crease/decrease in the predictions of the target as the value of the
image feature at v increases, holding the values of all other features
constant. The weight vectors for the approaches are not substantially
different and all indicate large positive weights in the left hippocam-
pus/amygdala which are proximal to the crosshair, positioned at
(−26,−14,−22) in MNI space. Fig. 8(b) shows the average weight
vectors for each model when using the unbiased training sample. The
weight vectors for the approaches are once again similar.

4.5. Results with IXI data

4.5.1. Prediction errors
Table 5(a) gives the error measures for the different models using

biased training samples. All models perform better than chance
according to MSE and SbMSE and so the models are able to learn
information that is useful for prediction of the unbiased data despite
the presence of confounding. The baseline and ‘Instance Weighted’
models give very similar predictions over the 8 samples. In fact, over 6
of the samples the predictions are identical, while for 2 of the samples
the ‘Instance Weighted’ models give a small improvement, producing
the slight reduction in MSE and SbMSE for this approach. We do,
however, see a reduction in the absolute value of the weighted
standardized difference of age across site in the biased samples after
Instance Weighting, as shown in Fig. 9. which indicates that the
Instance Weighting is producing a more balanced pseudo-sample for

Fig. 8. This figure shows the average weight images for each model when training with biased and unbiased samples from the ADNI data. Positive weights are indicated with a hot
colour and negative weights with cool colours.

Table 5
Prediction errors for the different models when predicting age.

(a) Biased Training Samples

Model MSE SbMSE

Im. Only 30.08* 29.32*

Adj. Im. 31.66* 31.85*

Im. & C. 31.54* 30.55*

Inst. Wt. 29.91* 29.19*

(b) Unbiased Training Samples

Model MSE Sb_MSE

Im. Only 25.21* 24.93*

Adj. Im. 25.34* 24.88*

Im. & C. 25.84* 25.56*

Inst. Wt. 25.21* 24.93*

* indicates better performance than chance, p < 0.05.
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training. As with the ADNI data, the ‘Images & Confounds’ model
performs worse than the baseline model due to the combination of
covariate shift and model misspecification. The ‘Adjusted Images’
model performs worst of all, indicating that the adjustment procedure
has not been able to transform the biased samples into unbiased
samples. This indicates that the simple linear model used to remove
variability in the image data associated with the confound may not
appropriate, but in practice we will not know the correct form of model
to perform the adjustment. The corresponding measures using un-
biased training samples are shown in Table 5(b) and once again, all
models perform better than chance. As with the ADNI data, all models
perform better when training with the unbiased samples compared to
when using the biased sample according to the accuracy measures MSE
and SbMSE , providing further evidence of the importance of training
with unbiased samples in predictive modelling.

4.5.2. Site-difference and signed site-difference errors
Table 6 shows the site-difference errors for the IXI data. We can see

that the summary measure SdMSE reduces somewhat for the ‘Images
Only’ and Instance Weighting models, when using the biased training
samples compared to when using the unbiased samples. It increases
slightly for the ‘Images & Confounds’ model when using biased
training samples, while the adjusted images model gives a large
increase in SdMSE when the training sample is biased.

We can further analyse the impact of confounding on the difference
between the prediction accuracies for each site by examining Fig. 10, in
which each boxplot shows the signed site difference errors for younger
subjects on the left, SgSdMSE j k

1
, , and older subjects on the right,

SgSdMSE j k
2

, . Considering firstly the baseline ‘Images Only’ model when
using unbiased training samples, shown in Fig. 10(a), subjects acquired
at Guys Hospital are predicted better than those from Hammersmith
for the younger subjects, while the reverse is true for the older subjects.
We now consider the results using biased training samples in
Fig. 10(b), in which subjects acquired from Guys tend to be older than
those acquired at Hammersmith. For the ‘Images Only’ model, we can
see that for younger subjects, the signed difference between the MSE
for Guys and Hammersmith subjects increases compared to the
corresponding result in Fig. 10(a), i.e., the predictions move in a
direction that favours the prediction of subjects from Hammersmith over
those from Guys. This corresponds with the bias in the samples, where
subjects from Hammersmith tend to be younger than those from Guys.
Conversely, for older subjects, the signed difference between MSE for
Guys and Hammersmith subjects decreases compared to the correspond-
ing results with the unbiased sample, i.e., the predictions move in a
direction that favours the prediction of subjects from Guys over those
from Hammersmith. Once again this corresponds with the bias in the
samples, where subjects from Guys tend to be older than those from
Hammersmith. As with the ADNI data, the bias in the training sample has
caused a corresponding shift in the distribution of prediction errors in the
direction of this bias, even though site was not included in the model. This
shift is amplified with the ‘Images & Confounds’ model, and is very
slightly reduced with the ‘Instance Weighted’ model. This indicates that,
even though the Instance Weighted model only improves on the baseline
‘Images Only’ model for 2 of the biased training samples, the improve-
ments in prediction accuracy are in the opposing direction to the bias in
the the training sample.

Interestingly, the adjustment model once again does not follow the
trend of the other models: For younger subjects, the signed difference
between the MSE for Guys and Hammersmith subjects decreases when
using the biased samples, while for older subjects, the corresponding
measure increases rather than decreases. We may interpret these
results in a similar fashion to those with the ADNI data, i.e., image
adjustment tends to overcompensate for bias in the training samples.

4.5.3. Weight vectors
Fig. 11(a) shows the average weight vectors for each model when

using the biased training sample, with the cross-hair positioned at
(12,4,14) in MNI space. Hot colours indicate positive weights and cool
colours indicate negative weights. The weight vectors for the ap-
proaches are not substantially different and all indicate large negative
weights in the right caudate which are proximal to the crosshair.
Fig. 11(b) shows the average weight vectors for each model when using
the unbiased training sample. The weight vectors for the approaches
are once again similar.

4.6. Supplementary experiments

Although the main focus of this work is predictive modelling in the
presence of confounding using high dimensional voxel-based features,
we also repeated our evaluation of the different models using low
dimensional region-of-interest (ROI)-based features. This allows us to
further investigate the attributes of the different approaches when
dealing with confounding, and full details of these experiments are
given in Appendix C. Note that the dimensionality of the ROI-based
features was 116, which is greater than the size of the training samples
in both datasets. This contrasts with Linn et al. (2015), where the size
of the training samples was required to be greater than the dimension-
ality of the ROI-based features, due to the limitations of the particular
algorithm used.

Fig. 9. Absolute standardized difference of age across site in each of the eight biased
samples. The blue bars show the values in the original samples, while the brown bars
show the values using the weighted samples calculated according to Eq. (31).

Table 6
Site-Difference errors for the prediction of age for the different models.

(a) Biased Training Samples

Model Sd_MSE

Im. Only 5.47
Adj. Im. 15.97
Im. & C. 8.86
Inst. Wt. 5.28

(b) Unbiased Training Samples

Model Sd_MSE

Im. Only 7.30
Adj. Im. 6.29
Im. & C. 7.57
Inst. Wt. 7.30
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5. Discussion and conclusions

In this paper, we have discussed and evaluated different approaches
for dealing with confounding in the context of predictive modelling in
neuroimaging. We began by introducing the concepts of biased and
unbiased samples and giving a working definition for confound in the
context of predictive modelling in Section 1. While the definition of
confound was quite general, our focus in this work was on the specific
case of confounding where the data samples were biased as they
contained an association between confound and target while they are
independent in the population-of-interest. Standard methods for deal-
ing with confounding such as image adjustment were described and we
illustrated the consequences of confounding by use of a synthetic
example in Appendix A. An instance weighting scheme for dealing with
confounds was described in Section 3, and we then performed a
thorough evaluation of Instance Weighting and standard methods for
dealing with confounding in Section 4 using imaging data from the
ADNI and IXI databases. We found that when training with biased
samples, the predictive performance of the models when applied to the
population-of-interest was lower than when training with unbiased
samples. In addition, the bias in the training samples caused a shift in
the prediction errors in the direction of the bias for all models apart
from image adjustment, for which the prediction errors were shifted in
the opposite direction to the bias. Lastly, we found that none of the

methods for dealing with confounding gave more accurate predictions
than the baseline ‘Images Only’ model for both datasets, although
including the confound as a predictor gave models that were less
accurate than the baseline model in each case. We now discuss several
concerns raised by our evaluation that are relevant to building and
assessing predictive models in neuroimaging that we wish to take into
clinical practice, before considering other types of confounding that fall
within our definition but were not the focus of this particular study. We
conclude with an illustrative example.

5.1. Impact of bias on predictions

Firstly, we have shown the importance of using samples that are
unbiased, with respect to our population-of-interest, for training our
predictive models. In practice, this means we should strive to acquire
data in which the distribution of potential confounds and clinical
groups/variables that we aim to predict, are as close as possible to the
population-of-interest over which we intend to apply the predictive
model. If we do not, we may find that not only does our overall
predictive accuracy degrade, but also that our model may favourably
predict certain strata of subjects e.g., female subjects within a
particular clinical group, over others. Although, in our experiments,
we found that the favourable prediction of certain strata can occur even
if the training sample is unbiased, we also found that bias appeared to

Fig. 10. Signed difference between the MSE for Guys and Hammersmith subjects, over the different ranges of age. The data points in each box plot are the 8 predictions performed for a
particular model. Results using unbiased training samples are shown in (a), while results using biased training samples are shown in (b). In the biased samples, subjects from Guys tend
to be older.
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modify this distribution according to the relationship between the
confound and the target in the biased sample. As we have seen, these
effects of bias on model training can occur even if we do not explicitly
include the confound as a predictor in the model.

5.2. Accounting for bias during model training

If we have already acquired a biased sample and wish to train a
predictive model, then we can either discard subjects in order to create
a matched sample, or use a method that attempts to deal with bias in
the sample so that all data can be used during model training. In our
evaluation, we considered three such methods: Image Adjustment,
incorporating the confounds as predictors, and Instance Weighting.
Considered over both the ADNI and the IXI datasets, we found that in
the case of learning predictive models from high-dimensional features
in the presence of confounding, none of the methods for dealing with
confounds performed appreciably better than the others. Instance
Weighting, while well motivated, did not appear to improve predictive
performance for either the ADNI nor IXI datasets compared to the
baseline model. Image adjustment gave slightly better predictions than
the ‘Images Only model’ for the ADNI dataset, but the worst predic-
tions of all the models for the IXI dataset. In addition, image
adjustment appeared to increase the difference between the prediction
errors for each gender for the ADNI dataset, and each site for the IXI
dataset, when considered over subranges of the predicted target. The
strongest result from our evaluation regarding the different approaches
was that including confounds as predictors gave worse predictions than
the baseline model in all of the experiments. As was described in
Section 3 and shown by the simulated example in Appendix A, the
combination of model misspecification and a biased training sample
causes predictions to degrade for unbiased samples that are represen-
tative of the population-of-interest. Although, in practice, any model is
bound to be misspecified, a model in which we explicitly include the
confounding variable as an input feature may be prone to overfit the
confound to the target in the presence of bias. The degree to which this
changes predictive accuracy will most likely depend on how exactly the

confounds are included as predictors, but due to the exploratory, data-
driven nature of predictive modelling in neuroimaging, this choice is
non-trivial.

Whilst we were unable to show a consistent improvement from
using either image adjustment or Instance Weighting in our experi-
ments, it is worth discussing the advantages and disadvantages of each
of these approaches. If we know the ‘correct’ adjustment model then
image adjustment is attractive, since it enables us to remove confound-
ing by transforming the image data into new data that can be
considered as having been produced by subjects with identical values
of the confounds. Reduction in the variability of the image data
associated with the confound may also enable more accurate predic-
tions. Determining the correct adjustment model, however, may be
problematic, and if we estimate a bad model this may result in a dataset
with greater, rather than less, bias than the original imaging data. It is
possible that this is why the accuracies for this approach reduced when
applied to the IXI data. In contrast, Instance Weighting essentially
aims to weight the examples in such a way as to simulate an unbiased
sample so we no longer have to determine an adjustment model.
However, now we require estimates for the ratio of the marginal
density of the target, P y( ), to the conditional density of the target given
the confound, P y c( | ), in order to give the instance weights. Although
these densities tend to be quite low-dimensional due to the relatively
small number of confounds, the calculation of the weights still presents
a potential source of instability due to the division of the two estimated
probability densities. Considered over the ADNI and IXI datasets, the
weighting of examples gave different predictions to the unweighted
‘Images Only’ model in 7 out of the 16 training samples, and the ratios
of the largest to smallest weight in each Instance Weighted model were
between 2 and 8 apart from one model for which the ratio was 31.
While the weighting of examples does therefore impact the predictive
models, it is possible that the extremely high dimensionality of features
attentuates the influence of the weighting, preventing the resulting
models from having a high variance which is often the case when using
weighting approaches (Shimodaira, 2000). Further applications of
weighting approaches to different datasets across different feature

Fig. 11. This figure shows the average weight images for each model when training with biased and unbiased samples from the IXI data. Positive weights are indicated with a hot colour
and negative weights with cool colours.
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dimensionalities may provide additional insight as to the nature of this
attenuation. In addition, it is worth noting that various approaches to
modifying or constraining the estimated weights have been proposed in
the context of estimating causal effects (Cole and Hern??n, 2008; Imai
and Ratkovic, 2014), and it may be interesting to also explore their
application to neuroimaging data in further work. Further work
investigating the effectiveness of the different methods presented for
dealing with confounding should also explore more complicated
confounding relationships than that presented here. A method that
deals with confounding should ideally be effective when there are
strongly non-linear relationships between the confound and the
imaging data and/or the confound and the target variable. In this
study, we did not actively impose non-linearity on these relationships,
but in practice their nature will depend on the particular dataset under
consideration.

5.3. Model evaluation in the presence of bias

A key aspect of this study is our particular experimental set-up in
which the training sample is biased but the test sample is unbiased,
which contrasts with previous works (Dukart et al., 2011; Kostro et al.,
2014). This allowed us to assess both qualitatively and quantitavely, the
effect of bias on prediction errors in the population-of-interest. This is
important if we want to estimate how well a model will perform in
clinical practice. Alternative evaluation paradigms, such as cross
validation using a single biased sample, may give misleading estimates
of predictive accuracies for models, because now the test sample and
the training sample are the same and so share the same bias. In other
words, cross-validation implicitly assumes that the training sample is
representative of the population-of-interest, which may not be the case.
One should therefore be extremely careful when using cross-validation
to evaluate models in the presence of confounding, as the obtained
predictive accuracies may lead to false conclusions. In addition, we also
described how permutation tests can be modified if we wish to test
whether a model is able to learn predictive information in the presence
of confounding that is beyond that due to the relationship between the
confound and the target.

Of course, in practice, we will not know if our data sample is biased
or not, because we can only check for bias by looking at relationships
between the target variable and potential confounds which we have
actually acquired. Due to the small sample size of imaging studies,
there will almost certainly be so-called ‘hidden’ confounds, i.e.,
variables that we did not acquire for our subjects, that affect the image
data and whose relationship with the target variable differs from that in
the population-of-interest. These would then have the same adverse
effects on model evaluation as known confounds which we do not
control for. In our experiments, we ignored any extra possible
confounding effects of variables such as age, in the prediction of
MMSE score (ADNI), and gender in the prediction of age (IXI). In fact,
for the IXI data, gender was not significantly associated with age over
the complete set of 272 subjects nor for any of the biased or unbiased
samples, and so cannot be considered a hidden confound. In the ADNI
data, age was significantly correlated with MMSE over the set of 400
subjects (Pearson's Correlation, p < 0.05), and significantly correlated
with MMSE in five out of the eight unbiased samples (Pearson's
Correlation, p < 0.05), but none of the biased samples. One may
therefore consider it to be an additional ‘hidden’ confound, because it
is associated with MMSE score in the population of 400 subjects, but it
is not significantly associated with MMSE in all the data samples used
for model training. However, as we have stated, hidden confounds are
unavoidable in practice and they will occur in any experimental
evaluation of confounding using real imaging data.

5.4. Confounding effects not evaluated in this study

In Section 1 we defined confounds as variables that affect the image

data and whose association with the target variable in the training
sample differs to that in the population-of-interest. In this paper, we
have restricted our attention to cases in which the training sample
contains an association between the target variable and the confound,
while the population-of-interest does not contain such an association.
Our motivation for focusing on this scenario is that in practice, studies
often aim to acquire data that is balanced across clinical groups/scores
with respect to variables such as age and gender, i.e., such that there is
no association between those variables and the target variable, as they
are uninterested in such relationships. The evaluation presented in this
paper demonstrates what happens if due to e.g., recruitment issues, we
are unable to acquire such a data sample, and the potential con-
sequences of training a model with the resulting sample on the
predictive accuracy across a population which does not contain such
associations. While an exhaustive evaluation of all other possible types
of confounding is beyond the scope of this paper, we will now briefly
consider other types of confounding that fall within our definition.
These include:

1. The training sample does not contain an association between the
confound and the target, but the population-of-interest does. An
example is if we know that males are more likely to have a lower
clinical score than females in our population-of-interest, but the
clinical scores are evenly distributed with respect to gender within
the training sample.

2. Both the training sample and population-of-interest contain associa-
tions between the confound and the target, but in opposing direc-
tions. An example is if we know that males are more likely to have a
lower clinical score than females in our population-of-interest, but
males tend to have higher clinical scores than females within the
training sample.

3. Both the training sample and population-of-interest contain associa-
tions between the confound and the target in the same direction but
to differing degrees. This would occur if e.g., males are only slightly
more likely to have a lower clinical score than females in our
population-of-interest, but they are much more likely to have a
lower clinical score than females within the training sample.

While each of the above situations are slightly different, they all
represent a type of confounding (under our definition) due to the
differences between the training samples and the population-of-inter-
est. In these cases, different modelling approaches, such as those
considered in this paper, may affect predictive performance on
unbiased data in potentially different ways to that seen in the current
work in each of the different cases. For example we may expect the
‘Images Only’ model to perform better than the model that includes
confounds as predictors in case 2), since the explicit inclusion of the
confound in the model may learn a relationship between confound and
target in the opposite direction to that found in the population-of-
interest. Whilst it is also possible that the ‘Images Only’ model would
learn this relationship, the degree to which this occurs would likely
depend on the extent to which the confound affects the imaging data.
On the other hand, in case 3), including the confound as a predictor
may be preferable if the ‘Images Only’ model is unable to learn the
nature of the relationship between the confound and the target through
the effect of the confound on the imaging data.

Dealing with the above types of confounding represents similar
challenges to those already discussed in this paper, due to the
combination of covariate shift and model misspecification during
predictive modelling. One possible approach could be to use an
Instance Weighting type of approach in which we include information
about the relationship between the confound and the target variable
into the weights through Eq. (15) (Section 3.2). However, we leave
exploration and analysis of these types of confounding and possible
ways of dealing with them, for future research.
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5.5. Illustrative example

We conclude with an example of how we may deal with a potential
confound in practice. Let us consider a case in which we are predicting
a measure of clinical depression from imaging data, and we have a drug
variable that describes whether a subject is taking a particular drug that
affects the brain. With clinical datasets, we often have variables that
describe whether a subject is taking medication, and it may be
desirable from a neuroscientific perspective to account for these
variables in some sense during predictive modelling. If the drug is a
successful treatment for depression, we may find a strong negative
sample correlation between the depression measure and the drug
variable in our dataset that we believe is representative of the
population of interest. In this case, we should not consider drug to
be a confound, as defined in Section 1, and the sample is unbiased.
During predictive modelling we could include the drug variable as an
extra input feature, or more conservatively, use the images alone for
training the predictive model. Using a procedure such as image
adjustment may potentially worsen the predictive performance on
unbiased data, as it would remove the drug effect from the imaging
data while preserving its association with the clinical variable ie. it
would break the relationship between the imaging data and the clinical
variable that we would expect to find in the population. On the other
hand, if the drug affects the brain but it isn't a treatment for depression,
we would not expect the sample correlation to be present in the
population-of-interest. We are then in the presence of confounding, in
which the sample is biased by the drug variable. We may then try to use
a method such as image adjustment or Instance Weighting to improve
predictive performance on unbiased data which does not contain this
correlation. Ultimately, deciding whether a variable is a true confound
will depend on prior studies of the variable and the exact nature of the
population of interest and the data sample, which itself will depend on
the recruitment process of the study.
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Appendix A. Simulated example

A.1. Least squares training

We consider a simulated example in which we predict a continuous target y using a single image feature g that is confounded by a binary variable
c. To motivate our description in this section we can think of y as a clinical score, g as grey matter volume, and c as gender.

The first step is to generate the three variables for our population-of-interest , which will be of size 900000. To do this, we firstly define 900000
‘noiseless’ clinical scores fi by drawing 100000 examples from each of the continuous uniform distributions U j j( , + 1) for j = 0, …, 8. Each
U j j( , + 1) has the probability density function qU j j( , +1)

⎧⎨⎩q x x j j( ) = 1 if ∈ [ , + 1]
0 otherwise.

U j j( , +1)

(A.1)

This essentially creates a set of fi that is uniformly distributed over [0, 9], while ensuring

F l j j( ∈ [ , + 1]) = 1
9 (A.2)

where F denotes relative frequency distributions within the population. Eq. (A.2) means that there is an equal number of fi contained within each
unit interval j j[ , + 1]. We set the value of gender c (with c = 0 indicating a female) according to

F c f j j c( | ∈ [ , + 1]) = 1
2

, = 0, 1
(A.3)

so that there is an even split of genders for observations with f j j∈ [ , + 1]i , for all values of j. This ensures a minimal correlation between c and f
over the population, ρ = 1.1 × 10−5. The grey matter volume gi is determined as

g f c= + 3i i i (A.4)

giving a positive correlation, ρ = 0.50, between g and gender c, i.e., males tend to have a greater grey matter volume than females. Finally, we create
the noisy clinical scores yi using
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y f= + ϵi i i (A.5)

where each ϵi is randomly and independently drawn from (0, 0.1). The correlation between gender c and y over the population is now
ρ = 6.5 × 10−5. The model for the data in the population is therefore

y g c= − 3 + ϵi i i i (A.6)

and the binary variable c, gender, will be the confounding variable in our experiments: It is associated with grey matter volume g, but it is not
associated with the clinical score y in our population-of-interest.

We take half of the observations in the resulting data to create an unbiased test sample according to

F f j j

F c f j j

( ∈ [ , + 1]) = 1
9

( | ∈ [ , + 1]) = 1
2

Test

Test
(A.7)

as in the population, while the remaining observations will be sampled for training. This ensures that the relative frequency distributions F c( )Test ,
F f( )Test and F c f( | )Test are approximately equal to those of , i.e., the test sample is representative of the population and is therefore unbiased. We
then perform two experiments in which g and c are used as input features to predict the clinical scores y of the unbiased test sample.

In the first experiment, we test whether bias in the training sample will affect the learning of the predictive model when the model is correctly
specified. Firsly, we create an unbiased training sample Tr1 consisting of 900 observations sampled ‘randomly’ from the non-test data according to

F f j j

F c f j j

( ∈ [ , + 1]) = 1
9

( | ∈ [ , + 1]) = 1
2

Tr

Tr

1

1
(A.8)

so that the training sample is representative of the population, with minimal correlation between c and y (Fig. A.12(a)).
We then fit the linear model

Fig. A.12. No of subjects by gender over unit intervals of fi in the unbiased training sample Tr1 are shown in (a). The corresponding barchart for the biased training sample Tr2 is shown

in (b).
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y β g β c= +1 2 (A.9)

to give estimates for β β β= [ , ]1 2 using linear least squares, i.e., we find the parameters β β[ , ]1 2 that minimise the least-squares loss function

∑β β
n

y β g β c[ , ] = argmin 1 ( − ( + ))
i

n

i i i1 2
=1

1 2
2

(A.10)

This has the closed-form solution

β β X X X y[ , ] = ( ) .T T T
1 2

−1
(A.11)

Here, the i th row of the design matrix X consists of g c[ , ]i i . Our predictive function is then

g c β g β cf( , ) = +1 2 (A.12)

which is therefore based on the approach in Eq. (7), in which the image features and confounds are used as predictors. The function f is then used to
predict the clinical scores of the unbiased test sample. We then produce a biased training sample Tr2 by sampling 900 observations from the non-test
data according to

⎧
⎨⎪
⎩⎪

F f j j

F c f j j
c

c

( ∈ [ , + 1]) = 1
9

( | ∈ [ , + 1]) =
1 − , = 0

, = 1.

Tr

Tr
j

j

+ 1
10

+ 1
10

2

2

(A.13)

Although the relative frequency distributions F c( )Tr2 , F f( )Tr2 are still approximately equal to that of the population, the distribution F c f( | )Tr2 differs
because there is no longer an even split of genders for observations with f j j∈ [ , + 1]i (Fig. A.12(b)). This results in a strong positive marginal
correlation, ρ ≈ 0.51, between c (gender) and y in the training sample Tr2, in contrast to the population for which there is a minimal correlation
between these variables. The training sample Tr2 is therefore a biased sample in which c is a true confound. We now fit the linear least squares model
of Eq. (A.9) with this biased training sample, and use the estimate β β β= [ , ]1 2 to predict the unbiased test sample with Eq. (A.12) once more.

The top left of Fig. 13(a) shows the L2 norm of the difference between the estimated model coefficients and the true ones, β β∥ − ∥2, over 1000
repetitions of the unbiased/biased sample training. We can see that β has been well estimated using both the unbiased training sample Tr1 and the
biased sample Tr2, resulting in accurate predictions of the test sample in each case, as shown in the top right of Fig. 13(a). Clearly the ‘spurious’
marginal correlation between c and y in Tr2 has not affected model estimation: The predictions have not been ‘driven’ by the marginal association of
the confound and the target in the biased sample Tr2, which would suggest that confounding has not affected the predictive modelling in this case.
We should note, however, that our model estimation procedure i.e the linear least squares fit of Eq. (A.16), is the optimal one given that the data was
produced using Eq. (A.6), which is a linear model with homoskedastic guassian noise. In practice we will not know a-priori how our data was
generated so will not be able to specify the correct predictive model as we have done here.

Our second experiment now investigates how bias in the training sample will affect predictive modelling when the predictive
model is misspecified. To do this, we add an intercept term of 1 to the target variable so that the data is generated according to the
model

y g c= − 3 + 1 + ϵ .i i i i (A.14)

We use the same unbiased and biased samples of training data, Tr1 and Tr2, as in the first experiment, and use linear least squares to fit the
data. However, for both Tr1 and Tr2 we perform the fit using the model in Eq. (A.9) so that the intercept term in Eq. (A.14) is not modelled. We
are therefore attempting to fit a wrong, or misspecified, model to the data. The estimates β β,1 2 are then used to predict the test data using
Eq. (A.12) once more.

The bottom row of Fig. 13(a) shows the errors in the estimated model coefficients and the prediction errors over 1000 repetitions of the
unbiased/biased sample training, with the misspecified model. If we compare these results with those in the first experiment, shown in the top row
of Fig. A.13, we can see a worsening in estimated model coefficients and predictive accuracy for both Tr1 and Tr2. This is to be expected, as using a
poorer model is bound to worsen predictive performance in this example. In contrast to the previous experiment, however, the models produced
using the biased sample Tr2 are now consistently worse than those using the unbiased sample Tr1: The model misspecification has had an additional
adverse effect on predictive modelling with the biased training sample. This differs from the first experiment, where the unbiased and biased
training samples performed similarly with considerable overlap in their error distributions over the 1000 repetitions.

In order to further investigate the differences between training with a biased and unbiased sample under model misspecification, Fig. 14(a)
shows the mean-squared errors for males and females as the value of the noiseless target fi changes, when using Tr1 (top row of Fig. 14(a)) and Tr2
(bottom row of Fig. A.14) for training. We can see that with the unbiased sample Tr1, males are predicted more accurately than females for lower
values of the clinical score, while with higher values, females are predicted more accurately than males. This is a consequence of model
misspecification, and in neuroimaging where the correct model is not known, such effects are unavoidable. If we now consider the corresponding
boxplot for Tr2, we can see that, while the MSE for females is quite similar to that for Tr1, males tend to be predicted far worse than with Tr1 for lower
values of the clinical score and slightly better for high values. This corresponds with the distribution of gender/clinical score in Tr2, in which males
tend to have higher values of the clinical score. The combination of misspecification and bias in the training sample has therefore caused the
resulting model to focus on the examples that occur more frequently in the training sample. This results in the poor model estimates obtained when
using Tr2 and the corresponding poor predictions on the unbiased test sample which is representative of the population-of-interest and therefore
does not contain any association between gender and clinical score. The practical implications of this simulation are that if we wish to train models
for prediction from neuroimaging data, bias in the training sample may adversely affect prediction accuracy on test samples taken from the
population-of-interest, i.e., the population over which we wish to apply the predictive model. This will be a consequence of model misspecification
which in practice is unavoidable.
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Fig. A.13. Results using least squares training are shown in (a), while (b) shows results using Instance Weighted least squares. In both figures, the top row shows results when training
with a correctly specified model, while the bottom row shows results when training with a misspecified model. The left boxplots in each figure are of β β∥ − ]∥2 while the right boxplots

are of the MSE over the test data.
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A.2. Instance weighted training

Here we perform experiments with the simulated data described in A.2, using Instance Weighting. As described in Sections 3.2 and 3.3, this
requires that we solve a weighted version of the problem. Here, this means that instead of solving the least-squares problem of Eq. (A.10), we solve
the weighted version

∑β β
n

w y β g β c[ , ] = argmin 1 ( − ( + ))
i

n

i i i i1 2
=1

1 2
2

(A.15)

where the weights w
P y

P y c
=

( )

( | )
i

i

i i

need to be estimated from the data in the training sample. We obtain the weights using Gaussian Process

Regression in the same way as described in Section 4.2.4, i.e., we fit two independent gaussian processes to give P y( ) and P y c( | ) and then evaluate

these densities at each point i in the sample to determine the weights w
P y

P y c
=

( )

( | )
i

i

i i

. Please see that section for further details. The solution to Eq.

(A.15) is then given by

β β X WX X Wy[ , ] = ( )T T T
1 2

−1
(A.16)

where W is a diagonal matrix with entries
w
1
i
. The predictive function is then as in Eq. (A.12), i.e.,

Fig. A.14. Results using least squares training are shown in (a), while (b) shows results using Instance Weighted least squares. In both figures, the top row shows the MSE as the value
of the noiseless target fi changes, for each gender, when training using the unbiased sample Tr1 and a misspecified model. The bottom row in each figure shows the corresponding boxplot

when using biased sample Tr2.
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g c β g β cf( , ) = + .1 2 (A.17)

As in our earlier experiments, we will perform the estimation using both unbiased samples Tr1, and biased samples Tr2, in two scenarios. Firstly, we
will apply this procedure to the case where the predictive model is correctly specified, i.e., when the data is produced according to

y g c= − 3 + ϵ .i i i i (A.18)

Secondly, we will perform estimation under model misspecification, i.e., when the data is produced according to

y g c= − 3 + 1 + ϵi i i i (A.19)

which contains an intercept term that is not modelled. We will once more be interested in how model misspecification changes the relative
performance of the predictive models when training with biased samples as opposed to unbiased samples.

The top left of Fig. 13(b) shows the L2 norm of the difference between the estimated model coefficients and the true ones, β β∥ − ∥2, over 1000
repetitions of the unbiased/biased sample training, using the weighted fitting with the correctly specified model. We can see that β has been well
estimated using both the unbiased training sample Tr1 and the biased sample Tr2, resulting in accurate predictions of the test sample in each case, as
shown in the top right of Fig. 13(b). This is therefore similar to the results using (unweighted) least squares fitting shown in the top row of
Fig. 13(a), where including the confound as a predictor did not reduce predictive performance when the model is correctly specified. The bottom
row of Fig. 13(b) shows how the weighted model performs under model misspecification. If we compare this to the bottom row of Fig. 13(a) we can
see that, with unbiased training samples Tr1, model misspecification has caused the unweighted and weighted fits to give similar reductions in
predictive performance and parameter estimates. However, if we now look at the results using biased training samples Tr2 and weighted estimation
shown in the bottom row of Fig. 13(b), we can see that the predictive performance and parameter estimates are quite similar to those with Tr1, with a
degree of overlap in the error distributions over the 1000 repetitions. This shows that by using the instance weighting, we can obtain a model that is
similar in predictive accuracy to that which would have been obtained if we had trained the model using an unbiased sample. This contrasts with the
results shown in the bottom row of Fig. 13(a) using the unweighted estimation, where bias in the sample causes the predictive model to degrade
considerably. Fig. 14(b) shows the mean-square errors for males and females as the value of the noiseless target fi changes, when using Tr1 (top) and
Tr2 (bottom) for training, with the weighted estimation and a misspecified model. We can see that the distribution of errors for males and females is
quite similar whether we use biased or unbiased samples, which again contrasts with the corresponding results using the unweighted approach,
shown in Fig. 14(a), where bias in the sample causes a large change in the distribution of errors by gender over the target range.

Finally, in order to give an intuition of what is happening during the weighting, Fig. A.15 shows a boxplot of the determined weights as the value
of the noiseless target fi changes for each gender, when using one of the biased samples from Tr2 for training. We can see that the weights for females
increase as the target increases, while for males the weights decrease with an increasing value of the target. If we refer to Fig. A.12(b), which shows
the distribution of gender by fi in samples from Tr2, we can see that the weighting is placing less emphasis on subjects that are over-represented
(with respect to the population-of-interest) in the sample, and greater emphasis on subjects that are under-represented. This results in the improved
performance of the Instance Weighted least squares training compared to standard least squares training when we have a biased training sample
and the model is misspecified.

Appendix B. Optimization of marginal likelihood for heterogenous gaussian likelihood

Here we describe how we implemented the optimization of the Marginal Likelihood of the heteregenous Gaussian Likelihood:

P y f
σ π

e( ) = 1
2i i

i

y f

σ
−

( − )

2
i i

i

2

2

(B.1)

where σ =i
σ
wi
, and wi are the instance weights. The marginal likelihood for a Gaussian Process with kernel K and the above likelihood function is

then

θ

θ

K σ W

K σ W n π

y ylog = − 1
2

( ( ) + )

− 1
2

log ( ) + −
2

log2

T 2 −1

2
(B.2)

where W is a diagonal matrix with entries
w
1
i
. This can be obtained directly by observing that K σ Wy ∼ ( , )2 . Although the above is the exact

expression for the Marginal Likelihood, we optimize it using Laplacian inference for ease of implementation within the GPML toolbox. This should
be exactly equivalent to optimizing the exact expression given above. To do this, we require the following derivatives which are used during the
optimization routine:

Fig. A.15. Here we show the weights that are estimated during the Instance Weighting procedure as the value of the noiseless target fi changes for each gender, for one of the biased

samples from Tr2.
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Appendix C. Results with low dimensional data

In this section we present results where the input features are low dimensional region-of-interest (ROI)-based features rather than voxel-based
features. We create these features by averaging the voxel-based features over the ROIs contained in the AAL atlas (Tzourio-Mazoyer et al., 2002),
after reslicing the atlas to the same dimensions as the aligned image data. The resulting input features are of dimension 116. The same models and
evaluation scheme as described in Sections 4.2 and 4.3 were used.

C.0.1. Results with ADNI data

Table C.7 shows the error measures using biased and unbiased training samples. As with the high-dimensional features, all models perform
better than chance according to MSE and GbMSE , and predictive performance is reduced when there is bias in the training samples. Table C.7(a)
shows that the ‘Images & Confounds’ model is the worst performing model with biased training samples, although the ‘Instance Weighted’ model
also appears to perform poorly in comparison with the ‘Adjusted Images’ and ‘Images Only’ models. A possible reason for this could be due to an
increase in variance of this model, as weighting effectively reduces the size of the training sample (Shimodaira, 2000). Table C.8 shows the gender
difference errors for each model, and we can see that with biased samples, the ‘Adjusted Images’ and ‘Images & Confounds’ models seem to give
bigger differences than the other models. If we now look at the boxplot in Fig. C.16, we can see that bias in the training samples tends to change the
distribution of the prediction errors in a similar fashion to that found with the high dimensional data. For example, if we focus on the ‘Images Only’
model in Fig. 16(b), we can see that for subjects with low MMSE scores, the signed difference between the MSE for females and that for males
decreases compared to the corresponding measure in Fig. 16(a). Conversely, for subjects with high MMSE scores, the signed difference between the
MSE for females and that for males increases compared to the corresponding measure in Fig. 16(a). These shifts are amplified with the ‘Images &
Confounds’ model, although the ‘Instance Weighted’ model appears to have slighly smaller shifts than the ‘Images Only’ model. It is possible that
the weighting of examples has caused the ‘Instance Weighted’ model to give a distribution of prediction errors that is more similar to that when
using unbiased samples with respect to the gender differences, although the overall accuracies are worse. Lastly, we find that the ‘Adjusted images’
model seems to shift the gender differences in the opposite direction to the other models, overcompensating for bias in the sample as with the voxel-
based features.

C.0.2. Results with IXI data

Table C.9 shows the error measures using biased and unbiased training samples. All models perform better than chance according to MSE and
SbMSE , and predictive performance is again reduced when there is bias in the training samples. Table C.9(a) shows that the ‘Images & Confounds’

Table C.7
Prediction errors for the different models when predicting MMSE.

(a) Biased Training Samples

Model MSE Gb_MSE

Im. Only 8.03* 8.08*

Adj. Im. 7.90* 8.12*

Im. & C. 8.34* 8.34*

Inst. Wt. 8.26* 8.32*

(b) Unbiased Training Samples

Model MSE Gb_MSE

Im. Only 7.86* 7.99*

Adj. Im. 7.78* 7.97*

Im. & C. 7.87* 8.01*

Inst. Wt. 7.85* 7.97*

* indicates better performance than chance, p < 0.05.

Table C.8
Gender-Difference errors for the different models when predicting MMSE.

(a) Biased Training Samples

Model Gd_MSE

Im. Only 4.95
Adj. Im. 5.45
Im. & C. 5.21
Inst. Wt. 4.83

(b) Unbiased Training Samples

Model Gd_MSE

Im. Only 4.88
Adj. Im. 4.64
Im. & C. 4.82
Inst. Wt. 4.88
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model is the worst performing model with biased training samples. In contrast to the results with the high dimensional features, however, the
‘Adjusted Images’ model performs better than the other models. This may be due to the particular model used during the adjustment procedure
being more appropriate at the ROI level, perhaps because of a reduction in noise due to the averaging of features within each ROI. The ‘Instance
Weighted’ model performs similarly to the ‘Images Only’ model in terms of predictive performance. If we now look at the site-difference errors

Fig. C.16. Signed difference between the MSE for females and MSE for males, over the different ranges of the MMSE Score. The data points in each box plot are the 8 predictions
performed for a particular model. Results using unbiased training samples are shown in (a), while results using biased training samples are shown in (b). In the biased samples, males
tend to have higher MMSE scores.

Table C.9
Prediction errors for the different models when predicting age.

(a) Biased Training Samples

Model MSE Sb_MSE

Im. Only 32.83* 31.94*

Adj. Im. 30.72* 30.16*

Im. & C. 33.63* 32.62*

Inst. Wt. 32.82* 31.98*

(b) Unbiased Training Samples

Model MSE Sb_MSE

Im. Only 27.65* 26.99*

Adj. Im. 26.88* 26.17*

Im. & C. 27.53* 26.90*

Inst. Wt. 27.65* 26.99*

* indicates better performance than chance, p < 0.05.

Table C.10
Site-Difference errors for the different models when predicting age.

(a) Biased Training Samples

Model Sd_MSE

Im. Only 10.29
Adj. Im. 10.03
Im. & C. 13.62
Inst. Wt. 8.10

(b) Unbiased Training Samples

Model Sd_MSE

Im. Only 8.01
Adj. Im. 6.24
Im. & C. 6.66
Inst. Wt. 8.01
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shown in Table C.10, we can see that the ‘Instance Weighted’model gives the smallest value for this measure with the biased training samples, while
the ‘Adjusted Images’ and ‘Images & Confounds’models give the smallest site-difference errors with unbiased training samples. If we now consider
the corresponding boxplot in Fig. C.17, we can see that bias in the training samples tends to once more change the distribution of the prediction
errors in a similar fashion to that found with the high dimensional data. For example, if we focus on the ‘Images Only’ model in Fig. 17(b), we can
see that for young subjects the signed difference between the MSE for Guys and Hammersmith subjects increases compared to the corresponding
result in Fig. 17(a). Conversely, for older subjects this signed difference decreases compared to the corresponding result in Fig. 17(a). As before,
these shifts are amplified with the ‘Images & Confounds’model. Interestingly, the shifts for the ‘Instance Weighted’model are not as pronounced as
for the ‘Images Only’ model, indicating that while the prediction accuracies for both models are quite similar, the distribution of predictive
accuracies with respect to the site differences, is not as affected by bias in the training samples for the ‘Instance Weighted’ model as for the ‘Images
Only’ model.
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