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Optogenetic control of cellular forces
and mechanotransduction
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Contractile forces are the end effectors of cell migration, division, morphogenesis, wound

healing and cancer invasion. Here we report optogenetic tools to upregulate and down-

regulate such forces with high spatiotemporal accuracy. The technology relies on controlling

the subcellular activation of RhoA using the CRY2/CIBN light-gated dimerizer system.

We fused the catalytic domain (DHPH domain) of the RhoA activator ARHGEF11 to

CRY2-mCherry (optoGEF-RhoA) and engineered its binding partner CIBN to bind either to

the plasma membrane or to the mitochondrial membrane. Translocation of optoGEF-RhoA

to the plasma membrane causes a rapid and local increase in cellular traction, intercellular

tension and tissue compaction. By contrast, translocation of optoGEF-RhoA to mitochondria

results in opposite changes in these physical properties. Cellular changes in contractility are

paralleled by modifications in the nuclear localization of the transcriptional regulator YAP,

thus showing the ability of our approach to control mechanotransductory signalling pathways

in time and space.
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A
broad variety of biological processes in development,

homeostasis and disease are driven by mechanical forces
generated by the contractile actomyosin cytoskeleton.

During the course of morphogenesis, these forces are tightly
regulated to drive tissue elongation, invagination, branching and
vascularization1,2. Contractile forces also control key steps in
wound healing, including angiogenesis, re-epithelialization and
remodelling of the newly synthesized connective tissue3,4.
Aberrant contractility of the smooth muscle and endothelium
underlies pathological processes such as bronchospasm in
asthma and vasoconstriction in arterial hypertension5,6. In
cancer, contractile forces drive diverse aspects of invasion and
metastasis, from propulsion of cell migration to remodelling of
the extracellular matrix by cancer cells and stromal fibroblasts7–9.
At the subcellular level, contractile forces enable cell adhesion,
polarization, division and mechanosensing10–14. In all these
physiological and pathological processes, physical forces are
tightly regulated—or altogether deregulated—in space and time.

The central role of contractile forces in cell function has
motivated extensive research to identify the underlying molecular
mechanisms and regulatory pathways. From this fundamental
knowledge several chemical compounds have been developed to
tune cellular force generation. Some of these compounds, such as
bronchodilators and vasodilators that act on smooth muscle cells,
are routinely used in disease management15–17, while others are
restricted to basic research. A common strategy to target cell
contractility is to use small molecules acting directly on the motor
domain of myosin II, such as blebbistatin18. Alternatively, small
molecules and genetic perturbations are often used to target
regulatory pathways, such as those controlling calcium levels or
Rho GTPases19. Despite their well-established effectiveness, the
biochemical and genetic manipulations mentioned above are
severely limited by their inability to provide tight spatiotemporal
control of cell contractility. This impedes their use to determine
how local upregulation or downregulation of contractility could
lead to cellular or multicellular shape changes. In addition, drugs
and siRNAs treatments often display poor reversibility and are
prone to off-target effects.

The recent development of optogenetic technologies
offers promising possibilities to control signalling pathways
with high spatiotemporal resolution20. By expressing genetically
encoded light-sensitive proteins, optogenetic technology enables
the reversible perturbation of intracellular biochemistry
with subcellular resolution. Optogenetics has been successfully
applied to control the activity of ion channels, RhoGTPases,
phospholipids, transcription factors and actin polymerization
factors21–29. However, no previous study has established by direct
measurement whether and to what extent optogenetics can be
used to control cell–cell forces, cell–matrix forces and
mechanotransductory signalling pathways.

Here we report two optogenetic tools based on controlling the
activity of endogenous RhoA to upregulate or downregulate cell
contractility. We show that these tools enable rapid, local and
reversible changes in traction forces, cell–cell forces, and tissue
compaction. We show, further, that changes in cellular forces
are paralleled by translocation of the transcriptional regulator
YAP, indicating that our tools can be used to control
mechanotransductory pathways.

Results
Optogenetic control of RhoA activity. RhoA is activated by
several Guanine Exchange Factors (RhoA-GEFs), which localize
mainly at the plasma membrane in epithelial cells. We reasoned
that overexpressing the catalytic domain of a RhoA-GEF and
forcing its localization to the plasma membrane should increase

RhoA activity and promote cortical contractility (Fig. 1a, upper
box). Conversely, forcing the localization of the same catalytic
domain to mitochondria should decrease RhoA activity and
relax cell contractility (Fig. 1a, lower box). To control Rho-GEF
localization we used the CRY2/CIBN light-gated dimerizer
system. This system is based on two proteins, CRY2 and CIBN,
which bind with high affinity upon exposure to blue light, but
rapidly dissociate when illumination is switched off30.

As a candidate to control RhoA activity, we selected the
DHPH domain of ARHGEF11 (refs 31,32) and fused it to
CRY2-mCherry to form ARHGEF11(DHPH)-CRY2-mCherry,
hereafter referred to as optoGEF-RhoA. To control the
localization of this protein, we engineered two different versions
of CIBN, one targeted to the plasma membrane (CIBN-GFP-
CAAX) (Fig. 1b) and one targeted to the mitochondrial
membrane (mito-CIBN-GFP) (Fig. 1d). To assess whether this
approach enabled efficient recruitment of optoGEF-RhoA to the
subcellular structures where CIBN was localized, we illuminated
square areas of MDCK cells expressing either CIBN-GFP-CAAX
or mito-CIBN-GFP with 488 nm light pulses (see methods). As
predicted, optoGEF-RhoA was recruited to the plasma membrane
in cells expressing CIBN-GFP-CAAX (Fig. 1c; Supplementary
Movie 1), whereas it was recruited to mitochondria in cells
expressing mito-CIBN-GFP (Fig. 1e; Supplementary Movie 2). In
both cases, recruitment was limited to cells within the exposed
area and, upon switching off the blue light, CRY2/CIBN
complexes dissociated and the mCherry signal returned progres-
sively to the cytoplasm. Quantitative image analysis showed that
recruitment of optoGEF-RhoA to its targeted location was nearly
instantaneous (o10 s), whereas dissociation was slower (B5 min,
Fig. 1f,g). These characteristic times are consistent with previous
reports of CIBN/CRY2 kinetics24,30. By using an infrared RhoA
biosensor consisting of the Rhotekin Binding Domain (RBD)
fused to infraRed Fluorescent Protein (iRFP), we confirmed that
local recruitment of optoGEF-RhoA to the cell membrane
correlates with increased RhoA activity (Supplementary Fig. 1).
Altogether, these experiments show that our optogenetic
approach allows the catalytic domain of ARHGEF11 to be
rapidly and reversibly localized to the plasma membrane or
mitochondria, resulting in controlled RhoA activity.

Optogenetic upregulation and downregulation of cell forces.
We next investigated whether RhoA activation following trans-
location of optoGEF-RhoA to the cell membrane or mitochondria
was paralleled by changes in cell contractility. To this end, we
used Traction Force Microscopy33 to measure forces exerted by
cells on their underlying soft collagen-I-coated substrate (12 kPa,
polyacrylamide) during optogenetic activation and deactivation.
To study the effect of optoGEF-RhoA translocation to the cell
membrane, we created a MDCK cell line stably co-expressing
optoGEF-RhoA and CIBN-GFP-CAAX (Fig. 2a). We then
exposed selected areas of the microscope field of view to a
sequence of blue light pulses (one pulse of blue light every 10 s).
Exposed regions exhibited a B50% increase in traction forces
that tended to plateau after 1 min (Fig. 2b,g; Supplementary
Movie 3). By contrast, unexposed adjacent regions exhibited no
changes in tractions (Fig. 2b). Control cells stably expressing only
CIBN-GFP-CAAX did not experience changes in traction forces
upon illumination (Fig. 2g, black curve). To compute tension
within and between cells we used Monolayer Stress Microscopy34.
Following a behaviour similar to traction forces, cellular tension
increased in exposed regions and remained unchanged in
unexposed ones (Fig. 2c). Increases in traction and tension
could be sustained for at least 40 min and, importantly, they were
fully reversible (Fig. 2i,k). This allowed us to generate periodic
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Figure 1 | Control of optoGEF-RhoA localization. (a) Scheme of the optogenetic system to control cell contractility. The system is based on

overexpressing a RhoA activator (DHPH domain of ARHGEF11) fused to the light-sensitive protein CRY2-mcherry. The resulting protein is called

optoGEF-RhoA. In the absence of blue light, a fraction of the RhoA pool is active because of endogenous activity and overexpression of the RhoA activator

(left scheme). Upon illumination, CRY2 changes conformation and binds to its optogenetic partner CIBN. To increase contractility, we forced translocation

of optoGEF-RhoA to the cell surface, where RhoA is located, by targeting CIBN-GFP to the plasma membrane (top right panel). To decrease contractility, we

sequestered optoGEF-RhoA at mitochondria by targeting CIBN-GFP to the mitochondrial membrane (bottom right panel). (b,c) Confluent MDCK cells

stably expressing CIBN-GFP-CAAX (b) and optoGEF-RhoA before and after blue light illumination (c). Illumination was restricted to the central area

of the field of view represented by a blue square. The temporal pattern of illumination is indicated by the upper blue line. (d,e) Subconfluent MDCK

cells co-transfected with mito-CIBN-GFP (d) and optoGEF-RhoA (e). In b–e, bottom panels show zoomed areas marked by the white rectangles.

(f,g) Quantification of optoGEF-RhoA both at the cell membrane (f) and at the cell mitochondria (g) over the 20 min of experiment (n¼8 and n¼ 14

fields of view, respectively). Data are shown as mean±s.e.m. Cells were illuminated with 2 pulses of blue light separated by 10 s at time t¼0.

Scale bars, 20mm.
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Figure 2 | Optogenetic upregulation and downregulation of cell contractility. (a–f) Cells expressing optoGEF-RhoA and either CIBN-GFP-CAAX (a–c) or

mito-CIBN-GFP (d–f) were locally and transiently activated. (a,d) Images of optoGEF-RhoA mCherry signal one minute before optogenetic activation.

At time t¼0, cells highlighted by blue squares (labelled 1 and 3) were illuminated, whereas cells highlighted by white squares (labelled 2 and 4) were not.

(b) Traction forces exerted by cell clusters labelled 1 and 2 in a before and after optogenetic activation. (c) Tension within and between cells in clusters

labelled 1 and 2 in a before and after optogenetic activation. (e) Traction forces exerted by clusters labelled 3 and 4 in d before and after optogenetic

activation. (f) Tension within and between cells in clusters labelled 3 and 4 in d before and after optogenetic activation. For comparison, the vector

difference of tractions and the scalar difference in tension between the two time points is shown on the right column of b,c and e,f. (g–l) Quantification

of the mean traction amplitude over time for cells expressing CIBN-GFP-CAAX and optoGEF-RhoA (g,i,k) and for cells expressing optoGEF-RhoA and

mito-CIBN-GFP (h,j,l) subjected to distinct illumination protocols. Thick lines display the means across different experiments and shaded areas indicate

s.e.m. Black line in g corresponds to control cells expressing only CIBN-CAAX-GFP. Black line in h corresponds to control cells expressing mito-CIBN-GFP

and CRY2-mCherry. (g,h) Activation for 5 min (one activation pulse every 10 s), in g, n_green¼ 15 cells, n_black¼ 9 cells, in h, n_red¼8 cells, n_black¼ 10

cells. (i,j) Activation for 40 min (one activation pulse every 30 s). In (i) n¼ 9 cells; in j, n¼ 7 cells. (k,l) Periodic activation separated by 20 min of recovery

(with activation routines made of 2 pulses of blue light separated by 10 s). In k, n¼6 cells; in l, n¼ 10 cells. Scale bars, 20mm.
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and local patterns of contraction and relaxation by simply
alternating periods of pulsed illumination and darkness (Fig. 2k).
These patterns were reproducible in time with a modest
attenuation in resting state traction.

To study the effect of optoGEF-RhoA translocation to
mitochondria, we transiently co-transfected MDCK cells with
mito-CIBN-GFP and optoGEF-RhoA, and subjected them to
the same illumination protocols described above (Fig. 2d).
Approximately 50% of the cells were successfully transfected
with both plasmids. Due to overexpression of optoGEF-RhoA,
baseline levels of traction forces were 4.5-fold higher than in
control cells expressing mito-CIBN-GFP and CRY2-mCherry
(lacking the GEF DHPH domain; Fig. 2h). Upon illumination,
cell tractions and tension decreased and reached a plateau after
5 min (Fig. 2d–f,h,j; Supplementary Movie 4). By contrast,
tractions and tension in unexposed adjacent cells remained
constant (Fig. 2e,f). Much as in the case of cell contraction,
the reversibility of cell relaxation allowed us to generate
oscillatory force patterns (Fig. 2l). A stable cell line expressing
mito-CIBN-GFP and optoGEF-RhoA showed similar behaviour
to transiently transfected cells, the only differences being a
lower traction baseline and reduced cell-to-cell variability
(Supplementary Fig. 2). Altogether, these results show that
controlling the subcellular localization of ARHGEF11 catalytic
domain enables the spatiotemporal control of signalling and
hence cell contractility.

Optogenetic control of actin fibres and focal adhesions. We
next studied the structural cytoskeletal changes that underlie
variations in forces exerted by cellular actomyosin. These may
stem from generation of linear arrays of actin filaments to serve as
scaffolds for myosin contractility. To follow the remodelling of
actin filaments over time, we co-transfected MDCK cells with
optoGEF-RhoA, either CIBN-GFP-CAAX or mito-CIBN-GFP,
and lifeact-iRFP, an F-actin reporter. Illumination with blue light
for 11 min showed that the optogenetic increase in contractility
was paralleled by the formation of actin stress fibres (Fig. 3a,b;
Supplementary Movie 5). Conversely, cell relaxation was
paralleled by the disappearance of basal stress fibres. (Fig. 3c,d;
Supplementary Movie 6). Both phenomena were fully reversible.
Next, we examined the distribution of focal adhesions during
changes of contractility by co-transfecting optogenetic constructs
and vinculin-iRFP. Increasing contractility did not lead to sys-
tematic changes in focal adhesion size or distribution. However,
relaxing contractility resulted in a sharp and reversible reduction
of focal adhesion sites (Fig. 3e,f; Supplementary Movie 7).
Thus, optogenetic contraction and relaxation correlated with
structural changes in stress-generating and stress-sensitive ele-
ments of the cell.

Optogenetic control of epithelial deformation. Having shown
the ability of our optogenetic system to generate rapid and
reversible changes in cellular traction and tension, we next sought
to investigate whether these changes were paralleled by tissue
deformations. To this end, we first focused on confluent mono-
layers of a stable MDCK cell line expressing CIBN-GFP-CAAX,
optoGEF-RhoA and myr-iRFP seeded on 12kPa collagen-I-coated
polyacrylamide gels. myr-iRFP is a cell membrane anchor
fused to iRFP that served as a reporter to quantify displacements
of the lateral cell membranes during optogenetic activation.
Figure 4a,b shows the overlay of two pairs of images separated by
100 s taken either before exposure (Fig. 4a) or just after illumi-
nation (Fig. 4b). Before illumination, no displacements of cell
boundaries were visually discernible (Fig. 4a). Quantification with
Particle Imaging Velocimetry (PIV) of myr-iRFP images showed

average fluctuations of B0.5 mm min� 1 (Fig. 4c). Shortly after
illumination of the central square region of the monolayer
(Fig. 4b), membranes moved towards the center of the illumi-
nated region with typical velocities of 1.5 mm min� 1, thereby
indicating cell compaction (Fig. 4d; Supplementary Movie 8).
Cells located immediately outside the illuminated
region also moved inwards due to transmission of forces across
intercellular junctions in the monolayer, but velocities vanished
within 15 mm (approximately two cell diameters). Time lapse
analysis of PIV maps showed that the increase in compaction was
largely restricted to the initial 40 s after illumination
(Fig. 4e), consistent with the temporal evolution of cellular forces
(Fig. 2).

We next studied the effect of an optogenetic decrease in
contractility on tissue deformation. We applied the same
experimental protocol described above, but using MDCK
monolayers transiently transfected with mito-CIBN-GFP and
optoGEF-RhoA. PIV analysis was performed at 40 s time intervals
using bright-field images (Fig. 4f–i). As opposed to the case of
increasing contractility (Fig. 4a–d), illumination of the central
square region of the field of view resulted in systematic cell
displacements away from the center of the image (Fig. 4i;
Supplementary Movie 9). The time evolution of cell velocity fields
showed that tissue expansion lasted longer than compaction
(Fig. 4j), consistent with the differences in the time evolution of
driving physical forces (Fig. 2). Overall, these results establish that
cell contractility and tissue deformation can be controlled with a
large dynamic range using optogenetics.

Optogenetic control of YAP localization. Contractile forces are
well-known to trigger signalling pathways35. We thus asked
whether our optogenetic tools can be used to control
mechanosensitive signalling pathways. To test this possibility,
we focused on the transcriptional regulator YAP, which has been
extensively shown to translocate from the cytoplasm to the
nucleus in response to sustained increased traction forces or
substrate stiffness13,36. We first studied whether a sustained
increase in cell contraction induced YAP translocation. To this
aim, we co-transfected MDCK cells with optoGEF-RhoA,
iRFP-YAP and CIBN-GFP-CAAX, and subjected them to
pulsed illumination. During this process, we monitored the
intensity of nuclear iRFP-YAP. As illustrated in the example
shown in Fig. 5a,b, optogenetic increase of contractile forces
was paralleled by an increase in nuclear YAP (Supplementary
Movie 10). Analysis of the distribution of relative changes from
baseline after 50 min, revealed an increase of 25% in nuclear YAP
(Fig. 5c, green curve). Control cells expressing CRY2-mCherry
instead of optoGEF-RhoA subjected to the same illumination
protocol did not experience changes in nuclear intensity of YAP
(Fig. 5c, black curve). After switching off illumination, nuclear
YAP tended to recover baseline levels, indicating reversibility of
optogenetic translocation and enabling the possibility of cyclic
activation (Fig. 5d). We finally assessed whether relaxation of
contractility induced changes in the amount of nuclear YAP.
We co-transfected MDCK cells with optoGEF-RhoA, iRFP-YAP
and mito-CIBN-GFP and monitored the iRFP-YAP signal in
response to pulsed illumination. We observed a reversible
decrease in nuclear YAP (Fig. 5e–h, Supplementary Movie 11).
Changes in nuclear localization upon illumination were
confirmed by immunostaining (Supplementary Fig. 3). Thus,
optogenetic contraction and relaxation of cell contractility
have opposite effects on nuclear YAP translocation, indicating
that optogenetics can be used to modulate mechanosensitive
signalling pathways and examine potential transcriptional
changes.
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Discussion
We developed and validated two optogenetic tools to control cell
and tissue mechanics by acting on the subcellular localization of a
RhoA activator. These tools enable to locally increase or decrease
cell contractility within tens of seconds. Changes in contractile
forces are reversible, paralleled by tissue compaction and
expansion, and able to trigger mechanosensitive signalling
pathways. To our knowledge, this is the first study that provides
a direct measurement of the change in cell–cell and cell–matrix
forces in response to optogenetic perturbations as well as changes
in signalling downstream from changes in intrinsic cellular
mechanics.

Cytoskeleton dynamics has previously been targeted by
optogenetic strategies. These strategies include the overexpression
of RhoA or a Rho-GEF26,29, the activation of overexpressed mDia
formin27 or the recruitment of actin disruptors to deplete the
actin cortex28. These methods enabled changes in cell shape,
tissue constriction and cytoskeletal organization. Here we chose
to upregulate or downregulate contractility by controlling the

subcellular localization of the catalytic domain of the RhoA
activator ARHGEF11. Traction forces and cellular tension
increased by B50% when the activator was localized at the cell
membrane, whereas they decreased by approximately fourfold
when it was sequestered at mitochondria. Overexpressing a RhoA
activator rather than RhoA itself has the advantage that changes
in contractility are driven by the endogenous levels of RhoA,
thus placing the system close to its physiological tensional
homeostasis. Measurements of physical forces demonstrate that
our optogenetic approach is versatile and does not compromise
cell viability. Indeed, we were able to apply sustained optogenetic
activation over periods exceeding 30 min with no appreciable
changes in traction forces. Moreover, we were able to apply
several cycles of contraction/relaxation with high reproducibility.
Our tools can be expressed using standard transient transfection
methods or using viral infections to create stable cell lines. Since
the amount of light used to control contractility is many-fold
lower than the one used for imaging, this system is perfectly
adaptable to setups used routinely in live microscopy.
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Figure 3 | Changes in contractility are paralleled by actin and vinculin remodelling. (a,c) iRFP signal of MDCK cells expressing optoGEF-RhoA,

lifeact-iRFP and either CIBN-GFP-CAAX (a) or mito-CIBN-GFP (c) before, during and after 11 min of illumination with blue light. (b,d) Quantification of

lifeact fluorescence intensity at the basal confocal plane over time normalized by the mean fluorescence intensity before the start of activation (in b, n¼ 23

cells; in d, n¼ 22 cells). (e) iRFP signal of MDCK cells expressing optoGEF-RhoA, vinculin-iRFP and mito-CIBN-GFP before, during and after 11 min of

illumination with blue light. (f) Quantification of focal adhesion fluorescence intensity at the basal plane normalized by the mean value before activation

(n¼9). Arrows indicate the time points when largest structural changes occur. Shaded areas are s.d. Scale bars, 20mm.
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edge velocity before (c) and just after (d) activation. Velocities outside the activation zone are represented in black whereas those in the activation zone are

represented in red. Histograms are obtained by averaging 48 velocity fields obtained by PIV analysis. Bottom: representation of the median velocity fields

over the 48 experiments. (e) Time evolution of membrane velocity magnitude averaged over the 48 experiments. (f,g) Bright-field images before (f) and

after (g) local activation (blue rectangle) of the optoGEF-RhoA/mito-CIBN-GFP system. Activation was performed every 40 s for 5 min. (h,i) Histograms of

velocity fields before (h) and after (i) the start of contractility relaxation. Velocities outside the activation zone are represented in black and those inside the

activation zone are represented in red. Histograms were obtained by averaging 22 velocity fields obtained by PIV analysis on bright-field images. Bottom:

representation of the median velocity vectors over the 22 experiments. (j) Time evolution of velocity magnitude fields averaged over the 22 experiments.

Scale bars, 20mm.
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Figure 5 | Optogenetic changes in cell contractility regulate mechanosensitive signalling pathways. (a) iRFP images of one representative cell

expressing optoGEF-RhoA, CIBN-GFP-CAAX and iRFP-YAP before and during blue illumination (7.5 min of imaging followed by 52.5 min of imaging

and activation, one activation pulse every 45 s). (b) Nuclear YAP fluorescence intensity over time for the example shown in a. (c) Quantification

of relative nuclear YAP over time for control cells expressing CRY2-mcherry, CIBN-GFP-CAAX, and iRFP-YAP (black, n¼ 330 cells) and for cells

expressing optoGEF-RhoA, CIBN-GFP-CAAX and iRFP-YAP (green, n¼ 270 cells) subjected to the same activating routine as in a. (c, right) Distribution

of relative nuclear YAP in the experimental population after 50 min of activation. (d) Quantification of relative nuclear YAP over time for cells subjected

to two activation periods (same period as in a) separated by 1 h of no illumination (n¼ 222 cells). (e) iRFP images of 2 representative cells expressing

optoGEF-RhoA, mito-CIBN-GFP and iRFP-YAP during blue light illumination (same illumination protocol as in a). (f) Nuclear YAP fluorescence intensity

over time for the example represented in e. (g) Quantification of relative nuclear YAP over time for control cells expressing CRY2-mCherry, mito-CIBN-GFP

and iRFP-YAP (black, n¼ 177 cells) and for cells expressing optoGEF-RhoA, mito-CIBN-GFP, and iRFP-YAP (red, n¼ 250 cells) subjected to the same

activating routine as in a. (g, right) Distribution of relative nuclear YAP in the experimental population after 20 min of activation. (h) Quantification of

relative nuclear YAP over time for cells subjected to two activation routines (60 min of illumination, one activation pulse every 60 s) each of them followed

by 1 h of no illumination (n¼ 166 cells). Error bars are the s.d. between the mean curves of each independent experiment (three independent experiments

for each graph). Scale bars, 20mm.
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Besides controlling cellular forces, our optogenetic tools
allowed us to control cytoskeleton remodelling and to trigger
rapid activation of mechanotransduction pathways. YAP is one
key player in the regulation of tissue growth, homeostasis and
cancer development14. It is regulated by two independent
mechanisms. The first one, purely biochemical, involves the
Hippo signalling pathway, whereas the second one directly
implicates mechanosensitive signalling pathways converting
mechanical cues into biochemical signals. Changes in cell
spreading area, cell density, substrate rigidity and cytoskeleton
contractility have been previously shown to induce translocation
of YAP into and away from the nucleus36. However, the
biophysical mechanisms driving YAP translocation are largely
unknown. Here we showed that changes in contractility induce a
rapid and reversible modification in the concentration of nuclear
YAP (Fig. 5). As such, optoGEF-RhoA provides a new tool to
rapidly and locally study the mechanistic relationship between
physical forces and YAP localization. We anticipate that it will
thus provide a new tool for examining the kinetics of
transcriptional changes and protein abundance downstream of
mechanotransductory signalling.

The tools reported here have a broad applicability in
mechanobiology. At the subcellular level, optogenetic control of
cellular forces will enable the study of processes such as cell
adhesion, transport and mechanosensing with micrometre
resolution and second timescale. At the supracellular level, it will
enable researchers to decipher the mechanisms by which
epithelial layers deform, remodel and flow. Beyond cell culture
systems, the tools developed here should be readily applicable to
study morphogenesis in animal embryos. As these tools only
require common laboratory equipment and routine genetic
manipulations, we expect them to become widely available
techniques to control RhoA activity, cellular forces and
mechanotransduction.

Methods
Cloning. CRY2-mCherry, CIBN-GFP-CAAX were gifts from Chandra Tucker
(Denver, Colorado, United States)30. The DHPH domain of ARHGEF11 Guanine
Exchange Factor (gene ID 9826, also known as PDZ-RhoGEF) was identified using
uniprot.org website. We extended the sequence of interest to retain 8 extra amino
acids at each extremity of this catalytic domain following the approach used
previously for Intersectin and TIAM1 DHPH GEF domains23. The gene was
created and inserted into CRY2-mCherry protein by the GenScript company
(New Jersey, United states) using Nhe1 and Xho1 cloning sites. Both
optoGEF-RhoA and CIBN-GFP-CAAX were inserted into lentiviral backbones
(pLVX and pHR’) to create stable cell lines.

Myr-iRFP lentiviral vector was a gift from Simon de Beco (Institut Curie, Paris,
France). RBD-iRFP, lifeact-iRFP and vinculin-iRFP were gifts from Fahima Faqir
(Institut Curie, Paris, France).

iRFP-YAP was cloned by the Protein Expression Core Facility of Institute for
Research in Biomedicine (IRB, Barcelona). It was obtained by replacing EGFP from
pEGFP-yap-C3-hYAP1 (Addgene, plasmid #17843)37 by iRFP. iRFP was amplified
from the vinculin iRFP plasmid. Cloning was performed using the In-Fusion
system; all clones were fully sequenced before use.

Mito-CIBN-GFP was obtained by Gibson assembly cloning, combining the
mitochondrial anchor obtained from pcDNA4TO-mito-mcherry-24xGCN4_v1
(ref. 38; addgene plasmid #60913, gift from Xavier Morin, IBENS, Paris, France)
with CIBN-GFP amplified from CIBN-GFP-CAAX vector and inserted into
peGFP-C1 backbone (Clontech).

Cell culture. MDCK-II cell lines (gift from Professor Yasuyuki Fujita,
University of Hokkaido, Sapporo, Japan) were cultured with Dulbecco’s
modified Eagle’s medium supplemented with 10% fetal bovine serum, 100 U ml� 1

of penicillin and 100mg ml� 1 of streptomycin. Cells were maintained at
37 �C in a humidified atmosphere with 5% CO2. Cells were tested for
mycoplasma and free of contamination. Fluorescent stable cell lines were
obtained by viral infection of CIBN-GFP-CAAX and optoGEF-RhoA and
then sorted twice within 3 weeks. Transfections were performed using the
Neon transfection system (Invitrogen) following the manufacturer’s instruction
guide.

Stainings. Cells were fixed by adding 1 ml of 16% paraformaldehyde for a
final concentration of 4% paraformaldehyde (5 min at room temperature).
Permeabilization was achieved by incubating with 0.1% Triton X-100 (in PBS) for
5 min at room temperature. Cells were saturated with PBSþ 10% FBS (blocking
solution) and incubated for 1 h. Primary mouse YAP1(63.7) antibody (Santa Cruz
Biot. Catalogue no. sc-101199) was added with corresponding blocking solution at
1:400 dilution and incubated for 1 h. Secondary antibody Alexa fluorophore 647
goat anti-mouse (Thermofisher catalogue no. A-21235) was added at 1:400 dilution
and incubated for 2 h.

TFM gel preparation. Coverslips were treated with a solution of acetic acid,
3-(Trimethoxysilyl)propyl methacrylate (Sigma), and ethanol (1:1:14) for 15 min,
washed three times with ethanol, and air-dried. For 12 kPa hydrogels, a solution
containing a concentration of 7.5% acrylamide, 0.16% bisacrylamide, 0.5%
ammonium persulphate, 0.05% tetramethylethylenediamine and 4% 200-nm-
diameter blue or infrared fluorescence carboxylate-modified beads (Fluospheres,
Invitrogen) was prepared in a 10 mM HEPES solution. 18 ml of this solution were
immediately placed at the center of glass-bottom dishes and covered with 18 mm
diameter glass coverslips. After gel polymerization (1 h at room temperature),
the top coverslip was removed. Polyacrylamide hydrogels were incubated with
Sulfo-SANPAH under ultraviolet light (5 min). Then gels were rinsed and
incubated with 40 ug ml� 1 of collagen I (Millipore) for 1 h at room temperature
and stored overnight at 4 �C.

Cell imaging and activation. Cell imaging and activation were exclusively
performed using an inverted Nikon microscope with a spinning disk confocal unit
(CSU-W1, Yokogawa), Zyla sCMOS camera (Andor, image size 2,048� 2,048
pixels) and a 60� objective (NA 1.40, oil). Experiments of Fig. 4,h were done using
a 40� objective (NA 0.95). The set-up was equipped with an incubator to
maintain the samples at 37 �C and 5% CO2. Activation of cells located at the center
of the field of view was performed by automatically placing a square diaphragm in
the main laser path. Activation pulses were 100–200 ms long using a laser at
488 nm with power of B2 mW (measured at the back focal plan of the objectives).

Image analysis. Image analysis was performed with custom-made routines in
Matlab (The MathWorks). Image fluorescence analysis of Fig. 1 was carried out by
automated segmentation of the GFP signal associated either with the membrane or
mitochondria. Images were filtered with a Gaussian filter and then segmented using
Matlab ‘edge’ function. Mean values of mCherry signals were then calculated on
the obtained masks. Time lapse intensity was corrected for photobleaching and
normalized by its value at the first time point.

Lifeact-iRFP (Fig. 3), iRFP-YAP (Fig. 5), stained YAP (Supplementary Fig. 3)
and RBD-iRFP (Supplementary Fig. 1) fluorescent signals were quantified as the
mean intensity of square interrogation windows (10–20 mm in side) manually
centered at the following locations. For lifeact, center of the cell and background
area; for iRFP-YAP, nucleus and background area; for RBD, activated area,
non-activated area and background area.

To quantify focal adhesions (Fig. 3), we first filtered fluorescent images of
vinculin-iRFP with a Gaussian filter (to remove white noise) and thresholded them
to obtain a binary mask. We then summed the intensity of all pixels above the
threshold.

Force measurements. Traction forces (Fig. 2) were measured using Fourier-
transform traction microscopy with finite gel thickness33,39. Bead displacements
between any experimental time point and its relative reference image obtained after
cell trypsinization were computed using home-made particle imaging velocimetry
(PIV) analysis. PIV was performed using square interrogation windows of side 128
pixels with an overlap of 0.5.

Tension between and within cells (Fig. 2c,f) was computed using Monolayer
Stress Microscopy34,40. All maps of tension show the average normal stress.

Monolayer deformations. Velocity fields of cell monolayers were measured with a
home-made PIV analysis software41. Interrogation windows were squares with side
256 pixels and overlap 0.5. Fluorescence images and bright-field images were
pre-filtered with a Gaussian filter of 5 pixel width to remove uncorrelated white
noise from the image. PIV analysis was applied to images separated by 40 s.

Code availability. Matlab analysis procedures can be made available upon request
to the corresponding author.

Data availability. The data that support the findings of this study are available
from the corresponding author on reasonable request. ARHGEF11(DHPH)-CRY2-
mCherry and mito-CIBN-GFP plasmids will be available on addgene.
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