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Abstract 

Alzheimer’s disease (AD) is a progressive neurodegenerative disease that results in 

cognitive impairment and death. The pathological hallmarks are extracellular 

cortical amyloid plaques and intraneuronal tangles composed of 

hyperphosphorylated tau. Although environmental and genetic factors contribute to 

the development of AD, the sequence of pathophysiological events that lead to 

Alzheimer’s dementia is not yet completely clear. The clinical diagnosis of AD 

during life can be challenging and factors that explain clinical phenotypic 

heterogeneity and variability in rates of disease progression are not well understood.    

Biomarkers, objective measures of biological function, can be employed to support a 

clinical diagnosis of AD and may be abnormal before the onset of clinical symptoms. 

Imaging and cerebrospinal fluid biomarkers (CSF) are now incorporated into clinical 

and research diagnostic criteria. CSF, which is in direct contact with the brain, is a 

promising source of biomarkers and has the potential to differentiate AD from other 

neurodegenerative dementias, explain clinical heterogeneity within AD and 

elucidate the role of other pathobiological pathways. Ultimately CSF biomarkers 

might facilitate diagnosis of AD in its pre-clinical phase and allow for treatment 

responses to be measured. 

In this thesis CSF samples from clinical cohorts of individuals with AD, other 

neurodegenerative diseases and healthy controls are analysed using an extended 

panel of enzyme-linked immunosorbent assays (ELISA) and a novel mass 

spectrometry based assay. For the established CSF biomarkers, the practical issues 

related to collection, transportation and storage of CSF are investigated.  Amyloid 

positron emission tomography (PET) imaging is investigated as a means of 

validating clinical cutpoints. An extended panel of established and emerging ELISAs 

is used to determine the diagnostic utility of biomarkers for differentiating AD from 

other neurodegenerative dementias and for explaining phenotypic heterogeneity 

within AD.  The role of CSF biomarkers as predictors of disease progression is 

investigated employing robust measures of brain atrophy as surrogate measures of 

rates of neurodegeneration. Finally CSF samples are probed for new AD biomarkers 

using a novel mass spectrometry based assay. 

A number of practical conclusions are drawn from this work: aliquot storage volume 

is identified as an important confounder in measured CSF b-Amyloid concentration. 

CSF laboratory transportation methods are shown not to have a significant impact 
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on measured biomarker concentration. Amyloid PET is a valuable means of 

validating clinical diagnostic cutpoints of core CSF biomarkers. Tau/Ab1-42 ratio, 

Ab40/42 ratio, P-tau and NFL emerge as having diagnostic utility for 

differentiating AD from other neurodegenerative diseases, and have high sensitivity 

and specificity for distinguishing AD from bvFTD, SD and healthy controls. 

Important differences in T-tau, P-tau and neurofilament light distinguish different 

AD atypical phenotypes and may help to elucidate underlying biological differences 

between these syndromes: individuals with the visual variant of AD (posterior 

cortical atrophy) have the lowest levels of CSF Tau and lowest rates of cognitive 

decline while the frontal executive cases have highest levels of NFL and highest 

rates of cognitive decline indicating more rapid neurodegeneration. Several novel 

biomarkers including trefoil factor 3 and several markers involved in vascular 

remodeling, amyloid processing and neuroinflammation are identified as predictors 

of increased atrophy rates in amyloid positive individuals suggesting possible 

independent mechanisms driving differing rates of neurodegeneration between 

individuals. Other novel AD biomarkers including malate dehydrogenase are 

identified as distinguishing AD from controls using a novel mass spectrometry 

based assay. Moreover, this assay demonstrates how mass spectrometry might be 

used for biomarker discovery and rapid development of a high throughput  

multiplexed clinical CSF assay.      

Taken together these results address some of the unanswered questions about how 

CSF should be collected, handled and stored to optimize analytical standardization, 

and how clinical results might be validated using amyloid PET. This work 

establishes the clinical utility of established biomarkers for differentiating AD from 

other neurodegenerative diseases and identifies established and novel biomarkers 

that might explain clinical heterogeneity and rates of progression between 

individuals. Finally a method for rapidly developing new biomarkers is tested and 

validated.  
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Chapter 1.   Introduction 

1.1   Alzheimer’s Disease 

 

The Problem  

 

Alzheimer’s disease (AD) is an inevitably progressive neurodegenerative condition 

that results in cognitive impairment and premature death, emotional   distress for 

individuals, families and carers, and significant economic burden for governments 

and society.   

 

Alzheimer’s disease is caused by abnormal accumulation of the proteins β-amyloid 

and tau in the brain and to make a definitive diagnosis examination of brain tissue is 

required. Making a clinical diagnosis of Alzheimer’s disease during life can be 

challenging and still rely primarily on a clinical assessment which is not 100% 

accurate even in specialist centres. Clinicians and researchers currently lack the tools 

that allow them to estimate an individual patient’s prognosis or to monitor disease 

progression in response to potential disease modifying therapies. The 

pathobiological pathways leading to sporadic AD are incompletely understood, but a 

number of genetic and environmental factors have been identified as playing a role1 

and a hypothetical model of AD pathophysiology has been proposed2 which will be 

expanded on later in this chapter. To improve clinical diagnosis, facilitate 

prognostication, measure response to treatment and to further advance knowledge 

of AD pathobiology in vivo, objective markers of biological function termed 

“biomarkers”, are required.  
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A number of biomarkers are available clinically, including measures of atrophy from 

brain imaging using MRI or CT and measurement of cerebrospinal fluid (CSF) 

proteins relevant to AD. These are now both incorporated into diagnostic criteria 

for AD3, 4. CSF is in close proximity to the brain and as a result is a promising 

source of novel biomarkers. However, our understanding of the CSF biomarkers, 

both established and novel remains incomplete, and a number of outstanding issues 

in their application in the clinical and research setting exist.  

 

Critical knowledge about the practicalities of how CSF should be collected, stored 

and analysed remains incomplete. There is significant uncertainty about how 

reproducible and reliable results of existing assays are, since a number of potential 

confounding variables in biomarker measurement have not been explored. There are 

also challenges relating to the clinical application and validation of biomarker assays. 

However, the role of existing biomarkers for differentiating AD from other 

neurodegenerative dementias or for explaining the clinical phenotypic heterogeneity 

or rates of clinical progression within AD has still to be fully investigated. 

Biomarkers that help to provide individuals and their families with reliable 

diagnostic and prognostic information are desperately required.  

 

It is well recognised that a preclinical phase of AD occurs years, possibly decades 

before the onset of clinical symptoms1. Biomarkers will be essential for detecting and 

tracking AD in its earliest stages, with the eventual aim of treatment before 

irreversible neurodegeneration has occurred. Distinguishing AD from other forms of 

dementia at this early stage is vital to facilitate recruitment to clinical trials, and 

establishing biomarkers that track disease progression is critical for monitoring 

drug target engagement.  
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Finally, the range of currently available biomarkers does not reflect the complexity 

and heterogeneity of AD pathobiology. The discovery of novel biomarkers, which 

reflect dysfunction in multiple disease pathways, will facilitate better understanding 

of AD pathophysiology.    

 

This introductory chapter sets out the basic clinical, pathological and 

epidemiological features of AD and AD mimics. An overview of the potential role of 

biomarkers, biomarkers currently available in clinical practice, and promising new 

biomarkers in development is provided with particular focus on cerebrospinal fluid 

(CSF). The clinical utility and limitations of existing biomarkers is discussed and the 

pressing case for new AD biomarkers made. 

  

1.1.2   History and Epidemiology 

 

The German neuropathologist Alois Alzheimer described plaques, neurofibrillary 

tangles and arteriosclerotic changes in the neocortex of a 56 year old woman in 1906 

and subsequently Arnold Pick defined ‘Alzheimer’s disease’ as a form of early onset 

dementia. This concept held sway until the 1960s when it became apparent that the 

pathological changes underlying early and late onset AD were similar, and since 

then Alzheimer’s disease pathology has been recognised as the most common cause 

of early onset and late onset cognitive impairment5. The single greatest risk factor 

for sporadic AD is age: incidence at the age of 60-69 is under 1%6-9 but this increases 

to 6-10% at age 80-89. Prevalence of dementia in the UK increases steadily with age. 

At age 65 the prevalence is approximately 2%, increasing to 20% by age 85. 

Approximately 65% of all those with dementia have AD10.  Data for those age >90 is 
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limited1 but it appears that whilst the prevalence continues to increase, the incidence 

of AD might fall in the very oldest people1. Evidence suggests AD is more prevalent 

in women than men10, 11. A number of environmental risk factors are now recognised 

for sporadic AD: risk factors for cardiovascular health such as obesity12, 13, 

hypertension14, 15, smoking16, 17 and high cholesterol18 13  contribute to the risk of 

symptomatic AD while physical exercise19, 20 and diet low in saturated fat may be 

protective5. Being socially and cognitively active may protect against dementia21, 22, 

while low educational attainment is a risk factor23. There is, however, a lack of 

lifelong epidemiological studies to determine the true impact of  lifestyle factors in 

early life. And until recently owing to the lack of good accurate biomarkers for AD 

and limited pathology proven studies, many epidemiological studies struggle to 

differentiate AD from other causes of cognitive impairment which may confound 

results1.     

 

1.1.3   Clinical features 

 

Memory impairment is the commonest clinical presentation of AD. Less common 

AD syndromes can lead with visual, language, behavioural or dysexecutive features.  

 

Typical memory led AD, by far the commonest clinical presentation is characterized 

by early insidious impairment of episodic memory followed by spatial memory 

deficits. Patients often lack insight, but relatives may report repeated questioning, 

forgotten messages or errands or misplaced objects24. In early to moderate disease, 

social façade is typically preserved25. As the disease progresses, other cortical areas 

become involved and eventually there is involvement of multiple cognitive domains, 
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sufficient to impair activities of daily living and for the individual to fulfill criteria for 

dementia3.  

 

The visual variant of AD, sometimes referred to as ‘biparietal AD’ or posterior 

cortical atrophy (PCA) is a relatively rare form characterized by impairments of 

visuoperceptual, visuospatial function, literacy, numeracy and praxic skills26, 27. 

Affected individuals may have features of Balint’s syndrome (simultanagnosia, 

oculomotor apraxia, optic apraxia, environmental agnosia) or Gerstmann’s 

syndrome (acalculia, agraphia, left/right disorientation, finger agnosia)28 and may 

report positive visual phenomena such as prolonged colour after images29 or 

perception that static objects are moving30. On examination, visual field defects, 

dyspraxia, myoclonus, extrapyramidal features or the motor signs of corticobasal 

syndrome may be seen31.    

 

The language led variant of AD, or ‘logopenic aphasia’ is characterised by early and 

progressive impairment of language, with a distinctive linguistic profile. Speech is 

typically slower, characterized by word retrieval difficulties, frequent pauses and 

difficulty with repetition and comprehension32 and phonological dyslexia33. 

 

Frontal AD is characterized by progressive behavioural changes or a dysexecutive 

syndrome34, 35. This is the rarest and least well studied AD variant and there are 

currently no consensus diagnostic criteria making diagnosis during life a challenge; 

this syndrome can be indistinguishable from behavioural variant frontotemporal 

dementia35.  
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In clinical practice there is often significant overlap between these syndromes and 

they often merge as the disease progresses. Atypical presentations are more likely to 

occur in young onset disease: approximately 1/3rd individuals presenting at age <65 

years have an atypical presentation, compared to ~5% in later onset disease36, 37. 

These different clinical phenotypes are underpinned by imaging differences, such as 

atrophy patterns and patterns of cortical tau deposition34. There may also be genetic 

differences, for example APOE4 allele expression may be less frequent in posterior 

cortical atrophy27. However, the major causes of clinical heterogeneity are, as yet, 

largely unexplained.     

 

1.1.4   Differential Diagnosis of AD  

 

Making a definitive diagnosis of AD during life, based on clinical features alone is 

not 100% reliable as a number of other neurodegenerative and non-

neurodegenerative diseases can present similarly. Ultimately pathological 

confirmation is required and even then diagnosis is not always clear-cut and features 

of more than one disease can be present. In this section the mimics of ‘typical’ 

memory led AD and of the ‘atypical’ clinical syndromes are discussed.  

 

Individuals commonly present to doctors with concerns about their memory in 

midlife. Such patients are frequently concerned about their memory but report 

‘normal’ phenomena such as forgetting why one has entered a room25 or where one 

has placed an object. Such cases may not necessarily be underpinned by a 

neurodegenerative process and can be a feature of anxiety or normal ageing. 

However the situation is somewhat complicated by the fact that conversion to AD is 

higher in this group38. “Red flags” for AD are early topographical memory problems, 
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and loss of social or occupational abilities as corroborated by an informant who 

knows the individual well25. Depression may also contribute to poor memory 

registration and careful questioning may elicit a history of the biological features of 

depression. However, it is increasingly recognised that depression may also 

accompany the early stages of AD39.  

 

Reversible metabolic conditions such as vitamin B12 deficiency, hypothyroidism and 

thiamine deficiency may result in cognitive impairment or worsen existing cognitive 

problems and can be excluded with simple blood tests. Autoimmune conditions such 

as voltage gate potassium channel (VGKC) complex encephalitis may also cause an 

amnestic syndrome; these syndromes are typically much more rapid, and 

accompanied by other factors, including seizures40. The clinical phenotype of VGKC-

complex encephalitis continues to expand and it is possible that some forms might 

mimic more typical amnestic AD. Antibodies against AMPA, GABA, mGluR5 and 

NMDA receptors can also result in cognitive syndromes and in some cases this may 

broadly resemble the progressive cognitive decline of amnestic AD41.           

 

Infectious conditions such as herpes simplex encephalitis, syphilis or HIV can all 

cause dementia but rarely closely mimic AD25. Individuals with temporal lobe 

epilepsy may present with an amnestic syndrome, however the course is unlikely to 

follow the insidiously progressive course as seen in AD. Mass lesions of the mesial 

temporal lobes can cause a progressive amnestic syndrome although this is usually 

easily resolved with suitable brain imaging.   

 

Vascular cognitive impairment can resemble AD clinically resulting in a progressive 

memory led syndrome. Although imaging can be useful to assess the burden of 
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vascular disease, concomitant vascular disease is commonly seen in, and can 

compound AD. Microhaemorrhages can be a marker of both amyloid pathology and 

vascular disease although their distribution can be helpful in differential diagnosis42.    

 

The major mimics of AD are other neurodegenerative diseases including dementia 

with Lewy bodies (DLB), frontotemporal lobar degeneration (FTLD) and a range of 

rarer diseases including argyrophilic grain disease.   

 

DLB is the 2nd commonest neurodegenerative disease and at least in its classical 

form is characterized by distinct clinical features that are rarely seen in AD43. Thus 

core clinical features of DLB are: (1) prominent fluctuations in cognition and 

alertness; (2) well-formed recurrent visual hallucinations; and (3) features of motor 

Parkinsonism44. Other supportive features include hallucinations in other modalities, 

dysautonomia, recurrent falls and rapid eye movement (REM) sleep disorder. 

However the most common presenting feature of DLB is still impairment of episodic 

memory43, and the prevalence of the core and supportive features, in pathologically 

confirmed DLB cases is still relatively low43, 45. Moreover a large proportion of 

pathologically confirmed DLB cases also have co-existing amyloid plaque pathology 

at autopsy45 potentially confusing the use of amyloid specific biomarkers.  

 

Frontotemporal dementia (FTD) is a clinically and pathologically heterogeneous 

group of neurodegenerative diseases. FTD refers to the clinical syndrome that is 

underpinned by the pathological entity of frontotemporal lobar degeneration 

(FTLD).  A significant proportion of FTD cases are caused by autosomal dominant 

genetic mutations (MAPT, GRN, C9ORF72) but the majority are sporadic 

diseases46 due to a range of proteinopathies. Clinically, FTD broadly presents with 
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either a behavioural syndrome (behavioural variant FTD; BvFTLD) or a 

progressive language syndrome (primary progressive aphasia; PPA). PPA can in 

turn be divided into progressive non-fluent aphasia (PNFA), semantic dementia (SD) 

and logopenic aphasia (LPA) which each have distinct but often overlapping 

linguistic profiles 32. However, some individuals can present with an insidious 

decline of episodic memory, for example those with mutations of the tau gene47 who 

also have prominent hippocampal atrophy on brain imaging. Individuals with 

mutations in the C9ORF72 gene can have prominent episodic and topographical 

memory impairment48.      

 

The differential diagnosis of posterior cortical atrophy offers its own challenges. 

Individuals frequently present to opticians and ophthalmologists reporting visual 

problems and it can take some time to recognise that the anterior visual pathways 

are blameless. While most cases of PCA are caused by Alzheimer’s disease, DLB, 

corticobasal degeneration, and prion diseases can present with an insidiously 

progressive visual syndrome27.  

  

1.1.5   Neuropathology of AD  

1.1.5.1   Macroscopic pathology 

At autopsy the AD brain typically weighs ~10% less than in healthy age matched 

controls49 with the temporal lobes weighing approximately 50% less. Symmetrical 

cortical atrophy is seen, with greatest involvement of the medial temporal lobes 

(Figure 1.1), beginning in the entorhinal cortex and spreading to the hippocampus50.  
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Figure 1.1 Macroscopic pathological appearance in advanced amnestic AD showing 

marked temporal parietal and occipital atrophy of the left cerebral hemisphere. 

Figure 1.1(a) left hemisphere, midline sagittal section; (b) left hemisphere sagittal 

section; (c) left hemisphere demonstrating hippocampal atrophy and frontal lobe 

atrophy; (d) left hemisphere coronal section parietal lobe; (e) left hemisphere sagittal 

section occipital lobe (images courtesy of Dr Tammaryn Lashley, Queen Square 

Brain Bank).  
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Figure 1.2 Macroscopic pathological appearance in advanced posterior cortical 

atrophy showing marked temporal parietal and occipital atrophy of the left cerebral 

hemisphere with atrophy most marked in the occipital lobe. Figure 1.2(a) left 

hemisphere, midline sagittal section; (b) left hemisphere sagittal section; (c) left 

hemisphere demonstrating hippocampal atrophy and frontal lobe atrophy; (d) left 

hemisphere coronal section parietal lobe; (e) left hemisphere sagittal section occipital 

lobe (images courtesy of Dr Tammaryn Lashley, Queen Square Brain Bank).  
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1.1.5.2   Microscopic Pathology 

 

“In the centre of an otherwise almost normal cell there stands out one or  

several fibrils due to their characteristic thickness and peculiar impregnability 

…numerous small miliary foci are found in the superior layers.  

They are determined by the storage of a peculiar material in the cortex”  

A. Alzheimer, 1907 

 

The pathological hallmarks of AD are: extracellular amyloid plaques (Figure 1.3a); 

intracellular neurofibrillary tangles containing hyperphosphorylated tau (Figure 

1.3b)51 as depicted by Alzheimer (Figure 1.4) and neuropil threads, which are 

dendritic and axonal deposits of tau and phosphorylated tau. There is often  

associated neuroinflammation with microglial activation52 and amyloid deposition 

within blood vessels (cerebral amyloid angiopathy) and evidence of neuronal and 

synaptic loss. Amyloid and Tau containing lesions have a broadly predictable 

pattern of distribution, with amyloid plaques found throughout the cortex but tau 

containing lesions are typically seen in the limbic and association cortices and follow 

a predictable pattern of spread50, 53, 54 which is poorly correlated with amyloid 

deposition.  As will be discussed in section 1.3, CSF measures of Aβ1-42 (reduced in 

AD), and elevation of total tau (T-tau) and phosphorylated tau (P-tau) are core 

biomarkers of AD that are thought to reflect these core pathologies.  
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 A      B      C 

  

Figure 1.3 A Amyloid plaque from an H&E stained section of frontal cortex; B Tau 

tangle from an H&E stained hippocampal pyramidal neurone; C Silver stained slide 

showing both plaque and tangle pathology.  Reproduced from Serrano-pozo et al50.  

 

Other pathological findings such as vascular disease, TDP-43 pathology, 

hippocampal sclerosis and Lewy Body Disease often co-exist, however their 

relationship with AD pathology is unclear and their relative contribution to 

cognitive impairment in any given individual is virtually unknown55.  
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Figure 1.4  Sketch of neurofibrillary tangles in the advanced stages of AD, by A 

Alzheimer, published in Zeitschrift für die gesamte Neurologie und Psychiatrie: 

Originalen, 1911. 

1.1.5.3   Neuropathological Criteria  

Pathological examination remains the ‘gold standard’ for AD diagnosis and a 

number of published neuropathological staging methods are in use. Braak criteria54 

and Consortium to Establish a Registry for Alzheimer's disease (CERAD) criteria56 

were designed to quantify the burden of amyloid containing neuritic plaques. 

Subsequent Thal criteria53 recognised that amyloid exists in a number of different 

forms, not exclusively the neuritic plaques seen in advanced disease and that 

deposition occurs in a hierarchy of brain regions according to a distinct sequence 

(Figure 1.5).  Braak criteria for neurofibrillary pathology57 are used to stage Tau 

pathology (Figure 1.6). These systems are now combined in the National Institute of 

Aging NIA consensus neuropathological criteria for AD55. 
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Figure 1.5  Thal Amyloid beta staging in Alzheimer’s 

disease. Phases of β-amyloidosis: Phase 1 is 

characterized by neocortical Aβ deposition only 

(Neocortex is black); Phase 2 demonstrates additional 

allocortical Aβ deposition; Phase 3 shows additional 

Aβ deposits in diencephalic nuclei (red arrows) and the 

striatum; phase 4 shows additional Aβ deposits in 

distinct brainstem nuclei (red arrows), and phase 5 in 

the cerebellum and additional brainstem nuclei (red 

arrows)53.  
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Figure 1.6 Braak and Braak tau stages of cortical neurofibrillary pathology.   

Not included for copyright reasons 
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It is not clear whether the pattern and distribution of microscopic AD pathology 

reliably distinguishes typical and atypical forms of AD since any case series have 

been small, and have provided conflicting conclusions27.   

 

1.1.6   AD pathophysiology: The Amyloid Cascade Hypothesis 

 

The amyloid cascade hypothesis is the preeminent hypothesis for AD pathobiology, 

placing amyloid precursor protein (APP) processing and production of toxic β-

amyloid (Aβ) species as a key stage in the pathogenic process. Accumulation of 

amyloid moieties—initially in the form of toxic, soluble oligomers and latterly 

deposited in the cortex as plaques—is arguably the priming event that subsequently 

leads to a cascade of events including synaptic dysfunction, microglial and astrocytic 

activation, abnormal tau deposition and neuronal death, atrophy and ultimately to 

cognitive symptoms and dementia60.  The hypothesised mechanisms for amyloid 

misprocessing are depicted in Figure 1.7.  
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Figure 1.7 The two major pathways of APP (amyloid precursor protein) processing: 

(1) The non-amyloidogenic pathway. APP can be cleaved by the enzyme alpha 

secretase (consisting of the a disintegrin and metalloprotease (ADAM) enzymes) to 

produce sAPP-alpha (sAPPα) and the shorter C83 fragment. APP not cleaved by 

this route can be processed by the (2) amyloidogenic pathway. APP is cleaved by 

beta secretase (BACE1) to produce sAPP-beta (sAPPβ), leaving behind the C99 

fragment which become the subject of cleavage by the gamma-secretase complex, 

composed of presenilin 1 or 2, nicastrin, anterior pharynx defective (APH-1) and 

presenilin enhancer 2 (PEN2). This process can produce fragments of varying 

length, but mainly Aβ1-40, but also the highly amyloidogenic Aβ1-42. Image 

reproduced from LaFerla et al 61. 

 

 

 

The amyloid cascade hypothesis drew heavily on emerging knowledge of AD 

genetics and in particular instructive cases of familial AD (FAD), discussed later in 
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this chapter. The discovery that a mutation in the gene coding for the protein APP, 

the protein which is sequentially cleaved by the -APP cleaving enzyme (BACE) and 

gamma secretase was a seminal observation that led Hardy and Higgins to describe 

the amyloid cascade hypothesis.  This was further supported by the observation that 

mutations in the presenilin genes, which code for proteins involved in the active 

catalytic sites of gamma secretase led to AD. Since then another mutation in the 

APP gene which results in reduced BACE cleavage has been shown to be protective 

against developing AD62. The stable isotope-labeling kinetic (SILK) experiments, 

which allow for measurement of synthesis and clearance of amyloid, have 

demonstrated a modest reduction in amyloid clearance in sporadic late onset AD63 

providing in vivo evidence for altered amyloid metabolism.  Whilst this hypothesis 

explains many aspects of current knowledge of AD pathology, it is incomplete. For 

example, it is not yet clear how amyloid deposition and tau accumulation are related, 

exactly how neuronal death occurs, whether inflammation in AD is protective, or 

harmful or why therapies altering amyloid production or clearance have failed64.  

 

1.1.7   Genetic determinants and risk factors 

1.1.7.1   Familial Alzheimer’s disease 

A minority of individuals develop AD as a result of inheriting dominant pathogenic 

mutations of the presenilin 1 or 2 (components of γ-secretase) or APP genes65. As 

mentioned previously, these mutations result in alterations in amyloid processing 

either through altered γ-secretase function or because of mutations in APP that do 

not allow normal γ-secretase cleavage66.  Numerous mutations in these genes have 

been recognised to cause AD with a penetrance of 100%, with affected individuals 

generally presenting in their 30s to 50s67. These account for less than 1% of cases of 
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AD overall66, but are over-represented in young-onset cases. In individuals 

presenting with symptoms at <50 years of age, sporadic AD is extremely rare68. 

Similarly individuals with Down’s syndrome (Trisomy 21) develop AD, typically in 

their 30-50s because of over-expression of gene products located on chromosome 21. 

APP is a gene product of chromosome 2169, but so too are a number of pro-

inflammatory mediators such as S100β and a number of cytokines known to cause 

microglial activation which may explain why the disease course is often more 

aggressive in this group70.      

 

1.1.7.2   Genetic risk factors for sporadic Alzheimer’s disease 

In individuals who develop AD without a dominantly inherited familial mutation, a 

number of susceptibility genes have been detected. The apolipoprotein E 4 allele 

(APOE4) is a major risk factor for AD71 and although its role remains incompletely 

understood, the protein APOE is a major cholesterol transporter which facilitates 

lipid transport and supports cell repair within the brain72. APOE influences CSF 

Aβ1-42 in asymptomatic carriers and is dependent on the dose of APOE4 allele73 74, 

75. Furthermore, it is associated with neural network connectivity disruption on 

fMRI in individuals without preclinical fibrillar amyloid deposition on PIB PET76 

and with altered patterns of cerebral blood flow on H2150 PET scans in healthy 

college-aged individuals77, indicating that it may have a biological role in AD 

pathology that predates amyloid deposition, widely regarded as one of the earliest 

events in AD pathophysiology78.  

 

Genome wide association studies (GWAS) allow for a very large number of genes to 

be tested in an unbiased way and several large studies have explored genetic risk 

factors in AD. Nine genes (ABCA7, BIN1,CD33, CLU, CR1, CD2AP, EPHA1, 
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MS4A4, PICALM) account for about 35% of genetic risk of sporadic AD79, and a 

recent multicentre meta-analysis of GWAS data for over 70,000 individuals has 

identified more than a dozen others. These genetic risk factors strongly implicate 

four major pathways in AD pathogenesis: the innate immune system; endosomal 

vesicle recycling; cholesterol metabolism and protein ubiquitination.  

 

Recently, the gene coding for TREM2, which is expressed widely in the brain, 

particularly the white matter, has been identified using exome sequencing as a 

susceptibility gene in sporadic AD80. TREM2 has a role modulating immune 

responses in macrophages and dendritic cells—further evidence supporting 

involvement of the innate immune system.  

 

These pathways may help to explain some of the phenotypic diversity in AD and 

may in turn lead to new biomarker discoveries and provide new drug targets. Whilst 

the amyloid cascade hypothesis may be correct, AD pathophysiology is clearly much 

more than just accumulation of amyloid alone  and involves multiple biological 

pathways81, 82.   

 

1.1.8   Alzheimer’s disease progression  

 

The temporal relationship of the pathological and clinical events that occur in AD, 

and how they relate to each other has been studied from a number perspectives: 

using information gleaned from neuropathological studies, familial studies and 

longitudinal ageing studies. It is now widely acknowledged that the 

pathophysiological events in AD occur in a specific sequence with the earliest event, 

probably amyloid deposition, occurring years and possibly decades before the onset 
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of clinical symptoms. This hypothetical model, summarised by Jack and colleagues83, 

makes predictions about how biomarker changes might reflect these 

pathophysiological changes and so these are also considered briefly here but 

discussed fully in the second part of this introduction.   

 

1.1.8.1   Current evidence for earliest changes in AD 

 

1.1.8.1.1  Neuropathological studies 

As most neuropathological studies in AD are inevitably carried out in the latest 

stages of the disease, there are limitations to what AD neuropathological evidence 

can say about the earliest stages of disease and how it evolves. However, in the rare 

cases where antemortem tissue is available for examination (for example in cortical 

brain biopsy or tissue obtained during shunt insertion for hydrocephalus) there is 

already evidence of established amyloid and tau pathology at the time of biopsy in 

individuals who developed clinical AD within 4 years84. No subjects had evidence of 

Tau pathology without amyloid pathology and few had amyloid pathology without 

tau aggregation suggesting that both plaques and tangles predate clinical AD by 

many years.  

 

1.1.8.1.2   Familial Studies 

Earlier in this chapter the autosomal dominant genetic mutations that inevitably 

lead to clinical AD were introduced. In this group, age of symptomatic onset can be 

accurately predicted by age of onset in one’s affected parent67.   By tracking 

presymptomatic biomarker changes in mutation carriers, this group have provided 

an invaluable source of information about the earliest changes in AD. In the 1990s 

Fox and colleagues demonstrated that structural MRI changes, a surrogate marker 

of neurodegeneration, can predict age of clinical onset by at least 2 years85, 86.   More 
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recently cross-sectional group data from the Dominant Inherited Alzheimer’s 

Disease Network (DIAN) has been published. This is a large multicentre, 

multimodal observational study of individuals at risk of AD by virtue of carrying 

one of these autosomal dominant mutations87. In mutation carriers CSF amyloid 

changes were demonstrated 20 years before clinical onset. Brain amyloid deposition, 

CSF tau elevation and MRI hippocampal atrophy were seen 15 years before 

symptoms onset. Regional glucose hypometabolism on FDG-PET changes occurred 

10 years before symptoms. These results provide support for the idea of a cascade of 

events leading to neurodegeneration many years before the individual is clinically 

affected. Importantly, no mutation carriers developed clinical symptoms without 

having evidence of brain amyloid deposition on amyloid PET scanning, supporting 

the idea that amyloid deposition is both critical for AD and occurs very early on in 

AD pathobiology.  

 

It is also important to acknowledge that there may be important differences between 

familial and sporadic AD. The pattern of brain amyloid deposition seen on amyloid 

PET differs between familial and sporadic AD88 and the pathophysiology of amyloid 

accumulation is likely to be different, with relative overproduction of pathological 

Aβ moieties being seen in familial AD89 and failure of clearance of these species 

being a feature of sporadic disease90. Interestingly, the DIAN study, composed 

mainly of presenilin (PSEN) mutation carriers, suggests FAD mutation carriers 

have early changes in CSF amyloid levels not seen later in the disease, which may 

occur more than 20 years before clinical onset of dementia. This finding has also 

been observed in a young Colombian cohort of individuals with PSEN1 mutations91. 

The significance of this finding and its relevance are yet to be established.  
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1.1.8.1.3   Longitudinal studies in ageing and sporadic AD  

Large-scale, multicentre prospective longitudinal studies such as the Alzheimer 

Disease neuroimaging initiative (ADNI; full description provided in general 

methods) and the Australian Imaging Biomarkers and Lifestyle (AIBL) study have 

used large numbers of subjects at various stages of health or disease to understand 

the longitudinal course of AD. When considering the earliest biological changes in 

AD, the study of apparently cognitively healthy control subjects is of particular 

interest. Many of these studies have confirmed that around one-third of elderly 

individuals will have either a CSF73 or amyloid load on amyloid PET imaging92 

within the AD range. Whilst it is not yet known whether these individuals 

developed clinical AD, it implies that a subgroup have early asymptomatic amyloid 

pathology, occurring many years before symptoms. Furthermore, healthy controls 

with evidence of amyloid pathology have accelerated rates of atrophy (i.e. 

neurodegeneration)93, in keeping with there being an inverse relationship between 

[11C]-PIB uptake and hippocampal volume in ADNI controls94. Using serial PET 

imaging, Villemagne et al95 have calculated rates of amyloid deposition for an 

individual over their disease course, estimating that it takes 12 years for a healthy 

individual with low amyloid deposition to reach the threshold for PIB PET 

positivity and a further 19.2 years to develop clinical AD. Taken together, these 

results suggest that the opportunity to detect the earliest AD biomarkers may 

extend back as far as middle age. 

 

1.1.9   Current hypothetical models of biomarker changes  

 

Based on the amyloid cascade hypothesis and the syntheses of information gleaned 

from neuropathological, familial and observational studies of AD, in 2010 Jack and 
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colleagues published a hypothetical model to describe the temporal relationship of 

the pathological events in AD83. This model relates the disease stages of AD to 

biomarker changes that occur in a temporally ordered manner that can be depicted 

as a series of non-linear sigmoid shaped curves predating the onset of symptoms by 

many years (Figure 1.8). The earliest proposed biomarker changes—in keeping with 

the amyloid cascade hypotheses—are decline in Aβ1-42 in CSF or deposition of 

fibrillar amyloid demonstrated using PET imaging. Amyloid accumulation is then 

followed by synaptic dysfunction, identified by FDG-PET and functional magnetic 

resonance imaging (fMRI); neuronal injury evidenced by CSF T-tau or P-tau; and 

then structural brain changes demonstrated by atrophy on structural MRI. 

Importantly, all these changes predate cognitive decline. Since its first publication, 

and in light of new data, this model has undergone various modifications, including 

acknowledgement that tau pathology may precede brain amyloid deposition78. A 

recent study of cognitively normal individuals96 has shown that neurodegeneration 

may occur without evidence of amyloid deposition on PIB PET. Possible alternative 

explanations are that PIB PET scans could be falsely negative, as they do not 

measure the more toxic soluble form of Aβ97, that the threshold for determining that 

a test is abnormal may vary between tests, or that a degree of neurodegeneration 

may occur in the context of healthy ageing that is indistinguishable, perhaps at least 

in its earliest stages, to AD. 
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Figure 1.8  The Jack model of AD, a hypothetical model describing the temporal 

relationship of biomarker changes in AD adapted by Sperling et al60. MCI: mild 

cognitive impairment; CSF: cerebrospinal fluid; FDG: fludeoxyglucose; PET: 

positron emission tomography.   

 

1.1.10   Diagnostic Criteria 

 

The original diagnostic criteria for AD were the National Institute of Neurological 

and Communicative Disorders and Stroke (NINCDS) and the Alzheimer’s Disease 

and Related Disorders Association (ADRDA) criteria, known as the NINCDS-

ADRDA criteria98. They took account of an individual’s clinical history and 

examination, neuropsychological profile and laboratory findings and provided good 

sensitivity and specificity of around 81% and 70% respectively99 when validated 

using pathology proven cohorts. However these criteria had several limitations. To 

meet criteria for AD they required an individual to be demented, at which stage 

significant neurodegeneration has already occurred. They did not take account of 

atypical AD presentations, excluding people with visual, language led or behavioural 

dysexecutive forms of AD; they had a lower age limit of 40 and upper age of 90 at 
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symptom onset; they did not take account of genetics and importantly they did not 

incorporate biomarkers. Over subsequent decades the role of imaging and fluid 

biomarkers has become clearer. In 2007 the diagnostic framework changed, moving 

from a clinicopathological to a clinicobiological model of AD where revised criteria 

incorporated biomarkers. These biomarkers are discussed fully later in this chapter 

but in brief structural MRI, molecular and functional imaging and CSF biomarkers 

are now used to support a diagnosis of probable AD in the prodromal phase of 

disease100.  The role of these biomarkers is discussed later in the context of the most 

recent revised AD criteria. Later criteria also recognize atypical non-amnestic 

presentations of AD.  

 

 

1.2   Biomarkers for Alzheimer’s disease   

 

In the first part of this introduction an overview of the epidemiological, pathological, 

pathophysiological and clinical features of AD is given. The author also hopes to 

have alluded to the limitations of current knowledge and some of the practical 

problems facing clinicians in the diagnosis and prognosis of AD. In this section a 

case is made for using biomarkers as objective measures of AD pathobiology to help 

deal with these challenges. The following questions are considered. What is a 

biomarker? What would an ideal biomarker be capable of? What biomarkers are 

currently available? How are biomarkers currently used in clinical practice? In the 

final section CSF is discussed specifically, as one of the most promising sources of 

biomarkers and the focus of this thesis.         

 



 47 

 A biomarker is a characteristic that can be objectively measured and evaluated as an 

indicator of normal biological or pathogenic processes or pharmacological responses 

to a therapeutic intervention101. An ideal biomarker is reproducible, stable over time, 

widely available and reflects directly the relevant disease process102. For AD, 

biomarkers may be used to (1) distinguish different aspects of the underlying 

pathology; (2) detect presymptomatic pathological changes; (3) predict decline or 

conversion between clinical disease states(4); and/or monitor disease progression 

and response to treatment.  

 

It is hoped that eventually biomarkers will facilitate presymptomatic detection of 

AD. This is an important challenge for the field since available biomarker evidence 

suggests that AD is a continuum whereby the earliest stages of AD pathophysiology 

go unnoticed for many years. By the time cognitive symptoms become apparent, 

significant neurodegeneration has already occurred and any potential therapeutic 

agents are less likely to be effective103. Biomarkers of presymptomatic AD would 

allow testing of “the right drug at the right time”104.  However, before the field is in 

a position to accurately diagnose and monitor presymptomatic AD, a thorough 

understanding of which biomarker modalities are most useful in symptomatic 

disease and how they are best measured, validated and implemented into practice is 

needed.  

 

In this section an overview of currently available biomarkers will be given, covering 

imaging and fluid biomarkers. The focus will then move to fluid biomarkers for AD, 

and specifically CSF. The latter section will discuss: currently available CSF 

biomarkers; emerging CSF biomarkers; confounders in CSF biomarker 

measurement; practical challenges of implementing CSF biomarkers into practice; 
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how biomarkers are incorporated into consensus criteria and finally the case for 

further CSF biomarker research.    

 

1.2.1   Currently Available Biomarkers 

 

1.2.1.1   Imaging Biomarkers  

Modern imaging techniques include structural scans (magnetic resonance imaging 

scans (MRI) and computerized tomography (CT)) and functional techniques 

(detailed later in this chapter) are attractive biomarkers as they produce high quality 

images, can be used to compare subjects and measure changes within individuals.   

 

1.2.1.1.1   Structural MRI 

Structural brain imaging is recommended for all patients being investigated for 

dementia according to UK, European and US guidelines105. Brain imaging is 

imperative for excluding ‘surgical lesions’ such as space occupying lesions, but is 

increasingly used to aid in a positive diagnosis of a specific cause of dementia.  

Whilst CT can provide useful information, MRI is generally well tolerated and 

safe106 and provides good grey/white matter differentiation without the need for 

ionizing radiation.  MRI in particular can usefully assess vascular damage, other 

causes of white matter signal changes with a wide variety of causes and spongiform 

and gliotic changes as seen in prion disease.  The pattern of regional brain atrophy 

has positive predictive value for different dementias and is incorporated into 

diagnostic criteria for several dementia syndromes105. Atrophy can be assessed using 

simple visual rating scales such as the Scheltens score for measuring medial 
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temporal lobar atrophy107 or a range of more complex quantitative manual or 

automated techniques.  Serial imaging – particularly with MRI which provides 

superior grey white matter differentiation without radiation exposure is widely used 

as safety and outcome measures in clinical trials108, with rates of atrophy considered 

as surrogate markers for neurodegeneration109. Whole brain atrophy and 

hippocampal atrophy measures have been most widely used to track AD 

neurodegeneration110 whilst a number of other techniques have been employed111. 

 

The Boundary Shift Integral (BSI) is a semi-automated method devised to measure 

volumetric change of a segmented area on matched pairs of structural T1 MRI 

scans. Following registration (digital matching of serially acquired scans) 

measurement of the BSI allows for measurement of the change in the boundary of 

the structure of interest, which is a more accurate estimation of volumetric change 

than simple subtraction112. The method has been adapted to measure changes in 

ventricular and hippocampal volume and fully automated methods have also been 

developed113.      

 

1.2.1.1.2   Functional Imaging 

Positron emission tomography (PET) using 18-F-flourodeoxyglucose (FDG) and 

single photon emission tomography (SPECT) using tracers such as 99mTc-

hexamethylpropyleneamine (HMPAO), allows for visualisation and quantification of 

patterns of brain hypometabolism and hypoperfusion which show characteristic 

patterns that differ in different dementia syndromes114. FDG PET tracer uptake is 

widely used as a surrogate marker of synaptic function115. Dopamine transporter 

scanning can be used to determine central dopaminergic depletion, as seen in DLB, 
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Parkinson’s disease dementia and is incorporated in diagnostic criteria for these 

conditions.  

 

1.2.1.1.3   Functional MRI   

Functional MRI (fMRI) measures alterations in

 

regional cerebral blood flow using a 

linked blood–oxygen-level-dependent (BOLD) signal change in

 

the magnetic 

properties of cerebral venous blood116. 

 

fMRI techniques can measure intrinsic 

fluctuations in BOLD signal in the waking brain at rest (‘resting state’ or rsfMRI) or 

BOLD changes in response to articular stimulus or task in the scanner (‘activation’ 

fMRI). fMRI is an attractive biomarker since it is non-invasive, can be carried out at 

the same time as structural MRI117 and has the potential ability to probe the 

functional integrity of brain networks early in the disease. However, at  present 

fMRI techniques require

 

considerable expertise and a dedicated infrastructure to 

implement and analyse, which limits their widespread application as biomarkers.  

  

1.2.1.1.4   Molecular PET Imaging 

 

 

Amyloid PET imaging provides a means of visualising fibrillar amyloid during life, 

and thus diagnose amyloid pathology in the presymptomatic phase of the disease. 

The first tracer to bind amyloid (11C-PIB) was developed at the University of 

Pittsburgh but clinical utility is limited by the tracer’s relatively short half-life (~20 

minutes)118. Since then a number of 18F amyloid tracers with longer half lives have 

been developed, and to date three have been licensed including florbetapir (Amyvid, 

Eli Lilly and Company), florbetaben (Neuraceq, Piramal Imaging) and flutemetamol 

(Vizamyl, GE Healthcare). There is now evidence to show that amyloid PET 

readings are correlated with plaque burden at autopsy119-121. Its routine use is 

http://www.medscape.com/viewarticle/813222
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however restricted mainly due to cost and availability. Amyloid PET is now licensed 

for use in clinical practice in the United States and in Europe to aid diagnosis in 

specific clinical scenarios. Good practice guidelines issued by the Alzheimer 

Association recommend that it may be used in young onset disease (onset before age 

65), persistent or unexplained mild cognitive impairment or in cases with an atypical 

clinical course or with mixed aetiology122. Amyloid PET can, on a research basis 

provide an independent means of validating CSF measures of amyloid pathology.   

However there are limitations; the substrate for tracer binding is the tertiary beta-

pleated sheet conformation of fibrillar amyloid, and so non-plaque pathology, or 

plaques containing less fibrillar amyloid will not necessarily stain positive. It is not 

entirely clear what constitutes a positive amyloid scan; scans can be interpreted 

visually or using a fully automated protocol which compares intensity in the 

cerebellum or pons, generating the standardized uptake value ratio (SUVR). 

Amyloid accumulation and amyloid positivity on PET scan is thought to occur ~15-

20 years before symptom onset, after which point the PET imaging findings remain 

static, suggesting that as a biomarker it will have limited capacity to detect disease 

modification, except perhaps direct amyloid clearance. A recent study has suggested 

that amyloid PET may be less sensitive than CSF amyloid measures in early 

disease123. Finally, a significant proportion of apparently healthy elderly individuals 

(perhaps 1 in 3) have a positive amyloid scan, the significance of which is not yet 

clear97, 124.  

 

A number of Tau PET tracers have been developed with one, 18 F T807 (AV1451) 

reaching phase 2 trials as a diagnostic tracer in vivo125. This tracer binds tau 

isoforms found in AD, and can successfully differentiate between AD and healthy 

controls in vivo. It is however not yet clear whether it can distinguish AD from 
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other primary tauopathies125. It is also not clear how in vivo tau PET measures 

correlate with CSF tau or post mortem tau pathology.  However it remains an 

attractive potential biomarker because it has potential to diagnose AD 

neurodegeneration prior to symptom onset, track disease progression126 with case 

reports suggest it may have value in explaining some of the phenotypic diversity 

within AD34.   

 

1.2.1.2   Fluid Biomarkers  

Biofluids such as urine, blood, saliva, and cerebrospinal fluid are attractive 

biomarkers for a number of reasons: large numbers of tests can be carried out on a 

single sample; different techniques can be applied to the same sample; large numbers 

of individuals’ samples can be batched and analysed concurrently and they can be 

frozen and reanalysed many years later as new assays are developed. Ongoing 

techniques used in biomarker discovery range from hypothesis driven techniques 

using commercially developed enzyme-linked immunosorbent assays (ELISAs) to 

more experimental hypothesis generating ‘omics’ techniques using mass 

spectrometry.   

 

An ideal fluid biomarker for AD would detect early neuronal dysfunction in the 

brain many years before neurodegeneration or symptom onset and would spill over 

the blood brain barrier so that it could be measured in more accessible fluids such as 

blood, urine or saliva. It would be present at stable levels, without diurnal variation, 

and not be influenced by handling practices during collection. As yet, no such 

biomarker exists. In this section an overview of available clinical and research 
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biomarkers is provided, with a discussion of their potential advantages and their 

limitations.  

1.2.1.3   Blood and urine biomarkers  

Fluids that are most easily acquired are the most desirable from the perspective of 

patient acceptability and tolerability and if they are to be rolled out to primary and 

secondary care. For this reason there is a great deal of interest in blood and urine 

biomarkers for AD. However to date reliable blood and urine biomarkers have been 

elusive and none are currently used in clinical practice. A number of blood based 

biomarkers have been proposed but results have been difficult to validate in 

independent studies127 and none is measured routinely in either clinical practice or 

on a research basis. There are several possible reasons for this. Assuming many of 

the processes occur only on the brain, the blood brain barrier is extremely effective 

at preventing traffic of proteins between CSF and blood so any brain derived 

proteins or metabolites are likely to be present in extremely small quantities128, and 

whilst the blood brain barrier may be compromised in AD, the extent to which this 

occurs in AD is still not clear128; if there is a leak into peripheral fluids any 

biomarkers may become bound to larger proteins in peripheral blood and are 

therefore not detectable; proteins may be rapidly degraded by the innate immune 

system in peripheral blood or metabolized by the liver128 and finally proteins of 

interest such as amyloid may also be generated in peripheral tissue and so blood 

levels may not necessarily reflect brain metabolism129. It is also possible that other 

potential confounders such as seasonal variation, activity and medical co-morbidities 

may influence measurement128.   
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Despite these potential problems and limitations, some studies have reported 

differences in concentration between AD and controls in more than 2 independent 

cohorts using ELISA based assays. These include serum APOE concentrations130 131, 

132 which were found to be lower in AD than healthy controls;  β-2 Microglogulin133, 

134 and brain natriuretic peptide concentrations132 which were reported to be higher.  

The neurofilament light protein can be measured in plasma, and plasma and CSF 

levels seem to correlate closely135. As CSF NFL is an emerging marker of disease 

progression in AD and other neurodegenerative diseases136 this may yet prove to be 

a promising blood biomarker for disease progression. New technical developments 

including an ultrasensitive immunoassay for Total Tau hold promise that differences 

between plasma tau in AD and controls can be reliably detected 137.  

 

In urine, concentrations of brain derived proteins and metabolites are likely to be 

even lower than in blood and to date no biomarkers have been validated. However 

the development of more sensitive immunoassays and other mass spectrometry 

based assays mean that this may change138. 

 

Salivary biomarkers are also of great potential utility because of ease of acquisition 

and participant tolerability. Like urine, biomarker concentrations are likely to be 

low, but already differences in salivary tau measured using targeted mass 

spectrometry have been demonstrated139.  
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1.3   Cerebrospinal Fluid   

 

Although CSF is somewhat more difficult to acquire than blood or urine, it has an 

important role as a source of AD biomarkers because of its close proximity to, and 

intimate relationship with, the central nervous system. In this section the normal 

physiology of CSF production, an outline of why it is important, how it is sampled 

and analysed and what role each of the commonly measured biomarkers play in 

diagnosis and prognostication will be discussed.   

 

1.3.1   Normal physiology and function of CSF  

 

CSF is a clear colourless and translucent fluid, which lies within the subarachnoid 

space of the brain and spinal cord between the arachnoid mater and the pia mater.   

Approximately 500ml is produced in 24 hours (~20mL produced per hour) and there 

is around 150ml around the brain and spinal cord at any given time with 

approximately 25ml in the ventricles. CSF is produced within the choroid plexus of 

the lateral, 3rd and 4th ventricles of the brain. The choroid plexus consists of finger-

like projections of pia mater covered by ependymal cells where CSF secretion occurs 

by a combination of active transport and filtration. CSF passes through the 

ventricular system and along the cranial axis propelled by pulsatile waves generated 

by pulsations from cerebral and spinal blood vessels, constantly moving following 

the gradient of CSF pressure140. It is then reabsorbed through arachnoid villi 

adjacent to the transverse sinus, other major veins and around the cranial nerves 

where it is reabsorbed into blood141. More recently an alternative reabsorption 

pathway has been described142, suggesting that the brain is supplied by a glymphatic 
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system that allows waste products to diffuse along a series of perivascular channels 

from CSF into the vascular system.  

In normal human physiology CSF and blood are separated by the blood brain 

barrier, tightly fused brain capillary endothelial cells and astrocytes143 which permit 

transport of small lipid soluble molecules with a mass of less than 400-600 Daltons, 

but prevent larger or insoluble molecules from moving between these spaces144.  

CSF has several important roles: it acts a mechanical buffer to protect the cerebral 

cortex; it provides immunological support to the brain and transports nutrition 

(glucose)24 and allows for the removal of waste products145.  

 

1.3.2   Why is CSF of interest in Alzheimer’s disease?   

 

Cerebrospinal fluid is in close proximity to the brain and so pathological processes 

occurring in the brain and central nervous system may be reflected in the CSF. For 

example in central nervous system (CNS) infections such as meningitis or 

encephalitis, there may be evidence of white blood cells, increased protein levels, or 

it may be possible to culture bacteria or viruses. In CNS malignancy it may be 

possible to visualize malignant cells directly, or if there is obstruction of CSF flow 

due to a tumour then CSF protein levels may be elevated146.  

In neurodegenerative disease, pathological and metabolic changes are also detectable 

in CSF127. Brain derived proteins and metabolites are present in greatest 

concentration in CSF because of its proximity to the brain and because it is not 

subject to the same extracerebral confounding factors as blood and urine: the blood 

brain barrier; the peripheral immune system; large plasma proteins which bind 
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smaller molecules. CSF is therefore the most promising biofluid for AD and where 

most progress has been made127 and will be the major focus of this current work.  

 

1.3.3   Sampling CSF 

 

CSF is usually collected by lumbar puncture, although it can also be extracted 

directly from the cerebral ventricles during open neurosurgery or through an 

external ventricular drain. LP is the safest and least invasive means of collecting 

CSF which involves inserting a narrow bore needle between the lumbar vertebrae, 

through the ligamentum flavum and dura mater and into the subarachnoid space 

allowing fluid to drain freely for collection. LP is usually carried out below the 

spinal level at which the spinal cord terminates and fluid is drawn from the lumbar 

cistern, typically at the level of lumbar vertebrae L3/L4, L5/L5 or L5/S1. LP can be 

performed sitting or supine and in most cases is associated with low frequency of 

serious complications147 (Figure 1.9). The most common complications are post 

lumbar puncture headache (5-10%) and back pain147 but rarely spinal haematoma, 

meningitis, sixth nerve palsy, hearing impairment or brain herniation can occur147-

149. Local anaesthetic is used to anaesthetise the skin and subcutaneous soft tissues.  
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Figure 1.9   The author carrying out a diagnostic lumbar puncture according to the 

standard operating procedure detailed in Chapter 2 with the patient in a seated 

position. Photograph courtesy of Dr Alexander Foulkes. Written informed consent 

was given by the patient.  

 

LP is well tolerated by individuals with cognitive impairment with low reported 

levels of pain and anxiety150 and incidence of post-LP headache is lower in patients 

with dementia151 than other adults. CSF can be tested serially allowing for evolving 

pathology to be assessed in vivo throughout the disease course and relatively large 

quantities can be removed for research purposes without increased risk of adverse 

events152.  

 

However, it is not possible in everyone; those on anticoagulation therapy are at 

greater risk of spinal haematoma153 and lumbar puncture is avoided in individuals 

with basal skull abnormalities or any structural cause of raised intracranial pressure 

due to the increased risk of tonsillar herniation154.  
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Patients should also have blood samples collected concurrently so that  paired 

measurements of blood and CSF glucose and albumin can be made. As glucose is 

actively transported across the blood brain barrier levels should be directly 

proportional to CSF glucose levels, and should be 50-60% of serum levels in normal 

physiological conditions155. Low CSF glucose can be a marker of CSF infection or 

tumour155. CSF/Serum albumin ratio can be interpreted as a surrogate marker of 

blood brain barrier integrity156.  

 

CSF is typically collected in polypropylene containers as certain proteins may 

adhere to glass or plastic, and transported to the laboratory. When samples arrive in 

the laboratory, they are centrifuged, and samples typically undergo cytological 

examination within 2 hours to avoid blood cell lysis155. At this stage glucose and 

protein levels are also measured. Samples are then aliquoted and frozen at -80C prior 

to undergoing more specific analyses. Samples stored at this temperature can be 

preserved for many years157. 

 

1.3.4   CSF Analysis 

 

In recent years there have been significant developments in CSF biomarker 

measurement techniques. To date, most CSF biomarkers have been measured using 

enzyme-linked immunosorbent assays (ELISA). The last decade has seen advances 

in the technical development of ELISA assays with the development of a Luminex 

technique allowing rapid, reproducible analysis of multiple analytes concurrently158. 

Other techniques such as mass spectrometry have also been used for biomarker 

discovery and quantification159 but are not yet used in clinical practice.  
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1.3.4.1   ELISA 

ELISA is a laboratory test which makes use of colour change to measure a protein of 

interest. Antigens are captured on a plate, usually containing 96 wells. The sample is 

added and binds to the antigen. A second, detection antibody is added and binds to 

the protein of interest. This antibody is attached to an enzyme; the substrate for this 

enzyme is added in the final step producing a colour change, the intensity of which is 

measured allowing for the protein of interest to be quantified.  A range of ELISA 

platforms, produced by different manufacturers, which may be automated or manual, 

which measure a single protein or panel of proteins, are commercially available. This 

is a well-established technique for measuring CSF biomarkers and depending on the 

platform can produce highly reproducible results. One limitation of this technique is 

that to measure a given substance, an antibody must be commercially available.  

1.3.4.2   Mass spectrometry 

Mass spectrometry is a technique which measures the mass to charge ratio of 

protein fragments and can be used for quantifying proteins with high sensitivity. For 

biofluids the mass spectrometer is usually coupled with liquid chromatography 

which allows for the fluid to be introduced to the mass spectrometer through a 

column, before it is vaporized and ionised and protein fragments are separated 

according to their mass to charge ratio by electromagnetic fields. The ion signals are 

collected and measured as ion spectra which are quantified by comparing to internal 

standards of known quantity.  This technique allows for large numbers of proteins 

to be measured concurrently with high sensitivity and specificity. It can be used for 

biomarker discovery as well as accurate quantification of proteins of interest. 
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Peptides can be designed ‘in house’ allowing for rapid development of assays for 

proteins of potential interest.  

 

1.3.4.3   Other Analytical techniques 

In individuals with rapidly progressive dementia and suspected prion disease the 

real-time quaking-induced conversion (RT-QUIC) assay is another laboratory test 

that can be used to differentiate individuals with sporadic Creutzfeldt Jacob disease 

from controls with high sensitivity and specificity (other neurological or 

neurodegenerative cases)160. This assay mixes RT-QUIC buffer, CSF and brain 

homogenate, which is then shaken to induce prion seeded aggregation. A positive 

result induces thioflavin-T fluorescence which can be measured.   

      

1.3.5   Confounders in CSF biomarker measurement 

 

There are several potential confounders in the measurement of analytes due to 

preanalytical CSF handling as well as significant analytic variability.  

Interlaboratory co-efficient of variation can be as great as 20-35%, which is likely to 

be caused by a number of factors and the lack of standardised protocols between 

centres60. A number of preanalytical variables are recognized to influence the 

measured biomarker concentrations of CSF161, and are discussed later specifically in 

relation to amyloid. These include ‘patient factors’ and ‘handling factors’.  

 

1.3.5.1   Patient Factors 

Diurnal variation is known to influence measured CSF Aβ concentration162 and sleep 

quality may influence amyloid clearance163, therefore when the sample is taken is 



 62 

likely to be important. The site of the lumbar puncture may also be important as 

CSF proteins may have a rostrocaudal gradient164 although in a study of serial 10ml 

acquired aliquots, measured Aβ concentration was not affected162.  Blood 

contamination of CSF is important since some proteins are found in significantly 

higher concentrations within blood. Blood cells may lead to the degradation of CSF 

proteins or these proteins may become bound to plasma proteins which is known to 

influence Aβ concentration161. Whether the patient fasts prior to LP does not 

influence the measured concentration of Aβ60 but it may influence other metabolic 

markers.   

 

1.3.5.2   Handling Factors  

The type of tube that is used to collect CSF if a significant confounder; tube material 

is thought to influence adsorption of some analytes such as Aβ and alpha synuclein 

and so polypropylene is recommended over glass and other plastics161, 165. The tube 

manufacturer is also important since different brands use different co-polymers of 

polypropylene with different properties and propensity for proteins to adsorb. 166 

Whether a manometer is used to measure opening pressure may be a confounder 

since most catheters are not made of polypropylene however this has only been 

studied in small numbers161. The time delay between sample collection, the way in 

which the sample is transported to the lab, including transportation temperature 

have been studied but results are equivocal164. The number of freeze thaws a sample 

undergoes is likely to be significant for both CSF and blood164 167 with measured 

protein concentrations being lower with repeated freeze thaw cycles. However this is 

likely to depend on the protein, the number of cycles and the method used for 
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protein measurement with more sensitive methods such as mass spectrometry 

perhaps being less susceptible to influence168.  

 

1.3.5.3   Analytical Factors 

Interassay variability of the laboratory ELISA methods themselves is also a 

problem. Round robin investigations suggest that the co-efficient of variation might 

be as great as ~36% between centres for any of the ‘core’ CSF biomarker (Aβ1-42, 

T-tau, P-tau) ELISA kits169. There may also be significant further variation between 

kit manufacturers or even between kit batches from the same manufacturer170.  

 

1.3.6   Currently available CSF biomarkers  

 

In this section an overview of how CSF is currently used in the investigation of 

cognitive impairment. Later, specific CSF biomarkers are discussed individually, 

focussing first on those available clinically and then those in development.  

 

1.3.6.1   Clinical utility of CSF biomarkers in individuals with cognitive impairment  

In the context of individuals with cognitive impairment, lumbar puncture with 

cerebrospinal fluid examination extraction has, until recently been to exclude 

infection, malignancy and neuroinflammation using basic microscopy, protein 

quantification and measuring serum CSF albumin ratio. This is reflected in 

European guidelines 171 which recommend CSF examination in individuals with 

cognitive impairment presenting before the age of 55, individuals with rapid disease 

course, ‘unusual’ dementia syndromes or those who are immunosuppressed. 
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Typically in the degenerative dementias the cell count is not raised, there is no 

evidence of neuroinflammation i.e. the cell count is not raised and the blood brain 

barrier is intact.  In the context or rapidly progressive cognitive impairment 

elevated total tau to P-tau ratio, S100B, 14-3-3 and real-time quaking-induced 

conversion (RT-QUIC) technology have positive predictive value for prion disease 

with a sensitivity and specificity of 87% and 100% for differentiating CJD from other 

neurological diseases160. CSF analysis using a variety of immunochemical techniques 

allows a range of neuronal-specific or neuronal-enriched proteins to be measured. 

The neuronal enriched CSF markers β-amyloid, T-tau and P-tau are widely used in 

the routine evaluation of patients with dementia reflecting amyloid deposition, 

neuronal loss and cortical tangle formation respectively. When taken together, they 

can be used to differentiate individuals with Alzheimer’s disease pathology from 

those without with a high degree of sensitivity and specificity172. Other established 

biomarkers which differentiate AD from non-AD subjects which have not yet been 

adopted in clinical practice include the microglial and astrocytic markers YKL-40 

and MCP-1; markers of neurodegeneration: neurofilament light (NFL); neuron-

specific enolase (NSE); visinin-like protein 1(VLP-1) and heart fatty acid binding 

protein (HFABP). Finally, there is a small but significant difference in A1-40, a 

marker of amyloid metabolism, between AD and control CSF173.      

1.3.6.2   Biomarkers of AD pathology: A1-42 

The established CSF biomarkers, currently used in clinical practice, are all indirect 

measures of AD pathology.  A1-42 is produced by proteolytic cleavage of its 

precursor, the amyloid precursor protein (APP) and it is the major constituent of 

amyloid plaques. CSF A1-42 is low in individuals with Alzheimer’s pathology and 

there is an inverse correlation with plaque burden174. One explanation is that A1-
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42 is sequestered within amyloid plaques reducing the measurable concentration in 

CSF 175, 176. It is also reduced in individuals with mild cognitive impairment who 

subsequently develop and fulfill clinical criteria for Alzheimer’s disease 177 and even 

in cognitively normal individuals who later develop AD 178, 179.  

 

In a recent meta-analysis of 142 Alzheimer's disease cohorts and 134 control cohorts 

from 131 studies, which included 9949 patients with Alzheimer's disease and 6841 

controls, all but one demonstrated a difference between AD and controls with a ratio 

of 0·56 (95% CI 0·55–0·58, p<0·0001) between mean concentrations of A1-42173. 

 

There are, however, other causes of low A1-42. Neuroinfectious and 

neuroinflammatory diseases such as bacterial meningitis, Lyme disease, HIV 

dementia, multiple sclerosis or systemic lupus erythematous alter APP metabolism 

and are associated with lower levels of A1-42180. Other neurodegenerative 

conditions such as multi-system atrophy181, motor neuron disease182 and 

Creutzfeldt-Jakob disease (CJD)183 may also be associated with low levels of A1-42 

without there being evidence of amyloid pathology at autopsy. A1-40 is typically 

unaltered in Alzheimer’s disease184 and so the A1-42/A1-40 ratio may be a more 

specific diagnostic marker of amyloid pathology185, 186.  

 

1.3.6.3   Longitudinal Stability of CSF A1-42  

Relatively few studies have explored longitudinal stability of CSF A1-42. In the 

ADNI dataset, data from 142 subjects (18 AD; 74 mild cognitive impairment (MCI); 

50 cognitively normal subjects) who had lumbar punctures annually (mean follow-up 
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duration of 48 months; median follow-up duration 36 months) suggest that levels of 

A1-42 are stable over this period across all diagnostic groups187 and therefore not 

necessarily useful for tracking disease progression. For the AD and MCI groups this 

is reflected in the plateau in brain amyloid deposition described in the Jack model78.    

 

1.3.6.4   Technical aspects of CSF A1-42 measurement 

Of all the measured CSF analytes Aβ1-42 is particularly vulnerable to being affected 

by handling methods, due at least in part to its hydrophobic nature and propensity 

to be adsorbed to the walls of collection containers and tubing, as well as to 

aggregate with itself and other proteins161. As previously discussed several 

confounding factors influence biomarker concentration, particularly Aβ1-42, and 

include: delay in sample analysis188; diurnal variation and tube material161. Achieving 

analytical standardisation between laboratories is an ongoing challenge189 and is 

continuously monitored in the Alzheimer’s Association CSF biomarker quality 

control programme169.  

 

1.3.6.5   Total Tau (T-tau)  

T-tau is a microtubule associated protein and it is located principally in neuronal 

axons. The role of tau in normal physiology is not completely understood but it does 

have a role in promoting stability of the microtubules involved in  axonal 

transport190. Six tau isoforms (352-441 amino acids) are recognised190. 

Neurodegeneration associated with Tau (tauopathies) are typically considered as 

those with 3-repeats (e.g. Pick’s disease), those with 4-repeats (e.g. progressive 

supranuclear palsy and corticobasal degeneration) and those with 3 and 4-repeats 
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(e.g. Alzheimer’s disease). Tau has a number of phosphorylation sites and tau found 

within neuritic plaques of AD brains is in its hyperphosphorylated form191.  

 

Tau is elevated in AD192 and for the last 20 years has been thought to reflect axonal 

degeneration, with the magnitude of the tau elevation proportionate to the intensity 

of axonal degeneration193. Inverse correlations between brain volume (hippocampus 

and grey matter) and T-tau194 further support this hypothesis, suggesting that tau 

may be a useful surrogate measure of neurodegeneration. However, it is also now 

recognised that tau is also secreted by healthy neurons in the absence of cell death 

195 and that tau accumulation occurs during aging, often in the absence of cognitive 

symptoms, a phenomenon known as primary age related tauopathy (PART)196.  

 

1.3.6.6   Phospho-Tau (P-tau) 

P-tau is the hyperphosphorylated form of the microtubule associated protein tau. It 

is elevated in AD197 and also in mild cognitive impairment 198 compared with 

cognitively healthy controls. A number of commercially available assays can be used 

to measure P-tau phosphorylated at different phosphorylation sites. The diagnostic 

performance of P-tau181, P-tau199, and P-tau231 is similar199. The specificity of P-tau 

for AD is thought to be higher than either T-tau or A1-42 alone; indeed there are 

relatively few conditions that result in raised P-tau. Aside from AD, these include 

superficial siderosis200 herpes simplex virus (HSV) encephalitis and is elevated in 

pre-term infants201.  Finally, P-tau is correlated with cortical tangle burden202 

indicating that it may be an in vivo marker of disease severity, but to date it has not 

been shown to be useful for tracking disease or monitoring response to treatment .   
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1.3.6.7   Other CSF biomarkers in AD  

There are currently a large number of potential biomarkers under investigation for 

AD. The following section is not exhaustive but discusses some of the most studied, 

most interesting and promising biomarkers in the field and how they might be used 

in practice.   

1.3.6.8   CSF markers of blood brain barrier function 

Blood brain barrier function is measured routinely in clinical practice. Its integrity 

may be compromised in several pathological states: trauma; infection; hypertension; 

in the presence of small vessel disease. The best established marker is CSF/serum 

albumin ratio. Blood brain barrier function is typically normal in ‘pure’ AD203. 

However subsequent studies have given conflicting results204 and the significance of 

blood brain barrier dysfunction is not clearly understood.     

1.3.6.9   S100  

S100 belongs to a family of Ca2+ binding proteins that regulate intracellular levels 

of calcium. There are 2 sub-units; S100α and S100 ; S100  is expressed by 

astrocytes and oligodendrocytes and has been measured clinically in order to help 

distinguish prion disease from other conditions205. The biological significance of 

S100  is not completely clear but it may be a marker of neuroinflammation206. Some 

evidence has shown that CSF S100  is elevated in mild to moderate AD compared 

with clinically severe AD207 and is correlated with brain atrophy208. As S100  is 

elevated in a number of neurodegenerative conditions including prion disease, 

FTLD, traumatic cerebral brain disease and infection it is unlikely to be valuable as 

a diagnostic biomarker. Potentially it could be used to measure response to 
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treatment but evidence is lacking. The evidence for diagnostic utility of S100 in AD 

is summarized in the table below.   

Author; Year; Journal Subjects/Site  Main Findings  

Infante et al  2003 209 43 subjects  

Single site  

Significantly elevated in ‘Dementia’ Vs HC  

Nooijen et al, 1997205 159 subjects  

Single site   

S100β significantly elevated in sCJD  

No difference between AD, other dementias or 

healthy controls  

Beaudry et al, 1999210  91 subjects  

Single site  

S100β significantly elevated in sCJD  

Petzold et al, 2003208  31 AD  

36 FTLD  

49 controls with 

other non-

inflammatory 

neurological 

diseases  

Single site  

S100β significantly elevated in AD and FTLD versus 

controls  

S100β negatively correlated with whole brain 

volume.  

Peskind et al, 2001207  68 AD  

25 HC  

Single site   

No difference in CSF S100β between AD and HC.  

Within AD group S100β higher in those with 
mild/moderate disease.  

Table 1.1   Key research studies determining the diagnostic utility of CSF S100 in 

AD and other neurodegenerative diseases. AD: Alzheimer’s disease; CSF: 

cerebrospinal fluid; CJD: Jakob-Creutzfeldt disease; HC: healthy control; FTLD: 

frontotemporal lobar degeneration.  

 

1.3.6.10   Neurofilament Light (NFL)  

Neurofilament proteins are major constituents of the cytoskeletal structure of neurons. 

There are neurofilament heavy (NFH), intermediate (NFI) and light proteins (NFL), 

with neurofilament light being unphosphorylated and can be measured in CSF. NFL is 

considered to be an established marker of subcortical axonal degeneration.  
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Data from the ADNI study suggests that NFL levels are correlated with disease 

progression in AD; levels are correlated with cognitive function, burden of white 

matter disease and rates of brain atrophy136.  However it is likely to lack diagnostic 

specificity since it is also modestly elevated in healthy ageing211, in small vessel 

disease212, HIV dementia and significantly elevated in FTLD213, 214 and in amyotrophic 

lateral sclerosis(ALS)215. In multiple sclerosis levels of CSF NFL are elevated in the 

acute phase of a relapse216, suggesting that is correlated with acute neuronal injury. 

Given this lack of specificity, it may have prognostic rather than diagnostic value in 

clinical practice, but could be a useful outcome measure in a therapeutic clinical trial.  

As previously discussed, it is one of few biomarkers that can currently also be reliably 

measured in blood217.  

 

1.3.6.11   CSF markers of amyloid processing  

Amyloid Precursor Protein (APP)  

APP is a type I membrane glycoprotein, which is sequentially cleaved to form the 

various A  isoforms. It is associated with neuronal network formation in the 

developing brain218,219 and with neuronal regeneration and calcium homeostasis in 

the developed brain220; Three APP isoforms are recognised (APP695, APP751 and 

APP770), generated by alternative splicing of exons 7 and 8 which are present in 

approximate ratios of 20:10:1, respectively, in the human cortex218. Although one 

study showed that a shift in the ratio of APP isoforms in CSF is recognised in 

individuals with AD and mild cognitive impairment compared with cognitively 

healthy individuals and may predict conversion from MCI to AD221.  

 

Beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1) 
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(BACE-1) is an aspartic-acid protease, and its role is illustrated fully in Figure 1.7. 

In brief, it cleaves APP to form soluble amyloid precursor protein   (sAPP) and a 

C-terminal fragment (CTF), which is then cleaved to produce various an  isoforms. 

To date a small number of studies have been carried out which show small increases 

in CSF BACE-1 in AD and MCI compared with healthy controls, which suggests 

that the amyloidogenic pathway could be up-regulated in AD222,223.  

 

sAPPα  and sAPPβ 

As shown in Figure 1.7, APPβ, is produced via the amyloidogenic processing of APP 

while sAPPα is produced by the alternative non-amyloidogenic APP processing 

pathway. As diagnostic biomarkers for AD both have produced disappointing results 

that have been conflicting or non-significant173, 224-226. To date no longitudinal data 

are available for either of these biomarkers. While sAPPα and sAPPβ may have 

limited use diagnostically in AD, they could still prove to be useful for studying 

effects on APP metabolism in clinical trials. It is also interesting to observe that 

some sAPPβ concentrations are reduced in FTLD compared to AD, healthy controls 

and other neurodegenerative diseases227, implying that amyloid processing may be 

altered in the presence of  other non-amyloid neurodegenerative pathobiology.      

 

1.3.6.12   CSF Markers of Neuroinflammation 

YKL-40 

YKL-40, also known as Chitinase-3-like protein 1, is a secreted glycoprotein 

associated with microglial activation. However its exact function remains unclear228. 

A number of studies have shown that CSF levels are higher in AD compared to 
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controls229-232. Moreover levels also seem to be elevated in preclinical disease229. 

There is no clear correlation between CSF YKL-40 and cognitive function228 and 

studies measuring YKL-40 in serum and plasma found non-significant differences 

between three AD and two control populations173. YKL-40 is not specific to AD, and 

for example is elevated in individuals with multiple sclerosis233. It remains to be seen 

whether it will prove to be a reliable marker of disease activity in AD; however it 

does seem to be related to disease activity in multiple sclerosis (MS) and CSF levels 

fall with immunosuppressive treatment233.  

 

 

Complement  

The role of microglia and the complement cascade are increasingly studied in AD82. 

There are approximately 30 proteins involved in the complement cascade and to 

date, none has found utility as a biomarker, although a number of proteins have been 

elevated in AD. As previously discussed the complement receptor 1 gene (CR1), an 

important regulator of the complement cascade has been identified on a number of 

GWAS studies in AD. 

 

Other markers of neuroinflammation 

A number of other markers of neuroinflammation have been shown to be elevated in 

AD CSF. These include the matrix metalloproteinases (MMPs), Glial fibrillary 

acidic protein (GFAP), Neuroserpin, α-2-macroglobulin, α-1 antitripsin, monocyte 

chemoattractant protein-1 (MCP-1) and others. Most have either been identified in a 

single clinical cohort or in more than one cohort but with conflicting results206. In a 

recent meta-analysis the only inflammatory biomarker other than YKL-40 found to 

have a small but significant difference in AD was MCP-1173.      
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1.3.6.13   Markers of Synaptic Loss 

Biomarkers that reflect synaptic loss are of considerable interest as they may reflect 

early biological changes in AD and may correlate well with a functional response to 

a disease modifying therapy. Neurogranin, a post-synaptic marker is detectable in 

CSF and has recently been shown to be elevated in AD234, which may be specific to 

AD172. Other notable markers of synaptic function such as neuroendocrine peptides 

carboxypeptidase E and the chromogranins have also given conflicting results206, 232. 

 

1.3.7   Practical Application of CSF biomarkers   

 

Thus far the diagnostic and prognostic value of individual biomarkers has been 

discussed. In this section the clinical (and research) application of these CSF 

biomarkers is discussed considering some specific questions. Which biomarkers are 

in clinical use and why? Which clinical questions can they help to answer and how 

reliable are the results? Are biomarkers more clinically useful individually, in 

combination or as part of a formula? How are clinical cutpoints determined and 

validated?  

 

As previously discussed, only a small number of these biomarkers are currently 

routinely used in clinical practice i.e. A1-42, T-tau and P-tau, with meta-analysis 

data based on large numbers of studies173, confirming their utility.  

 

Most clinical studies to date have compared the CSF of AD subjects with healthy 

controls. It is less clear what the diagnostic sensitivity and specificity of these 
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biomarkers are in a population of patients with memory concerns, some of whom 

may have other neurodegenerative diseases and some who may have other 

neurological or neuroinflammatory diseases which may impact on the CSF 

biomarker profile. Some studies have considered the diagnostic utility of AD 

compared to other groups of neurodegenerative diseases pooled together235 but large 

studies comparing the profiles of AD CSF compared to other specific 

neurodegenerative diseases are not yet available. A number of small studies have 

compared CSF profiles of the different AD variants (memory led, language led or 

visual), but these studies have produced conflicting results236-242. The applicability of 

biomarker cutpoints developed using populations consisting largely of late onset 

memory led AD cases to atypical AD cases, many of whom are young onset, is not 

known. Finally, without pathology confirmation the true diagnostic accuracy of 

these biomarkers is not known.  

 

In practice, combining biomarkers may improve diagnostic sensitivity and 

specificity235,243, particularly when distinguishing AD from other neurodegenerative 

dementias such as dementia with Lewy Bodies185.  Tau/A1-42 ratio in particular is 

a reliable and reproducible measure which is now widely used and has been validated 

as a diagnostic AD biomarker in a number of large single and multicenter studies235. 

Measuring the ratio of A40/42 (or A42/40) to correct for individual physiological 

variations in amyloid metabolism may be superior to A1-42 alone for 

differentiating AD from healthy control CSF185, 186. Other studies have used 

combinations of biomarkers as part of a weighted regression formula or other 

algorithm to improve diagnostic accuracy235, 244, 245. In some cases these 

formulae/algorithms have improved diagnostic accuracy when compared directly 

with the performance of single biomarkers. For example Mattson et al found that the 
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combination of A1-42/P-tau ratio and T-tau increased sensitivity and specificity by 

~5%, however there is no evidence to suggest any of these formulae are better than 

the simple ratio of A1-42/T-tau for differentiating AD from controls or other 

grouped neurodegenerative diseases235. It has yet to be established whether larger 

panels of multiple biomarkers might improve diagnostic accuracy in very specific 

clinical situations, for example in differentiating language led AD from a language 

led syndrome underpinned by FTLD or differentiating AD from DLB. Furthermore 

it is uncertain which biomarkers these formulae or algorithms might contain.      

 

1.3.7.1   Developing reference ranges and cutpoints 

Developing normal reference ranges and reliable cut points for any of these AD 

biomarkers is challenging. Since most CSF biomarkers have continuous values, 

where the disease state is associated with either higher or lower values than the 

control group, a continuous variable needs to be turned into a dichotomized variable. 

In doing this, there are a number of possible statistical methods for defining 

optimum cutpoints but ultimately there is always a trade-off between sensitivity and 

specificity and the cutpoint will be different depending on the analytical method 

used, the statistical assumptions made246 and the purpose of the test (i.e. optimizing 

sensitivity or specificity). The other major problem common to all of these statistical 

approaches is that most CSF biomarker cutpoint data is based on clinical diagnosis, 

rather than autopsy proven data, which means that even in the best centres, a 

proportion of the diagnoses will be incorrect. Moreover, since there is considerable 

variation in both the ELISA assays used and the way patients are classified between 

centres it is not straightforward to apply cutpoints derived from clinical (or 

research) populations in other centres.      
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1.3.7.2   Statistical properties of dichotomized biomarkers 

Before discussing the statistical options for dealing with these problems, the relevant 

statistical terminology is defined:  

 

Sensitivity and specificity: At a given cutpoint the sensitivity of a biomarker is defined 

as the proportion of cases who truly have the disease who have a positive test result. 

Conversely the specificity is the proportion of cases who truly do not have the 

disease who have a negative test result. Sensitivity and specificity can be calculated 

as follows:  

 

Sensitivity:   Number of true positive/(Number of true positives + number of false 

negatives) 

 

Specificity: Number of true negatives/(Number of true negatives + number of false 

positives) 

 

Accuracy: This is defined as the probability of the given cutpoint giving the correct 

answer. Accuracy is dependent on the disease prevalence in the general population. 

It can be calculated as follows:    

 

(Σ True positive + Σ True negative)/Σ Total population 
 

 

Receiver operating characteristic (ROC) curves: Sensitivity is plotted against (1-

specificity) for a range of potential biomarker cutpoints. ROC curves are often used 

to measure a biomarkers ability to distinguish between case and control for a binary 

outcome246. Often the area under the ROC-curve (AUC) is quoted; this single value 



 77 

could be interpreted as the probability of a randomly selected case (with the disease) 

having a different biomarker value to a healthy control subject.        

 

Youden Index: This is calculated based on ROC curves and is determined using this 

formula at any given cutpoint: sensitivity + (specificity-1) 247  

 

Reference Range: This involves calculating the percentile values of a given biomarker 

for individuals with, or without, the disease in question.   

  

1.3.7.3   Determining cutpoints 

A common method for generating cutpoints is to control for sensitivity or specificity. 

This forces a decision as to whether type 1 or type 2 error is more important, which 

will clearly depend on the clinical context, and to decide on a fixed sensitivity or 

specificity value.  Several previous studies have employed cutpoints based on a fixed 

sensitivity of 85%243, 245, which is based on the Ronald and Nancy Regan criteria102. 

These studies favour sensitivity but disregard specificity or accuracy and so are 

arguably less applicable to clinical diagnostic studies where high numbers of false 

positive results would be unacceptable. Advantages of this method are that it is 

straightforward to employ and studies between centres can be easily compared.  

Importantly it is unaffected by disease prevalence in the population tested246.   

 

Another common statistical method used for calculating cutpoints is to make use of 

the Youden index. As previously stated, the Youden index makes use of  ROC-curves 

and the optimum cutpoint can be determined by calculating the maximum value of 

the Youden index. This can be determined by calculating the greatest vertical 
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distance from a 45o line to the ROC-curve248 and calculating the cutpoint where 

these lines intersect. This method is equivalent to finding the point of maximum 

accuracy assuming a disease prevalence of 50%246. The major disadvantage of this 

method is that the most accurate cutpoint is determined for arbitrarily chosen 

disease prevalence.   For detecting AD and other neurodegenerative diseases 

prevalence would rarely be as high as 50% making this method of questionable 

value. 

 

An alternative method is to calculate the normal reference range for a cohort of 

healthy controls and then to estimate a percentile above or below which might be 

considered normal. The disadvantage of this approach is that it requires a suitable 

disease free control population (noting that some elderly controls may have 

presymptomatic AD) and does not take account of the reference range of the affected 

population at all.   

 

1.3.7.4   Other methods for generating cutpoints     

Mixture effect models are data driven statistical models, which ignore disease group 

membership and instead place the cutpoint at the intersection of two 

subdistributions of data246. These methods have been used in ADNI and validated in 

independent cohorts249 but have a number of difficulties. Like all the methods 

discussed, without pathological confirmation there is no gold standard. 

Furthermore, the crossover of sub-distributions can be wide leaving a wide range in 

which to select a cutpoint, creating a large grey zone in which biomarker 

interpretation is difficult. In practice this overlap might reflect genuine biological 
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uncertainty and employing a diagnostic greyzone may be a more realistic way to 

interpret these data.  

 

1.3.7.5   Validating cutpoints 

An attractive alternative approach to validating cutpoints in the absence of 

pathology proven cases is to use a surrogate imaging marker for AD pathology. 

Already individuals who received amyloid PIB scans during life have been autopsy 

proven120, 250, and this provides an attractive opportunity to validate CSF Aβ1-42 

levels.  As other forms of molecular imaging, such as Tau labeled scans become more 

established, they too may become useful means of validating cutpoints.         

 

1.3.8   Biomarkers in revised diagnostic criteria  

 

Most recent criteria for AD (the latter used for research but not yet used in clinical 

practice)3, 4 make use of both imaging and fluid biomarkers which reflect AD 

neuropathology. CSF Aβ1-42 and PIB PET are used to identify amyloid deposition; 

CSF Tau, atrophy on magnetic resonance imaging (MRI) and hypometabolism on 

FDG PET are considered surrogate markers of neurodegeneration for these criteria.  

 

The first criteria to include biomarkers were the 2011 NINCDS–ADRDA criteria3. 

These did not incorporate biomarkers into the core criteria for probable AD, which 

were purely clinical, but biomarkers were used as supplementary evidence to 

increase the level of diagnostic certainty. Importantly these criteria do not  advocate 

the use of biomarkers routinely on the grounds that: (1) clinical criteria alone give 

good diagnostic sensitivity and specificity; (2) it was felt that further biomarker 
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research was needed; (3) there is limited standardization in biomarkers between 

centres; (4) there is variability in availability of biomarkers between centres.  

Individuals currently require evidence of both amyloidosis and neurodegeneration to 

support a diagnosis of AD for these criteria. 

 

In the later International Working Group (IWG-2) criteria4 biomarkers are central 

to diagnostic criteria. Furthermore they do not need to have evidence of both 

amyloid pathology and neurodegeneration; a positive PIB PET scan is sufficient 

pathophysiological evidence of AD (Figure 1.10). 

 

Figure 1.10   The role of biomarkers in IWG-2 criteria is summarized in Figure 1.9. 

At any stage of the disease and in any of the scenarios given in the green box, the 

diagnosis of AD also relies on the presence of a pathophysiological marker (purple 

box). Figure reproduced from Dubois et al4. 

 

These new criteria, which move towards using a pathobiological definition of AD 

and do not insist on an individual to be demented allow for a diagnosis to be given at 

an earlier stage in the disease (or at an earlier point in the Jack hypothetical model) . 

This is likely to improve early recruitment to clinical trials when therapy is more 
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likely to be effective and if they are adopted into routine clinical practice may allow 

for earlier access to support for affected individuals.  

1.3.9   Limitations of currently available biomarkers 

 

As discussed earlier there are neither markers that reliably predict rate of disease 

progression nor prognosis in AD.  

 

Ultimately as efforts to find a disease-modifying drug for AD are redoubled, 

biomarkers will be required to detect earliest evidence of neuronal dysfunction, 

reflect functional and cognitive function and be sufficiently closely correlated with 

active neurodegeneration that they are capable of changing in response to an 

effective disease modifying drug. 

(www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidan

ces/ucm338287.pdf)  Based on the evidence presented in this introduction, no 

single/combination of biomarkers currently seems capable of meeting these 

requirements. Even if such a CSF biomarker did exist, not all individuals would be 

able or willing to have a lumbar puncture. If is therefore of critical importance that 

new biomarkers are rapidly identified and validated in CSF using techniques that 

can be translated for use using other biofluids. 

 

1.3.10   Developing new biomarkers 

 

As increasing numbers of candidate biomarkers are being investigated, reporting 

standards have now been proposed so that studies can be easily appraised and 

compared.  
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It has been suggested that for Alzheimer’s disease, biomarkers should have a 

sensitivity and specificity >85%102 and they should be validated on pathologically 

confirmed cases. Agreed standards on how biomarker studies should be carried out 

and how results should be reported are now available (Table 1.2)251 and is the 

standard to which work presented in this thesis aims to achieve. 

 

Section Point Recommended reporting format 

Introduction 1 General background information 

 2 Specific information about biomarker of interest 

Materials and 
Methods  

3 Information on study or sample population (eligibility criteria; 
comparison with existing gold standard) 

 4 Confirmation of approval by ethics committee 

 5 Detailed account of outcome measures used 

 6 Assay methods:  
Preanalytical handling methods and confounders 
Analytical methods and confounders  
Adequate description of kits and platforms used 
Performance characteristics 
 

 7 Statistical Methods:  
(i) Describe statistical methods used (parametric vs non-

parameteric; single or two tailed tests; report 
statistical package and version used) 

(ii) P values, mean or median, standard deviation or 
interquartile range should be used as standard.     

(iii) Correct for multiple comparisons when appropriate 

Results  8 Present subject demographics 
Biomarker characteristics:  

(i) Show data on biomarkers and their relationship to 
existing outcome measures 

(ii) Report sensitivity/specificity/positive and or 
negative predictive value/ROC curve/odds ratio as 
appropriate.  

(iii) Prognostic biomarkers – assess predictive value or 
time to progression, correlate with disease state or 
mortality  

(iv) Therapeutic efficacy biomarkers – report treatment 
responsive/resistant individuals; pharmacodynamics 
analysis.  

 

 9 A discussion of the results in relation to the original aims and 
objectives. Discuss in relation to other relevant studies  

 10 Address limitations, sources of potential bias and suggest aims for 
future work  

Table 1.2 Summary of guidance for biomarker research reporting, adapted from 

Gnanapavan et al, Neurology251 
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1.4   Aims and objectives 

 

1.4.1   Aims 

 

The aims of this thesis are: 

1. to establish methods to optimise collection, handling and transportation of 

CSF for established biomarkers for AD in current clinical use outside of 

specialist centres;  

2. to determine the extent to which established and emerging biomarkers can 

differentiate between the different neurodegenerative dementias and explain 

phenotypic diversity within AD; 

3. to assess the role of CSF biomarkers for tracking disease progression; 

4. to provide an exploratory analysis of new biomarkers for AD. 

 

1.4.2   Objectives 

 

The objectives of this thesis are:  

1. to measure the effect of aliquot storage volume on measured biomarker 

concentrations; 

2. to compare the methods used to transport CSF to the laboratory and the 

effects they have on measured biomarker concentrations; 

3. to define the role of amyloid PET in determining clinical cutpoints for 

existing biomarkers; 

4. to measure a range of cross-sectional CSF biomarkers and determine their 

diagnostic ability to distinguish between different neurodegenerative 

diseases, controls and different clinical phenotypes of AD;  
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5. to measure AD progression using robust longitudinal measures of brain 

atrophy and correlate them with cross-sectional CSF biomarkers;  

6. to use quantitative mass spectrometry to develop a novel multiplex assay for 

rapidly identifying and validating new biomarkers of AD.  

 

1.5   Publications arising from this chapter 

 

RW Paterson, J Toombs, CF Slattery, JM Schott, H Zetterberg. Biomarker 

Modeling of Early Changes in Alzheimer’s Disease, Molecular Diagnosis and 

Therapy. 2014 Apr;18(2):213-27 

 

RM Ahmed, RW Paterson* (*joint first authors), JD Warren, H Zetterberg, JT 

O'Brien, NC Fox, GM Halliday, JM Schott. Biomarkers in Dementia: clinical utility 

and new directions. Journal of Neurology, Neurosurgery and Psychiatry. 2014 

Dec;85(12):1426-34. 
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Chapter 2.   General Methods 

2.1   Cohorts 

For this thesis, six distinct clinical cohorts were studied. A brief overview of each is 

provided and summarised in Table 2.1, followed by a detailed explanation in 

subsequent sections: 

 

1.  A cohort of individuals with a range of dementia diagnoses who underwent 

lumbar puncture and had CSF collected as part of routine clinical investigation at 

the National Hospital for Neurology and Neurosurgery (NHNN) between 2008 and 

2012. Excess CSF samples were pseudo-anonymised, archived and subsequently 

used for research purposes with appropriate ethical permissions and informed 

consent.  This cohort is hereafter referred to as ‘the retrospective cohort’. 

 

2. A cohort of individuals with a range of suspected neurodegenerative 

disorders who were recruited prospectively by the author. Biofluids including CSF,  

urine and blood were collected at a clinical-research clinic from individuals at the 

National Hospital for Neurology and Neurosurgery who required a lumbar puncture 

for clinical diagnosis, according to a standard operating procedure written by the 

author, and with suitable ethical permissions and informed consent. This cohort is 

hereafter referred to as ‘the prospective cohort’. 

 

3.  A cohort of healthy elderly individuals, without cognitive concerns or 

objective cognitive impairment, who were recruited to a parallel study by another 

investigator (Dr Nadia Magdalinou) and who consented to lumbar puncture for 

research purposes only. CSF was collected prospectively accordingly to a standard 
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operating procedure.  This cohort is hereafter referred to as the ‘healthy control 

cohort’. 

 

4.  A cohort of individuals from The Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) study; an international multi-site public/privately funded 

multimodality longitudinal study, where a proportion of participants had CSF 

collected prospectively for research purposes. Participants had a diagnosis of either 

AD,  mild cognitive impairment (MCI) or they were cognitively healthy controls. 

Data were shared publically on the website http://adni.loni.usc.edu/ and accessed 

directly by the author and used with permission. This cohort is referred to as ‘the 

ADNI cohort.’ 

 

5.  A cohort of patients with young onset AD (YOAD) and their spouses who 

consented to a longitudinal multimodality study over 12 months. This cohort was 

established by the author and Dr Catherine Slattery (CS) and subject recruitment, 

evaluation and lumbar punctures were carried out by the author, CS and Dr 

Alexander Foulkes. CSF was collected prospectively according to the same research 

protocol as the prospective cohort. This cohort is hereby referred to as ‘the YOAD 

cohort.’ 

 

6.  A cohort of individuals recruited from two regional Swedish memory clinics 

(‘Swedish cohort’) by Swedish neurologists Dr Johann Svenson and Dr Per 

Johansson. Individuals who required lumbar puncture for investigation of cognitive 

concerns were asked to donate extra research CSF for research. Healthy elderly 

controls were asked to donate CSF for research purposes only. This cohort is 

hereafter referred to as ‘the Swedish cohort’.

http://adni.loni.usc.edu/
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Table 2.1   Summary of cohorts included in this thesis 

 Cohort Name  Clinical 
Institution 

Ethical 
permission 

Investigators  Individuals included Prehandling Assays Date of analysis/CV Chapter 

1 Retrospective University 
College 
London NHS 
foundation 
trust 

NHNN 
13_LO_1155 
(Retrospectively 
obtained) 

Dr Jonathan 
Schott; Dr Ross 
Paterson 

Individuals from 
specialist cognitive 
disorders clinic 

Collected in 
polypropylene 

Aβ1–42, T-tau 
and P-tau 

Elisas* 
Other Elisas^ 
LC-MS*  

Contemporaneously**/
10% 
 
January 2014/<10% 
May 2014/<10% 

3,5,6,7,9 

2 Prospective University 

College 
London NHS 
foundation 
trust 

NHNN 

12_LO_1504  

Dr Jonathan 

Schott; Dr Ross 
Paterson  

Individuals from 

specialist cognitive 
disorders clinic  

Collected in 

polypropylene 
according to SOP 

Aβ1–42, T-tau 

and P-tau 
Elisas* 

Other Elisas^ 
LC-MS* 

Contemporaneously**/

10% 
 
January 2014/<10% 
May 2014/<10% 

4,5,6,9 

3 Healthy 
Control 

University 
College 

London NHS 
foundation 
trust 

NHNN 
12/LO/06400 

Prof Andrew 
Lees/ Nadia 

Magdalinou 

Spouses of individuals 
recruited to an 

observational research 
study of atypical 
Parkinsonism 

Collected in 
polypropylene 

according to SOP 

All Elisas ^ 
LC-MS* 

January 2014/<10% 
May 2014/<10% 

5, 6, 9 

4 Alzheimer’s 

Disease 
Neuroimaging 
Initiative 

(ADNI)  

Multiple 

participating 
centres across 
Unites States 

of America and 
Europe 

Ethics 

committee 
consent 
obtained for 

each 
participating 
centre 

Prof Michael 

Weiner 

Individuals recruited to 

an observational 
research study of AD 

Collected in 

polypropylene 
according to SOP 

Luminex xMAP 

multiplex 
immunoassay 
panel 

2011/<12.5% 8 

5 Young onset 

Alzheimer’s 
Disease 
(YOAD) 

University 

College 
London NHS 
foundation 
trust 

NHNN 03N049 Dr Jonathan 

Schott; Prof Nick 
Fox; Dr 
Catherine 
Slattery; Dr Ross 
Paterson 

Individuals recruited to 

an observational 
research study of 
young onset sporadic 
AD (age of onset <65) 

Collected in 

polypropylene 
according to SOP 

Aβ1–42, T-tau 

and P-tau 
Elisas* 

Elisa ^ 
 
LC-MS* 

Contemporaneously**/

10% 
 
January 2014/<10% 
 
May 2014/<10% 

5 

6 Swedish 

cohort  

Skaraborg 

Hospital, 
Lindköping,  

Swedish 

Research 
Council  

Prof. Johann 

Svenson and Dr 
Per M Johannson 

Individuals with 

memory concerns and 
healthy controls  

Collected in 

polypropylene 
according to SOP 

Elisa* 

LC-MS* 

March 2013/<10% 

May 2014/<10% 

3, 9 

*Denotes analysis carried out at UCL; **Samples were analysed within 4 weeks of sample collection in the clinical laboratory as part of the individual’s clinical care; ^Denotes analyses 
carried out at University of Gothenburg; SOP: standard operating procedure; LC-MS: liquid chromatography mass spectrometry 
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2.1.1   Retrospective cohort  

2.1.1.1   Individuals  

Patients referred to the Specialist Cognitive Disorders Service at the National 

Hospital for Neurology and Neurosurgery are frequently offered a cerebrospinal 

fluid examination as part of the diagnostic workup of their cognitive complaints. 

Individuals are assessed either by a consultant neurologist in the outpatient clinic 

setting, or as an inpatient referral from another consultant neurologist. Since the 

mid 2000s, when lumbar puncture started to be routinely used in the diagnostic 

workup for dementia, many hundreds of patients have been assessed by the specialist 

cognitive disorders team and in most cases any extra CSF was frozen for method 

evaluation. Most individuals had detailed clinical assessments, at least one form of 

imaging (usually MRI), often formal neuropsychometry and in some cases clinical 

genetic testing. In some cases the individuals had died and donated their brains for 

pathological examination.  

 

2.1.1.2   Consent and ethical considerations 

Since sample collection had taken place over a number of years, the majority taken 

for clinical purposes, many had no research consent. Most samples were held for the 

purposes of clinical audit and quality control in accordance with the Royal College of 

Pathologist Guidelines 

(http://www.rcpath.org/Resources/RCPath/Migrated%20Resources/Docu 

ments/G/G035_GuidanceUseofClinicalSamples_Nov12.pdf). The clinical status of 

these individuals was largely unknown and it was likely that many of them would 

have died. As it was felt that it would be potentially distressing and inappropriate to 
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pursue families of these individuals in order to obtain consent retrospectively, as 

well as impractical given the number of samples collected over an extended time 

period, consent was sought from the local research ethics committee to analyse 

samples and to access patients clinical records held at UCLH NHS trust only to 

obtain necessary clinical information for correlative analyses without obtaining 

further consent from the subjects involved. It was agreed not to feed back any 

results of new assays to individuals. It was also agreed that patient identifiable data 

would only be accessed by members of the clinical care team named on the ethics 

application. Permission was granted to hold onto clinical data for 15 years and to 

undertake a range of established and novel biomarker techniques in those individuals 

where >200uL CSF remained.  

 

The study was approved by the local research ethics committee at the National 

Hospital for Neurology and Neurosurgery, Queen Square (Reference number 

13_LO_1155) with conditions. The conditions imposed by the committee were:  

 that only the samples collected up to date that ethical approval was granted 

would be used in the study 

 the investigators provide a list of all the biomarkers to be tested  

 and to confirm that if additional biomarkers were to be tested in the future, 

then a Substantial Amendment would have to be submitted 

 that the local Research and Development office would deal with any material 

transfer issues 

2.1.1.3   Inclusion & exclusion criteria 

Since 2006-2007 CSF samples have been routinely collected in polypropylene 

vessels. Prior to this other plastic containers, of varying materials and manufacturers 
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were used, and this is likely to be major confounder in the measurement of some CSF 

biomarkers, in particular β-amyloid161. With this in mind, samples acquired before 

1/1/2008 were excluded as the provenance of the collection tubes could not be 

guaranteed.  Individuals had to be ≥18 years old at the time of CSF collection. 

 

Laboratory records from the neuroimmunology laboratory at the Institute of 

Neurology were interrogated. Any individuals assessed by a member of the specialist 

cognitive disorders team (who had a clinic letter documented on the hospital 

electronic database or a written entry by a cognitive consultant  neurologist in the 

clinical notes) were included. Individuals with ventricular shunts at the time of 

lumbar puncture were excluded since amyloid moieties may adhere to the plastic 

shunt confounding results.  

 

2.1.1.4   Archiving historic CSF samples 

  

The author interrogated departmental databases and relevant clinical notes to 

identify all individuals who may have had a lumbar puncture following their 

assessment at the Specialist Cognitive Disorders Clinic. All corresponding historic 

samples stored within the Institute of Neurology Neuroimmunology laboratory in 

freezers maintained at -80C were then manually reviewed. The identification details 

were checked and the sample quality and volume (on visual inspection) were 

documented. Where possible the number of freeze thaw cycles of an individual 

sample were documented. Individual samples were then given a unique barcoded 

identifier and these data along with basic clinical information (age at lumbar 

puncture, sex, pre-lumbar puncture clinical diagnosis) was stored within the 

neuroimmunology laboratory in a Microsoft Excel database with all other clinically 
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identifiable details removed. A database containing patient identifiable data and the 

unique barcoded identifier were documented in a spreadsheet accessible only to 

clinicians within the department and protected by Firewall.   

 

2.1.1.5   Clinical Diagnosis  

For this cohort the author sought to define the clinical diagnosis based on the final 

diagnosis, which included all available clinical, paraclinical investigations 

(neuropsychometry, in some cases serial neuroimaging) clinical follow-up (often over 

many years) in addition to fluid biomarker evidence, i.e. CSF results, which would 

inevitably influence the treating clinician’s diagnosis. Patients were classified 

according to a pre-agreed list of possible clinical diagnoses (Table 2.2). For 

individuals to be diagnosed with either probable Alzheimer’s disease, Lewy Body 

dementia, behavioural variant frontotemporal dementia (BvFTD) or a specific 

language phenotype they had to fulfill contemporary clinical consensus criteria3, 32, 

252, 253  (Table 2.2). To avoid circularity, the author also sought to determine the pre-

lumbar puncture clinical diagnosis. This was defined as the treating clinician’s 

working diagnosis based on the available clinical information at that point (usually 

at least one set of imaging and neuropsychometry and usually 1-2 clinical 

assessments).  Electronic clinical notes were interrogated and the last clinical 

correspondence prior to LP was used to determine the pre-LP clinical diagnosis. 

Again, patients were classified according to a pre-agreed list of possible clinical 

diagnoses (Table 2.2).  
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Clinical Diagnosis Abbreviation 

1. Amnestic AD AD 

2. Posterior cortical atrophy  PCA 

3. Logopenic aphasia  LPA 

4. Lewy Body Dementia  DLB 

5. Behavioural variant frontotemporal 

dementia  

BvFTD 

6. Progressive non-fluent aphasia  PNFA 

7. Semantic dementia SD 

8. Vascular dementia VAD 

9. Corticobasal syndrome CBS 

10. Mood disorder  

11. Neurodegenerative disorder - unclear   

12. Parkinson’s Disease Dementia  PDD 

13. Other   

14. Progressive Supranuclear Palsy  PSP 

15. PPA language phenotype that did not 

fulfil standard Gorno-Tempini criteria 32  

PPA 

16. Frontal variant AD  fvAD 

Table 2.2   List of possible clinical diagnoses and their abbreviations 

2.1.1.6   Independent review of Clinical Diagnosis 

In order to independently corroborate the pre-LP diagnosis another clinician was 

asked to determine the pre-LP diagnosis based on consensus diagnostic criteria. 

They were provided with copies of the most recent relevant anonymised c linical 

correspondence and were asked to select from the same list of possible clinical 

diagnoses (Table 2.1).   Independent reviews were carried out on approximately half 

of the cohort, randomly selected.  

 

All notes reviews occurred over a one month period in December 2012. During the 

notes review several other aspects of clinical information were also recorded, 
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including the time from time symptom onset to lumbar puncture as reported by the 

patient (or collateral source; caregiver; spouse; relative); the earliest symptom was 

taken; the duration of neurological follow-up defined as the time from lumbar 

puncture to the last clinical assessment by a member of the specialist cognitive 

disorders team (either an outpatient clinic appointment or assessment during an 

inpatient admission); and the most recent mini mental state examination (MMSE) 

score carried prior to lumbar puncture was also documented (Appendix A). Only 

MMSEs carried out by a doctors or specialist nurse form the specialist cognitive 

disorders service were used. In most cases this assessment was carried out at the 

most recent outpatient clinic review.    

 

In November 2015 records of post mortem diagnosis (where applicable) were 

updated. A secure password protected Microsoft Excel spreadsheet , containing 

details of all subjects who have died and undergone post mortem examination at the 

Queen Square Brain Bank was interrogated by the author. All individuals 

undergoing post mortem examination gave informed written consent during life, 

and their relatives gave consent post-mortem.   The database was interrogated by 

name and hospital number of all individuals included in the retrospective cohort and 

the final pathological diagnosis was recorded. Pathological diagnosis was made 

according to standard pathological criteria outlined in the introduction.  

 

2.1.2   Prospective Cohort 

2.1.2.1   Individuals 

Patients with a suspected neurodegenerative disease (including, but not limited to 

Alzheimer’s disease, Parkinson’s disease, Dementia with Lewy Bodies, 
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Frontotemporal lobar degeneration, Parkinson’s disease, Huntington’s disease) in 

whom CSF collection was planned as part of their usual clinical diagnostic work-up 

were asked to donate an extra 15mls of CSF, up to 50ml urine and up to 50ml of 

blood for research purposes at the time of their planned diagnostic lumbar puncture.  

Individuals referred to the Specialist cognitive disorders clinic at the National 

Hospital for Neurology are sometimes offered a lumbar puncture as part of the 

diagnostic workup of cognitive impairment.  

 

2.1.2.2   Inclusion Criteria 

Individuals had to be assessed by clinicians from the specialist cognitive disorders 

team, be ≥18 years of age and have a suspected neurodegenerative disorder and were 

willing to consent to this research study. Individuals were either required to have 

capacity to give consent themselves or in cases where they lacked capacity they were 

required to have a friend or relative in attendance.    Individuals could only be 

included if their samples could be collected according to a standard operating 

procedure.  

 

2.1.2.3   Exclusion Criteria 

If it was not deemed safe for the individual to have a clinical LP they were excluded. 

Standard exclusion criteria included: coagulopathy or treatment with blood thinners 

e.g. warfarin; lumbar spinal surgery within the last 6 months prior or any lumbar 

spinal procedure that significantly altered the anatomy of the intervertebral spaces; 

history of chronic or repeat CSF leaks following previous lumbar punctures; active 

infectious process. 
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2.1.2.4   Consent and ethical considerations 

The author wrote the study protocol and successfully obtained ethical permission to 

carry out this study. It was approved by the local research ethics committee at the 

National Hospital for Neurology and Neurosurgery, Queen Square (Reference 

number: 12_LO_1504).  Informed written consent was obtained from all subjects or 

their appropriate legal representative. No reimbursements or inducements were 

given. There is no evidence that removal of additional CSF is associated with an 

increased rate of headache or other side-effects254 at the time of writing, and 

subsequently evidence has shown that taking larger volumes (up to 30ml) is 

associated with lower incidence of post lumbar puncture headache152.    

2.1.2.5   CSF Collection and handling   

 

2.1.2.5.1   Research Biobanking Standard Operating Procedure (SOP)  

A SOP for CSF collection and handling was drafted by the author according to 

research guidelines73, 255 (http://www.adni-info.org/Scientists/Pdfs/14-

Biomarker_Sample_Collection_Processing_and_Shipment.pdf). A full version of this 

SOP is provided in Appendix B.   

2.1.2.5.2   Identification of Individuals  

Suitable research subjects were identified via the specialist cognitive disorders 

service at the National Hospital for Neurology and Neurosurgery or when they 

attended the National Hospital Day Care Unit having been referred for lumbar 

puncture for suspected neurodegenerative disease by a consultant neurologist from 

the specialist cognitive disorders team.  Subjects were identified at one of two time 

points: (1) At the specialist cognitive disorders clinic: In the specialist cognitive 

disorders clinic subjects were provided with written information, asked to sign a 
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Data Protection Act form and consent form if they felt ready to do so; (2) At the 

National Hospital day care unit: the Dementia Research Fellow responsible for 

managing the CSF database (or deputy) would review the day care unit admission 

list each Friday afternoon in order to identify potential participants who may or may 

not have previously been identified in clinic. The consultant in charge was informed 

by email at least 48 hours’ notice prior to the admission and given the opportunity to 

opt-out. The CSF laboratory technician was informed of prospective participants by 

email 48 hours prior to admission.   

 

2.1.2.6   Clinical data collection 

The subject-specific code stickers were attached to the front of the clinical notes at 

the point at which consent was obtained. Clinical details (outlined in Table 2.3) were 

collected using a brief questionnaire by a member of the cognitive disorders team 

and logged and stored along with this code in a secure clinical database by the 

research officer at the Dementia Research Centre.  

Issue Clinical information Comments 

1 Name  

2 Hospital Number  

3 Date of birth   

4 Date of first symptom  

5 First symptom  

6 Pre-LP diagnosis  

7 Consultant  

8 Date and time of lumbar puncture  

9 Age at lumbar puncture  

10 Manometer used Yes/No 

Table 2.3 Data collection form to be completed contemporaneously by the doctor 

carrying out the lumbar puncture  
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2.1.2.7   Lumbar puncture 

The procedure was undertaken in the usual clinical setting, the Day Care Unit of the 

National Hospital for Neurology and Neurosurgery. The author arranged these 

visits (provided invitation letters; telephoned individuals to discuss the procedure in 

advance; coordinated a rota of clinical fellows to assist), personally supervised all 

procedures and performed more than 50%). The CSF samples were collected 

between 8am and 12 noon on a Thursday morning. In addition to samples taken for 

routine clinical analysis. CSF was collected in two screw-top polypropylene tubes 

(Sarstedt 62.610.018), which were the last tubes filled. Guidelines for CSF collection 

are outlined in Table 2.4. Pressure readings using a manometer were avoided unless 

there was a compelling clinical reason to measure it, and this was documented.  

 

2.1.2.8   Transferring samples to the laboratory   

All research samples including blood, CSF and urine were stored, transferred and 

processed together.  Clinical samples were handled and transported separately. 

Samples were accompanied by the lab transfer sheet without other clinical 

information.  The CSF laboratory technician was contacted by the doctor 

performing the lumbar puncture or a member of the research team immediately after 

the sample had been successfully collected. Samples were left in a designated metal 

box at the Day Care Unit reception for collection.  The CSF technician personally 

collected all samples and delivered them to the CSF laboratory within 30 minutes.    
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Issue  Ideal Situation 

1 Preferred Volume In addition to CSF collected for 

routine clinical examination (cell 

count, protein, glucose, 

neurodegenerative markers) a further 

15ml was collected between two 

polypropylene screw-top containers 

(Sarstedt 62.610.018).  

2 Time of collection  Always between 8-12am to avoid 

potential for diurnal variation in CSF 

biomarkers.  

3 Other samples collected 

simultaneously 

Blood for storage; urine for storage   

4 Local anaesthesia As per usual clinical guidelines 

5 If bloody  To be sent to CSF laboratory 

regardless 

6 Storage conditions Room temperature before, during and 

after spinning. 

7 Transfer to laboratory Within 30 minutes. 

8 Post lumbar puncture advice As per usual clinical guidelines 

9 Manometer Avoided unless a good clinical reason  

Table 2.4.  Overview of the lumbar puncture procedure. CSF: cerebrospinal fluid. 

 

2.1.2.9   Laboratory Procedures 

The samples were transferred to the lab in a clear plastic bag provided by the 

research group.  Upon arrival the samples were logged in a standard import 

spreadsheet for the database. This was done either manually or by using a barcode 

scanner.  
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CSF Samples were centrifuged (3000rpm for 10 minutes) and the supernatant f luid 

aliquoted in volumes of 0.5ml within 1.5ml polypropylene tubes. The tubes were 

allocated storage positions using Item tracker software, and the individual aliquots 

given specific positions on the rack with individually unique identifiers. The location 

information was stored in the database.  Unique identifiers for each aliquot 

generated and printed on nylon labels using a Brady BBP11 Thermal Transfer 

printer with Ribbon appropriate for storage conditions of up to -100C.   Date and 

time of sampling, collector, condition, date and time of arrival, date and time of 

freezing and storage condition, cell count, sample quality comments (for example, 

indicating possible contamination) were also logged in the database.  Samples were 

stored in a -80 freezer within one hour of arrival.  The freezers had a monitoring and 

alarm system for ensuring that sample conditions were maintained in the event of a 

freezer failure.  

 

2.1.2.10   Clinical Follow-up 

Participants were phoned the following day by the author. Subjects were routinely 

asked whether or not they experienced a headache after the lumbar puncture, or 

other complications and these complications were documented on the participant 

questionnaire.  

 

2.1.3   Healthy Control Cohort 

2.1.3.1   Individuals 

Individuals recruited to a separate research project entitled ‘CSF biomarkers in 

Parkinsonian disorders’ were included in this study to provide a valuable cohort of 

age matched healthy controls subjects. This study was carried out by another 
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neurology specialist registrar / PhD student at the Institute of Neurology, Dr Nadia 

Magdalinou (NM). Typically individuals were recruited from the movement 

disorders or specialist cognitive disorders clinic at the National Hospital for 

Neurology and Neurosurgery as spouses of affected individuals.  

 

2.1.3.2   Inclusion and exclusion criteria  

Individuals were aged 40-85 and had no subjective memory complaints. They were 

required to have no objective evidence of cognitive impairment on the Mattis 

dementia rating scale256. In addition to the standard contraindications for lumbar 

puncture in routine clinical practice additional contraindications included: an 

increased bleeding risk (Platelets <150 per cubic millimeter and an international 

normalized ratio (INR) <1.5 for blood clotting); history of migraines; known 

vertebral deformity; obesity (defined as body mass index>30); any signs or 

symptoms of Parkinsonism as assessed by a movement disorder specialist doctor.   

2.1.3.3   Consent and ethical considerations  

This study was approved by the local research ethics committee at the National 

Hospital for Neurology and Neurosurgery (Ethics reference number: 12/LO/06400). 

Permission to use the samples in this project was granted by major amendment by 

the same ethics committee. All individuals gave informed written consent.  

2.1.3.4   CSF collection and analysis  

A standardised clinical protocol developed at the University of Gothenburg for the 

collection and storage of CSF was followed, similar to that used for the methods 

described for the ‘prospective cohort’. Full details are available at: 

(www.neurochem.gu.se/TheAlzAssQCProgram)  
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2.1.4   Alzheimer’s Disease Neuroimaging Initiative (ADNI) Cohort  

2.1.4.1   Overview 

The ADNI is a multicentre public-private initiative, which was established in 2004 

with 3 principal aims: 

1. To be able to detect AD as early as possible and to be able to track disease 

progression using biomarkers.    

2. To facilitate therapeutic interventions in AD.  

3. To expand the ADNI data sharing policy to facilitate access to as many 

researchers and research groups as possible  (ADNI website 

http://adni.loni.usc.edu/ accessed September 2014)  

 

2.1.4.2   Individuals  

Individuals were screened, recruited, assessed, scanned and followed up according to 

the ADNI procedure manual (http://www.adni-

info.org/Scientists/ADNIStudyProcedures.aspx). In brief, they aimed to recruit 800 

individuals, including 200 healthy controls, 400 individuals with mild cognitive 

impairment and 200 individuals with mild Alzheimer’s disease. They were recruited 

from 50 sites across the United States of America and Canada. The general inclusion 

criteria were:  

 Age 59-90 years of age (inclusive) at recruitment  

 Have a partner able to provide a collateral history  

 Be able to speak English or Spanish fluently  

 Be willing to have regular follow-up, MRI, PET scans and lumbar puncture 

Inclusion criteria for healthy controls:  

 MMSE of 24-30 (inclusive)  

http://www.adni-info.org/Scientists/ADNIStudyProcedures.aspx
http://www.adni-info.org/Scientists/ADNIStudyProcedures.aspx
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 Clinical Dementia Rating (CDR)257(Appendix C) score of 0.  

 Not depressed 

Inclusion criteria for individuals with mild cognitive impairment 

 MMSE of 24-30 (inclusive)  

 CDR of 0.5 

 A subjective memory complaint and objective memory deficit  measured by 

education adjusted scores on Wechsler Memory Scale Logical Memory II  

Inclusion criteria for individuals with mild AD 

 MMSE of 20 – 26 (inclusive)  

 CDR of 0.5 or 1.0 

 Meets National Institute of Neurological and Communicative Disorders and 

Stroke (NINCDS) and the Alzheimer's Disease and Related Disorders 

Association (ADRDA)3 criteria for probable AD  

 

All subjects were assessed at regular intervals with clinical and cognitive 

assessments and 1.5Tesla(T) MRI during these assessments. AD subjects were 

assessed at 0, 6, 12, and 24 months from baseline. Individuals with MCI were 

assessed at 0, 6, 12, 18, 24 and 36 months from baseline. Age matched healthy 

control subject were assessed at 0, 6, 12, 24 and 36 months.  All individuals were 

offer a CSF examination at 0 and 12 months from baseline and then annually 

thereafter.  

 

2.1.4.3   Consent and ethical considerations  

The study was conducted in accordance with Good Clinical Practice (GCP) 

guidelines, the Declaration of Helsinki, US 21CFR Part 50 – Protection of Human 

https://en.wikipedia.org/wiki/National_Institute_of_Neurological_and_Communicative_Disorders_and_Stroke
https://en.wikipedia.org/wiki/National_Institute_of_Neurological_and_Communicative_Disorders_and_Stroke
https://en.wikipedia.org/wiki/Alzheimer%27s_Disease_and_Related_Disorders_Association
https://en.wikipedia.org/wiki/Alzheimer%27s_Disease_and_Related_Disorders_Association
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Subjects, and Part 56 – Institutional Review Boards, and to state and federal 

regulations. All patients gave informed written consent.  

 

2.1.4.4   CSF Collection  

CSF samples were collected according to the CSF collection protocol on the ADNI 

website, appendix to the document (www.adni-

info.org/Scientists/ADNIStudyProcedures.aspx). In brief, all samples were collected 

following an overnight fast at breakfast time using a Sprotte 24G atraumatic needle 

in all individuals who were willing to have a lumbar puncture. They were carried out 

with the patient in either the sitting or supine position. Samples were collected in 

5ml polypropylene vessels and frozen at the bedside using dry ice.  

 

The author was not directly involved in the collection, handling or analysis of these 

samples. The full ADNI CSF analysis plan is available online but not reproduced as 

an appendix due to its considerable size. (http://adni.loni.ucla.edu/wp-

content/uploads/2012/01/2011Dec28-Biomarkers-Consortium-Data-Primer-

FINAL1.pdf) 

 

2.1.5   Young Onset AD (YOAD) cohort  

2.1.5.1   Overview  

Subjects for the study in this part of the thesis were recruited as part of the YOAD 

study.  This was a prospective observational cohort study designed to determine the 

clinical and imaging phenotype of young onset Alzheimer’s disease.  The author was 

involved in writing the study protocol, obtaining ethical consent, recruiting 

individuals, arranging, coordinating and running all clinical visits.   

http://adni.loni.ucla.edu/wp-content/uploads/2012/01/2011Dec28-Biomarkers-Consortium-Data-Primer-FINAL1.pdf
http://adni.loni.ucla.edu/wp-content/uploads/2012/01/2011Dec28-Biomarkers-Consortium-Data-Primer-FINAL1.pdf
http://adni.loni.ucla.edu/wp-content/uploads/2012/01/2011Dec28-Biomarkers-Consortium-Data-Primer-FINAL1.pdf
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2.1.5.2   Individuals  

Prior to recruitment to the study all patients had undergone a full clinical 

assessment as part of their clinical care including a full history (with collateral 

informant), comprehensive neurological examination and blood tests to exclude 

other treatable causes of dementia such as hypothyroidism or vitamin B12 deficiency.  

The study aimed to recruit 50 subjects with AD, onset before the age of 65 and 25 

healthy age matched control subjects.   

The general inclusion criteria were:  

 Diagnosis of probable AD according to NINCDS-ARDRDA criteria3.  

 Have a partner, friend or family member able to provide a collateral history  

 Be able to speak English fluently  

 No contraindications to MRI  

 Be willing to have regular follow-up, MRI and to complete questionnaires.  

 Have consented to have data stored for research purposes under the Data 

Protection Act (1998) 

 Have given or will have given consent to donate DNA for genetic research 

(Ethical approval through the Queen Square Ethics committee, 

reference:03N049).  

 

Inclusion criteria for healthy control subjects  

 No major psychiatric illness  

 No known neurological disease 

 Speaks English fluently 

Inclusion criteria for AD subjects 

 MMSE (or equivalent) score at recruitment of >12/30 (see Appendix A). 
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 The MRI scan at screening is consistent with a diagnosis of  probable 

Alzheimer’s disease.   

 Fulfils criteria for probable AD dementia of intermediate or high certainty based 

on NIA AD criteria incorporating biomarkers3. 

 On the basis of a medical history and physical examination the participant is 

considered to be otherwise healthy.  

 Speaks English fluently 

 

2.1.5.3   Consent and ethical considerations 

The study was conducted in accordance with Good Clinical Practice guidelines, the 

Declaration of Helsinki, US 21CFR Part 50 – Protection of Human Subjects, and 

Part 56.  Written informed consent was obtained. Separate written informed consent 

was obtained for lumbar puncture.  Separate caregiver consent was signed and dated 

indicating agreement to their own participation as an informant. Participants lacking 

capacity were not recruited to this research study. However if a participant lost 

capacity during the course of the study, in accordance with Section 30-33 of the 

Mental Capacity Act participants were still be able to continue to participate when a 

suitable consultee was identified. All participants agreed for their general 

practitioners to be informed of their involvement by letter.  

 

The study was approved by the local research ethics committee at the National 

Hospital for Neurology and neurosurgery (reference12/LO/0005).  
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2.1.5.4   Study Design 

An overview of the study design is provided as an appendix (Appendix D). In brief, 

individuals attended 3 visits over the period of 1 year and were offered a lumbar 

puncture at the final visit.  

 

2.1.5.5   CSF Collection and handling  

CSF collection and transfer to the laboratory were carried out using the same 

standard operating procedure as samples acquired for the prospective cohort. On the 

sample collection sheet the study name was indicated. Safety data (cell count and 

protein levels) were made available on the hospital clinical data repository (CDR) 

and reviewed by the author or deputy with 24 hours of lumbar puncture. Results of 

neurodegenerative markers were not made available on CDR and were not 

communicated to participants, as agreed with the local ethics committee.     

 

2.1.6   Swedish Cohort 

2.1.6.1   Overview 

This cohort was collected by Prof. Johann Svenson and Dr Per M Johannson from a 

regional memory clinic at Skaraborg Hospital in Sweden. A subset were fully 

assessed and are described in detail258. Individuals were referred by their general 

practitioners with cognitive impairment and were assessed by a single clinician (JSv) 

and diagnosed with a range of neurodegenerative diagnoses. Healthy age matched 

controls were either spouses of affected individuals or recruited from an advert in a 

local newspaper. This cohort also included CSF samples from individuals who 
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sought medical advice at another regional Swedish memory clinic because of 

cognitive impairment. As only the age and gender of these individuals was known, 

subjects were categorized neurochemically as having AD or non-AD CSF.   

   

2.1.6.2   Consent and ethical considerations 

Permission was granted by the Swedish Research council to use these samples for 

research purposes and all individuals gave written informed consent.  

 

2.1.6.3   CSF Collection and Handling 

Samples were collected in polypropylene vessels, and aliquoted within 1 hour. They 

underwent 1 freeze thaw cycle prior to use.   

 

2.2   Cerebrospinal Fluid Analysis 

 

2.2.1   Enzyme-linked immunosorbent assays (ELISA) 

 

In this section details are given of the assays used to quantify the CSF biomarkers 

discussed in this thesis. In brief enzyme-linked immunosorbent assays (ELISA) were 

used to test Aβ, T-tau and P-tau and some of the other more novel candidate 

biomarkers. Where possible, established and validated commercially available assays 

were used. For panels of novel biomarkers, multiplex assays were used, which allows 

panels of multiple analytes to be measured simultaneously. In ADNI, the extended 

panel of CSF analytes was measured using a multiplex assay employing xmaPR 

technology©(Luminex, Austin, Texas, USA). This technique makes use of bead 
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technology, which seeks to optimize antibody/antigen capture allowing for smaller 

volumes of CSF to be measured with a higher sensitivity.  The author was not 

involved in these analyses.  For the prehandling experiments (Chapter 3) Aβ1-42 

and T-tau were assayed on a Meso Scale Discovery 6000 platform, using MSD 

Human Aβ1-42 and MSD Human Total Tau kits, respectively (Meso Scale 

Discovery, Gaithersburg, Maryland, USA). Details of the analytical procedures used 

are provided in each chapter. For ELISAs used in more than one chapter the 

methods are described in full below. CSF ELISAs were carried out or supervised by 

board certified laboratory technicians. The author was involved in planning all 

experiments and carrying out some of the ELISAs with technician supervision.  

2.2.1.1   Innotest (Fujeribio) β amyloid(1-42) ELISA 

2.2.1.1.1  Principle 

The principle of this test is to capture the β amyloid peptide with the monoclonal 

antibody, 21F12 (IgG2a) and then incubate it with a second antibody, 3D6 (IgG2b). 

The antibody antigen complex is then detected by a horseradish peroxidase labelled 

streptavidin. The colour intensity can then be measured using a microplate reader 

(Figure 2.1).  
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Figure 2.1(a)    A microplate reader used at the neurochemistry laboratory at the 

Sahlgrenska hospital in Goteborg; (b)   The author pipetting under the supervision 

of Ulrika Tornqvist, board certified laboratory technician in the same department.  

    

2.2.1.1.2   Analytical procedure 

CSF aliquots were defrosted at the benchside at room temperature approximately 60 

minutes prior to starting the test. A preparation plate was prepared to reduce 

dispensing time. 80uL of CSF was pipetted into each well. All samples were then 

transferred to the pre-coated plate containing the first antibody using a multichannel 

pipette, using a reverse pipette technique to reduce bubbles. The second antibody in 

buffer solution (75uL) was then added to each well using the same technique. The 

plates were then shaken at 700 RPM and incubated for 60 minutes at 25oC. The 

plates were then washed five times with phosphate buffer and deionized water. At 

this stage the horseradish peroxidase labelled streptavidin containing solution was 

added and the plates sealed and incubated for 30 minutes at 25C. The plates were 

then washed a further five times before adding tetramethyl benzidine containing 

solution to provide colour. It was then incubated for 30 minutes in the dark. To stop 

the reaction, a stop solution was added (0.9N sulfuric acid) and the plates were read 

using a microplate reader with 450nm filter.  

 

2.2.1.1.3   Control procedure 

The manufacturer provides 12 calibrators of increasing Aβ concentration in order to 

produce a standard curve. Four manufacturers controls and an internal control of 

known Aβ were also included on each plate. For the controls the percentage 

difference was calculated as follows: (absorbancy (con1-

con2)/((con1+con2/2)0*100). Values <20% are considered acceptable by the 

manufacturer.    
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2.2.1.1.4   Normal range 

Values for the 10th and 90th percentile for this assay are 627 – 1322 pg/ml, based on 

a cohort of healthy control subject at the National Hospital for Neurology.     

 

2.2.1.2   Innotest (Fujeribio) T-tau ELISA 

2.2.1.2.1   Principle 

Like the β amyloid 1-42 assay the principle of this test is to capture Total Tau (T-

tau) (which includes all 6 isoforms, 352 to 441 amino acids, found in the brain) with a 

monoclonal antibody AT120. Two secondary antibodies BT2 or HT7 were 

incubated to create an antibody/antigen complex that could be detected by a 

horseradish peroxidase labelled streptavidin.  

 

2.2.1.2.2   Analytical Procedure 

The procedure was similar to the β amyloid 1-42 assay but used 25uL CSF and was 

analysed in duplicate. Overnight incubation was required and the plate was also read 

using a microplate reader with 450nm filter. 

 

2.2.1.2.3   Normal Range 

Values for the 10th and 90th percentile for this assay are 146 – 595 pg/ml based on a 

cohort of healthy control subject at the National Hospital for Neurology. The 

manufacturer does not provide a normal reference range.    

 

2.2.1.3   Innotest (Fujeribio) P-tau ELISA 

2.2.1.3.1   Principle 
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The principle of this test is to capture phosphorylated Tau (181) using HT7 

antibody. It is then incubated with a secondary antibody AT270. The antibody-

antigen complex can be detected by a horseradish peroxidase labelled streptavidin.  

 

2.2.1.3.2   Analytical Procedure 

The procedure used 75uL of sample (or 75uL control sample) in duplicate. As with 

the T-tau assay, the plate required to be incubated overnight once the secondary 

antibody was added.  

 

2.2.1.3.3   Normal Values 

Values for the 10th and 90th percentile for this assay are 24 – 68 pg/ml based on a 

cohort of healthy control subjects at the National Hospital for Neurology. The 

manufacturer provides a clinical cutpoint of <62 pg/ml.    

 

 

2.2.1.4   Neurofilament Light Uman Diagnostics (Umea, Sweden) ELISA 

2.2.1.4.1   Principle 

The principle of this test was to capture and detect CSF neurofilament light using 2 

specific antibodies259. 

 

2.2.1.4.2   Analytical procedure 

As previously described, CSF samples were thawed by the bench for 60 minutes. 

CSF samples were then transferred to a pre-plate, with 105uL in each well which 

was then diluted with the same volume of buffer diluent as provided by the 

manufacturer. The pre-coated plates were first washed with a wash buffer. Then 
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100uL of each sample was added in duplicate to the plate using a multichannel 

pipette. The plates were then incubated at room temperature and agitated at 

800RPM for 60 minutes. The plates were then washed 3 times with wash buffer. 

The solution containing the second antibody is then added and allowed to incubate 

for a further 45 minutes with agitation. The plates were rewashed 3 times and at this 

stage the horseradish peroxidase labelled streptavidin containing solution was added 

and the plates sealed and incubated for 30 minutes at 25C. The plates were washed 3 

times and tetramethyl benzidine containing solution was added for 15 minutes with 

agitation, before sulfuric acid was added to stop the reaction. The plate was then 

read using a microplate reader with 450nm filter. As previously described the 

manufacturer provides controls in addition to internal standards. Inter-assay co-

efficients of variation were then calculated as follows: (mean/standard 

deviation*100).  

 

2.2.1.4.3   Reference range  

The manufacturer provides a cutpoint for healthy controls between the age of 40 and 

60 of <830pg/mL based on a cohort of 18 individuals with no history of neurological 

disease.  

 

2.2.1.5   YKL-40 ELISA 

2.2.1.5.1   Principle 

The principle of this test is to capture CSF YKL-40 using recombinant human YKL-

40 antibodies and then to add a detection antibody, which is a recombinant antibody 

raised against YKL-40. The kit was provided by R & D systems (R&D systems, 

Minneapolis, MN). The antibody-antigen complex was then labeled and read using a 
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microplate reader with a 450nm filter.    

 

2.2.1.5.2   Analytical procedure 

Samples were defrosted at the benchside for 60 minutes at 25oC. The analytical 

procedure is identical to the Innotest assays (Ghent, Belgium). 50uL sample and 

control were required for each well. Incubation time allowed was 2 hours. All 

samples were run in duplicate.  

To the author’s knowledge there are no published reference ranges for this 

biomarker.  

 

2.2.1.6   Amyloid β Triplex assay (X-38, X-40, X-42)  

2.2.1.6.1   Principle 

The principle of this multiplex test is to capture CSF amyloid β X-38, X-40 and X-

42 in CSF using the pre-prepared MULTI-SPOT® Abeta Peptide 3-Plex Plate 

(Meso Scale Discovery, Gaithersburg, Maryland, USA) then use a specific 

preparation of detection antibodies, SULFO-TAG™ 6E10 (Meso Scale Discovery, 

Gaithersburg, Maryland, USA) which allows the three antigens to be detected and 

quantified using the Mesoscale discovery instrument. Since the antibodies selectively 

detect amino acids ending in 38, 40 and 42 respectively, the nomenclature X-

38/40/42 is used.  

 

2.2.1.6.2   Analytical procedure 

Samples were thawed at the benchside for 60 minutes at room temperature and a 

pre-plate was prepared where 30uL of sample were added to each well. The 96 well 

plate was prepared by adding a blocker solution and incubating for 60 minutes at 
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25oC and then washed 4 times using Tris buffer solution. The detection antibody 

and 25uL sample (and controls + standard curve samples) were then added using a 

multi-channel pipette. The plate was then sealed and incubated for 2 hours (with 

agitation) before it was washed 4 times with Tris buffer wash. A ‘read’ buffer was 

then added and the sample was ready to be read by the Meso scale platform.  

 

2.2.1.6.3   Analysis and interpretation 

Samples were run in duplicate; CVs calculated and standard curve produced using 

the manufacturers’ samples.     

 

Mesoscale Discovery (MSD) also produced ELISA kits for AβX-42 and T-tau and 

these kits were used with the MSD platform in place of the Innotest ELISAs in 

Chapter 3.   The Mesoscale (MSD) platform was also used to measure sAPPα and 

sAPPβ in chapters 6 and 7 using the same protocol as the AβX-38/40/42 assay.  

 

The manufacturer does not provide a normal reference range for this assay.   

 

2.2.2   Mass Spectrometry 

 

In this thesis multiple reaction monitoring (MRM) assays were used to identify and 

quantify peptides, corresponding to proteins in CSF. CSF was digested into 

fragmented peptides using the protease trypsin. These peptides were subsequently 

analysed using an ultra-performance liquid chromatography system (Waters, 

Manchester, UK) coupled to a triple quadrupole mass spectrometer using 2 different 

approaches: an unbiased discovery-based proteomics approach for hypothesis 

generation and a targeted proteomics approach to detect and quantify proteins 
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thought to be of interest in Alzheimer’s disease and other neurodegenerative 

diseases. 

 

2.2.2.1   Selecting Proteins of interest 

A panel of proteins known to be of interest in neurodegeneration was available in the 

laboratory having been designed and published by Dr Wendy Heywood et al 260 to 

detect markers of neurodegenerative diseases: Lewy Body Dementia; Parkinson’s 

disease and frontotemporal dementia. This panel was developed using the Label-

Free Proteomic Analysis (2D-LC-MSe) method (Waters, Manchester, UK). For this, 

400uL of pooled CSF from patients with a range of suspected neurodegenerative 

disorders including AD, Parkinson’s disease, Frontotemporal dementia, collected 

from 3 different centres in Europe (University of Milan, University of Gothenburg 

and University College London) was used. These samples were prospectively 

collected according to a standard operating procedure in polypropylene vessels.  

Low abundant proteins were enriched by depleting abundant plasma proteins using 

a ‘Top 20’ plasma protein depletion column (Sigma-Aldrich, Dorset, UK). Depleted 

CSF was double digested with LycC and trypsin (Sigma-Aldrich, Dorset, UK) and 

peptides were fractionated using the high-Ph fractionation technique as previously 

described 261. Yeast enolase standard was added and the fractionated peptides were 

analysed using label free quantitation on a Waters Quadrupole Time of Flight 

(QToF) Premier mass spectrometer coupled to a NanoAquity liquid chromatography 

system (Waters, Manchester, UK).  Proteins were then identified using Waters 

ProteinLynx Global server v 2.5 and a UniProt human reference proteome database.  

Results were controlled for false discovery rate set at 4% and only peptides with  

>95% confidence were analysed further. Proteins with a mass of >800kDA were 
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excluded.  Other proteins identified on literature search by Heywood et al260(Chapter 

9), when this panel was developed in 2014 were also included in the panel. These 

included proteins of interest in AD and other neurodegenerative diseases80, 262-269. 

The final list of proteins included in the panel is provided in appendix F.  

 

2.2.2.2   Designing peptides for proteins 

This work was carried out by Dr Wendy Heywood at the Institute of Child of 

Health. Once the list of proteins of interest was determined, suitable corresponding 

peptides that could be detected in lysed CSF were required. For each protein the 

amino acid sequence was determined using the online protein directory UniProt for 

homosapiens (www.uniprot.org). The sequence was fragmented using Skyline 

software270 to generate at least 3 shorter peptide transitions (fragment ions). 

Transitions containing cysteine were avoided where possible since cysteine required 

modification during sample preparation. Cysteine containing transitions were later 

capped as later described.  These transitions were then entered into the UniProt 

Basic Local Alignment Search Tool (BLAST) (blast.ncbi.nlm.nih.gov) to ensure that 

they were unique to the protein of interest (proteotypic). The amino acid codes for 

these transitions were sent for manufacture (Genscript, New jersey, USA).     

 

2.2.2.3   Capping Cysteine Residues  

Cysteine residues are reactive and readily form disulphide bonds with other cysteine 

residues making it difficult to adequately digest proteins.  Reduction and S-

carboxymethylation was used to cap cysteine residues to facilitate complete protein 

http://www.uniprot.org/
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digestion. This was carried out by adding Dithiothreitol(DTE) and Iodoacetic Acid 

(IAA). 

 

2.2.2.4   Standard Preparation 

The internal standard was prepared by combining the following peptides in one 

standard mix pot:  

1. 20ng yeast enolase whole protein (Sigma, UK) was added from a 10ng/uL 

stock in digest buffer; 2uL added (1mL)   

2. T-ApoE aquapeptide was added from 10nmol/ml stock diluted 1/10 

(1pmol/uL); 3pmol added (1.5mL) 

3. T-tau aquapeptide made to 50pmol/ul; 1uL added (0.5mL)  

4. Beta-amyloid 42 aquapeptide was of unknown concentration: Stock was 

diluted by ¼ and 1ul for assay (0.5mL) 

The same internal standard mix pot was used for both discovery and validation 

phase of each experiment.  

 

2.2.2.5   CSF digestion 

This work and subsequent steps were carried out by the author under the 

supervision of Dr Wendy Heywood and Dr Amanda Heslegrave. Aliquots of 100uL 

of CSF were freeze dried then re-suspended in 12uL of digest buffer (100mM Tris, 

pH 7.8, 6M urea, 2M thiourea, 2% ASB14). 7uL of standard mix and 1uL of β-

amyloid 1-42 aquapeptide were added followed by 1.5uL Dithioerythritol (DTE) 

solution for protein reduction, then vortexed for 20 seconds. The samples were then 



 118 

shaken at room temperature for 1 hour and 3uL Indole-3-acetic acid (IAA) solution, 

to block reformation of disulphide bonding, added followed by 20 seconds vortexing. 

The samples were then incubated for 45 minutes at room temperature and mixed 

with 165.5ul deionised water (DDH2O). Finally 10uL (0.1ug/uL) of Promega 

trypsin (Wisconsin, USA) was added and samples were left to digest overnight, 

incubated at 37°C. Samples were then transferred into glass vials for analysis 

immediately prior to analysis.  

2.2.2.6   Standard curve preparation 

To prepare the standard curve 700ul of pooled CSF was freeze dried. 7uL standard 

mix and 7 x 14ul of digest buffer were added. This was split into 7 aliquots and 

reconstituted in 100ul digest buffer.  

Standard curve samples were prepared as follows:  

 0 – 0uL mix & 165.5ul water added 

2 -2uL of 1/10 dilution (1pmol/ul), 163.5ul water added 

5- 5ul of 1/10 dilution, 160.5ul water added 

10- 1ul neat solution164.5ul water added 

20-2ul neat solution, 163.5ul water added 

 

The same standard curve samples were used for both discovery and validation 

cohorts.  
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2.2.2.7   Targeted Proteomic Multiple Reaction Monitoring (MRM) Liquid 

Chromatography-Mass spectrometry (LC-MS) assay 

A multiplexed 10 minute, targeted proteomic triple quadrupole, peptide MRM-based 

assay was used to measure approximately 50 proteins in each experiment.  The same 

Waters Xevo quadropole mass spectrometer and Cortecs column (Waters, 

Manchester, UK) was used for all experiments (Figure 2.2). Full details of the 

experiment design are given in chapter 9.   

 

This involved injecting 35uL of CSF digest onto a Waters CORTECS UPLC 

C18  +  Column, 90 Å, 1.6 μm, 3 mm  ×  100 mm column attached to a C18+ 

VanGuard pre-column and dynamic multiple reaction monitoring took place over 10 

minutes. Samples were run in duplicate. Quality control (QC) samples, consisting of 

pooled CSF, were run after every 5 subjects, and CV<10% were considered 

acceptable.  QCs were also run in triplicate at the start of each run to coat the 

column, and the source tip was cleaned in methanol and formic for at least 20 

minutes.  

Targetlynx software (Waters, Manchester, UK) was used to analyse 

chromatograms. Relative peptide quantity was determined by comparing area under 

the curve of each chromatogram peak with that of a heavy labeled spiked peptide or 

yeast enolase peptide. The absolute value was determined using the standard curve, 

where absolute mass could be determined by calculating the peptide’s molecular 

mass. Data were exported to Microsoft Excel and then relative and absolute masses 

were determined in Graphpad Prism (California, USA).        
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Figure 2.2   Waters Xevo TQ-S tandem quadrupole mass spectrometer (‘Tom’) with 

Cortecs column situated in Dr Kevin Mills’ laboratory at the UCL Biological Mass 

Spectrometry Centre at the Institute of Child Health, Guilford Street.  All LC-MS 

work in this thesis was carried out on this device.  

 

 

 

2.3   Imaging 

For this thesis two imaging modalities were used: MRI (Chapter 8) and amyloid 

PET (Chapter 5). Full details are provided in the methods section of each of these 

chapters respectively.       

 

2.4   Genetic Testing 

In this thesis reference is made to genetic testing. All genetic results reported were 

carried out on symptomatic individuals, on a clinical basis and analysed in the 

Clinical Pathology accredited Neurogenetics laboratory at the National Hospital for 

Neurology and Surgery. All individuals gave informed written consent.   
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2.5   Data Management  

To allow accurate management and analysis of data produced by the study of each of 

these cohorts bespoke databases were designed.  Clinical details from the 

retrospective cohort were pseudo-anonymised and the link code was held in a 

password protected spreadsheet accessible only to the named investigators in the 

study. Sample details were held in pseudo-anonymised form on a password protected 

Microsoft Access database at the Neuroimmunology laboratory within UCL 

Institute of Neurology.   

 

2.6   Statistical Analysis  

Statistical analyses were carried out in collaboration with statisticians at the London 

School of Hygiene and Tropical Medicine, Dr Jonathan Bartlett, Dr Jennifer 

Nicholas, Dr Teresa Poole and Prof Chris Frost. Different methodologies were used 

dependent on the experiments performed and are described fully in each chapter. 

Most were performed either on STATA version 12.1 (Stata Corporation Texas, 

USA) and latterly STATA version 14.1 or SPSS version 21 (IBM Corp, Armonk, 

New York, USA). Certain methodological principles were applied throughout this 

work, as described in the following subsections.  

 

2.6.1   Testing for normality of data 

 

In order to reliably use parametric statistical methods or linear regression modeling 

data requires to have a normal, or Gaussian distribution. For this thesis the 

normality of data was visually inspected using histograms or the inverse normal 

plots of data using the “qnorm” function in STATA, rather than employing specific 

statistical methods to detect non-normality, which might fail in smaller data sets271. 
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In some cases, non-normally distributed data were log transformed to permit the use 

of parametric tests.    

 

2.6.2   Handling missing values 

 

Where values are missing, for example if a CSF ELISA failed to capture, this is 

stated and the case is discarded for that specific analysis. No imputed values are used.   

 

2.6.3   Handling truncated values 

 

Owing to the limitations in sensitivity of some CSF assays at the extremes of the 

standard curve, some assays employ truncated maximum or minimum values. Where 

this is the case this is declared in the methods section and non-parametric statistical 

methods were used.    

 

2.6.4   Adjusting for multiple comparisons 

 

The approach to dealing with multiple comparisons varied depending on the 

statistical question. In chapter 8, where large numbers of biomarkers were tested 

and large numbers of comparisons made adjustments were made using the false 

discovery rate272.   
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Chapter 3.   CSF collection, handling and 

processing: Aliquot volume   

To optimize the diagnostic accuracy of existing AD biomarkers it is of critical 

importance to understand the factors that might confound their measurement and to 

consider how one might control for them.  

 

In archiving samples from the ‘retrospective cohort’, it became apparent that 

samples were stored in aliquots of significantly different volumes, simply dependent 

on the volume that remained after clinical analysis had taken place. Before using 

these samples for further research, the author sought to establish the impact of 

aliquot volume on measured CSF biomarker concentration.  

 

3.1   Introduction  

There is considerable variability in the prehandling and laboratory handling 

methods of cerebrospinal fluid before it is analysed for Aβ1-42, T-tau & P-tau. In the 

laboratory at the National Hospital for Neurology, samples collected for clinical 

analysis over the preceding years had not been collected according to a standard 

operating procedure leading to potential inconsistency in prehandling methods and 

potential for inconsistency in the measured concentrations of these analytes between 

analyses, between individuals and between different laboratories273. Known 

confounding factors in the measurement of Aβ1-42 and T-tau concentrations include 

delay in sample analysis274, diurnal variation162, CSF contamination with blood or 
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breakdown of the blood brain barrier161 and choice of storage tube material166. Of the 

commonly measured analytes, Aβ1-42 seems to be most influenced by these external 

factors, due at least in part to the hydrophobic nature of Aβ and its propensity to be 

adsorbed to the walls of collection containers, as well as to aggregate with itself and 

other proteins161. The use of polypropylene tubes mitigates against this problem to 

some degree, but does not guarantee satisfactory pre-analytic behaviour since most 

polypropylene tubes are made of copolymers to which Aβ adsorbs to different 

degrees depending on the tube manufacturer166. It was hypothesized that apparent 

Aβ1-42, T-tau and P-tau concentrations could also be altered by varying the aliquot 

volume in which CSF is stored, and hypothesized that increasing the ratio of CSF 

volume to surface area of polypropylene storage container, analyte adsorption would 

be decreased. At a practical level it was considered whether addition of a buffer-

containing detergent might lead to reduced tube surface adsorption and more 

complete measurement of analyte concentrations.  

 

The aim of this chapter was to determine whether aliquot volume influences the 

measured concentration of Aβ1-42, T-tau and P-tau and if so, whether it might be 

lessened by adding a buffer detergent (Tween).   

 

3.2   Contributions and collaborations  

CSF sample collection was carried out by clinicians at the Sahlgrenska Hospital, 

Gothenburg, Sweden. Study design was by the author and Jamie Toombs. 

Laboratory work was led by Jamie Toombs with assistance from the author. The 

author and Jamie Toombs wrote first draft of the manuscript .  Figures are courtesy 

of Jamie Toombs. The author carried out the statistical analysis with the support of 

statistician Dr Jennifer Nicholas.   
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3.3   Materials and Methods 

3.3.1   Sample pools 

 

CSF aliquots of different volumes were tested for Aβ1-42, T-tau, and P-tau. 

Experiments were conducted over five rounds.  For each round, two pools of CSF 

were tested: the first, from a cohort of anonymised individuals with CSF biomarker 

profiles consistent with Alzheimer’s disease (AD) from the ‘Swedish’ cohort. These 

were classified according to biomarker cutpoints that, taken together, and at the 

time of the experiment were determined to have high sensitivity and specificity for 

AD275: Aβ1-42 <530 ng/L, T-tau >350 ng/L, P-tau >60 ng/L. An exception had to 

be made for the AD pool used in Rounds 4 and 5 due to insufficient available 

quantities. This pool was composed of CSF that met the criteria for Aβ1-42 and T-

tau, but not P-tau. The second pool was composed of anonymised non-AD control 

(CTRL) CSF (all three biomarker concentrations within normal range according to 

local clinical guidelines). Pooled CSF was used because of the large CSF volume 

requirement of the study design. Different CSF pools were used in the different 

Rounds: Round 1 was unique, Rounds 2 and 3 were identical except for the addition 

of a detergent buffer (Tween 20 [0.05%]) to the CSF of Round 3, Rounds 4 and 5 

used identical pools. 

 

To confirm that pooled CSF would behave in the same way as that of individual 

subjects, a series of aliquots of differing volumes was created from the CSF of single 

subjects (individual, IND) and tested alongside the pooled samples. The individual 

samples were collected from the ‘prospective cohort’. In Round 2, volume was 

insufficient to allow for P-tau measurement or Tween comparison. 
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Figure 3.1   Outline of experiment design   

 

3.3.2   Sample treatment 

 

This chapter is not available to view due to copyright restrictions.  

 

3.3.3   Schedule and CSF analysis 

 

Restricted due to copyright.   

 

3.3.4   Statistical analysis 

 

Restricted due to copyright.   

 

3.3.5   Surface area calculation 

 

Restricted due to copyright.   
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3.4   Results 

3.4.1   Aβ1-42  

 

Restricted due to copyright.   

Figure 3.2   Restricted due to copyright.   

 

3.4.2   T-tau 

Restricted due to copyright.   

 

Figure 3.3   Restricted due to copyright.   

 

3.4.3   P-tau 

 

Restricted due to copyright.  

 

 

Figure 3.4   Restricted due to copyright.   

 

3.4.4   Tube surface area  

 

Restricted due to copyright.   

 

Figure 3.5 (a)   Restricted due to copyright.   
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3.5   Discussion 

This study shows that the storage volume of CSF samples has a significant impact 

on the measured concentration of Aβ1-42, and to a lesser extent P-tau but not T-tau.  

Furthermore the introduction of a buffer detergent to CSF samples at the initial 

aliquoting stage may be an effective solution to this problem.  

 

One possible explanation for these findings is that Aβ1-42 is hydrophobic which 

causes it to adsorb to the walls of the storage vessel. It is also possible that sample 

volume might influence amyloid kinetics and the conversion of Aβ1-42 to oligomers 

and fibrils in vitro276. Since standard CSF Aβ1-42 ELISA measures free Aβ1-42 

only, a change in ratio of free Aβ1-42 to oligomers or fibrils may confound 

measurement.   In this section, other factors that may have influenced results such as 

surface area are considered. 

 

3.5.1  Surface area 

 

There was an inverse relationship between the measured concentration of Aβ1-42 

and the surface area per volume ratio of the storage tubes tested. This suggests that 

surface adsorption may be a key factor in the observed trend for measured Aβ1-42 

concentration to increase with storage volume. 

  

In the pooled AD CSF of Round 1 there was an association between volume and 

measured T-tau concentration, but this could not be reproduced in subsequent 

assays and therefore seems unlikely to be a real finding. The control and individual 

pools for T-tau consistently demonstrated no effect between volume and 
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concentration, and this was also the case for most P-tau pools. This is perhaps not 

surprising since the 6 tau isoforms that comprise ‘T-tau’ are small molecules, highly 

soluble and not hydrophobic like Aβ190 and therefore more likely to remain in 

solution than to adhere to polypropylene. Figure 3.4 shows that although neat Aβ1-

42 concentration and surface area seem related, the correlation is not perfect, 

suggesting that other factors may play a role.   

 

It is challenging to explain why samples stored in 1500µL aliquots had lower 

measured biomarkers concentrations; inconsistent with the overall trend. It is 

possible that when volume reaches a tube’s maximum capacity, the remaining space 

is insufficient to allow thorough mixing by the method of vortexing used. It is also 

possible that the sample undergoes greater agitation since it is more likely to be in 

contact with the vessel lid. Greater sample agitation can be associated with greater 

protein denaturation which in turn facilitates amyloid adsorption277. This trend 

requires to be explored further. 

 

3.5.2   Tween 20 

 

Tween 20 is a nonionic detergent widely used in biochemistry for a number of 

different purposes including cell lysis, as a blocking agent for immunoassays and in 

this case as a emulsifying agent(Sigma Aldrich, Dorset, UK: 

www.sigmaaldrich.com). Tween 20 treated Aβ1-42 samples had considerably higher 

concentrations of Aβ1-42 than neat samples. Tween 20 also seemed to lessen any 

effect of differing aliquot volume. This observation may support the hypothesis that 

Aβ1-42 adsorbs to the vessel wall and suggests that a greater proportion of Aβ1-42 

molecules were free in the solution of the storage tube after treatment. These 
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findings are consistent with another study161. However it is also important to 

acknowledge that Tween could profoundly alter the behaviour of CSF amyloid, and 

could potentially alter the behaviour of amyloid oligomers or fibrils, misrepresenting 

the physiological Aβ1-42 concentration in vitro.  Furthermore, if Tween 20 were to 

be added routinely to samples then Aβ1-42 cut points for clinical practice, clinical 

trials and research studies would require to be adjusted accordingly. To introduce 

this practice universally between laboratories would be a major undertaking, 

especially if the relatively cheap and simple practice of standardizing aliquot storage 

volume would produce a similar result.   

 

Tween 20 tau sample results very closely reflected the results of neat samples, 

suggesting negligible quantities of tau are lost to surface adsorption, and that 

Tween 20 does not appreciably alter detection.   

 

3.5.3   Temperature 

 

It is possible that the observed relationship between volume and measured analyte 

concentration is due to the effect of variation in thaw times. It is known that the 

number of freeze/thaw cycles have an effect on the measured protein concentration 

of a sample188 although the mechanism for this is not clear. Every sample in this 

study underwent two freeze thaws or less and this did not vary within rounds. All 

aliquots were thawed together at room temperature for approximately 1 hour, but 

large volume samples thaw more slowly (-80°C - ~21◦C took approximately 60 

minutes for a 1500µL aliquot compared with a few minutes for the smallest volumes) 

and so spent less time at room temperature, and therefore less time in solution than 

the low volume samples.  It may be that the additional time spent at room 
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temperature for lower volume samples allowed more proteins (particularly Aβ1-42) 

to denature, become proteolysed, aggregate, or adhere. Furthermore, it has been 

demonstrated that the conversion of Aβ1-42 to amyloid oligomers (which are 

thought to be pathogenic but cannot be measured using standard Aβ1-42 ELISA) is 

influenced by a number of factors including incubation time in aqueous medium278.   

This is, however contrary to the findings of another similar study which has shown 

that CSF, not previously frozen, that rests at room temperature for 24 hours has 

significantly higher levels of measured Aβ1-42 than CSF that is frozen 

immediately279. In the same experiment they saw no difference in measured T-tau or 

P-tau concentration. There is therefore no compelling evidence to suggest that 

temperature is a major contributing factor to the differences observed between 

samples of different volume.   

 

3.5.4   pH  

 

Finally, given that pH is known to be a major factor to influence Aβ1-42 

aggregation and oligomerization280, we considered whether pH could have varied 

between aliquots of differing volumes. While pH was not explicitly measured, no 

reagents or vessels known to have a non-neutral pH were used. CSF pH is usually 

closely physiologically regulated so we do not anticipate any significant variation 

between rounds, even for individual samples281.   

 

3.6   Further Work 

Adsorption of Aβ1-42 to vessel wall proportionate to the volume to surface ratio is a 

credible explanation for the results observed in this experiment. It is also consistent 
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with what is known about the properties of Aβ1-42.   The significant relationship 

between T-tau AD pooled CSF and volume to surface area observed in Round 1, but 

not in other rounds, was unexpected and may simply be a chance finding. It is worth 

considering that the T-tau assay detects six isoforms of the protein, and it may be 

that some are more vulnerable than others to the variables discussed, however there 

is currently no commercially available ELISA kit available to measure these isoforms 

and this experiment would arguably be better carried out on a more sensitive 

platform such as single molecule array technology (SIMOA, Quanterix, MA, USA).  

 

3.7   Conclusions 

Aβ1-42 is now widely used as a diagnostic marker for Alzheimer’s pathology. It is 

therefore concerning that a twofold difference can exist between the measured Aβ1-

42 concentrations of the 50µL and 1500µL volumes in both AD and control CSF. 

This could easily result in misclassification of individuals in both clinical and 

research settings, and is a source of variance that, to our knowledge, has not 

previously been considered or investigated. As the field moves towards ‘analytical 

harmonization’ of CSF between centres189, this study suggests that aliquot volume 

should also be standardized within and between centres. Furthermore, as the 

addition of a readily available buffer detergent appears to neutralise the effect of 

Aβ1-42 adsorption (and potentially that of other biomarkers), the addition of Tween 

20 to aliquots immediately before sample storage could also be explored as a 

practical solution to the problem. 

 

In this thesis the retrospective cohort samples were collected in inconsistent aliquot 

volumes, which may be a confounder when interpreting Aβ1-42 values. All samples 

collected prospectively in the ‘prospective’ and ‘healthy control’ cohort were 
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collected according to a standard operating procedure where aliquot volumes were 

1000uL, as a result of this work.     

 

 

 

3.8   Publications arising from this chapter 

 

J Toombs* and RW Paterson*, MP Lunn, JM Nicholas, NC Fox, MD Chapman, 

JM Schott, H Zetterberg. A potential confound in cerebrospinal fluid biomarker 

measurement: aliquot volume. Clin Chem Lab Med. 2013 Dec;51(12):2311-7. *joint 

first author 

 

3.9   Publications related to this chapter  

 

J Toombs and RW Paterson, MP Lunn, JM Nicholas, NC Fox, MD Chapman, JM 

Schott, H Zetterberg. The impact of Tween 20 on repeatability of amyloid β and tau 

measurements in cerebrospinal fluid. Clin Chem Lab Med. 2013 Dec;51(12):2311-7 

 

J Toombs and RW Paterson, JM Schott, H Zetterberg. Amyloid-beta 42 adsorption 

following serial tube transfer. Alzheimer’s Research and Therapy, 2014 Jan 28;6(1):5 
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Chapter 4.   Transferring CSF from bedside to 

laboratory; does careful pre-analytical 

handling of CSF affect measured Aβ1-42, T-

tau, P-tau in clinical practice?         

 

4.1   Introduction 

The ultimate aim of CSF biomarker research is to develop biomarkers that can be 

used in clinical practice to improve accuracy of diagnosis, estimate prognosis and 

monitor response to treatment. It is therefore important to establish whether 

biomarkers discovered and developed in research populations collected under 

optimal standardized conditions are applicable and reproducible in ‘real life’ clinical 

populations, possibly acquired outside major neurological centres. One of the major 

differences between clinical and research samples that was identified in our 

institution, is the way in which samples are handled between collection at the 

bedside and arrival in the laboratory. The aim of the second section of this chapter 

was to establish whether the ‘normal’ clinical conditions in which ‘real life’ samples 

are collected could confound measurement of the established CSF biomarkers.  

In clinical practice in UK hospitals CSF samples are currently collected by portering 

staff, who deliver samples to the laboratory on a non-urgent basis. Samples can pass 

through the hands of doctors, nursing staff, porters, specimen reception staff and 

laboratory scientists before being aliquoted and frozen. Having established the 

importance of aliquot storage volume in addition to the other known pre-handling 

confounding variables, the purpose of this experiment was to determine whether 
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earlier events in a sample’s journey could also influence measured biomarker 

concentrations. The aims were to determine: a) if  the time interval between sample 

collection and transport to the lab affected measured biomarker concentration; b) if 

careful handling using a dedicated porter reduces disruption and protein adsorption, 

and c) if early cooling at the bedside alters measured biomarker concentration. 

4.2   Contributions and collaborations  

CSF sample collection was carried out by the author as part of sample collection for 

the ‘prospective cohort’. Study design was by the author with statistical support 

from statistician, Dr Jennifer Nicholas. Sample delivery was undertaken by Jamie 

Toombs, Dr Amanda Heslegrave or porters and laboratory reception staff at the 

National Hospital for Neurology and Neurosurgery (NHNN). Laboratory work was 

carried out by board certified technicians at the Department of Neuroimmunology at 

NHNN. First draft of the manuscript was written by the author with minor 

revisions made by other co-authors.  

 

4.3   Methods 

4.3.1   Subjects 

Individuals with cognitive symptoms and suspected neurodegenerative disease who 

were scheduled to have a lumbar puncture as part of their normal clinical care at the 

day care unit of the NHNN were recruited. They consented to donate CSF for 

research purposes as outlined in the methods section describing the ‘prospective 

cohort’. 

4.3.2   Methods 

 

Individuals had a lumbar puncture between the hours of 8 and 12 noon by a doctor 



 136 

from the specialist cognitive disorders team using a 22G Quincke needle. No 

manometer was used. Four samples, each containing ~1ml volume were collected for 

clinical analysis; up to 15ml was collected between two Sarstedt 10ml polypropylene 

(cat. 62.610.018) tubes for storage for future biomarker discovery. For this analysis 

the clinically acquired CSF was used. These samples were labeled sequentially: 

*,1,2,3. The first tube labeled * was not used in this analysis as it was most likely to 

have been contaminated with blood.    

Three transport methods were used for each individual’s samples with the order 

randomized using a random number generator command in STATA (College 

Station, Tx, USA) (1) samples were collected by a designated laboratory technician 

within 10 minutes of collection and transferred to the laboratory in a cool box 

containing wet ice at 4oC; (2) samples were collected by a designated laboratory 

technician who picked up the sample within 10 minutes of collection and transferred 

to the laboratory at room temperature; (3) samples were transferred to the 

laboratory via the routine portering service. (4) A further group of individuals 

(n=10) had their third sample deliberately “mistreated,” being quarantined at room 

temperature for between 24 hours and 1 week. In the laboratory, samples were 

centrifuged at 1750 relative centrifugal force for 5 minutes at room temperature and 

frozen at -80oC within 15 minutes of arrival. Each sample was analyzed for Aβ1–42, 

T-tau, and P-tau using an INNOTEST enzyme-linked immunosorbent assay 

(Ghent, Belgium). Laboratory staff were blinded to the transfer method. 

4.3.3   Statistics 

 

Sample size calculations were based on prior ELISA-based measures of Aβ1–42, T-

tau, and P-tau from 456 individuals with suspected neurodegenerative disease, where 
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the mean (standard deviation) concentration (pg/mL) for Aβ1–42 =520 (122), T-tau 

=556 (442), and P-tau =70.3 (37.2). Assuming a correlation between results from the 

transfer methods of 0.9, 30 participants were needed to detect a difference of 20% in 

sample concentration with 90% power and 5% risk of a type 1 error. Wilcoxon 

matched-pairs signed-rank tests were used to compare the level of each biomarker 

concentration between transport methods, and reproducibility was compared 

between transport methods using Pitman’s test of equality of variance for paired 

samples. Variance between transport methods is represented using Bland Altman 

plots. Spearman’s pairwise correlation co-efficient was determined for differences in 

biomarker concentration and delivery time. All analyses were conducted in STATA 

version 12.1 (College Station, Tx, USA). 

4.4   Results 

Thirty subjects were included in the initial analysis comparing transfer methods 1–

3, including patients with suspected Alzheimer and a range of non-Alzheimer 

pathologies. Samples randomized to transport options 1 and 2 all arrived 

simultaneously in the laboratory within 30 minutes of collection. Samples 

randomized to transport option 3 arrived a median of 24 minutes (range, 13–55) 

later. There was no significant difference in measured CSF Aβ1–42, T-tau, and P-

tau concentrations between any of the transport methods, and no evidence that 

variance of CSF Aβ1–42 or T-tau differed between the trans-port methods. There 

was significant variance of P-tau between transport methods 1 and 2 and between 

methods 1 and 3, this association being driven by a single data point 

(Figure 4.1).  

 



 138 

Table 4.1 Measured CSF biomarker concentrations for each transport method, 

results of paired Wilcoxon signed-rank tests used to compare transport methods and 

Pitman’s test for equality of variance; ^pg/mL; *Median (Interquartile range); CSF: 

cerebrospinal fluid; Aβ1-42, amyloid beta 1-42; T-tau: total-tau; P-tau: 

phosphorylated tau; Option 1: Designated courier transported on wet ice; option 2: 

designated courier at room temperature; option 3: standard hospital porter. Samples 

are from the prospective cohort
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Figure 4.1   Bland-Altman plots for measured CSF Aβ1–42, T-tau, and P-tau concentrations comparing transport options 1 and 2, 1 and 3, 

and 2 and 3. Solid line indicates mean difference between methods; dashed lines represent 95% reference range for difference between methods. 

Abbreviations: CSF, cerebrospinal fluid; Aβ1–42: amyloid β 1–42; T-tau, total-tau; P-tau, phosphorylated tau
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Measured T-tau concentration was weakly negatively correlated with transport time 

for samples transported by porter compared with those sent by courier at room 

temperature (Spearman’s r 20.42) and on wet ice (Spearman’s r 20.39). There was no 

correlation between Aβ1-42 or P-tau concentration and transport time. For the 10 

individuals who had samples sent by transport method (1) and following quarantine 

(method 4), the latter samples arrived at the laboratory 1440 minutes (range,1440–

4320) after collection (Table 4.2). There was also no significant difference in 

measured CSF Aβ1–42, T-tau, and P-tau concentrations between transport methods 

1 and 4. There was a moderate negative correlation between Aβ1–42 concentration 

(Spearman’s r 20.52) and weakly positive correlation with T-tau (0.43) and P-tau 

concentrations (0.37) and transport time, although these correlations were not 

statistically significant. 
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Transport 

Option 1*  

 

Transport 

Option 4* 

Comparison of options  

1 and 4 

Transfer 

time(mins) 

30  

(30-33.5) 

1440  

(1440-4320) 

 

   P diff. level P diff. variance 

Aβ1-42^ 

 

563  

(448-713) 

565  

(463-927) 

0.20 0.39 

T-tau^ 

 

471  

(273-874) 

345.5  

(252-538) 

0.36 0.50 

P-tau^ 

 

60  

(39-96) 

50.5  

(33-56) 

0.26 0.73 

Table 4.2 Measured CSF biomarker concentrations for transport option 1 and 4 

(n=10), results of paired Wilcoxon signed-rank tests used to compare transport 

methods and Pitman’s test for equality of variance; ̂ (pg/mL);*Median (Interquartile 

range).Aβ1-42: amyloid beta 1-42; T-tau: total-tau; P-tau: phosphorylated tau; 

Option 1: designated courier transported on wet ice; option 4: standard hospital 

porter, where samples were deliberately mistreated at room temperature for greater 

than 24 hours. Samples are from the prospective cohort.  

 

4.5   Discussion 

The clinical utility of CSF biomarkers for diagnosing AD pathology in individuals 

with cognitive impairment and suspected neurodegeneration is now well established 

in the research setting127 but it is less clear to what extent Aβ1–42, T-tau, and P-tau 

concentrations can be reliably measured and interpreted in ‘real-life’ clinical cohorts 

where samples cannot always be collected according to gold-standard practices. This 

randomized study shows that CSF samples collected in polypropylene vessels can be 

transferred without cooling, in a time frame and manner appropriate for routine 

clinical practice, without significantly altering the measured concentration of the 
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most useful neurodegenerative markers, and supports the findings of a prior smaller 

study suggesting that biomarker concentrations may remain stable at room 

temperature for up to 24 hours161. We found no consistent or significant correlation 

between transfer time and biomarker concentration for Aβ1–42 or P-tau. P-tau was 

negatively correlated with delivery time for delivery options 1–3 but this association 

was not observed for the quarantined samples (option 4) when greater time 

differences were studied. Although not powered to study changes over this period, 

this study suggests there may be no effect of transfer time on Aβ1–42, T-tau, or P-

tau even when samples were quarantined for up to a week. The conclusions from this 

prospective, blinded, randomized study have significant implications for future use of 

CSF as a clinical diagnostic tool. In many countries, use of CSF sampling in the 

investigation of dementia is restricted to specialist neurology centers. As biomarkers 

are increasingly used as part of clinical diagnostic criteria and there is a drive to 

identify AD in the earliest preclinical phase of the illness, regional hospitals and 

memory centers are likely to want to make use of CSF sampling to aid early 

diagnosis, identify individuals for trials, and to improve the likelihood of successful 

therapeutic intervention. These results show that, provided samples are collected 

appropriately and in suitable tubes and can reach a laboratory for aliquoting and 

freezing within a reasonable time frame, robust results can be obtained.  It also 

provides reassurance that the samples collected historically in this centre, and 

analysed later in this thesis as part of the ‘retrospective cohort’ are not vulnerable to 

this particular confounding variable.   

 Potential limitations of this study are the relatively small sample size which 

means that it is not powered to detect very small differences which could be 

clinically meaningful in certain clinical or research circumstances. We have tested a 

small selection of biomarkers in clinical use, so these findings may not be 
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generalisable to all proteins.   

 

4.6   Conclusions 

In recent years, there have been moves to improve harmonization in CSF collection 

and handling methods between centres to help standardize clinical cutpoints and 

facilitate multicenter observational research studies and trials of disease modifying 

drugs, yet there is significant variation in the time taken to transfer samples from 

bedside to laboratory between centres for research biobanking157. These data 

demonstrate that harmonization of this particular variable may be less vital than 

other preanalytical factors such as test-tube material and brand. A relative weakness 

of this study is sample size. A significantly larger study could be powered to detect 

smaller differences between transport groups. It is therefore recommended that 

clinical CSF is collected according to a standardized operating procedure using 

polypropylene collection tubes. These data suggest that samples need not be 

transferred to the laboratory on ice and that transfer times of up to and beyond 24 

hours may not alter the validity of Aβ1–42, T-tau, and P-tau measurement. 

 

4.7 Publications related to this chapter 

RW Paterson, J Toombs, MD Chapman, JM Nicholas, AJ Heslegrave, CF Slattery, 

AJ Foulkes, CN Clark, CA Lane, PS Weston, MP Lunn, NC Fox, H Zetterberg, JM 

Schott. Do cerebrospinal fluid transfer methods affect measured amyloid β42, total 

tau, and phosphorylated tau in clinical practice? Alzheimer’s & Dementia: Diagnosis, 

Assessment & Disease Monitoring. 2015 Jul 2;1(3):380-4.  
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Chapter 5.   Using Amyloid PET to determine 

clinical cutpoints for established CSF 

biomarkers  

In the previous chapter the clinical utility of the core CSF biomarkers for 

differentiating between AD, healthy elderly and other neurodegenerative markers 

was investigated, based largely on clinical diagnosed cases. The aim of this chapter 

was to explore the use of amyloid PET imaging as a surrogate for pathological 

confirmation to further refine clinical cutpoints for the core CSF biomarkers.  

      

5.1   Introduction 

The ‘core’ molecular biomarkers of AD Aβ1-42, T-tau and P-tau are increasingly 

used to determine whether an individual has evidence of AD pathology in-vivo. As 

previously demonstrated, it is challenging to determine clinical cutpoints for 

abnormal levels of these biomarkers in clinical practice for a number of reasons. 

Firstly, CSF sampling for clinical diagnosis is usually carried out some months or 

years after conversion to AD dementia and therefore doesn’t necessarily reflect 

earlier or later stages of the disease. The second major problem is that there are few 

‘gold standard’ pathology confirmed studies, which have followed individuals 

through to death. One exception is a study of the ADNI cohort which was 

sufficiently large to include a small number of pathology confirmed cases73, however 

even in this study it was not feasible to have autopsy confirmation close to the time 

of CSF sampling. Studies that rely on clinical diagnostic classification alone are 

potentially confounded by a number of variables including diagnostic circularity 

where the clinical diagnosis is informed by the CSF findings, or individuals with 
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clinical non-AD having unexpected subclinical or secondary amyloidosis.  A third 

major problem is between centre variation: some of the factors that contribute to 

pre-analytical handling variation are discussed in chapter 3, but even controlling for 

many of these variables there is still significant variance in measured concentrations 

of CSF Aβ1-42, T-tau and P-tau between centres using the same samples, with CV 

typically 15-20%282. Defining normal values of these molecular biomarkers in 

healthy controls is also challenging for similar reasons; pathological confirmation 

close to sampling is rarely practical; a proportion of healthy elderly individuals will 

have asymptomatic amyloidosis94. Finally, while a single cutpoint is convenient for 

clinical diagnostic purposes, it seems biologically unlikely that a single cutpoint will 

have sufficient sensitivity and specificity. For example there is variation in rates of 

production and clearance of amyloid, even between healthy individuals63. 

 

Several large studies have estimated cutpoints using different approaches. One 

approach is use very large cohorts of clinically diagnosed cases and to compare cases 

with presumed AD with either controls or other neurodegenerative diseases such as 

bvFTD. This has been done for example by Duits et al 235 and they were also able to 

collect a small number of pathology confirmed cases and determined a cutpoint of 

0.52 for Tau/Aβ1-42 ratio determining a sensitivity and specificity of around 90%.  

Ultimately this and other similar studies are confounded by the fact that diagnoses 

are based on clinical diagnostic criteria and it is difficult to ensure that raters are 

blinded to CSF results. An alternative approach is to use data driven models. Aβ1-42 

and T-tau values produce a bimodal distribution if individuals with and without AD 

are included. If these values are plotted for sufficient numbers of subjects unbiased 

mixture modelling can be used to estimate a cutpoint283.  Such studies require very 

large numbers of subjects, usually across multiple centres and laboratories and they 



 147 

are not necessarily helpful in determining the clinical cutpoint for any given single 

centre.  

 

An alternative way of helping to establish amyloid status is to correlate CSF 

biomarkers with Amyloid PET. This modality has now been pathologically proven 

in 2 major studies and so could be considered a reasonable alternative to the gold 

standard of pathology proven confirmation120.  Although several tracers are now 

available they are not widely used. In clinical practice they are recommended in a 

minority of cases122 and they have yet to be adopted in the UK by NHS England. 

Visual rating scores of Florbetapir F18 amyloid PET has been shown to correlate 

loosely with amyloid burden at autopsy120. Fibrillar amyloid can also be quantified 

by comparing with the PET signal with intensity in the cerebellum (semiautomated 

quantitative analysis of the ratio of cortical to cerebellar signal; SUVR). Mattsson284, 

Palmqvist285 and others have shown that SUVR and CSF Aβ1-42 are closely 

correlated, particular in the midrange of values where the cutpoints are likely to 

lie286, 287. The objectives of this chapter are to determine whether comparing CSF 

molecular biomarkers and amyloid PET might provide a useful means of 

determining clinical CSF cutpoints in a local population of individuals with 

suspected AD, individuals anticipated to be healthy controls, or suspected to have 

other neurodegenerative diseases.    

  

5.2   Contributions and collaborations  

This work was done in collaboration with Dr Philip Weston. CSF sample collection 

was carried out by the author. Recruitment to the amyloid PET sub-study was 

carried out by Dr Philip Weston and the author. Amyloid PET scans were carried 

out and interpreted by colleagues at the Institute of Nuclear Medicine, University 
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College London Hospital NHS foundation trust and the Transitional Imaging 

Group, Centre for Medical Image Computing, University College London, London, 

UK.  Figure 5.1 is courtesy of Dr Philip Weston.  

 

5.3   Subject and Methods 

5.3.1 Ethics statement  

This study was approved by the Queen Square Ethics Committee.  

 

5.3.2   Subjects and CSF collection   

 

A total of 23 individuals were recruited: 19 patients with a range of dementia 

syndromes recruited from the ‘Prospective cohort’ and ‘YOAD cohort’; each 

individual had a diagnostic lumbar puncture as part of their clinical evaluation. 

Individuals were chosen to represent a spectrum of neurodegenerative disease and 

clinical phenotypes. Individuals with capacity to consent to the scan and who were 

willing to travel across London to the PET scanner were preferentially selected. A 

further four healthy controls were recruited from the ‘Healthy control cohort’ and 

had a lumbar puncture for research purposes only. These individuals were selected 

to ensure quality control as their amyloid PET scans were expected to be negative. 

CSF samples were collected using a 22G Quincke needle according to the standard 

operating procedure described in Chapter 2. Each sample was analysed for Aβ1-42, 

total tau and P-tau using INNOTEST ELISAs (Ghent, Belgium). Individuals with 

CSF Aβ1-42 levels in a potential border zone range of 400-700pg/ml were 

preferentially chosen.  
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5.3.3   Amyloid PET 

 

All participants had an F18 florbetapir PET scan on a Siemens 3T PET/MR unit, 

with a 50-minute dynamic acquisition commencing immediately after intravenous 

injection of 370MBq of florbetapir. A volumetric T1-weighted MRI scan was 

acquired concurrently. Attenuation correction was performed using synthetic CTs 

generated from the MR images288. A single static PET image, reconstructed from 

the last 10 minutes of the PET acquisition, was used for the analysis. PET images 

were registered to the MRI, and segmented using a semi-automated parcellation tool 

289. 

 

The four age-matched healthy controls previously had a florbetapir PET/CT scan as 

part of another study, with a separate T1-weighted MRI acquisition. These images 

were processed in the same way as described above, excluding the generation of 

synthetic CTs.  

 

PET images were analysed in two ways. First, three trained nuclear medicine 

physicians blinded to the clinical diagnosis visually rated the images 

positive/negative according to clinical criteria120. Secondly, a semiautomated 

quantitative analysis of the ratio of cortical to cerebellar signal (SUVR) was 

calculated by comparing uptake in six predefined cortical regions120 to the whole 

cerebellum. A positive/negative SUVR cut-off of 1.10 was used as described290. 
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5.3.4   Statistical Analysis 

 

Statistical analyses were performed in STATA v.12.1 (College Station, TX, USA). 

Independent of clinical diagnosis, we compared CSF Aβ1-42, tau/Aβ1-42, and P-tau 

in subjects rated amyloid positive/negative on visual reads, and based on SUVR. 

Linear regression was used to assess the relationship between CSF and SUVR. The 

time interval between lumbar puncture and PET scan was included as a covariate.  

 

5.4   Results 

Patients and controls were well matched for age (63.7±7.6 vs. 62.9±7.0). Nine 

patients had amnestic, and ten non-amnestic (five posterior cortical atrophy, four 

progressive aphasia, and one behavioural) clinical syndromes (Table 4.1). CSF 

examination was carried out prior to amyloid PET scan, with a median delay of 145 

days (range 32-427). Across all subjects, CSF Aβ1-42 ranged from 343-1199ng/L, 

tau/Aβ1-42 0.11-2.54, and P-tau 14-227g/L. 
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 n 

 

Aβ1-42 

(pg/mL) 

range 

Tau/Aβ1-42 

range 

P-tau 

(pg/mL) 

range 

Positive visual read 17 343-729 0.54-2.54 26-227 

Negative visual read 6 630-1199 0.11-0.34 14-40 

     

SUVR positive 14 343-633 0.88-2.54 49-227 

SUVR negative 9 403-1199 0.11-0.58 14-49 

     

Concordant positive 14 343-633 0.88-2.54 49-227 

Discordant 3 403-729 0.54-0.58 26-49 

Concordant negative 6 630-1199 0.11-0.34 14-40 

Table 5.1 CSF measurements of Aβ1-42, T-tau/Aβ1-42 and P-tau. Patients are 

divided based on (i) a positive/negative visual PET read, (ii) a positive/negative 

PET SUVR (using a cut-off of 1.10), and (iii) whether there is concordancy or 

discordancy between the two different PET results.  Subjects were from the 

prospective, healthy control and YOAD cohorts.   

 

 

 

 

 

 

17/23 participants were rated as amyloid-positive on visual assessment. SUVRs 

ranged from 0.87-1.66. At an SUVR cut-off of 1.10, 14/23 were amyloid-positive. 

Comparing SUVR and clinical reads, 20 were concordant (14 positive, 6 negative); 

and 3 discordant. The discordant group all had positive amyloid reads, negative 

SUVRs (0.88, 1.05 and 1.03), and tau/Aβ ratios between 0.54 and 0.58. 
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Figure 5.1 Distribution of CSF values for A) Aβ1-42, B) tau/Aβ1-42 and C) P-tau. 

Participants have been split, depending on the result of both visual PET read and 

PET SUVR in to either concordant (-/-) (both PET outcomes negative), discordant 

(+/-) (one PET outcome positive and one negative), or concordant (+/+) (both PET 

outcomes positive). Patients are represented by black points, with controls in white.  

 

The SUVR correlated with CSF Aβ1-42 (R2=0.26, p=0.013), CSF tau/Aβ1-42 

(R2=0.47, p<0.001) and CSF P-tau (R2=0.34, p=0.005), with no evidence for an 

influence of duration between CSF sampling and scanning. 

 

At a CSF Tau/Aβ1-42 ratio cutpoint of 0.52235 the sensitivity and specificity for a 

positive amyloid scan based on visual reads were 100% (95%CI 80-100) and 100% 

(54.1-100) respectively; and based on SUVR, 82% (57-96) and 100% (54-100). 
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5.5   Discussion 

As shown in previous studies there was good correlation between CSF and PET 

measures of Aβ1-42. However individuals with CSF Aβ1-42 values in the midrange 

were deliberately selected, where linear associations with amyloid PET are more 

likely287.  Discordant cases all had Aβ1-42, Tau/Aβ1-42 and P-tau values in the 

midrange, supporting the idea that a grey zone could be required when interpreting 

CSF values. The visual rating scale and SUVR results were broadly concordant 

although in a handful of cases individuals had a positive PET read with a negative 

SUVR. There are a number of possible explanations: scans could have been misread; 

there may have been errors in calculating SUVR, or perhaps simply this discordance 

reflects genuine biological uncertainty since 2/3 discordant cases had SUVR close to 

the cutpoint. If so, it seems likely that SUVR has a lower sensitivity in detecting 

amyloid positivity than visual rating.   

 

If the individuals with discordant results are disregarded, then there was almost 

complete separation (19/20 correctly classified) of individuals at a CSF Aβ1-42 of 

630pg/ml. There was perfect separation on both tau/Aβ1-42 ratio (positive: ≥0.88, 

negative: ≤0.34), and P-tau (positive: ≥49, negative: ≤40pg/ml). This CSF Aβ1-42 

cutpoint is similar to that generated in other studies291, 292. Similarly the tau/Aβ1-42 

ratio values generated here support the cutpoints used in large multicentre data 

generated studies235 used to dichotomise individuals according to amyloid status in 

later chapters of this thesis. The P-tau cutoff is somewhat lower than the value 

quoted by the manufacturer (63pg/mL). One possible explanation for this is that 

several of our subjects have atypical presentations. Work carried out in chapter 7 

suggests that individuals with posterior cortical atrophy for example have lower 

levels of CSF P-tau, which may reflect less extensive cortical Tau pathology.  
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There are limitations of this study. The number of subjects is relatively small. 

Furthermore there are limitations in using amyloid PET to validate CSF biomarker 

cutpoints;  although amyloid PET has been pathologically validated, it remains an 

imperfect and indirect means of generating cut-points for CSF biomarkers and 

ultimately pathological validation is required.  

 

Finally, it is noteworthy and reassuring that the cutpoints for Aβ1-42 , Tau/Aβ1-42  

ratio and P-tau, determined using the clinically diagnosed cases in the previous 

chapter all fall broadly within the grey-zones determined in this study, using an 

independent cohort.  

 

5.6   Conclusion 

It is possible to confirm that CSF biomarkers of AD pathology and amyloid PET 

results were broadly concordant and that in the absence of local pathology proven 

cases, PET is therefore likely to be a valuable means of validating CSF biomarkers in 

clinical practice. Cases with discordant PET results had CSF values in the midrange 

indicating that the concept of a diagnostic grey zone is likely to be useful.    

 

5.7   Publications arising from this chapter 

PSJ Weston, RW Paterson, M Modat, N Burgos, MJ Cardoso, N Magdalinou, M 

Lehmann, JC Dickson, A Barnes, JB Bomanji, I Kayani, DM Cash, S Ourselin, J 

Toombs, MP Lunn, CJ Mummery, JD Warren, MN Rossor, NC Fox, H Zetterberg, 

JM Schott. Using florbetapir positron emission tomography to explore cerebrospinal 

fluid cut points and gray zones in small sample sizes. Alzheimer’s and Dementia: 

Diagnosis, assessment and disease monitoring, 2015 Nov 2;1(4):440-446.  
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Chapter 6.   CSF in the differential diagnosis of 

Alzheimer’s disease: clinical utility of a panel 

of biomarkers in a specialist cognitive clinic 

6.1   Introduction  

CSF biomarkers are increasingly used to support a diagnosis of Alzheimer’s disease 

(AD). CSF Aβ1-42, T-tau and P-tau have been most widely studied173, have proven 

utility in differentiating AD from healthy controls individually or in combination in 

a number of clinical235, 245, 274, 293 and much smaller number of pathology proven 

studies73, 173. As a result, these measures are included in contemporary clinical3 and 

research (IWG2) diagnostic criteria. 

Aside from these established biomarkers, a variety of other CSF measures relevant 

to neurodegeneration are now available, including markers of amyloid processing 

(AβX-38, AβX-40 and AβX-42, sAPPα, sAPPβ), large fibre axonal myelination 

(neurofilament light chain, NFL), and neuroinflammation (S100β and Chitinase-3-

like protein 1 also knows as YKL-40). A recent large meta-analysis has confirmed 

that YKL-40 and NFL are elevated in clinically diagnosed AD CSF compared to 

controls; and that there is also a small but significant differences in AβX-40 173.    

Whilst most prior studies have distinguished patients from controls, or individuals 

with mild cognitive impairment who subsequently develop dementia, a major 

challenge in clinical practice is to distinguish neurodegenerative diseases from each 

other. The role that CSF biomarkers may have in this context is much less well 

established. Some previous studies have shown low specificity of Aβ1-42, and P-tau 

in differentiating AD from Dementia with Lewy Bodies (DLB) or frontotemporal 
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dementia (FTD)243, 274. Such studies have also usually investigated the standard 

panel of AD biomarkers 199, 243 and found that in some clinical situations biomarker 

combinations improve diagnostic specificity. Single biomarker studies suggest CSF 

NFL and YKL-40 may have utility in distinguishing FTD from AD and DLB 232, 294. 

Others have pooled non-AD dementias for comparison with AD 235, 295. This 

approach, whilst appropriate for identifying AD, does not provide information about 

the various other non-AD dementias, and has much less clinical utility.   

The aims of this study were to determine the diagnostic utility of a panel of 11 CSF 

biomarkers in a large sample of clinically diagnosed neurodegenerative dementias; to 

determine which individual or combinations of biomarkers would provide greater 

diagnostic accuracy in distinguishing these diseases from one another; and to 

validate these findings in an independent cohort. 

6.2   Contributions and Collaborations 

Data was collected by the author. Independent clinical diagnosis was determined by 

Dr Catherine Slattery (CFS). The study was designed was by the author. Sample 

analysis was carried out at in the clinical chemistry laboratory at the University of 

Gothenburg by the board certified technicians assisted by the author. Statistical 

analysis was carried out by the author with the help of Teresa Poole.  

6.3   Methods  

6.3.1   Ethics statement 

 

The study was conducted in accordance with local clinical research regulations and 

was approved by the local Queen Square Ethics Committee.  
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In this chapter two independent cohorts, the ‘prospective’ and ‘retrospective’ cohorts 

were studied.   

 

6.3.2   Test (‘retrospective’) cohort  

 

All individuals referred to the specialist cognitive disorders service at the National 

Hospital for Neurology and Neurosurgery who had a diagnostic CSF examination 

between 1st January 2008 and 31st December 2012 were included. Electronic patient 

records were interrogated retrospectively by a single operator (RWP) to determine 

the pre-lumbar puncture (LP) clinical diagnosis, most recent clinical diagnosis, time 

in months from reported symptom onset to lumbar puncture (earliest symptom 

reported by individual or their family or caregiver), time in months from lumbar 

puncture to most recent clinical assessment by a member of the specialist cognitive 

disorders team, and mini mental state examination (MMSE) score prior to LP.   

Individuals fulfilling consensus criteria for the following clinical diagnoses were 

included in the analysis including: amnestic, logopenic aphasia (LPA) and posterior 

cortical atrophy (PCA) variants of AD3; DLB44; bvFTD253; progressive nonfluent 

aphasia (PNFA) and semantic dementia (SD)32. Diagnoses were based on available 

clinical correspondence and imaging, eight cases were autopsy proven and two 

further cases were found to have presenilin 1 mutations. Individuals with language 

led phenotypes were classified according to the consensus criteria for primary 

progressive aphasia32. To avoid circularity, the pre-LP clinical diagnosis (ie not 

using the CSF result) was used for the purpose of establishing biomarker utility. A 

second, independent, clinician (CFS) repeated the blinded clinical diagnostic 
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classification on a randomly selected group of 119 subjects in order to assess 

consistency in the classification process.   

 

6.3.3   Validation (‘prospective’) cohort  

All individuals referred to the specialist cognitive disorders service at the National 

Hospital for Neurology and Neurosurgery who had a diagnostic CSF examination 

between 16th May 2013 and 16th May 2016 and who at the time of the LP fulfilled 

consensus criteria (confirmed as described above) were recruited as a validation 

cohort. Of those classified with AD, a small number (n=12) had amyloid PET scans, 

all of which were positive providing supportive evidence of amyloid pathology.  

6.3.4   Healthy controls 

Healthy controls were recruited for research purposes only as described in chapter 2. 

The healthy controls did not have subjective memory complaints at the time of LP 

or at a follow-up phone call one year later.       

 

6.3.5   Sample treatment and analysis   

CSF was collected according to the methods described in chapter 2, which have now 

been published296. The amount of available CSF differed between individuals, and as 

a result not all biomarker measurements could be obtained for all members of the 

retrospective cohort (see table 6.1a for full details).  

Total tau (T-tau), phosphorylated tau (P-tau) and β-amyloid 1-42 (Aβ1-42) were 

analyzed using INNOTEST enzyme-linked immunosorbent assays (ELISAs) 

(Fujirebio Europe N.V., Gent, Belgium). Other markers of amyloid processing were 
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measured using the MSD Aβ Triplex assay (Meso Scale Discovery, Rockville, MD) 

which is a multiplexed method in which C-terminally specific antibodies are used to 

selectively capture Aβ forms ending at amino acids 38, 40 and 42 respectively, which 

are then quantified using the 6E10 detector antibody. This assay is thus not specific 

to the 1st amino acid of the Aβ peptides (the epitope of 6E10 lies within amino acids 

3 to 8 in the Aβ sequence) and the measured Aβ isoforms are therefore called AβX-

38, AβX-40 and AβX-42. Neurofilament light chain (NFL) concentrations were 

determined using the NF-light method (UmanDiagnostics, Umeå Sweden), YKL-40, 

also known as chitinase-3-like protein 1 (CHI3L1), was measured using the Human 

Chitinase 3-like 1 Quantikine ELISA Kit (R&D systems, Minneapolis, MN). 

Amyloid precursor protein soluble metabolites α and β (sAPPα, sAPPβ) were 

measured using a commercial duplex immunoassay with electrochemiluminescence 

detection (Meso Scale Discovery, Rockville, MD).   β-amyloid 1-42 (Aβ1-42), T-tau 

and P-tau assays were carried out in batches according to local clinical NHNN 

neuroimmunology laboratory standard operating procedures to achieve CV<10%. 

Other assays were carried out at a single time point in the Neurochemistry 

laboratory of University of Gothenburg and Institute of Neurology, UCL by board-

certified laboratory technicians.  

 

6.3.6   Statistical analysis   

Data distribution was assessed and values greater than or less than an assay’s 

reliable detectable range were assigned maximum or minimum values. Medians and 

interquartile ranges were used to describe demographic, clinical characteristics and 

CSF biomarker data by diagnostic group. Missing CSF biomarker values were 

assumed to be Missing Completely at Random. CSF biomarkers were compared 
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between diagnostic groups using log transformed data, due to skewed and/or 

truncated data, and generalised least squares linear regression analyses, to allow for 

different variances in each group (an extension of the t-test/ANOVA model that 

allows different variances in each group). These global tests for differences across 

groups were assessed for: i) all groups, including healthy controls; ii) dementia-only 

groups; and iii) dementia-only groups with adjustment for age, sex, and time from 

symptom onset to lumbar puncture. Post-hoc pairwise comparisons between 

diagnostic groups were made when the initial (unadjusted) global test across 

dementia-only groups was statistically significant (p<0.05). There was no 

adjustment for multiple testing.  

Non-parametric receiver operating characteristic (ROC) curves and the area under 

the curve (AUC) were used to quantify how well each biomarker discriminated 

between Alzheimer’s disease and each of the other diagnostic groups (or 

combinations of groups). As expected, the group sizes varied greatly, reflecting the 

prevalence of these conditions in the population.  Assuming that a biomarker is 

associated with disease, AUC can be considered a simple measure of the probability 

that a randomly selected case would have a higher biomarker value than a control, 

assuming higher values are associated with disease (and vice versa if lower values are 

associated with disease)246.  Cutpoints and their conservative exact binomial 

confidence intervals were estimated for a fixed sensitivity of 85% as used in other 

studies243 and similar to the recommended sensitivity of 80% suggested by the 

Reagan consensus report102, and the associated specificities were calculated. ROC 

curves using combinations of up to five of the best performing (based on AUCs) 

biomarkers were used to calculate AUCs where group sizes were sufficiently large 

(defined as >10 subjects in each of two groups being compared) to avoid over-fitting, 

with bias corrected bootstrapped confidence intervals for the AUC (2,000 
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replications). The estimated cutpoints of five of the biomarkers were validated by 

calculating the sensitivity and specificity using the prospective cohort dataset. All 

analyses were carried out using STATA Version 14.1 (Texas, USA).  

 

6.4   Results   

 

6.4.1   Subject demographics  

A total of 418 subjects were included; 275 in the retrospective cohort and 143 in the 

prospective cohort. The retrospective cohort comprised 245 patients with dementia 

and 30 controls (‘healthy control’ cohort). The patients’ diagnoses were: AD (n=156, 

including 27 PCA and 12 LPA); DLB (n=20); bvFTD (n=45); PNFA (n=17); and SD 

(n=7). All groups had a similar duration of disease (time from symptom onset to LP) 

except for the SD group who presented later (Table 6.1a). The mean age of the DLB 

group was at least 5 years older than each of the other disease groups and the 

proportion of males was higher for DLB and SD than for other groups. As expected, 

MMSE was lower in the dementia groups compared with healthy controls.  

The diagnoses in the 143 individuals in prospective cohort were: AD (n=104); DLB 

(n=5); bvFTD (n=12); PNFA (n=3); SD (n=9) and controls (n=10).           

6.4.2   Diagnostic concordance  

Clinical correspondence for 119 randomly selected subjects in the retrospective 

cohort was reviewed (the number of notes reviews achieved by CFS in a fixed 1 

month period). There was a 95.8% concordance between the pre-LP diagnosis of the 

treating clinician and the diagnosis made by the independent rater blinded to the LP 

results (classifying by clinical diagnostic category, i.e. AD, bvFTD or other).  
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6.4.3   CSF biomarker concentrations   

The biomarker profile of each diagnostic group (based on Pre-LP diagnosis) is 

presented in Table 6.1a for the retrospective and healthy control cohorts and shown 

graphically in Figure 6.1. The number of individuals tested for each biomarker is 

given in the table in parentheses.  

In the prospective cohort data were available for eight biomarkers:  Aβ1-42 (n=143); 

T-tau (n=143); T-tau/Aβ1-42 ratio (n=143); P-tau (n=131); AβX-38 (n=141); AβX-

40 (n=141); AβX-42 (n=140); AβX-40/AβX-42 ratio (n=140).    
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Table 6.1a Demographic and biomarker data for all diagnostic groups, based on 

pre-lumbar puncture (LP) diagnosis. Samples are from the Retrospective and 

Healthy control cohorts. Median and interquartile range are reported. Where data 

were missing, the number of subjects for which data were available is indicated 

within parentheses. AD: Alzheimer’s disease; DLB: dementia with Lewy Bodies; 

BvFTD: behavioural variant frontotemporal dementia; PNFA: progressive non-

fluent aphasia; SD: Semantic dementia; HC: healthy control; MMSE: mini-mental 

state examination. 
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Comparisons between the groups based on regression analyses are shown in Table 6.1b. 

There was evidence of a significant difference (p<0.05) in mean values between disease 

groups for all tested biomarkers when healthy controls were included in the analyses.  

When the analyses were repeated without the healthy control group this was still the case 

for nine out of 13 biomarkers. After also adjusting for age, sex and time from symptom 

onset to LP, (without the healthy control group), the results were consistent except for 

one biomarker (YKL-40) where there was weak evidence of a difference between groups 

(p=0.04) in the adjusted results (Table 6.1b).  

 

 
Global 

test* 

with HC 

(p-value) 

Global 

test* 

no HC 

(p-value) 

Adjusted** 

global test* 

no HC 

(p-value) 

Aβ1-42   <0.0001 <0.0001 <0.0001 
T-tau  <0.0001 <0.0001 <0.0001 
T-tau/Aβ1-42 ratio <0.0001 <0.0001 <0.0001 
P-tau-181  <0.0001 <0.0001 <0.0001 
S100β  N/A 0.36 0.54 
NFL <0.0001 <0.0001 <0.0001 
YKL-40   0.0038 0.51 0.04 
AβX-38  <0.0001 0.43 0.17 
AβX-40  <0.0001 0.57 0.30 

AβX-42  <0.0001 0.0001 0.0002 

AβX-40/X-42 ratio <0.0001 <0.0001 <0.0001 
APPα  <0.0001 <0.0001 0.0001 

APPβ  <0.0001 0.0001 0.0001 
* Test of the null hypothesis that all disease groups have the same 

mean biomarker value; ** Adjusted for age, sex and time from 

symptom onset to lumbar puncture;. 

Table 6.1b Regression analyses comparing biomarkers between all disease groups 

classified according to pre-lumbar puncture diagnosis, with and without healthy 

controls. Samples are all from Retrospective and Healthy control cohorts.  Biomarker 

data is log transformed to achieve normal distribution. HC: healthy controls.    
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Pairwise comparisons between diagnostic groups were carried out where the 

(unadjusted) global test across dementia-only groups was statistically significant 

(p<0.05) (Figure 6.1). A summary of where there was evidence of a difference in 

mean biomarker levels is presented in Table 6.2 for each pairwise comparison.  



 166 

 

 

 

 



 167 

 

 

A
β
1

-4
2

 

T
-t

a
u

 

T
-t

a
u

/
A
β
1

-4
2

 

P
-t

a
u

 

N
F

L
 

A
β
X

-4
0

/
X

-4
2

 

A
P

P
α

 

A
P

P
β

 

AD vs DLB  + + +  + + + 

AD vs bvFTD +  + + + + + + 

AD vs PNFA + + +  +    

AD vs SD + + + + + +   

DLB vs bvFTD +  +      

DLB vs PNFA  +  + +  + + 

DLB vs SD +  +  + +   

bvFTD vs PNFA  + + +  + + + 

bvFTD vs SD         

PNFA vs SD + + + +  +   

Table 6.2 Summary of the biomarkers that are significantly different between 

neurodegenerative diseases. Biomarkers listed distinguish between groups with 

p<0.05; individuals are classified by pre-LP clinical diagnosis and values are 

unadjusted. Subjects included are from the retrospective and healthy control cohorts. 

AD: Alzheimer’s disease; DLB: dementia with Lewy Bodies; BvFTD: behavioural 

variant frontotemporal dementia; PNFA: progressive non-fluent aphasia; SD: 

Semantic dementia.  

 

As shown in Table 6.2, T-tau/Aβ1-42 ratio was significantly elevated in AD CSF 

compared to each of the other neurodegenerative diseases tested. T-tau, P-tau and 

AβX-40/X-42 ratio were also significantly higher in the AD cohort CSF compared 

to all of the other disease groups, except for PNFA. Aβ1-42 concentrations were 

lowest in AD and DLB groups but this biomarker by itself could not distinguish 

between these two disease groups. Measured concentrations of NFL were 
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significantly elevated in all neurodegenerative diseases compared to healthy 

controls; furthermore, concentrations were higher in the SD, PNFA and the bvFTD 

groups, which each had significantly higher concentrations than the AD and DLB 

groups (Figure 6.1). APPα and APPβ were significantly lower in DLB and bvFTD 

compared to AD, PNFA or healthy controls (Figure 6.1). AβX-38 and AβX-40 

concentrations were lower in all neurodegenerative diseases compared to healthy 

controls (p<0.01) but there were no pairwise significant differences between each of 

the neurodegenerative diseases. Similarly, YKL-40 concentrations were elevated 

across all neurodegenerative disease groups tested relative to healthy controls but 

not between diseases.  

6.4.4   Diagnostic accuracy of CSF biomarkers  

Area under the ROC curve (AUC), sensitivity and specificity were used to compare 

how well single biomarkers distinguished between AD, the commonest form of 

dementia, and each other neurodegenerative disease and healthy controls. A 

summary of up to the ‘top 5’ biomarkers, as determined by AUC, are given in Table 

6.3, with the highest AUCs varying between 0.79 and 0.95. Using a pre-determined 

fixed sensitivity of 85%, we generated cutpoints for each biomarker and the 

associated specificities, which varied between 24% and 100% (Table 6.3).   
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Diagnostic 

Groups 

compared 

Biomarker AUC  

(95% CI) 

 

Optimal cutpoint (95% CI) 

and specificity (%) at a fixed 

sensitivity of 85% 

AD vs DLB  P-tau (pg/L) 0.79  
(0.68-0.90) 

>48.9 (95% CI: 42.4-58.7) (50%) 

 T-tau (pg/mL)   0.78  
(0.67-0.88) 

>312.0 (95% CI: 261.0-391.0) 
(50%) 

 T-tau/Aβ1-42 
ratio 

0.77  
(0.66-0.88) 

>0.64 (95% CI: 0.52-1.01) (40%) 

 AβX-40/X-42 0.73  
(0.59-0.88) 

>16.8 (95% CI: 11.4-18.1) (47%) 

 APPβ (ng/mL) 0.73  
(0.58-0.87) 

>136.4 (95% CI: 115.3-144.6) 
(44%) 

AD vs BvFTD T-tau/Aβ1-42 
ratio 

0.89  
(0.85-0.94)  

>0.64 (95% CI: 0.52-1.01) (70%) 

 AβX-40/X-42 ratio 0.86  
(0.77-0.94) 

>16.8 (95% CI: 11.4-18.1) (85%) 

 T-tau (pg/mL) 0.83  
(0.76-0.90) 

>312.0 (95% CI: 261.0-391.0) 
(64%) 

 Aβ1-42 (pg/mL) 0.78  
(0.70-0.87) 

<529.0 (95% CI: 479.0-647.0) 
(60%) 

 P-tau (pg/L) 0.78 (0.70-
0.86) 

>48.9 (95% CI: 42.4-58.7) (46%) 

AD vs PNFA NFL (ng/L) 0.84 (0.76-
0.93)  

<1877.0 (95% CI: 1609.8-3149.6) 
(50%) 

 T-tau/Aβ1-42 
ratio 

0.67  
(0.54-0.80) 

>0.64 (95% CI: 0.52-1.01) (24%) 

 Aβ1-42 (pg/mL) 0.65  
(0.50-0.80) 

<529.0 (95% CI: 479.0-647.0) 
(35%) 

AD vs SD  AβX-40/X-42 ratio 0.92 (0.86-
0.97) 

>16.8 (95% CI: 11.4-18.1) (100%) 

 T-tau/Aβ1-42 
ratio 

0.91 (0.86-
0.96) 

>0.64 (95% CI: 0.52-1.01) (86%) 

 Aβ1-42 (pg/mL) 0.91 (0.84-
0.98) 

<529.0 (95% CI: 479.0-647.0) 
(86%) 

 NFL (ng/L) 0.87  
(0.78-0.96) 

<1877.0 (95% CI: 1609.8-3149.6) 
(67%) 

 P-tau (pg/L)  0.85  
(0.75-0.94) 

>48.9 (95% CI: 42.4-58.7) (29%) 

Table 6.3 Diagnostic performance of the ‘top 5’ biomarkers, comparing AD with 

other neurodegenerative diseases and controls determined using ROC curves.  

Subjects included are from the retrospective and healthy control cohorts.  
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Diagnostic 

Groups 

compared 

Biomarker AUC  

(95% CI) 

 

Optimal cutpoint (95% CI) 

and specificity (%) at a fixed 

sensitivity of 85% 

AD vs HC AβX-40/X-42 ratio 0.95  
(0.92-0.99)   

>16.8 (95% CI: 11.4-18.1) (93%) 

 Aβ1-42 (pg/mL) 0.93  
(0.88-0.98)   

<529.0 (95% CI: 479.0-647.0) 
(90%) 

 T-tau/Aβ1-42 
ratio 

0.93 (0.89-
0.97) 

>0.64 (95% CI: 0.52-1.01) (83%) 

 T-tau (pg/mL) 0.81 (0.73-
0.90) 

>312.0 (95% CI: 261.0-391.0) 
(53%) 

 P-tau (pg/L) 0.80 (0.71-
0.88) 

>48.9 (95% CI: 42.4-58.7) (54%) 

AD vs Non-AD 
neurodegenera
-tive diseases 

T-tau/Aβ1-42 
ratio 

0.82 (0.77-
0.88) 

>0.64 (95% CI: 0.52-1.01) 
(56%) 

 AβX-40/X-42 ratio 0.79 (0.72-
0.87) 

>16.8 (95% CI: 11.4-18.1) 
(68%) 

 T-tau (pg/mL) 0.77 (0.71-
0.83) 

>312.0 (95% CI: 261.0-391.0) 
(51%) 

 P-tau (pg/L) 0.76 (0.70-
0.83) 

>48.9 (95% CI: 42.4-58.7) 
(41%) 

 Aβ1-42 (pg/mL) 0.73 (0.67-
0.80) 

<529.0 (95% CI: 479.0-647.0) 
(48%) 

AD vs all 
others 
(including HC) 

T-tau/Aβ1-42 
ratio 

0.85 (0.80-
0.90)   

>0.64 (95% CI: 0.52-1.01) (63%) 

 AβX-40/X-42 ratio 0.84 (0.79-
0.90) 

>16.8 (95% CI: 11.4-18.1) (76%) 

 T-tau (pg/mL) 0.78 (0.73-
0.84) 

>312.0 (95% CI: 261.0-391.0) 
(51%) 

 Aβ1-42 (pg/mL) 0.78 (0.73-
0.84) 

<529.0 (95% CI: 479.0-647.0) 
(59%) 

 P-tau (pg/L) 0.77 (0.71-
0.83) 

>48.9 (95% CI: 42.4-58.7) (45%) 

Table 6.3 (continued). Diagnostic performance of the ‘top 5’ biomarkers, comparing 

AD with other neurodegenerative diseases and controls determined using ROC 

curves. Individuals are classified by pre-LP clinical diagnosis. Subjects included are 

from the retrospective and healthy control cohorts.  Biomarker with greatest 

diagnostic accuracy is in bold. AD: Alzheimer’s disease; DLB: dementia with Lewy 

Bodies; BvFTD: behavioural variant frontotemporal dementia; PNFA: progressive 

non-fluent aphasia; SD: Semantic dementia; AUC: area under curve.   



 171 

6.4.5   Diagnostic utility of combinations of biomarkers to predict diagnosis   

Combining the biomarkers identified in Table 6.3 into a single model for each of the 

comparisons, the diagnostic utility of these combinations was again determined 

using the AUC (Table 6.4). In each case the new AUC was informally compared with 

the AUC of the relevant best performing single biomarker. There was no evidence 

that including more than one biomarker in the model improved the AUC. For one 

disease group comparison (AD vs PNFA) the combined biomarkers reduced the 

AUC.   

Diagnostic 
Groups compared 

Biomarkers 
included in the 
model 

AUC (95% CI)  Comparison AUC 
(95% CI) for a 
single biomarker 

AD vs DLB P-tau; T-tau;T-

tau/Aβ1-42 ratio; 

AβX-40/X-42 

ratio; APPβ  

0.83 (0.70-0.92) 0.79 (0.68-0.90) 
(P-tau) 

AD vs BvFTD T-tau/Aβ1-42 

ratio;       AβX-
40/X-42 ratio; T-

tau; Aβ1-42; P-tau 

0.90 (0.81-0.94) 0.89 (0.85-0.94)   

(T-tau/Aβ1-42 
ratio) 

AD vs HC AβX-40/X-42 

ratio; Aβ1-42; T-

tau/Aβ1-42 ratio;         
T-tau; P-tau  

0.95 (0.88-0.97) 0.95 (0.92-0.99)    

(AβX-40/X-42 
ratio) 

AD vs PNFA* NFL; T-tau/Aβ1-

42 ratio; Aβ1-42  

0.74 (0.52-0.82) 0.84 (0.76-0.93) 
(NFL) 

AD vs Non-AD 
neurodegenerative 
cases 
(excluding HC) 

T-tau/Aβ1-42 
ratio; AβX-40/X-42 

ratio; T-tau; Aβ1-
42; P-tau  

0.84 (0.75-0.89) 0.82 (0.77-0.88)  
(T-tau/Aβ1-42 ratio) 

AD vs All others 
(including HC) 

T-tau/Aβ1-42 

ratio;         AβX-
40/X-42 ratio; T-

tau;  Aβ1-42: P-tau 

0.86 (0.79-0.91) 0.85 (0.80-0.90)  

(T-tau/Aβ1-42 
ratio) 

* Only three biomarkers were found to be significantly different (see Table 6.2)  

Table 6.4 Diagnostic utility of combinations of biomarkers to predict disease group 

determined using ROC curve analysis. AD: Alzheimer’s disease; DLB: dementia with 

Lewy Bodies; BvFTD: behavioural variant frontotemporal dementia; PNFA: 
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progressive non-fluent aphasia; HC: healthy control. Subjects included are from the 

retrospective and healthy control cohorts 

 

6.4.6   Validation  

 
In the independent prospective cohort we calculated sensitivity and specificity of the 

‘top-five’ biomarkers including Aβ1-42, T-tau, T-tau/Aβ1-42, P-tau and AβX-40/X-

42 using the optimal cutpoints determined in the retrospective and healthy control 

cohorts that provided a sensitivity of 85% (Table 6.5). Sensitivities were very 

consistent with the 85%, ranging from 83-88% for all biomarkers compared between 

all groups except for Aβ1-42 where the sensitivity was lower (71%). Given small 

sample sizes for groups other than AD, specificities were not informative. 
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  Retrospective cohort 
(used to estimate the 
cut-point)(data from 
table 6.3) 

Prospective cohort  
(using  retrospective 
cohort cutpoint) 

Diagnostic 
Groups 
compared 

Biomarker Optimal 
cut-point 
for 85% 
sensitivity 

Specificity Sensitivity Specificity 

AD vs 
DLB  

P-tau (pg/L) >48.9  (50%) 83% 25% 

 T-tau (pg/mL)   >312.0  (50%) 87% 20% 
 T-tau/Aβ1-42 

ratio 
>0.64  (40%) 88% 20% 

 AβX-40/X-42 >16.8 (47%) 83% 20% 

AD vs 
BvFTD 

T-tau/Aβ1-42 
ratio 

>0.64  (70%) 88% 75% 

 AβX-40/X-42 >16.8 85% 83% 75% 

 T-tau (pg/mL) >312.0  (64%) 87% 33% 
 Aβ1-42 (pg/mL) <529.0  (60%) 71% 67% 

 P-tau (pg/L) >48.9  (46%) 83% 67% 
AD vs 
PNFA 

T-tau/Aβ1-42 
ratio 

>0.64  (24%) 88% 100% 

 Aβ1-42 (pg/mL) <529.0  (35%) 71% 100% 

AD vs SD AβX-40/X-42 >16.8 (100%) 83% 88% 

 T-tau/Aβ1-42 
ratio 

>0.64  (86%) 88% 89% 

 Aβ1-42 (pg/mL) <529.0  (86%) 71% 100% 

 P-tau (pg/L)  >48.9  (29%) 83% 78% 
AD vs HC AβX-40/X-42 >16.8 (93%) 83% 80% 

 Aβ1-42 (pg/mL) <529.0  (90%) 71% 80% 

 T-tau/Aβ1-42 
ratio 

>0.64  (83%) 88% 89% 

 T-tau (pg/mL) >312.0  (53%) 87% 78% 
 P-tau (pg/L) >48.9  (54%) 83% 78% 
AD vs all 
others 
(including 
HC) 

T-tau/Aβ1-42 
ratio 

>0.64  (63%) 88% 76% 

 AβX-40/X-42 >16.8 (76%) 83% 74% 

 T-tau (pg/mL) >312.0  (51%) 87% 50% 

 Aβ1-42 (pg/mL) <529.0  (59%) 71% 77% 

 P-tau (pg/L) >48.9  (45%) 83% 70% 

Table 6.5 Diagnostic accuracy of Aβ1-42, T-tau, T-tau/Aβ1-42 ratio, P-tau and 

AβX-42/X-40 ratio in retrospective and prospective cohorts based on pre-LP 

diagnostic classifications.  AD: Alzheimer’s disease; DLB: dementia with Lewy 

Bodies; BvFTD: behavioural variant frontotemporal dementia; PNFA: progressive 

non-fluent aphasia; SD: Semantic dementia; HC: healthy control. Subjects included 

are from the retrospective, prospective and healthy control cohorts.  
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6.5   Discussion 

In this large single centre clinical study of 418 subjects it was possible to establish 

that the ‘core’ CSF biomarkers of AD pathology, T-tau, Aβ1-42, P-tau and T-

tau/Aβ1-42 ratio, can differentiate AD subjects from healthy controls with a similar 

degree of discrimination of about 80-85% sensitivity and specificity (as indicated by 

AUC) and with similar clinical cutpoints to those findings reported in previous 

studies235. These results were based on classifying individuals clinically, using 

consensus criteria uninfluenced by biomarker data. It was also determined that these 

core biomarkers and other more novel markers, notably AβX-40/42 ratio and NFL, 

had some diagnostic utility in distinguishing AD from other neurodegenerative 

diseases, although their clinical diagnostic performance depended on the specific 

disease groups compared. We found that by using combinations of multiple 

biomarkers, there was no meaningful improvement in diagnostic utility over the best 

performing single biomarkers.  

T-tau/Aβ1-42 ratio was the single most reliable measure to distinguish AD from the 

other neurodegenerative diseases as well as healthy controls, at a cutpoint of 0.64 

and fixed sensitivity of 85% providing 83% specificity to distinguish AD from 

controls, and 66% specificity to distinguish AD from all other neurodegenerative 

cases. 

Whilst CSF Aβ1-42 alone distinguished AD from controls (85% sensitivity, 90% 

specificity with a cutpoint of <529pg/ml), it was relatively poor in distinguishing 

AD from neurodegenerative diseases (85% sensitivity, 57% specificity), in keeping 

with other studies 297. In the prospective cohort our estimated cutpoint, which 

achieved a sensitivity of 85% in the retrospective cohort, only achieved a sensitivity 
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of 71%. One explanation is that the retrospective cohort CSF samples, which were 

collected and stored in a non-standardised way, were particularly affected by pre-

analytical handling variability, to which Aβ1-42 is particularly susceptible 161, 

resulting in falsely low and inconsistent measured Aβ1-42 values so giving different 

sensitivity at the same cutpoint. Several studies have found that AβX-42/X-40 ratio 

is superior to Aβ1-42 alone in differentiating AD from other clinically or 

pathologically determined neurodegenerative diseases185, 186, 298and my findings 

broadly support this observation in a larger independent cohort showing improved 

specificity to distinguish AD from DLB, BvFTD, SD, healthy controls and all other 

neurodegenerative diseases combined. Aβ1-40 is the most abundant form of amyloid 

and less likely than Aβ1-42 to aggregate, and thus may be the best measure of 

function of the amyloidogenic APP pathway 299. Using a ratio of AβX-40/X-42 or 

AβX-42/X-40 theoretically corrects for the inter-individual physiological differences 

in amyloid processing.  In all of the clinical scenarios explored in this study, AβX-

42/X-40 was better at discriminating than Aβ1-42 alone; and also showed slightly 

improved specificity compared to T-tau/Aβ1-42 ratio to distinguish AD from DLB, 

BvFTD, SD, and healthy controls 

In this study, P-tau alone was the best performing single biomarker for 

differentiating AD from DLB, and a model using multiple biomarkers did not 

improve on diagnostic utility. Our findings were similar to a previous meta-analysis 

which compared P-tau levels in AD and DLB and reported similar diagnostic 

sensitivity and specificity297. P-tau is thought to be more specific to AD pathology 

than other forms of Tau; Tau, an intraneuronal protein released following neuronal 

death, and in its phosphorylated form is more likely to restructure to form paired 

helical filaments300, which become neurofibrillary tangles, one of the pathological 
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hallmarks of AD. Conversely, ‘Pure’ DLB is characterised not by tau or amyloid 

pathology but by Lewy Bodies and intraneuronal inclusions of alpha synuclein301. 

However in pathology proven DLB, DLB and AD pathology often co-exist302 which 

is likely to explain the overlap in P-tau and other biomarker values between AD and 

DLB cases. This may also explain why I and others found that all biomarkers had 

low specificity in differentiating AD from DLB 243.  

None of the established biomarkers tested achieved potentially useful diagnostic 

sensitivity or specificity for differentiating AD from PNFA, except for NFL 

(sensitivity 85%, specificity 50%). LPA, the language variant of AD most likely to 

mimic PNFA, is usually underpinned by AD pathology and this has previously been 

demonstrated in this cohort296. PNFA is classically associated with non-AD 

pathology but 10-30% of cases will have evidence of AD pathology at autopsy303 304. 

In this cohort one PNFA case had an autopsy proven diagnosis of mixed pathology: 

AD; cerebral amyloid angiopathy and Lewy Body disease. A degree of biomarker 

overlap was therefore expected, to reflect this pathological heterogeneity and is 

likely to explain why T-tau, P-tau and Aβ1-42 when used together actually reduced 

AUC.   

There were also significant differences between the PNFA cohort and other FTD 

syndromes, bvFTD and SD. SD is the most pathologically homogeneous of the 

syndromes, being typically underpinned by TDP43 type C pathology46, while 

bvFTD is caused by a range of molecular pathologies including, rarely, AD46. In 

both groups, mean measured concentrations of T-tau and P-tau were lower, and 

mean Aβ1-42 levels higher than the PNFA cohort, consistent with the fact that 

these syndromes are relatively less likely to have AD pathology at post mortem305. 

The finding that NFL was highest in SD is consistent with a number of previous 
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studies214 213, 294. NFL is a marker of large axonal neurodegeneration136 which is 

elevated in a number of non-AD subcortical disease processes306, particularly in 

FTD and motor neurone disease307. These findings taken together suggest a possible 

association between CSF NFL concentrations and TDP43 pathology. Since NFL 

levels were significantly higher in SD and PNFA compared to AD, it may have a 

clinical role in helping to distinguish AD from non-AD language cases. 

It was found that YKL-40 showed some utility in differentiating AD from healthy 

controls, in keeping with findings from other studies173, 229. YKL-40 is a non-specific 

marker of microglial activation and likely to be correlated with rate of disease 

progression228, rather than with a specific neurodegenerative process230 which may 

explain why I did not find major differences between AD and DLB, BvFTD, PNFA 

or SD.  

Neither APPα nor APPβ, were found to be useful in differentiating AD from healthy 

controls, again in keeping with several previous studies173. Mean APPα and APPβ 

were both significantly lower in DLB and BvFTD cohorts compared to AD and 

healthy controls, similar to findings of a previous study by Gabelle et al 227 which 

demonstrated lower concentrations of APPβ in FTLD compared to control CSF. 

The significant of this is unclear, but raises the possibility amyloid metabolism may 

be altered in some non-AD pathology.   

It was found that combining several different biomarkers did not materially increase 

diagnostic accuracy when comparing different dementias from one another; and that 

individually Aβ1-42/T-tau, AβX-42/X-40 P-tau and NFL were the measures that 

provided maximal accuracy to distinguish the various dementias from one another.  
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Strengths of the study include it being from a single centre study, with large 

numbers of well phenotyped individuals with a broad range of neurodegenerative 

diseases classified using consensus criteria independently by two raters; and use of 

both a control and independent validation cohort. Samples were analysed using an 

extended panel of biomarkers quantified on a single run to reduce sources of error; 

and robust statistical analyses were employed.   

The study has some weaknesses. The retrospective cohort was retrospectively 

studied and samples were clinically acquired and therefore not necessarily handled 

according to a prospectively determined standard operating procedure, although 

broadly similar findings were made in a prospective cohort with CSF collected under 

research conditions. The numbers of samples in some clinical groups were 

comparatively small but is likely to represent broadly the proportion of patients with 

various forms of dementias who might undergo diagnostic CSF examination. 

Without post-mortem confirmation of the pathological diagnosis in all cases we 

cannot be certain of the underlying pathology, or, for example in the case of DLB 

there were more than one underlying pathologies. Very few CSF studies in dementia 

have pathological confirmation of diagnosis, and this is thus an inevitable limitation 

of most work in the literature. The author mitigated this limitation as far as possible 

both by using a relatively large clinical sample, employing clinical diagnostic criteria 

independently assessed by two clinicians both pre- and post-LP, and through use of 

an independent validation cohort. However, even taking these factors into account 

there are still conceptual limitations in using the pre-lumbar puncture clinical 

diagnosis to classify subjects; while this approach avoids circularity, it may also lead 

to biological misclassification. For example asymptomatic individuals with 

asymptomatic prodromal AD could be misclassified as healthy; individuals with 

atypical clinical phenotypes may fulfill more than one set of clinical criteria. 
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Furthermore, clinical syndromes that might be underpinned by one of a number of 

neurodegenerative pathologies (such as PNFA or PCA) may give rise to inconsistent 

heterogenous biomarker profiles leading to wide confidence intervals and difficult 

clinical interpretation.  Future work might use a combination of clinical syndromic 

classification in combination with the more established CSF biomarkers to refine 

diagnosis as far as possible. Ideally one would also like to correct for important 

confounders such as white matter disease, which could be quantified using 

appropriate imaging sequences and processing pipelines.  

Finally, whilst only a small proportion of the cases in this cohort had pathology 

confirmation or amyloid imaging, the diagnosis was consistent in all cases except for 

the case of PNFA with mixed AD/CAA/DLB pathology.  

6.6   Conclusions 

This work establishes the biomarker profiles of an extended panel of ELISA 

biomarkers in a range of neurodegenerative dementias and healthy controls. It is  

shown that CSF T-tau/Aβ1-42 ratio reliably discriminates AD from controls and 

from all of the other most common neurodegenerative diseases and AβX-40/42 ratio 

performs similarly. Aβ1-42 on its own does not have high diagnostic accuracy, but in 

the correct clinical context, NFL and P-tau have diagnostic utility in the differential 

diagnosis of dementia.      

6.7   Publications arising from this chapter  

R.W. Paterson et al. CSF in the differential diagnosis of Alzheimer’s Disease: 

Clinical Utility of an Extended Panel of Biomarkers in a Specialist Cognitive Clinic. 

Alzheimer’s & Dementia (Conference Abstract, Alzheimer’s Association 

International Conference, 2016) 
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Chapter 7.   CSF in the differentiation of AD 

clinical phenotypes 

 

7.1   Introduction 

Alzheimer’s disease (AD) is usually associated with an initial decline in episodic 

memory followed by progressive cognitive deficits that reflect a symmetrical, 

generalised loss of function of association cortices308. However there is also 

considerable symptomatic heterogeneity particularly in young onset cases36. In some 

cases, this heterogeneity is sufficient to define discrete syndromic variants, including 

posterior cortical atrophy26, 27, 309 and logopenic aphasia32. Whilst previously only 

amnestic presentations were recognised in diagnostic criteria for Alzheimer’s 

disease, newer criteria including those from the International Working Group 

(IWG-2) which combine biomarkers and clinical phenotypes, distinguish “typical”, 

i.e. memory-led Alzheimer’s disease from “atypical” Alzheimer’s disease, the latter 

comprising posterior (visual or biparietal), logopenic (language) and frontal 

(behavioural) variants4. Whilst the various Alzheimer’s variants are, by definition, 

underpinned by the same core pathology, i.e. the accumulation of Aβ plaques and 

tangles composed of hyperphosphorylated tau protein and have a broadly similar 

widespread cortical distribution of Aβ,310-312 there appears to be differences in the 

distribution of tau pathology34, neuronal cell loss313, 314, and network disruption315 

between variants.  Aside from the fact that atypical AD variants are over-

represented in young onset cases36, and evidence for genetic differences in some of 

the atypical forms of the disease79, 316, 317, The aim of this study was to use an 

extended CSF panel to assess differences between IWG-2 typical and atypical AD, 

and further to investigate whether amnestic, posterior cortical atrophy, logopenic 
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and frontal variants of AD were associated with different CSF profiles. The author 

hypothesized that there would be differences in markers of neurodegeneration and 

amyloid processing between AD subtypes to reflect different distribution of tau 

deposition and neuronal disruption. It was also considered that there might be 

differences in the role of neuroinflammation and large-calibre myelinated axon 

involvement to explain clinical heterogeneity.  

 

7.2   Contributions and collaborations  

The CSF ELISAs were carried out at the University of Gothenburg Laboratory in 

Sweden by board certified technicians under the supervision of Prof Henrik 

Zetterberg. Statistical analysis was supervised by Dr Jennifer M Nicholas. 

Neuropsychology testing was carried out by Prof Sebastian Crutch or one of the 

research neuropsychologists at the Dementia Research Centre.  

 

7.3   Subjects and methods 

 

7.3.1   Ethics statement  

This study was approved by the Queen Square Ethics Committee.  

 

7.3.2   Subjects  

Subjects in this study are from the ‘Retrospective’ cohort described fully in chapter 

2. All subjects had had a clinical CSF examination as part of their diagnostic work-

up; had a CSF profile consistent with Alzheimer’s disease (Aβ1-42<550pg/mL and 

tau/Aβ1-42 ratio≥0.5)235; and fulfilled IWG-2 criteria for Alzheimer’s disease4, 

summarized in Figure 7.1. 
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Figure 7.1 Summary of the IWG-2 criteria for AD.  

Individuals were retrospectively classified as having typical (amnestic) Alzheimer’s 

disease or atypical Alzheimer’s disease according to IWG-2 criteria, and the IWG-2 

atypical AD group were further sub-classified into those fulfilling clinical318 criteria 

for posterior cortical atrophy (PCA)32 or criteria for Logopenic Aphasia (LPA). In 

the absence of published criteria for frontal variant Alzheimer’s disease (fvAD), the 

author examined the notes of all individuals with atypical Alzheimer’s disease not 
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fulfilling PCA or LPA criteria, determining that all had early behavioural features 

(see table 7.4), thus fulfilling IWG-2 criteria for fvAD (“early, predominant, and 

progressive behavioural changes including association of primary apathy or 

behavioural disinhibition”) 4. The nearest mini-mental state examination (MMSE) 

score to the date of the lumbar puncture was recorded, as was estimated disease 

duration (in months) from first symptom to LP, based on recorded information from 

patients and informants. The rate of cognitive decline was estimated using the 

following formula: (30-MMSE at time of LP)/disease duration in months. 

The majority of patients were only seen in routine clinical practice and had not been 

assessed using a single standardised neuropsychology battery. A proportion (n=22; 

22.7%) had been assessed on a research neuropsychology battery, which included 

Recognition Memory Tests (RMT)319, 320, and tests of posterior cortical functions 

including the VOSP Object Decision321 or space perception (VOSP Number Location 

test) tests, the Graded Difficulty Arithmetic test322, and Graded Difficulty Spelling 

test323. Those individuals fulfilling clinical criteria for PCA318 who also performed 

above the 5th percentile on a memory test and below the 5th percentile on at least 

two of the four tests of posterior functions were additionally defined as fulfilling 

neuropsychology criteria for PCA (n-PCA)313. Those with impairment on both 

memory tests were defined as fulfilling research neuropsychology criteria for typical 

AD (n-tAD).  

 

7.3.3   Cerebrospinal fluid Collection and Biomarker Analysis  

 

CSF fluid collection and analysis was carried out according to the methods described 

in Chapter 2.  
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7.3.4   Statistical Analysis 

 

Demographics and CSF biomarker levels were compared between groups using t -

tests when there were no clear departures from a normal distribution, and Wilcoxon 

rank-sum tests for skewed or truncated data. Demographics and CSF biomarkers 

were compared across individuals with PCA, LPA and fvAD using one-way ANOVA 

when the distribution was approximately normal and Kruskal-Wallis rank test for 

skewed or truncated data, or Chi-squared tests for categorical variables. Post-hoc 

pairwise comparisons between pairs of groups were made when the initial test across 

all groups was statistically significant. Linear regression was used to explore the 

relationship between diagnosis and biomarker incorporating nuisance variables (age, 

sex, cognitive decline and MMSE) as covariates; non-normally distributed variables 

were log transformed for linear regression analysis. All statistical analyses used 

STATA Version 12.1 (Stata corporation, College Station, TX, USA).    

 

7.4   Results 

7.4.1   Comparison of IWG2 typical and atypical Alzheimer’s disease 

 

61 patients fulfilled criteria for typical AD and 36 for atypical AD (Table 7.1). The 

groups were similar in terms of age (62.5±6.6 vs. 62.3±7.4) and MMSE (20.6±6.4 vs 

19.1±7.5) at the time of LP or estimated rates of cognitive decline (median=2.5 vs 

2.8 MMSE points/yr); there was a non-significant trend for more women in the 

typical AD group (73.8% vs 55.6%). 

 

The CSF biomarker profiles of typical and atypical Alzheimer’s disease are shown in 

Table 7.1. There were no significant differences for any biomarker except for NFL, 
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which was significantly higher in the atypical Alzheimer’s disease group (p=0.03). In 

a regression model incorporating age, sex, MMSE and rate of decline included in the 

model, this difference remained significant (p<0.05).   

 

 

 

 

 
Typical Alzheimer’s 

disease  

Atypical Alzheimer’s 

disease 

Typical vs 

Atypical 

Alzheimer’s 

disease (p-value) 

 

 n=61 n=36  

Age at LP 62.5 ± 6.6 62.3 ± 7.4 0.90 

Sex (% male) 26.2 44.4 0.08 

MMSE 20.6 ± 6.4 19.1 ± 7.5 0.54 

Months to LP  43.3 ± 25.2  48.0 ± 28.6 0.42 

Estimated rate of decline 

(MMSE/yr)*  
2.5 (1.3-4.6) 2.8 (1.4-5.3) 0.60 

Aβ1-42 (pg/ml)  276.8  ± 100.8 293.3 ± 104.6 0.45 

T-tau (pg/ml)*  694.9 (415.0-892.1) 642.6 (520.4-878.5) 0.63 

P-tau (pg/L)  96.2 ± 44.7 96.0 ± 34.9 0.98 

tau/Aβ1-42 ratio* 2.5 (1.8-3.9) 2.5 (1.7-4.1) 0.92 

NFL (ng/L)* 1125 (737-1400) 1235 (1070-1610) 0.03^ 

YKL-40 (ng/L) 0.169 ± 0.06 0.181 ± 0.07 0.46 

AβX-38 (ng/L) 1698 ± 813 1560 ± 515 0.32 

AβX-40 (ng/L) 3954 ± 1622 3825 ± 1215 0.66 

AβX-42 (ng/L) 165.3 ± 74.7 172.7 ± 74.7 0.64 

AβX-40/X-42 ratio 25.4 ± 6.5  24.1 ± 6.5 0.33 

APPα(ng/mL)* 349.2  (266.4-542.3) 353.8 (268.8- 516.4) 0.81 

APPβ(ng/mL)* 199.9  (152.4- 337.4) 201.9  (161.3 -282.6) 0.88 

 

Table 7.1  Demographics and CSF profiles of individuals fulfilling IWG-2 criteria for 

typical/atypical Alzheimer’s disease. Samples are from the Retrospective cohort. Data 

are shown as Mean ± SD unless stated * log transformed for regression analyses, 

values quoted as median (interquartile range); ^In a regression model including age, 

sex, MMSE and rate of decline, p-value remains significant. 
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7.4.2   Comparing atypical Alzheimer’s disease subtypes 

 

Of the 36 patients with atypical AD, 17 patients fulfilled criteria for PCA, 11 for 

LPA, with the remaining eight were classified as having fvAD. Demographics and 

CSF results are shown in Table 7.2. There were no significant differences in age or 

MMSE, but there were significant differences between the estimated rates of 

cognitive decline between the groups, with the fvAD cases declining significantly 

faster (median 5.3 MMSE points/yr) than either the LPA (3 points/yr) or PCA 

groups (1.9 points/yr). Rate of decline remained significantly higher in the frontal 

variant group compared with typical Alzheimer’s disease even after adjusting for 

nuisance variables (p=0.01).    
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PCA 
 
(n=17) 

LPA 
 
(n=11) 

fvAD 
 
(n=8) 

Comparing 
phenotypes  
ANOVA  
(p-value) 

Post hoc differences 

Age at LP 62.7 ± 8.6 
62.4 ± 
6.80 

61.5 ± 6.4 0.93  

Sex (% male)  35.3 63.6 37.5 0.31  

MMSE 20.7 ± 7.4  17.4 ± 8.9 17.4 ± 6.1  0.3  

Months to LP  
53.9 ± 
27.3 

53.9 ± 
31.5  

27.3 ± 18.4  0.06  

Rate of decline 
(MMSE/yr)*  

1.9 (0.75-
4.25) 

3.0  (1.8-
3.8) 

5.3 (4.0-
19.5) 

0.03 
PCA, FV (p=0.018) 
LPA, FV (p=0.044) 

Aβ1-42 (pg/ml)  
311.7 ± 
112.8 

314.7 ± 
91.1 

224.6 ± 82.5 0.1  

T-tau (pg/ml)*  
604.4 
(436.8-
675.8) 

842.0 
(591.8-
890.5) 

1185.4 
(591.7-
1329.3) 

0.03 
PCA, FV (p=0.036)   
PCA, LPA (p=0.036) 

P-tau (pg/L)  
79.8 ± 
21.8 

106.2 ± 
34.2 

116.4 ± 45.4 0.02 
PCA, FV (p=0.012) 
PCA, LPA (p=0.040) 

tau/Aβ1-42 ratio*  
2.3 (1.4-
2.6) 

2.4  (1.7-
4.3) 

5.2  (3.3-6.9) 0.008 
PCA, FV (p<0.01) 
LPA, FV (p=0.026) 

NFL (ng/L)*  
1138 (981-
1416) 

1220 
(1130- 
1663) 

1474 (1197 -
1838) 

0.3  

YKL-40 (ng/L) 
0.158 ± 
0.04 

0.190 ± 
0.07 

0.213 ± 0.01 0.39  

AβX-38 (ng/L) 
1575 ± 
387 

1670 ± 
729 

1394 ± 442 0.54  

AβX-40(ng/L) 
3898 ± 
803 

4246 ± 
1698 

3152 ± 1044 0.16   

AβX-42 (ng/L) 
191.3 ± 
75.2 

188.2 ± 
74.9 

116.2 ± 47.0 0.04 PCA, FV (p=0.047) 

AβX-40/X-42 
ratio 

22.1 ± 5.8  23.3 ± 5.2  27.9 ± 7.5  0.047 PCA, FV (p=0.016) 

APPα(ng/mL)*  

392.5 
(336.3-
517.2) 

292.6  
(258.4-
558.9) 

314.5 
(263.3-
437.6) 

0.33   

APPβ (ng/mL)*  

235.0  
(178.6-
309.2) 

178.3  
(152.6- 
367.3) 

168.5 
(140.9-
233.6) 

0.27   

Table 7.2   Demographics and CSF profiles of individuals fulfilling IWG-2 criteria 

for atypical Alzheimer’s disease, sub-classified according to clinical syndrome. 

Subjects are from the Retrospective cohort.  Data are shown as Mean ± SD unless 

stated; * Median (IQR)  
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Comparing the CSF profiles between the three subgroups (Table 7.2), significant 

differences were seen in T-tau, P-tau, T-tau/Aβ1-42 ratio, AβX-42 (measured using 

the MSD Abeta Triplex method), and AβX-40/X-42 ratio. Both T-tau and P-tau 

were lowest in the PCA group, intermediate in the LPA group and highest in the 

fvAD group with significant differences between PCA and each of the other groups. 

T-tau/Aβ1-42 ratio was significantly higher in the fvAD group than the PCA and 

LPA groups.  There was a non-significant trend for Aβ1-42 measured using the 

Innotest ELISA to be lower in the fvAD group, and this was significant for AβX-42 

measured using the MSD Abeta Triplex assay (p<0.05). AβX-42 was lowest in the 

frontal variant subgroup and highest in PCA. AβX-40/X-42 ratio was significantly 

higher in the fvAD group than the PCA group.  

 

7.4.3   Comparing atypical Alzheimer’s disease subgroups to amnestic 

Alzheimer’s disease  

 

Compared to typical AD, the fvAD group had significantly faster rates of MMSE 

decline (p=0.01), and significantly higher T-tau/Aβ1-42 ratio (0.01), NFL (<0.048) 

and AβX-42 levels measured using the triplex assay (p=0.02), and borderline lower 

AβX-40 levels (p=0.08). The LPA group were significantly more likely to be male 

(p=0.03), but there were no differences in any of the CSF profiles. The PCA group as 

whole had significantly lower levels of P-tau (p=0.04), and borderline lower AβX-

40/X-42 ratios (p=0.06). Of the 22 individuals with detailed neuropsychology, 14, all 

previously classified as having IWG-2 typical AD, fulfilled criteria for n-tAD. Eight, 

all of whom fulfilled criteria for IWG-2 atypical AD and Tang-Wai criteria for PCA, 

also fulfilled criteria for n-PCA. Comparing these groups (Table 7.3), the n-PCA 
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group had lower T-tau (p=0.048), lower P-tau (p=0.048), and lower AβX-40/X-42 

ratio (p=0.01) than the n-tAD group. In a regression model including age, sex, 

MMSE and rate of cognitive decline as covariates, AβX-40/X-42 ratio remained 

significantly different between the groups.  The neuropsychology results also 

demonstrate significant group differences in recall memory test for words and for 

the visual object space and perception battery object decision task.  
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 Typical AD  (n-tAD) 
Atypical AD: 

PCA 

Typical AD Vs 

PCA  (p-value) 

 n=14 n=8  

Age at LP 62 ± 6.6 64.9 ± 6.0 0.29 

Sex (% male) 50 37.5 0.68 

MMSE 24.5 ± 4.1 23.0 ± 6.2 0.55 

Months to LP 39.1 ± 15.0 58.0  ± 33.0 0.28 

Rate of decline (MMSE/yr)* 1.48 (0.5-2.5) 1.3 (0.6- 3.6) 0.62 

Aβ1-42 (pg/ml) 265.4 ± 99.9 304.9 ± 102.1 0.39 

T-tau (pg/ml)* 777.4 (674.6-1054.4) 639.3 (449.4-

684.4) 

0.048 

P-tau (pg/L) 118.7 ± 50.9 85.8 ± 21.3 0.048 

tau/Aβ1-42 ratio* 3.0 (2.4-4.1) 2.4 (1.7-2.6) 0.13 

AβX-40/X-42 ratio 29.3 ± 8.3 22.5 ± 3.3 0.01^ 

NFL (ng/L)* 1161 (639-1409) 1271 (1083-1589) 0.33 

YKL-40 (ng/L) 190918.7 ± 80475.3 164876.5 ± 

23833.8 

0.65 

AβX-38 (ng/L) 1961 ± 871 1678 ± 456 0.34 

AβX-40 (ng/L) 4370 ± 1927 4085 ± 854 0.64 

AβX-42 (ng/L) 165.5 ± 86.6 189.0 ± 55.8 0.46 

APPα (ng/mL)* 454.6  (244.3-578.9) 401.8 (335.2-

614.4) 

0.60 

APPβ (ng/mL)* 250.8 (155.2-411.9) 243.1 (165.0-

282.6) 

0.82 

RMT – Faces (z score) -1.42  (1.17) -1.33  (1.54) 0.88 

RMT – Words (z score) -1.79  (1.5) 0.12  (2.77) 0.05 

GNT (z score; mean±SD) -0.16  (1.29) -1.19 (1.24) 0.08 

VOSP (object decision task); 

% subjects failing 
14% 63% 

0.05 

Arithmetic (z score) -1.66  (1.17) -1.89  (0.98) 0.63 

Table 7.3   Demographics and psychology profiles of a subgroup of typical and PCA 
subjects with detailed research neuropsychology who fulfilled research criteria for 
PCA done around time of LP. Subjects are from the retrospective cohort. * Median 
(IQR); values log transformed for regression analysis; ^In a regression model 
including age, sex, MMSE and rate of cognitive decline, p-value remains significant.   
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7.4.4   Behavioural (frontal variant) AD cases 

Individuals classified as having FvAD and are described in Table 7.4. 

 

Table 7.4  Clinical characteristics of 8 individuals from the Retrospective cohort 
with atypical Alzheimer’s disease not fulfilling criteria for PCA or LPA, and defined 
as behavioural variant AD (fvAD) AD: Alzheimer’s disease; Y: yes; N: no; M: male; 
F: female; CSF: cerebrospinal; NFL: neurofilament light; * Negative Presenilin 
1,2,APP genetics; ‡ Negative Progranulin genetics 
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7.5   Discussion 

In this study, an extended CSF panel was used to investigate the syndromic variants 

of Alzheimer’s disease. The key findings are that the CSF profiles of IWG-2 typical 

and atypical AD are remarkably similar, bar elevation of NFL in the atypical group. 

However when carefully sub-classified there are significant differences between the 

various Alzheimer’s disease subtypes. Notably PCA emerges as the phenotype 

associated with lower concentrations of T-tau and P-tau and AβX-40/X-42 ratio, 

and with a more indolent course; and that we define a small Alzheimer’s disease 

subgroup (fvAD) with prominent behavioural/frontal features higher concentrations 

of the neurodegeneration markers T-tau, P-tau and NFL, lower concentrations of 

the amyloidogenic form of Aβ, Aβ1-42, and more aggressive disease. 

 

As a group the cohort had an average age at onset of 62 yrs, with 52% fulfilling 

criteria for young onset AD (onset <65 years). Whilst atypical for AD per se, this 

reflects both the focus of the clinical service studied, and that patients with younger 

onset disease are those more likely to be offered a CSF examination as part of the 

diagnostic work-up68, 99, 324. In keeping with previous studies 36 that have shown an 

over-representation of atypical presentations in younger onset cohorts, this work 

found that a relatively high proportion (~40%) of the cohort had a non-amnestic 

presentation. Of those with atypical Alzheimer’s disease, when defined using 

established criteria, 47% had PCA and 30% LPA. The remaining eight individuals 

(9% of the total sample and 23% of the atypical group) all had early and prominent 

behavioural features, in keeping with the IWG-2 classification, which divides 

atypical cases into posterior, logopenic, and frontal variants.  
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On a group level, the typical and atypical Alzheimer’s disease groups were found to 

be well-matched for gender, age, and severity, and estimated rate of decline, which at 

~2.5 MMSE points/year was as expected for individuals with mild-moderate 

disease325. On a group level, the CSF profiles were also very similar, with no 

significant differences in markers of neurodegeneration, amyloid deposition, amyloid 

processing, or neuroinflammation. The only difference between the groups was a 

significant elevation of NFL in the atypical group. NFL, a marker of degeneration of 

large calibre axons, that has previously been shown to be elevated in vascular 

dementia, frontotemporal dementia while only slightly elevated in Alzheimer’s 

disease compared to healthy controls 213, 294. Possible explanations for our findings 

are either that elevated NFL might be a marker of atypical Alzheimer’s disease per se; 

or that the atypical Alzheimer’s disease group is heterogeneous, with some 

individuals having very elevated NFL levels. Subsequent analyses of the atypical 

group suggest the latter to be the most likely explanation, with the NFL increase in 

the atypical Alzheimer’s disease group being driven by those with fvAD. It is 

possible that this group had a greater burden of vascular disease; future work might 

compare vascular burden between AD subtypes using an imaging marker of white 

matter burden and explore how that might influence rate of clinical disease 

progression.  

 

Despite the broad similarities to typical Alzheimer’s disease on a group level, a more 

detailed assessment of the atypical Alzheimer’s disease group revealed further 

differences between its constituent subtypes. Although severity was not significantly 

different at the time of LP, the PCA group had the lowest levels of T-tau and P-tau, 

the lowest AβX-40/AβX-42 ratios and the slowest rates of estimated cognitive 

decline. There were significant differences seen in all of these levels between PCA 
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and fvAD; in P-tau and AβX-40/AβX-42 ratio comparing all PCA cases with all 

those with typical Alzheimer’s disease; and in T-tau, P-tau and AβX-40/X-42 ratio 

in the subgroup of individuals with more stringently neuropsychologically defined 

n-PCA and n-tAD. The existing literature examining CSF T-tau and P-tau levels in 

PCA has shown conflicting results. Several studies have reported levels to be similar 

between PCA and t-AD236, 241, 310 although a recent study of 12 PCA patients also 

found T-tau and P-tau to be reduced in PCA compared to patients with LPA and 

typical Alzheimer’s disease242. Whilst the biological significance of CSF T-tau and P-

tau needs further study, both are thought to reflect ongoing neuronal 

degeneration326. High CSF T-tau is believed to reflect the intensity of 

neurodegeneration127, and is not specific for Alzheimer’s disease; highest levels are 

found in rapidly progressing disorders such as Creutzfeldt-Jakob disease, in 

encephalitis and after stroke327. By contrast, P-tau elevation is thought to be more 

specific to Alzheimer’s disease related neurodegeneration326, with prior studies 

suggesting that CSF P-tau correlates well with post-mortem cortical neurofibrillary 

tangle (NFT) burden202, 328. Imaging and pathological studies of PCA have 

consistently shown similar levels and distribution of amyloid pathology310-312, but 

differences in the distribution of cortical tau pathology34, 318, 329-331 and pattern of 

atrophy309, 313, 332. The lower levels of both T-tau and P-tau in CSF with similar 

levels of Aβ may therefore reflect differences in the focality of neurodegeneration in 

this variant of Alzheimer’s disease. Another possible explanation might relate to the 

rate of neurodegeneration, given that as well as the reduced levels of T-tau and P-

tau I found estimated rate of progression to be lower in the PCA group than in the 

other atypical phenotypes. This is however in contrast to another study (Teng et al) 

which found no differences in severity or disease duration in PCA compared to other 

subtypes. Still an alternate possibility is that there may be pathological 
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heterogeneity within the PCA group: whilst the vast majority of PCA patients have 

Alzheimer’s disease pathology at autopsy, other pathological diagnoses include 

dementia with Lewy bodies, corticobasal degeneration, and very rarely prion 

disease27. Whilst it is possible that a few cases had alternative pathology, the very 

similar levels of Aβ1-42 and the fact that differences were seen not only in 

comparison with t-AD but other atypical forms of Alzheimer’s disease which are 

perhaps equally if not more likely to be misdiagnosed during life, in our view make 

this unlikely to be the explanation.  

 

Whilst Aβ1-42, the major component of the Alzheimer’s disease amyloid plaque, is 

reduced in CSF in Alzheimer’s disease, AβX-40 is thought to relate more to amyloid 

angiopathy and less to plaque pathology333, and is relatively unchanged in 

Alzheimer’s disease334, 335. Elevated AβX-40/X-42 ratio is reported as improving 

diagnostic accuracy in early Alzheimer’s disease336-338 and unlike Aβ42 level alone, to 

correlate with the extent of tau pathology165. The latter is consistent with our 

finding of both rather lower AβX-40/X-42 ratio and lower levels of P-tau in the 

PCA group.  

 

In marked contrast to the PCA cases, the fvAD subjects had the highest rates of 

cognitive decline, together with high T-tau and P-tau levels, and AβX-40/AβX-42 

ratio. Additionally, this group also had the highest levels of CSF NFL and T-

tau/Aβ1-42 ratio, and the lowest levels of Aβ1-42. There were significant 

differences between rate of decline, T-tau, P-tau, T-tau/Aβ1-42 and AβX-40/X-42 

ratios and AβX-42 (measured using the MSD platform) levels compared to PCA; 

and rate of cognitive decline, T-tau/Aβ1-42 ratio, AβX-42 and NFL levels compared 
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to typical Alzheimer’s disease. An a priori classification system was not used to 

define the fvAD cases, which were those individuals fulfilling CSF criteria for 

Alzheimer’s disease that did not fulfil criteria for the other Alzheimer’s disease 

variants, and who on review of the case notes and as predicted by IWG2 criteria I 

found to have early behavioural features. Prior studies have suggested that fvAD (or 

behavioural variant Alzheimer’s disease) is a rare phenotypic variant of Alzheimer’s 

disease that can be clinically indistinguishable from behavioural variant 

frontotemporal dementia339-341 and is often but not always associated with young 

onset68. In the few published pathological studies Alzheimer’s disease pathology 

preferentially affected the frontal lobes35. Our finding of higher levels of T-tau and 

P-tau, lower levels of AβX-40/X-42 and more aggressive decline in these cases is 

the opposite to what was observed in PCA, and consistent with a relationship 

between these different pathological processes and rate of progression. The marked 

differences in CSF profile between these two Alzheimer’s disease variants suggests 

that aside from having affecting different brain regions, there may well be 

fundamental differences in the underlying disease biology, reflected by alterations in 

amyloid processing and neurodegeneration. The increased NFL levels observed in 

these cases – and as discussed previously likely to be driving the differences between 

the typical and atypical Alzheimer’s disease groups – is likely to be a further 

reflection of the more aggressive disease course in these individuals. Alternative 

explanations are that the elevated NFL level may be influenced by those cases with 

additional vascular changes on MRI. Whilst all individuals were diagnosed clinically 

with Alzheimer’s disease, and all fulfilled CSF biomarker criteria for Alzheimer’s 

disease, in the absence of post-mortem confirmation it isn’t possible to be certain 

that a proportion of cases did not have non-Alzheimer’s disease pathology, or mixed 

disease. 
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The LPA cases were biologically very similar to those with typical Alzheimer’s 

disease, and indeed aside from a significant over-representation of males in the LPA 

group (64%) there were no differences between the LPA and tAD groups. Compared 

to the other variants, the estimated rate of decline was intermediate and significantly 

different to both the PCA and fvAD groups; and CSF levels of P-tau were 

significantly higher than in PCA, and lower than, but not significantly different 

from, the fvAD group. By contrast, the T-tau/Aβ1-42 ratios were very similar to 

PCA, but significantly lower than those in fvAD. Whilst a previous study found that 

T-tau levels were higher in LPA cases than in other forms of Alzheimer’s disease342, 

others have not found differences between LPA and other Alzheimer’s disease 

subtypes242. The fact that some features of LPA were very similar to PCA but 

different to fvAD (e.g. Aβ1-42 and T-tau/Aβ1-42 ratio), others similar to fvAD and 

different to PCA (P-tau), with many intermediate between the two provide further 

evidence for a complex relationship between the various pathological processes 

underlying the development of Alzheimer’s disease and its clinical manifestations.  

 

Despite a number of biological differences between the various Alzheimer’s disease 

subtypes, I did not find any differences in YKL-40. There is growing evidence that 

neuroinflammation plays a role in the pathogenesis of Alzheimer’s disease343, and 

with the caveat that the neuroinflammatory process is very complex and YKL-40 is 

only one of a number of potential biomarkers of neuroinflammation344, this study did 

not find evidence for differences in the inflammatory process thought to be a major 

driver of phenotype. Similarly, whilst there were non-specific trends for both APPα 

and APPβ to be somewhat higher in the PCA group compared to the others, this 
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study found no evidence for major differences in APP metabolism between the 

different clinical phenotypes.   

  

This study has a number of strengths, including a relatively high proportion of well-

matched atypical cases allowing for meaningful comparisons with typical 

Alzheimer’s disease. Established criteria were used for defining PCA and LPA cases, 

and an unbiased approach for determining fvAD. Using a CSF biomarker panel 

extending beyond conventional measures of Aβ and tau allows for other aspects of 

Alzheimer’s disease biology to be assessed. Weaknesses include the relatively small 

number of cases in each of the atypical syndromic variants,  making this work 

preliminary, although these numbers are favourable when compared to other studies. 

The author acknowledges that the biomarker comparisons between atypical variants 

involve very small sample sizes and should therefore be considered as exploratory. 

The study was retrospective, and so samples were not always collected under ideal 

research conditions, limited prospective psychology was available, and genetic 

information including ApoE4 status were not available. Rates of cognitive decline 

were estimated, and based on the MMSE which, being heavily weighted towards the 

deficits associated with typical amnestic Alzheimer’s disease, may not accurately 

capture decline in the atypical phenotypes. As with any study using CSF measures to 

define Alzheimer’s disease, cutpoints to define cases are inevitably a balance between 

sensitivity and specificity246; however, combining a T-tau/Aβ1-42 ratio of >0.52 has 

been shown to have reasonable sensitivity (>90%) and specificity (>80%) for 

Alzheimer’s disease235, which is likely to be further enhanced by, as required to fulfil 

IWG-2 criteria, also incorporating evidence for amyloid deposition (Aβ1-

42<550pg/ml). Finally, whilst all cases fulfilled research criteria for Alzheimer’s 

disease employing biomarkers, in the absence of pathology I cannot be certain that 
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all had underlying Alzheimer’s disease, or that individuals with Alzheimer’s disease 

did not have additional pathologies. 

 

7.6   Conclusion 

In summary, whilst ostensibly similar to typical Alzheimer’s disease these data 

demonstrate that IWG-2 defined atypical Alzheimer’s disease is not a homogeneous 

entity, with significant differences between PCA, LPA and fvAD; and between 

typical Alzheimer’s disease and both PCA and fvAD. These differences are mainly 

focused on differential levels of tau and P-tau, and ratio of AβX-40/X-42 ratio and 

likely rates of clinical progression, suggesting that subtle differences in amyloid 

processing and neurodegenerative mechanisms may underpin at least some of the 

phenotypic diversity in Alzheimer’s disease. As well as providing biological insights, 

these results have practical implications when it comes to interpreting CSF results 

in atypical variant, perhaps most importantly in PCA where levels of T-tau and P-

tau are significantly lower, and may fall within normal ranges. Future studies with 

large number of cases, and exploring the spectrum of deficits rather than classifying 

individuals into syndromic groups may be necessary to elucidate further the perhaps 

subtle biological differences underpinning the diversity of Alzheimer’s disease. It is 

also worth acknowledging that the biomarker panel used is still relatively limited 

and focused around specific aspects of AD pathology such as amyloid processing and 

neuroinflammation and does not include, for example, markers of synaptic function,  

which should be the subject of further study. More generally, these results 

demonstrate that using CSF biomarkers to study rarer forms of the disease may 

provide important insights into the pathogenesis of more typical amnestic 

Alzheimer’s disease. 
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7.7   Publications arising from this chapter 

 

RW Paterson, J Toombs, CF Slattery, JM Nicholas, U Andreasson, NK 

Magdalinou, K Blennow, JD Warren, CJ Mummery, MN Rossor, MP Lunn, SJ 

Crutch, NC Fox, H Zetterberg, JM Schott. Dissecting IWG-2 typical and atypical 

Alzheimer’s Disease: insights from cerebrospinal fluid analysis. Journal of 

Neurology. 2015 Dec;262(12):2722 
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Chapter 8.  CSF biomarkers of disease 

progression  

8.1   Introduction 

Although Alzheimer's disease (AD) is a relentless progressive condition there is 

considerable variation in the rate of progression between individuals316. Clinical 

progression can be difficult to accurately measure and compare between individuals; 

measures of an individuals’ functional decline, such as the clinical dementia rating 

scale (CDR) (Appendix C) or the mini-mental examination score (MMSE) (Appendix 

A) are designed for individuals fulfilling criteria for memory led AD and don’t 

necessarily accurately reflect clinical progression in atypical AD345. Furthermore 

these scores are expected to change on average ~2 points per year for MMSE and 

less for CDR, therefore while they might be valuable for measuring functional 

change in large groups, they are less likely to be of value for the individual or small 

group sizes particularly over a period of less than 3 years346. An alternative to 

measuring functional or cognitive decline is to measure brain atrophy rates. Rates of 

atrophy, either of brain or brain substructures can be measured with a high degree of 

precision from serially acquired MRI and provide a robust measure of progression 

which correlates with cognitive decline347. Atrophy rates are therefore an attractive 

surrogate marker of disease progression with which to use compare some of the 

more novel CSF markers.  

 

Previous studies have suggested that atrophy rates may be affected by the age of 

onset348, disease severity349, by the concurrence of other pathologies including 

vascular disease350 and TDP43 burden351. However, the majority of the variance in 

rates of atrophy, and therefore variance in clinical progression, between individuals 
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remains unaccounted for352. A more detailed understanding of factors influencing 

this variability could allow for prognostication for patients, and aid in clinical trial 

design or interpretation where interindividual variance in atrophy rate increases 

required sample sizes352; and provide insights into the underlying biology of AD, in 

turn leading to the discovery of new targets for disease prevention strategies.  

 

Biomarkers offer a potential means of a) quantifying the rate of disease progression 

and b) exploring its influences. As outlined in the introductory chapter, none of the 

currently available biomarkers are closely correlated with cognitive function, 

however structural brain imaging changes, occur earlier in AD pathogenesis, and 

have so far been shown to be at least loosely correlated with levels of CSF Tau194. 

Commercially available CSF biomarker panels assess neuronal, synaptic, 

inflammatory, and other proteins involved, or potentially involved, in AD 

pathogenesis. The aim of this chapter is to determine which CSF markers best 

reflect rates of neuronal damage or loss in AD—and therefore may be useful 

predictors of clinical disease progression. A previous exploratory pilot study of CSF 

biomarkers in healthy elderly with amyloid pathology identified a number of 

analytes that may predict atrophy in specific brain regions353. In this study the aim 

was to assess whether any analytes in a large panel of CSF biomarkers were 

associated with increased rates of atrophy across the Alzheimer spectrum. 

 

As the majority of individuals in the CSF study cohorts studied earlier in this thesis 

did not yet have good quality structural MRI scans performed at suitably long 

intervals to measure atrophy rates, the author accessed the publically available 

ADNI dataset where large numbers of individuals had both serial imaging as well as 

detailed CSF analyses.  
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8.2   Contributions and collaborations 

All CSF sample collection and analysis and imaging analysis was carried out by 

ADNI.   The author designed the study and carried out the statistical analysis with 

the support of Jonathan Bartlett, statistician at the London School of Hygiene and 

tropical Medicine and Jonathan Schott.  

 

8.3   Methods 

8.3.1   Subjects 

 

The author investigated subjects from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) (adni.loni.ucla.edu), a multicenter publicly/privately funded 

longitudinal study of individuals with AD, amnestic mild cognitive impairment 

(MCI) and normal cognition. Institutional review boards approved the study and 

subjects gave written consent. Subjects underwent baseline and periodic clinical and 

neuropsychological assessment and serial MRI. Approximately 60% had CSF. A 

selected group had additional CSF analysis for the ADNI Biomarkers Consortium 

project “Use of Targeted Multiplex Proteomic Strategies to Identify Novel 

Cerebrospinal Fluid (CSF) Biomarkers in AD” as described on the ADNI website. 

The author downloaded data from LONI (http://adni.loni.ucla.edu) that included all 

subjects with this supplementary CSF multiplex data. An overview of subject 

selection is shown in Figure 8.1. As the aim was to explore factors influencing 

atrophy rates in individuals with AD pathology the author dichotomised subjects 

using a baseline CSF Aβ1-42 level of 192pg/mL, a level shown in a separate study 

using the same methodology, to distinguish individuals with autopsy confirmed AD 

pathology and controls with ~96% sensitivity and ~77% specificity73. Subjects who 

http://adni.loni.ucla.edu/
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did not have useable 1.5T MRI scans at baseline and one year were excluded, as was 

one subject without a defined diagnosis. ApoE status and genotype were recorded at 

the rs7280100 SNP which has been identified a candidate locus for TFF3354, as well 

as  Mini Mental State Examination (MMSE) at baseline and 12 months.  

 

Figure 8.1 Flowchart outlining subjects eligible for inclusion  

 

 

8.3.2   Cerebrospinal fluid  

 

CSF collection, processing and storage procedures have previously been described73. 

Processing, aliquoting and storage was carried out according to the ADNI 

Biomarker Core Laboratory Standard Operating Procedures (SOP) (http://adni-

info.org/Scientists/Pdfs/adniproceduresmanual12.pdf). Samples were analysed 

using a multiplex-based immunoassay panel based upon Luminex immunoassay 

technology developed by Rules Based Medicine (MyriadRBM, TX). CSF Aβ1-42, 

287 ADNI subjects recruited to ADNI 1 
with extended CSF analysis and 

Volumetric MRI at baseline and 12 
months satisfying central quality 
control evaluation for protocol 

compliance and internal quality control 
at the DRC 

Baseline CSF Aβ1-42 
≤192pg/ml  

(200 subjects)  

Baseline CSF Aβ1-42 
>192pg/ml  

(87 subjects) 
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total tau (T-tau) and phosphorylated tau (P-tau) and a panel of 159 analytes 

including inflammatory, metabolic, lipid and other disease relevant analytes were 

tested. Data were prepared for analysis according to the biomarkers consortium 

statistical analysis plan (http://adni.loni.ucla.edu/wp-

content/uploads/2012/01/2011Dec28-Biomarkers-Consortium-Data-Primer-

FINAL1.pdf), and as previously described355. Of 159 analytes, 76 had greater than 

10% of quality control data missing, leaving 83 available for analysis. For each 

analyte, the normality of data was assessed by the ADNI Biomarkers Consortium: 

non-normal data were transformed using the Box and Cox technique356.      

 

8.3.3  Image acquisition  

 

Details of the MRI methodology have previously been described357.  T1 weighted, 

inversion-recovery (IR) prepared structural images were acquired at baseline and 12 

months on 1.5T MRI units using standardized protocols. Corrections for distortion 

due to gradient nonlinearity and for image intensity non-uniformity and scalings 

were made based on phantom measures. Images underwent central quality control 

evaluation for protocol compliance and internal quality control at the Dementia 

Research Centre.  

 

8.3.4   Volume loss measurement  

 

Image analysis was performed using in-house MIDAS software112. Whole brain and 

lateral ventricles were delineated semi-automatically and hippocampal volumes were 

measured using the automated HMAPS method113:  Volume loss (ml) between scans 

was obtained using the boundary shift integral (BSI) following a 9-degrees-of-

http://adni.loni.ucla.edu/wp-content/uploads/2012/01/2011Dec28-Biomarkers-Consortium-Data-Primer-FINAL1.pdf
http://adni.loni.ucla.edu/wp-content/uploads/2012/01/2011Dec28-Biomarkers-Consortium-Data-Primer-FINAL1.pdf
http://adni.loni.ucla.edu/wp-content/uploads/2012/01/2011Dec28-Biomarkers-Consortium-Data-Primer-FINAL1.pdf
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freedom registration and differential bias correction of the follow-up to baseline 

scans. For lateral ventricles, and hippocampi change over time was quantified using 

the ventricular (VBSI)358 and hippocampal BSI (HBSI)113 respectively. Rates of 

volume loss were annualized using the inter-scan interval. 

 

8.3.5   Statistical Analysis  

 

To assess the relationship between CSF analytes and rates of brain volume change, 

separate regression models were fitted for rates of ventricular expansion, brain and 

hippocampal atrophy for each CSF variable, including baseline volume (brain, 

ventricular and hippocampal volume, respectively) and tau as covariates in both the 

amyloid positive and negative groups. Subsequent analyses in the amyloid positive 

group alone were repeated including age, gender, APOE4 status and phospho-tau 

(P-tau) as additional covariates and finally also adjusting for baseline diagnosis (AD, 

MCI, control). Implementation of the false discovery rate (FDR) procedure272 with 

control at the 5% level to correct for multiple comparisons was used, and the 

adjusted regression coefficients between each atrophy rate and those CSF variables 

showing FDR significant relationships reported. Three exploratory reverse stepwise 

regression analyses were performed to identify combinations of CSF analytes 

independently predicting increased rates of change for each measure, using FDR 

significant CSF variables identified in the preceding step and the three sets of 

adjustment variables. In each stepwise analysis, the corresponding adjustment 

variables were forced to be included in regression models. Finally, I assessed 

whether CSF analytes were associated with cognitive function. It was first 

established whether there was a decline in MMSE between baseline and 12 months 

that was significantly different from zero. It was then determined if atrophy rates 
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and decline in MMSE scores at 12 months were correlated using separate regression 

models for rates of ventricular expansion, brain and hippocampal atrophy. Separate 

regression models were then fitted for annualised change in MMSE score and each 

CSF variable found to be (after FDR control) associated with at least one atrophy 

measure. The FDR procedure used was derived assuming independence between test 

statistics272,  however, it has been shown that the procedure is valid under certain 

types of dependence359, and in a simulation study (results not shown) matching the 

analysis used here, the procedure correctly controlled the FDR at 5%. 

 

To quantify the unadjusted group discrimination ability of the analytes that were 

FDR significant adjusted for baseline brain volumes, sex, age, APOE4 status, tau 

and P-tau the area under the ROC curve for detecting between AD and control 

groups was estimated.    

 

8.4   Results 

8.4.1 Subject demographics 

 

The demographics, genetic characteristics, cognitive scores and atrophy measures of 

the 287 subjects included in this analysis are described in Table 8.1.  

 

The mean±SD age of this group was 74.9±6.9yrs, 21.6% had a clinical diagnosis of 

AD, 48.1% MCI and 30.3% were controls. 83 CSF analytes as well as CSF tau, Aβ1-

42 and P-tau were available for analysis (Appendix E).  
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Table 8.1. Baseline demographics, ApoE genotype, cognitive profiles, CSF profiles, 

brain volumes and 1 year atrophy rates of 200 subjects with Ab1-42≤192pg/ml and 

87 subjects with Ab1-42>192pg/ml. Subjects are from the ADNI cohort; MCI: mild 

cognitive impairment; AD: Alzheimer’s disease; CSF: cerebrospinal fluid; MMSE: 

mini mental state examination; ADAS-cog: Alzheimer's Disease Assessment Scale-

cognitive subscale; T-tau: total tau; P-tau: phosphorylated tau 181; KBSI: Whole 

brain boundary shift integral; VBSI: ventricular boundary shift integral; HBSI: 

hippocampal boundary shift integral. Mean ± SD provided unless stated.  

 



 209 

8.4.2   Analytes predicting atrophy  

 

In subjects without evidence for significant amyloid deposition, i.e. those with 

baseline CSF Aβ1-42 >192pg/mL, after adjusting for baseline brain volumes and 

CSF T-tau and with FDR correction to control for multiple comparisons, none of 

the CSF analytes were significantly associated with any of the atrophy measures.  

 

In subjects with CSF Aβ1-42 ≤192pg/mL, after adjusting for baseline brain volumes 

and T-tau and with FDR correction to control for multiple comparisons, 10/83 

analytes were associated with whole brain atrophy rate, 45/83 analytes with 

ventricular expansion rate, and 4/83 with hippocampal atrophy rate (Table 8.2). 

After additionally adjusting for P-tau, age, ApoE status and sex and with FDR 

correction to control for multiple comparisons, 4/83 analytes were associated with 

whole brain atrophy rate, 1/83 analyte with ventricular expansion rate, and 2/83 

with hippocampal atrophy rate (Table 8.2). These relationships are illustrated using 

scatter plots in Figure 8.2. After additionally adjusting for baseline diagnosis, 2/83 

analytes were associated with hippocampal atrophy, and none with brain atrophy or 

ventricular expansion (Table 8.2).
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Figure 8.2. Scatter plots of annualized atrophy (BSI—whole brain atrophy) against analytes for those found to be associated (after 

FDR correction) with rates of volume change after adjusting for baseline volume, sex, age, APOE4 status, T-tau and P-tau. AD, 

Alzheimer's disease; MCI, mild cognitive impairment. Where data have been transformed (TFF3, CysC, VEGF), the units relate to 

data before transformation. 
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Figure 8.2 (continued). Scatter plots of annualized atrophy (HBSI—hippocampal atrophy, VSBI—ventricular expansion) against analytes for 

those found to be associated (after FDR correction) with rates of volume change after adjusting for baseline volume, sex, age , APOE4 status, 

T-tau and P-tau; *: transformed data. Where data have been transformed (TFF3, CysC, VEGF), the units relate to data before transformation. 

AD, Alzheimer's disease; CSF, cerebrospinal fluid; BSI, boundary shift integral; FDR, false discovery rate; MCI, mild cognitive impairment; P-

tau, phosphorylated tau; T-tau, total tau; TFF3, trefoil factor 3. 
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Lower levels of trefoil factor 3 (TFF3) were consistently associated with greater 

ventricular expansion (p<0.001), hippocampal atrophy rate (p<0.001) and whole 

brain atrophy rate (p<0.001) even after adjusting for baseline brain volumes, T-tau, 

P-tau, age, APOE status and sex. After additionally adjusting for baseline diagnosis 

lower levels of TFF3 were still associated with higher hippocampal atrophy 

(p=0.007).  Higher levels of Cystatin C (CysC) were positively associated with all 

three atrophy measures after adjusting for baseline brain volumes and T-tau and 

remained predictive of higher whole brain (p=0.009) and hippocampal atrophy 

(p=0.034) after adjusting for P-tau, age, ApoE status and sex. Lower levels of 

vascular endothelial growth factor (VEGF) were positively associated with all three 

atrophy measures after adjusting for baseline brain volumes and T-tau and remained 

associated with higher whole brain atrophy (p=0.023) after adjusting for P-tau, age, 

APOE status and sex . Lower levels of Chromogranin A (CgA) were associated with 

higher whole brain atrophy (0.008) and ventricular expansion (0.009) after adjusting 

for baseline volumes and T-tau and predicts higher whole brain atrophy (p=0.009) 

after additionally adjusting for P-tau, age, ApoE status and sex.   
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Table 8.2. Regression coefficients for dependence of atrophy measures on CSF 

with control for the False Discovery Rate in subjects with low CSF Aβ1-42 

(≤192pg/mL) 
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Table 8.2 (continued). Regression coefficients for dependence of atrophy measures 

on CSF with control for the False Discovery Rate in subjects with low CSF Aβ1-42 

(≤192pg/mL): adjusted for baseline brain volumes and tau; adjusted for baseline 

brain volumes, sex, age, APOE4 status, T-tau and P-tau; adjusted for baseline brain 

volumes, sex, age, APOE4 status, T-tau, P-tau and baseline diagnosis.  Regression 

coefficients are shown for those measures showing FDR significant (5% level) 

associations. P-values are FDR (5% level) corrected. *: transformed data. The 

statistics are presented for the transformed values (see methods). Where data have 

been transformed the units relate to data before transformation. None of the analytes 

in Appendix E was FDR significant except those shown in this table. Subjects are 

from the ADNI cohort 
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In exploratory reverse stepwise models that included only those variables showing 

FDR significant associations in the initial analyses (Table 8.3), lower levels of TFF3 

were associated with higher rates of whole brain atrophy, ventricular expansion and 

hippocampal atrophy, even when, P-tau, age, APOE status and sex were included in 

the model.  Lower levels of CgA were associated with higher whole brain atrophy 

and ventricular expansion when T-tau and baseline volume were included in the 

model; and with higher whole brain atrophy when P-tau, age, APOE status and sex 

were also included as covariates. Additionally adjusting for baseline diagnosis, TFF3 

was the only analyte independently associated with hippocampal atrophy rate; and 

no analytes were (independently) associated with whole brain atrophy or ventricular 

expansion.  
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Table 8.3. Exploratory reverse stepwise regression analysis of CSF analytes with an 

FDR significant association with brain atrophy measurement in subjects with low 

CSF Aβ1-42 (≤192pg/mL): when adjusted for T-tau and baseline volume; when 

adjusted for baseline volume, sex, age, APOE4 status, T-tau and P-tau; when 

adjusted for baseline volume, sex, age, APOE4 status, T-tau and P-tau and baseline 

diagnosis. P-values shown here do not account for multiple comparisons. 

*:transformed data. The statistics are presented for the transformed values (see 

methods). Where data have been transformed the units relate to data before 

transformation. Subjects are from the ADNI cohort. 

 

Only 23 of this cohort had a minor allele at the rs7280100 locus (predicted to reduce 

CSF TFF3). These individuals had 18% higher rates of ventricular expansion, 14% 

higher rates of brain atrophy, and 30% higher rates of hippocampal atrophy 
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compared to non-carriers, the latter reaching borderline significance after 

adjustment for baseline diagnosis, (p=0.07). 

 

8.3.4   Analytes predicting cognitive decline  

 

In subjects with CSF Aβ1-42 >192pg/mL MMSE data at 12 months was available 

for all 87 subjects. The average decline was not statistically significantly different 

from zero and therefore no further regression analyses were conducted in this group.  

 

In subjects with CSF Aβ1-42 <192pg/mL, serial MMSE data at 12 months was 

available for 199 subjects, who declined on average by 1.7±3.5 points/yr. Change in 

MMSE score at 12 months was strongly associated with change in whole brain 

atrophy rate (regression coefficient  -0.15, p<0.001), ventricular expansion (-0.49, 

p<0.001), and hippocampal atrophy rate. (-11.16, p<0.001)  Baseline levels of 11 CSF 

markers – AXL, Apo E, CD-40 antigen, CgA, cystatin C, M-CSF, matrix 

metalloproteinase-2 (MMP-2), pregnancy associated plasma protein, tissue factor, 

TFF3 and VEGF – were significantly (without FDR correction) associated with 

decline in MMSE at 12 months.  

 

8.3.5   Predictive Value  

 

For those analytes that were FDR significant in Table 8.2, the area under the ROC 

curve for detecting between AD and control groups were 0.59 (95% CI 0.50, 0.69) 

(CgA), 0.55 (0.45, 0.64) (CysC), 0.55 (0.45, 0.65) (TFF3) and 0.61 (0.52, 0.70) 

(VEGF). For reference, the corresponding estimated values for T-tau and P-tau 

were 0.85 and 0.83 respectively.  
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8.4   Discussion  

Current models of AD pathogenesis suggest that deposition of brain A  is a very 

early feature of AD, probably occurring prior to the onset of AD-related neuronal 

loss (i.e. neurodegeneration)78. Rates of atrophy are significantly increased in 

individuals with established AD,360 mild cognitive impairment due to AD361, and in 

asymptomatic brain amyloidosis362, and correlate more closely with cognitive decline 

and disease progression than amyloid burden or rate of accumulation95. In this study, 

using a panel of analytes selected on the basis of relevance to a range of different 

diseases including cancer and autoimmune disorders as well as AD I have identified 

a number of CSF biomarkers associated with increased rates of neurodegeneration. 

In particular, our results suggest that in individuals with evidence for brain amyloid 

deposition, CSF TFF3 level is associated both with rate of cognitive decline and 

with rates of brain and hippocampal atrophy and ventricular expansion.  

  

Whilst I failed to find an association between any analyte and rate of atrophy in the 

amyloid negative group, after allowance for multiple comparisons, in the amyloid 

positive group in which I adjusted for baseline brain volume and T-tau I found that 

45 analytes predicted increased ventricular expansion, and ten predicted rate of 

whole brain atrophy. Ventricular expansion and brain atrophy are closely 

correlated332, and as expected, all ten factors predicting increased rates of whole 

brain atrophy also predicted increased ventricular expansion. The higher precision 

with which rate of ventricular change can be quantified358 is likely to explain the 

larger number of analytes associated with ventricular expansion compared to whole 

brain loss.  
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When I additionally adjusted for P-tau, ApoE status and sex, adjusting for multiple 

comparisons, the number of factors associated with rates of neurodegeneration in the 

amyloid positive group alone was considerably reduced, with only four analytes 

showing an association with excess neurodegeneration. Lower levels of TFF3, 

VEGF, and CrA and higher levels of CysC were associated with increased rates of 

brain atrophy; lower levels of TFF3 with increased ventricular expansion; and lower 

levels of TFF3 and higher levels of CysC with increased rates of hippocampal 

atrophy.  In exploratory reverse stepwise analyses TFF3 was significantly 

associated with rate of decline in all three measures (Table 8.3), with an effect both 

independent from and as least as great as CSF T-tau, which as expected also 

(unadjusted) predicted all three measures of neurodegeneration363. The effect of 

TFF3 persisted even once baseline P-tau, age, sex and APOE4 status had been 

accounted for (Table 8.3), and was still associated with rate of hippocampal atrophy 

even once clinical diagnosis (e.g. control/MCI/AD) had been accounted for. These 

results therefore support an association between CSF TFF3 and increased rates of 

neurodegeneration independent of established CSF biomarkers in individuals with 

amyloid deposition, suggesting that CSF TFF3 may be a novel and valuable 

biomarker of decline across the spectrum of AD. 

 

8.4.1   Trefoil Factor 3 (TFF3) 

 

Encoded by the TFF3 gene on chromosome 21, TFF3 is a protein expressed by 

secretory epithelial cells principally in the gastrointestinal tract, but also in human 

hypothalamus and pituitary364, and in the hippocampi, temporal cortices and 

cerebellum of mice365. Its function in the central nervous system is unknown365, 

although TFF3 administration to mice has been reported to improve memory366. In 
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the periphery, TFF3 has important roles in NOTCH processing, and measurement 

of TFF3 in blood/urine/faeces has been patented367 and used368 as a means of 

assessing NOTCH-related side-effects in trials of gamma-secretase inhibitors for the 

treatment of AD. To our knowledge, this is the first study to implicate TFF3 as a 

marker for neurodegeneration across the AD spectrum, and furthermore to show 

that this is independent of T-tau and P-tau: whilst there are few data on which to 

suggest mechanisms, one intriguing possibility is that this effect might in some way 

be mediated by alterations in gamma-secretase processing. Whilst numbers with a 

minor allele were too small for meaningful comparisons, the observation that 

genotype at the rs7280100, a candidate locus associated with TFF3, is intriguing, 

and if replicated in independent samples, suggests that CSF TFF3 and/or the 

rs7280100 genotype may both help predict rate of neurodegeneration in individuals 

with amyloid pathology; and that elucidating the function of TFF3 in the central 

nervous system may provide insights into mechanisms influencing 

neurodegeneration in the presence of brain amyloidosis.  

 

8.4.2   Cystatin C (CysC), Vascular Endothelial Growth Factor (VEGF), and 

Chromogranin A (CgA) 

 

Of the other three biomarkers emerging prominently from our analyses, CysC co-

localizes with β amyloid in amyloid plaques, amyloid-laden vascular walls in cerebral 

amyloid angiopathy and in Down’s syndrome and is typically reduced in AD CSF, 

with multiple lines of evidence suggesting that it has protective roles in AD 

principally due to influences on amyloid processing and deposition369. Conversely, 

increased CysC immunoreactivity is seen in specific neuronal population in AD 

suggesting a role in neurodegeneration369; and in dopaminergic neurons, CysC has 
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been shown to play a role in neuronal injury mediated microglial activation and 

neurotoxicity370. Our finding of a positive relationship between rates of atrophy and 

CysC, in individuals in whom amyloid deposition has already occurred, could 

therefore be explained in terms of a harmful neuroinflammatory response, which 

results in neuronal damage.  VEGF, abundantly expressed in the CNS, has roles in 

modulation of angiogenesis, vascular remodelling, repair, permeability and 

inflammation371, and is involved in microglial chemotaxis perhaps reflecting an early 

response to amyloid deposition372. Our finding of increased atrophy with lower 

levels of CSF VEGF is consistent with VEGF having a protective role in AD, and in 

keeping with reports that transgenic AD mice with increased neuronal expression of 

VEGF have a functional improvement in memory371, suggests that up-regulation of 

VEGF may be a useful therapeutic strategy for AD. Increased levels of CSF VEGF 

has been seen in individuals with AD and vascular dementia compared with 

controls373– this could also represent a protective response although VEGF levels 

were not correlated with rate of atrophy or rate of cognitive decline.  The 

neuroendocrine secretory protein CgA is the major protein of large dense-core 

synaptic vesicles and may be a marker of synaptic dysfunction206. In one study lower 

CSF levels of CgA were reported in the CSF of subjects with early onset sporadic or 

familial Alzheimer’s disease374, potentially in keeping with our finding of inverse 

relationship between CgA level and increased rates of brain atrophy and ventricular 

expansion.  

 

In a previous study using this same panel of analytes, ten CSF measures (ACE, CgA, 

AXL, TNF-related apoptosis-inducing ligand receptor, CD40, M-CSF, beta-2-

microglobulin, stem cell factor, CLU and IL-3) were shown to predict increased 

rates of amyloid deposition in cognitively normal elderly individuals355. When 
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comparing these results aiming at identifying markers predicting rate of amyloid 

accumulation in healthy controls with ours (assessing rate of neurodegeneration in 

individuals with likely amyloid pathology) it is notable that in our initial analysis I 

identified five CSF analytes common to both: AXL, CgA, CLU, IL-3, and M-CSF; 

and including more stringent covariates that CgA remained a consistent finding. 

Whilst this could reflect that rates of amyloid deposition and brain atrophy are 

highly correlated – as would be predicted in the mid-phase of AD pathogenesis – this 

would also be consistent with common mechanisms linking amyloid deposition to 

subsequent neurodegeneration. The fact however that TFF3, CysC and VEGF were 

not identified in previous analyses may suggest that these analytes may be exerting 

their effects on neurodegeneration independent of amyloid deposition.  

This study has a number of limitations. The number of subjects is relatively small 

making the findings preliminary, particularly relative to the number of analytes, and 

these findings thus require replication in other, larger cohorts. However, I have used 

a statistical procedure to control for multiple comparisons, indicating that the 

evidence for associations is moderately strong. Whilst the use of reverse stepwise 

analysis must be considered exploratory, the consistency with which TFF3 emerges 

as a strong independent predictor of atrophy is striking. However, that the same 

analytes often predict all three atrophy measures is perhaps less surprising, given 

that the atrophy measures are mutually correlated. A relatively small percentage of 

the variance in atrophy rates is explained by these findings suggesting that other 

factors and other biomarkers reflecting other independent pathways have yet to be 

identified, noting that a certain proportion of variance may also be due to 

measurement error. Including all individuals with low Aß1-42 in our analysis 

assumes that all patients with brain amyloidosis are on the same neuropathological 

spectrum. Whilst larger, more homogeneous samples are required to assess whether 
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the relationships I show are driven by individuals with asymptomatic amyloidosis, 

MCI, or established AD, it is notable that the relationship between TFF3 and 

hippocampal atrophy remains even after adjusting for clinical diagnosis – which in 

this study probably simply reflects different stages of disease.  

 

8.5   Conclusions 

This present work identifies a number of CSF markers that may be associated with 

rate of neurodegeneration in individuals with amyloid deposition. These candidate 

biomarkers warrant further investigation, potentially providing prognostic 

information for patients; covariates for clinical trials; and insights into AD biology. 

Whilst several of the CSF biomarkers hint at immune mediated links between 

responses to amyloid deposition and brain volume loss the function of TFF3 which 

was found to be the single strongest predictor of neurodegeneration across the 

spectrum of brain amyloidosis is unknown. Further studies to replicate these 

findings and investigate the role of TFF3 in the pathogeneses of AD are required.  

 

 

8.6   Publication arising from this chapter 

RW Paterson, JW Bartlett, K Blennow, NC Fox; Alzheimer's Disease 

Neuroimaging Initiative, LM Shaw, JQ Trojanowski, H Zetterberg, JM Schott. 

Cerebrospinal fluid markers including trefoil factor 3 are associated with 

neurodegeneration in amyloid-positive individuals. Translational Psychiatry. 2014 

Jul 29;4.  
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Chapter 9.   Exploring New AD biomarkers 

9.1   Introduction 

 

9.1.1   Limitations of current biomarkers 

 

In this present work molecular biomarkers currently used in clinical research 

diagnostic criteria for AD have been discussed including amyloid PET imaging and 

cerebrospinal fluid (CSF) tau and β-amyloid 1-42, which reflect key pathological 

hallmarks of AD pathology, i.e., amyloid plaques and neurofibrillary tangles3, 78. 

Although these biomarkers can distinguish AD pathology from non-AD pathology 

with good sensitivity and specificity73 there remains a need for new 

biomarkers206.These include biomarkers that can detect pathological changes prior 

to overt neuronal death; correlate with the progression of neurodegeneration for 

clinical trials; explain phenotypic diversity315; and allow for accurate 

prognostication. 

 

9.1.2   CSF Biomarker Discovery 

 

A number of hypothesis generating methods have been used to identify potential 

candidate biomarkers for Alzheimer’s disease. These include i) Large scale 

epidemiological studies and the use of ‘Big Data’ to identify AD risk factors and 

dysfunction of specific biological pathways; ii) Genetic studies to identify genetic risk 

factors and potential gene products that can be measured; iii) Pathological studies; 

iv) Proteomic and metabolomic studies of AD blood, CSF or other body fluids or 

tissue.  
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Over recent years a large number of candidate biomarkers have been identified, 

particularly in CSF, that reflect a range of pathophysiological processes including 

cholesterol metabolism, neuroinflammation and amyloid processing206. However, to 

date few if any have been adopted in clinical practice. One contributing factor is the 

rate-limiting step in biomarker validation. Two realistic means of validating 

candidate biomarkers are: i) multiplex CSF ELISAs and ii) targeted mass 

spectrometry. Multiplex ELISAs such as the one used in ADNI (see Chapter 8) 

developed by Rules Based medicine (Tx, USA) allow for many biomarkers to be 

validated simultaneously, however, they take significant time to develop and are 

costly. The development of ultrasensitive platforms which make use of single 

molecule array technology (SIMOA, RBM, Tx, USA) are potentially customizable 

and could lead to more rapid biomarker validation, however the platforms are costly 

and there are currently none available for use in the UK. Targeted mass 

spectrometry has been in use for a number of a years (reviewed by Kroksveen375 & 

Brinkmalm376) and can measure a large number of potential biomarkers concurrently 

and therefore has considerable promise for use in clinical practice. A number of mass 

spectrometers are avaiable for research purposes in the UK, including one at the 

Institute of Child Health, department of Translational omics, where this work was 

carried out.     

 

Most studies to date focused on biomarkers for which there is already an 

immunoassay377; and whilst mass spectrometry has considerable potential clinical 

utility, its use has been limited in part due to the lack of a streamlined, cost effective 

pipeline that can be used to rapidly test large numbers of potential biomarkers 

concurrently260.   
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9.1.3   Existing targeted mass spectrometry assays 

 

Recently the Omics centre at UCL and other groups have used targeted proteomic 

MRM LC-MS/MS assays to multiplex scores of peptides in a single rapid CSF assay 

which has low technical variability377 and relatively low cost. This has been applied 

to clinical cohorts of patients with Parkinson’s disease and Dementia with Lewy 

Bodies260, 378, and a previous study has used similar technology to assess CSF 

biomarkers of progression in a small number of AD subjects longitudinally379. 

Assays of this kind have potential utility in facilitating the rapid validation of 

biomarkers in clinical cohorts thus overcoming a bottleneck in biomarker 

development allowing for precise quantification of proteins380 and excellent 

reproducibility381.   

 

The aims of this study were to (a) evaluate the feasibility of this rapid ‘one pot’ 

targeted mass spectrometry multiplex assay to measure biomarkers of interest in 

clinical cohorts of individuals with AD, other degenerative diseases and healthy 

controls; and (b) explore differences in biomarker concentrations between 

individuals with AD and non-AD classified according to CSF biomarker criteria.  

 

9.2   Contributions and Collaborations 

The targeted mass spectrometry panel tested in the chapter was developed by Dr 

Wendy Heywood and Dr Kevin Mills, based at the Institute of Child Health, 

University College London. Subject recruitment and sample collection was carried 

out by the author, Dr Nadia Magdalinou and the Swedish samples were collected as 

per the General Methods section. The author carried out all the lab work, data 

analysis and interpretation relating to this chapter under the direct supervision of 
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Dr Amanda Heslegrave. The SIMCA analysis was carried out with the support of Dr 

Ulf Andreasson at the University of Gothenburg.     

 

9.3   Methods 

9.3.1   Subjects and Cerebrospinal Fluid Collection  

9.3.1.1   Cohort 1 (The ‘Swedish’ Cohort) 

This cohort is fully described in Chapter 2 and was collected by Dr Johansson and 

Svensson. In brief it included 107 individuals, 88 undergoing investigation for 

cognitive concerns and 19 healthy age matched controls without cognitive concerns. 

The majority of subjects were from a single memory centre at Skaraborg hospital in 

Sweden (n=78) and this cohort has previously been described in detail258. Healthy 

control participants had LP for research purposes only; they were asymptomatic 

spouses of affected individuals or healthy controls without subjective cognitive 

concerns. A further 29 CSF samples from individuals with cognitive concerns from 

another single memory centre in Sweden were included.  

9.3.1.2   Cohort 2 (Retrospective, prospective and healthy control cohorts) 

This cohort was composed of individuals from the UCL retrospective and 

prospective cohorts as fully described in chapter 2. In brief, the cohort included 92 

individuals assessed at the Specialist Cognitive Disorders Service at Queen Square, 

London UK between 2011 and 2014. All subjects had a clinical CSF examination as 

part of diagnostic work-up. 26 asymptomatic controls (spouses of research 

participants) were also included; these individuals were collected by Dr Nadia 

Magdalinou as part of her prospective study into atypical Parkinsonism, had no 

cognitive concerns and had lumbar punctures for research purposes only. For the 

patient group, we recorded the nearest mini-mental state examination (MMSE) 



 228 

score to the date of the lumbar puncture. Rate of cognitive decline was estimated 

using the formula (30-MMSE at time of LP/duration of cognitive symptoms in 

months). APOE genotype was determined by measuring peptides corresponding to 

apoE2, apoE3 and apoE4 in CSF using the MRM-based triple quadrupole MS assay 

as previously described382. Individuals were classified as APOE 4 positive or 

negative.  

 

9.3.2   Cerebrospinal fluid Collection and Routine Biomarker Analysis 

  

For all subjects, CSF was collected by lumbar puncture as described in chapter 2. 

 

9.3.3   Neurochemical Classification  

 

To enrich the samples as far as possible for AD/non-AD pathology respectively, we 

classified each individual independent of clinical diagnosis on the basis of CSF 

profile. A positive Alzheimer’s signature CSF profile was defined as: tau/β-amyloid 

(1-42) ratio>1 & P-tau >63; a negative Alzheimer’s signature CSF profile was 

defined by Tau/β-amyloid (1-42) ratio<0.52 & P-tau<63. This Tau/β-amyloid (1-

42) ratio gives a sensitivity of ~93% and specificity of ~93% for AD235 and according 

to manufacturer’s guidelines, a P-tau of >63 gives a sensitivity of 74% and specificity 

of 85% for AD compared to other neurodegenerative diseases383. As the purpose of 

this study was to determine biomarkers that differentiate between established AD 

and healthy controls, individuals with ‘grey zone’ CSF profiles were excluded.   
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9.3.4   Mass Spectrometry 

9.3.4.1   Targeted proteomics: MRM-based triple quadrupole mass spectral assay 

A multiplexed 10 minute, targeted proteomic triple quadrupole, peptide MRM-based 

assay was used to detect a panel of 54 biomarkers as described previously260. The 

panel consisted of proteins were identified from a literature review by Dr Wendy 

Heywood (see Appendix F) and new markers identified from proteomic profiling 

described previously including four novel markers previously found to be elevated in 

AD and Dementia with Lewy Bodies compared to controls: malate dehydrogenase; 

serum amyloid A4; GM2-activator protein and prosaposin260. A standard curve 0 - 

40pmols / 100 µl CSF of each peptide was analysed in duplicate at the end of the run 

for quantitation and performance standardisation (CV <10% was considered 

acceptable).  
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Figure 9.1  Chromatograms and standard curves of biomarkers surviving FDR 

correction in the univariate analysis comparing AD and non-AD CSF in Cohort 1.  

Top chromatograms are from a patients CSF (single subject) and the bottom 

chromatograms are from CSF spiked with peptides.  
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9.3.4.2   Experimental design 

The experimental design of this study is summarised in figure 9.2. A panel of 

markers was assessed using the targeted proteomics multiplex panel in cohort 1. 

Significant markers from this initial analysis were then further validated in cohort 2. 
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Figure 9.2   Study design outline (univariate analysis)  
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9.3.5   Statistical Analysis 

 

9.3.5.1   Univariate analysis of proteins of interest 

 

A univariate analysis of all proteins of interest was performed. It was determined 

which individuals in cohort 1 were Alzheimer-positive and Alzheimer-negative based 

on their CSF neurochemical profile, and compared levels of proteins determined 

using targeted mass spectrometry using t-tests between the positive/negative 

groups when there were no clear departures from a normal distribution, and 

Wilcoxon rank-sum tests for skewed or truncated data. Proteins showing 

statistically significant differences between AD positive/negative groups in cohort 1 

were then tested in cohort 2 as a validation set.  All analyses were carried out at a 

significance level of p<0.05; to control for the risk of Type 1 error for multiple 

biomarker comparisons results were also controlled using the False Discovery Rate 

(FDR) at 5%.  “Validated biomarkers” were those found to separate neurochemically 

defined AD/non-AD in both datasets at an FDR-corrected significance level of 

p<0.05. 

 

9.3.5.2  Unbiased analysis using SIMCA 

 

Independent of the biomarkers discovered in step 1, we carried out an unbiased 

analysis of the entire targeted mass spectrometry data set to determine which 

markers were the greatest determinants of variance in each cohort. To do this an 

orthogonal projection to discriminant analysis (OPLS-DA) was used using soft 

independent modelling of class analogies software (SIMCA, Umetrics, Sweden) 
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software as previously described384, classifying subjects on the basis of their AD 

signature (positive/negative) CSF.  Cohort 2 was used as a training set since this 

group contained the greatest number of subjects; the analysis was then repeated 

using cohort 1 as a validation set.  Non-normally distributed data (as determined by 

SIMCA) were log transformed. 

 

Receiver operating characteristic (ROC) curves were used to determine the 

diagnostic utility of the ‘validated’ biomarkers from step 1 using the ‘roctab’ 

command in STATA Version 12.1 (Stata corporation, College Station, TX, USA) 

using the healthy control subjects with a non-AD neurochemical profile as the 

control group. Finally, the relationship between each of the Validated Biomarkers 

and the established CSF biomarkers Tau, P-tau, and rate of cognitive decline was 

explored by fitting separate regression models for each of the ‘Validated’ Biomarkers 

including all subjects with AD or non-AD CSF in the model, except when exploring 

the relationship with cognitive function when only individuals with AD CSF were 

included. Unless otherwise stated, all analyses were carried out using STATA. 

Linear regression was used to explore the relationship between novel biomarkers 

and T-tau, P-tau, β-amyloid (1-42), MMSE and rate of cognitive decline. Graphs 

were created using GraphPad prism V5 (GraphPad Software, La Jolla, CA, USA). 

The correlation matrix was created using Microsoft Excel (Microsoft, Redmond, 

WA, USA).     
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9.4   Results 

 

9.4.1   Comparing Neurochemical AD and Non-AD subjects 

 

In cohort 1, 35 individuals fulfilled CSF neurochemical criteria for AD, and 31 had a 

non-AD CSF profile. The remaining 43 had an intermediate profile and were not 

included in further analyses. As expected there were significantly more APOE 4 

carriers in the AD group (Table 9.1A). Groups were well matched for sex; the 

neurochemical AD group were significantly older than the non-AD group.   

 

In cohort 2, 46 individuals fulfilled neurochemical CSF criteria for AD, 44/46 of 

whom had a clinical diagnosis of AD and thus fulfilled contemporary (IWG-24 and 

NIA3) criteria for AD; the remaining two were controls. Of the 36 subjects with non-

AD CSF, 22 were healthy controls; of the other 14, 7 had subjective cognitive 

concerns, and the others were diagnosed with other non-AD neurodegenerative 

dementias including semantic dementia, behavioural variant frontotemporal 

dementia and Lewy Body dementia.  Groups were well matched for age and sex. As 

expected there were significant differences in MMSE and APOE status. CSF ELISA 

biomarker data are given in Table 9.1B.  
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 Neurochemical AD   
Neurochemical 

Non-AD  

AD vs Non-

AD (p-value) 

  N=35 N=31  

Age at LP 74.9 ± 5.2 70.7 ± 7.8 P=0.02 

Sex (% male)  42.9 64.5 0.09 

% APOE 4 positive 68.6 25.8 P<0.001 

Aβ1-42 (pg/ml)  452.5 ± 147.4 906.9 ± 220.6 P<0.001 

T-tau (pg/ml)*  654 (505 – 969) 255 (210-294) P<0.001 

P-tau (pg/ml)  119. 7 ± 72.4 44.5 ± 12.0 P<0.001 

tau/Aβ1-42 ratio* 1.51 (1.25-2.06) 0.25 (0.22- 0.34) P<0.001 

Table 9.1a  Demographics and CSF profiles of individuals from cohort 1 (composed 

of subjects from the Swedish cohort).  Data are shown as Mean ± SD unless stated; * 

log transformed for regression analyses, values quoted as median (interquartile range) 

 
Neurochemical 

AD   

Neurochemical 

Non-AD  

AD vs 

Non-AD 

(p-value) 

 

 n=46 n=36  

Age at LP 62.9 ± 8.0 58.5 ± 8.8 0.2 

Sex (% male)  39.1 44.4 0.5 

MMSE 20.6 ± 5.6 26.7 ± 6.9 P<0.001 

Duration of cognitive symptoms 

(months) 

36.4 ± 17.4 NA NA 

Rate of cognitive decline (MMSE) 

points/month) 

0.36 ± 0.42 NA NA 

% individuals fulfilling McKhann 

criteria 

ccriteriaccriteriacriteriaClinicalCri

teria  

95.7 0 P<0.001 

% APOE 4 positive 67.4 33.4 P<0.001 

Aβ1-42 (pg/ml)  408.4 ± 168.4 960.2 ± 290.9 P<0.001 

T-tau (pg/ml)*  947 (760-1196) 
234.5 (174.5-

315.5) 
P<0.001 

P-tau (pg/ml)  107.5 ± 38.12 35.5 ± 13.2 P<0.001 

tau/Aβ1-42 ratio* 2.5 (1.8-4.1) 0.25 (0.19 -0.33) P<0.001 

Table 9.1b  Demographics and CSF profiles of individuals from cohort 2 (composed 

of subjects from the retrospective, prospective and healthy control cohorts).  Data are 

shown as Mean ± SD unless stated  * log transformed for regression analyses, values 

quoted as median (interquartile range) 
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9.4.2   Univariate Analysis: comparing Neurochemical AD and Non-AD 

subjects   

 

Comparing the neurochemically defined AD and non-AD groups in cohort 1, there 

were significant differences in measured biomarker concentrations in 21 markers, of 

which 15 survived FDR correction (Table 9.2A). Taking these 15 proteins forward 

to the validation cohort (cohort 2), 9 markers (Total apoE, β-amyloid40, Carnosine 

Dipeptidase 1 (CNDP1), cystatin C, Insulin-like growth factor-binding protein 2 

(IBP-2), malate dehydrogenase, osteopontin, Triggering receptor expressed on 

myeloid cells 2 (TREM2) and YKL-40) were significantly elevated in the patients 

with both clinically and neurochemically defined AD (Figure 9.2). Five biomarkers 

(Total apoE, cystatin C, malate dehydrogenase, osteopontin & YKL-40) survived 

FDR correction in both cohort 1 and cohort 2 and were defined as “validated 

biomarkers”.  The values of these five biomarkers in the AD +/- groups in cohort 1 

are illustrated in Figure 9.3.  

 

The AD (CSF +ve) and non-AD (CSF –ve) dementias in cohort 2 were compared, 

including individuals with suspected non-AD neurodegeneration but excluding 

healthy control subjects. A similar list of 16 markers was significantly different 

between the 2 groups, with only malate dehydrogenase surviving FDR correction.   
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Table 9.2a Univariate analysis comparing neurochemical AD subjects with non-AD 

subjects. Dark grey indicates a biomarker that differentiated neurochemical AD from 

non-AD; significant after FDR correction in cohorts 1 and 2. Light grey indicates a 

biomarker that differentiated neurochemical AD from non-AD; significant after FDR 

correction in cohort 1 only. ^denotes biomarkers also identified using OPLS-DA 

analysis where subjects were classified neurochemically.  
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Table 9.2b Univariate analysis comparing neurochemical AD subjects with non-AD 

subjects, excluding healthy controls. Grey indicates a biomarker that differentiated 

neurochemical AD from non-AD;  significant after FDR correction. 
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Figure 9.3 Boxplots and whiskers (representing 10th and 90th percentiles) 

comparing AD and non-AD CSF concentrations of ‘validated’ proteins. 
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9.4.3   Multivariate analysis classified according to clinical diagnosis and 

according to neurochemical diagnosis 

 

Results of the OPLS-DA analysis using cohort 2 as the training set and cohort 1 as 

the test cohort are shown in Figure 9.3. Peptides corresponding to the following 

biomarkers were identified as the seven strongest predictors of group membership 

when separating the groups on neurochemical diagnosis (AD profile positive; AD 

profile negative): osteopontin, YKL-40 (also known as Chitinase-3-like protein 1; 

CHI3L1), malate dehydrogenase, vitronectin, total apoE, limbic system-associated 

membrane protein (LSAMP) and cystatin C. 
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Figure 9.4a OPLS-DA analysis using data from cohort 2. Subjects are colour coded 

according to neurochemical status: red circles=AD; green squares=non-AD.  

Figure 9.4b Variable importance on projection plot corresponding to the score plot in 

Figure 9.4a.  

 

 

9.4.5   Diagnostic utility   

 

When applied to cohort 2 for whom full clinical data were available, the five 

“Validated Biomarkers” could individually differentiate AD from non-AD healthy 
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control CSF with areas under the curve as follows: Total apoE=0.62; cystatin 

C=0.62; malate dehydrogenase=0.67; osteopontin=0.79; YKL-40=0.75. In a 

multivariate logistic regression analysis including all of these variables, the 

combination could differentiate AD from non-AD healthy control CSF with an area 

under the curve of 0.88.  

  

9.4.6   Correlation of proteins with each other and existing CSF biomarkers 

  

To explore the relationship between established CSF biomarkers measured using 

ELISA and the proteins measured using this targeted proteomics assay regression 

analyses were carried out between each of the five Validated Biomarkers and β-

amyloid 1-42, T-tau and P-tau including all subjects in the analysis irrespective of 

neurochemical status. None was significantly correlated with age or β-amyloid 1-42. 

Cystatin C, malate dehydrogenase, osteopontin and YKL-40 were each correlated 

with both T–tau and P-tau (Figure 9.5a and 9.5b). A correlation map shows which of 

the proteins from Table 9.2 were correlated with one another. (Figure 9.6)       
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Figure 9.5a:  Scatter plots showing correlations between CSF T-tau (ELISA) and 

“validated biomarkers” measured using targeted proteomics using subjects in cohort 

2. 
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Figure 9.5b: Scatter plots showing correlations between CSF P-tau (ELISA, 

pg/mL) and “validated biomarkers” measured using targeted proteomics using 

subjects in cohort 2. 
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Figure 9.5c Scatter plots showing correlations between rate of cognitive decline 

(30-MMSE score/duration of cognitive symptoms in months) and “validated 

biomarkers” measured using targeted proteomics using subjects in cohort 2
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Figure 9.6 Correlation matrix including all biomarkers listed in Table 9.2 and ELISA data for β-amyloid 1-42, T-tau and P-tau. Red 

highlight: Correlation coefficient ≥0.6 or ≤-0.6; green highlight: correlation coefficient 0.4 to 0.6 or -0.4- to -0.6. Malate: malate 

dehydrogenase; CarboxyE: carboxypeptide E

LSAMP TIMP1 CD166 OsteopontinVSETTM2TREM2 CH3L1 ENPP2 CarboxyEIGF2 GM2 CNDP1 CystatinCTotal  APOEOrexin GSOT1 S100B MalateSAMP NCAM1IBP2 UCLH1 FIBA Ab40 Age at LPAb142 Ttau Ptau

LSAMP 1.00

TIMP1 0.67 1.00

CD166 0.29 0.32 1.00

Osteopontin 0.68 0.52 0.31 1.00

VSETTM2 0.47 0.29 0.53 0.64 1.00

TREM2 0.62 0.50 0.30 0.76 0.46 1.00

CH3L1 0.37 0.47 0.35 0.61 0.53 0.38 1.00

ENPP2 0.30 0.50 0.57 0.15 0.13 0.23 0.19 1.00

CarboxyE 0.76 0.56 0.44 0.71 0.52 0.65 0.27 0.39 1.00

IGF2 -0.03 0.17 0.74 0.09 0.32 0.12 0.23 0.53 0.19 1.00

GM2 0.36 0.36 0.62 0.53 0.64 0.45 0.50 0.45 0.55 0.52 1.00

CNDP1 0.61 0.53 0.72 0.67 0.68 0.60 0.55 0.51 0.68 0.51 0.73 1.00

CystatinC 0.83 0.59 0.35 0.85 0.68 0.70 0.59 0.18 0.77 0.08 0.52 0.68 1.00

TotalAPOE 0.82 0.65 0.50 0.75 0.65 0.66 0.53 0.43 0.82 0.24 0.66 0.81 0.87 1.00

Orexin 0.18 0.19 0.61 0.26 0.55 0.19 0.38 0.37 0.26 0.64 0.59 0.56 0.24 0.38 1.00

GSOT1 0.28 0.35 0.65 0.36 0.49 0.34 0.36 0.41 0.45 0.67 0.67 0.58 0.40 0.50 0.63 1.00

S100B 0.31 0.20 0.54 0.35 0.50 0.31 0.36 0.39 0.37 0.47 0.63 0.60 0.32 0.54 0.64 0.67 1.00

Malate 0.19 0.10 0.53 0.42 0.63 0.26 0.49 0.17 0.37 0.45 0.65 0.55 0.40 0.49 0.63 0.67 0.72 1.00

SAMP 0.07 0.12 0.48 -0.03 0.00 0.10 0.02 0.25 0.09 0.20 0.16 0.15 -0.02 0.11 0.08 0.25 0.17 0.20 1.00

NCAM1 0.24 0.23 0.36 0.35 0.43 0.15 0.59 0.08 0.20 0.31 0.29 0.47 0.45 0.37 0.34 0.41 0.27 0.42 0.02 1.00

IBP2 0.22 0.31 0.63 0.50 0.50 0.50 0.39 0.34 0.38 0.69 0.63 0.64 0.41 0.49 0.65 0.66 0.56 0.54 0.13 0.29 1.00

UCLH1 0.29 0.28 0.69 0.26 0.51 0.22 0.26 0.49 0.46 0.67 0.68 0.66 0.32 0.50 0.64 0.71 0.64 0.65 0.22 0.39 0.56 1.00

FIBA 0.06 0.18 0.02 0.08 -0.02 0.15 0.03 0.02 0.10 -0.13 0.03 0.01 0.10 0.10 -0.14 0.06 0.04 0.07 0.45 0.07 -0.03 0.06 1.00

Ab40 0.12 -0.01 0.06 0.11 0.29 0.06 0.11 -0.13 0.12 0.15 0.16 0.09 0.19 0.22 0.14 0.24 0.25 0.34 -0.07 0.11 0.20 0.20 -0.08 1.00

Age at LP 0.19 0.13 0.03 0.26 0.17 0.29 0.33 -0.24 0.06 0.01 0.23 0.13 0.26 0.18 0.16 0.19 0.21 0.13 -0.05 0.04 0.24 0.02 -0.13 0.16 1.00

Ab142 (ELISA) -0.12 -0.04 -0.05 -0.27 0.06 -0.04 -0.28 0.03 -0.01 0.04 -0.01 -0.06 -0.07 -0.09 -0.03 0.10 -0.18 -0.24 -0.11 -0.09 -0.14 0.00 -0.10 -0.10 -0.12 1.00

total  tau (ELISA) 0.21 0.02 0.10 0.52 0.45 0.29 0.44 -0.20 0.21 0.00 0.30 0.28 0.39 0.32 0.16 0.01 0.19 0.51 -0.06 0.10 0.29 0.06 -0.04 0.19 0.20 -0.50 1.00

Ptau (ELISA) 0.27 0.07 0.18 0.56 0.51 0.32 0.47 -0.16 0.24 0.02 0.37 0.35 0.45 0.41 0.20 0.05 0.31 0.54 -0.07 0.13 0.33 0.09 -0.05 0.25 0.21 -0.49 0.90 1.00
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In a regression analysis including age, sex and APOE status in the model, there was 

a weak association between YKL-40 and rate of cognitive decline in the AD cohort. 

(Figure 9.5C) There were no other significant associations between proteins 

measured using this targeted proteomics assay and rate of cognitive decline.   

 

9.5   Discussion 

This study demonstrates that this targeted fully-quantitative multiplexed assay can 

measure a panel of 54 proteins of potential interest in AD. It is a ‘one-pot’ test, which 

requires a small volume of CSF (100 microliters) and can be run rapidly, over 10 

minutes, and can be used to rapidly validate biomarkers of potential interest in 

clinical cohorts.      

 

Moreover this study has been able to validate 5 biomarkers that differentiate 

neurochemical AD from non-AD in 2 independent clinical populations from different 

centres, all of which were also identified as those measures contributing most to the 

variance in an independent multivariate model differentiating by neurochemical 

AD/non-AD. These include markers of neuroinflammation, i.e. YKL-40, cystatin C 

and osteopontin; total apoE, the best recognized genetic risk factors for AD; and 

malate dehydrogenase, a key enzyme in brain glucose metabolism. When comparing 

AD CSF with other suspected non-AD neurodegenerative subjects and although 

with the caveat that sample sizes are small, malate dehydrogenase was also 

significantly higher in the AD cohort suggesting that it could be specific to AD 

neurodegeneration. While the majority of these biomarkers are unlikely to have 

diagnostic utility individually, malate dehydrogenase, YKL-40 and osteopontin are 

individually capable of differentiating AD from non-AD CSF with AUC≥0.75; and 
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collectively all five of the “validated” biomarkers could distinguish individuals with 

AD positive/negative CSF with AUC=0.88.  

 

9.5.1   Malate dehydrogenase 

 

The biomarkers identified all have potentially important roles in AD pathogenesis. 

MDH is one of eight mitochondrial enzymes involved in the tricarboxylic acid 

(TCA) cycle, the main pathway for oxidation of glucose in the brain. It is found in 

increased concentrations in the cortex of AD brains of humans and mice at autopsy 

compared with healthy controls385, 386 while other enzymes in the cycle are reduced 

or unchanged385. MDH has been previously identified in other biomarker discovery 

studies in AD CSF387. The mechanism for increased CSF MDH is unclear but from 

studies of other pathological brain conditions (ischaemia and hypoglycaemia), 

anabolic catabolism of glucose may occur as an alternative mitochondrial energy 

generating pathway388. Glucose hypometabolism measured using FDG PET 

predates cognitive symptoms and is closely correlated with cognitive function in 

AD. Future studies are required to assess if malate dehydrogenase concentration 

correlates with FDG-PET measures of hypometabolism; if so CSF measurement of 

malate dehydrogenase  may have potential utility for early diagnosis, staging and 

could be a meaningful measure of therapeutic engagement in drug trials.  

 

9.5.2   Cystatin C, osteopontin and YKL-40 

 

Cystatin C (CysC) colocalises with amyloid and is involved in microglial 

activitation369. CSF CysC predicts rate of brain atrophy, a surrogate marker of 

neurodegeneration, in AD389. Several previous biomarker discovery studies have 
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identified differences in CysC in AD CSF using ELISA387, 390 and it has been 

identified using mass spectrometry in a biomarker discovery studies of AD CSF391. 

Furthermore it predicts rates of brain atrophy in the CSF of amyloid positive 

individuals389. Osteopontin is a cytokine expressed by cytotoxic T cells and is 

involved in macrophage recruitment and activation.  It is increased in pyramidal 

neurons in AD392 in AD transgenic mouse models393, and is elevated in human AD 

CSF394, 395 and is elevated in the CSF of familial AD mutation carrying individuals396.  

YKL-40 is expressed by microglia and astrocytes in the brain and is implicated in 

the neuroinflammatory response to β-amyloid deposition229. Elevated CSF YKL-40 

is seen in a number of neurodegenerative diseases including prodromal AD229, as 

well as in stroke and multiple sclerosis. It was previously identified as a potential AD 

biomarker in an unbiased LC-MS biomarker discovery study comparing CSF from 

individuals with AD to controls232 and was higher in AD CSF in another targeted 

proteomics study379. Although there are commercially available immunoassays for 

YKL-40 and it is unlikely to be specific for AD, it could prove a useful marker in the 

context of a multiplexed panel of CSF markers of neuroinflammation, which might 

improve diagnostic accuracy or help predict rate of disease progression.  

 

9.5.3   ApoE isoforms 

 

As previously described this type of assay can measure peptides corresponding to 

apoE isoforms E3, E4 and E2 accurately in order to determine APOE genotype397, 

an added benefit which could have significant practical & financial benefits. However 

the utility of CSF Total apoE concentration is less well established, with previous 

studies showing no clear difference in concentration between AD and control CSF397, 

398.  
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9.5.4   Strengths and Limitations 

 

This study has a number of strengths, notably the use of two independent cohorts 

allowing for discovery/replication and conservative statistical approaches correcting 

for multiple comparison; and two independent techniques for assessing biomarker 

differences between groups. Subjects were prospectively recruited and samples were 

collected according to a standard operating protocol399 to minimise the influence of 

pre-analytical factors on biomarker profile. While detailed clinical data were 

available for some of cohort 1, as previously described258, cohort 2 were extremely 

well characterised and matched for age and sex, were from a single centre, with 

information about MMSE and duration of symptoms available. Individuals in the 

AD group were relatively young reflecting our clinical focus and that younger 

individuals are more likely to be referred for diagnostic lumbar puncture368. As the 

design of this study was to determine whether the assay could differentiate between 

AD and non-AD pathology, groups were defined by CSF neurochemical status 

rather than clinical diagnosis since clinical diagnostic accuracy can be variable, even 

in specialist centres400 while a combination of CSF tau and β-amyloid can predict 

diagnosis with a sensitivity and specificity of around 90%73 in individuals whose 

brains were subsequently examined post-mortem. The neurochemical non-AD group 

was mixed; 61% were controls, whilst the other 39% were concerned about their 

cognition and may have had another neurodegenerative disease. This study is 

therefore likely to identify biomarker associated with amyloidosis and may not be 

capable of detecting other markers of neurodegeneration which may also be altered 

in the non-AD CSF group. Further studies are needed to identify and validate 

biomarkers in pre-symptomatic or very early AD, which this study is not capable of 

doing since only a very small number of individuals were in the presymptomatic 
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phase of AD (asymptomatic with an AD like CSF profile). To date a large number of 

candidate CSF proteins have been suggested as potential biomarkers for 

presymptomatic AD based on biomarker discovery experiments in asymptomatic 

individuals carrying an autosomal dominant mutation for AD396 and blood based 

biomarkers identified from twin studies401 where some individuals subsequently 

develop cognitive impairment. This type of MRM assay could potentially validate 

those biomarkers of clinical importance in months rather than years that it might 

take to develop an ELISA based assay and the reagent costs, which might be 

substantial for a novel immunoassay, are negligible402. Finally, although highly 

selective and specific403, and with a wide dynamic range404, 405 MRM is still likely to 

be less sensitive than some of the most advanced ELISA techniques which remain 

the gold standard for protein detection406.     

 

A previous study of AD, mild cognitive impairment (MCI) and control CSF159 used a 

similar pipeline to validate a panel of biomarkers in a single cohort with longitudinal 

CSF samples, and found four biomarkers that differentiated clinical AD from healthy 

controls, including YKL-40, Complement component C3, transthyretin and amyloid 

A4 protein.  YKL-40, identified in both studies, was significantly elevated in AD and 

MCI CSF and was identified in our OPLS-DA analysis and univariate analysis 

comparing neurochemical AD to non-AD. Similarly transthyretin was identified in 

AD and MCI CSF159 and in our OPLS-DA analysis; serum amyloid A4 protein 

contributed to variance in our OPLS-DA analysis; complement component C3 was 

not included on our panel. This present work uses a larger panel of biomarkers and 

has some methodological advantages: the time taken to run the assay is significantly 

shorter, samples do not require to be aliquoted into multiple small volumes and can 

be analysed from one single pot, and therefore lends itself extremely well to 
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multiplexing large numbers of peptides concurrently and cost effectively. One 

limitation of this study is that the list of potential biomarkers was derived from 

biomarker discovery experiments using a different population of subjects with a 

range of neurodegenerative diagnoses and from AD related literature searches 

rather than carrying out biomarker discovery experiments as part of the pipeline. 

Consequently, this panel of biomarkers is not intended to be exhaustive. 

 

9.6   Conclusions 

This work describes a streamlined and efficient mass spectrometry technique for 

measuring multiple CSF biomarkers concurrently, and using this methodology 

validate a number of biomarkers including markers of neuroinflammation and 

glucose metabolism that collectively have clinical diagnostic utility for AD 

diagnosis. This highly specific method offers the opportunity to validate large 

numbers of candidate biomarkers in very small volumes of CSF with negligible 

reagent costs, and is ideally suited both for biomarker discovery, and for translation 

into a rapid and cost-effective clinical test. 

 

9.7   Publications relating to this chapter 

 

WE Heywood, D Galimberti, E Bliss, E Sirka, RW Paterson, NK Magdalinou, M 
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Hardy, K Bhatia, S Heales, NJ Sebire, H Zetterberg, K Mills. Identification of novel 

CSF biomarkers for neurodegeneration and their validation by a high-throughput 

multiplexed targeted proteomic assay. Molecular Neurodegeneration. 2015 Dec 
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Chapter 10.   Conclusions and Further Work  

 

10.1   Unmet needs in AD biomarker research 

In the introduction, a description of the clinical features of Alzheimer’s disease, its 

impact on individuals and carers and the stark realities of rising AD incidence make 

plain the pressing need for disease modifying therapies. This chapter goes on to 

describe the neuropathology of AD, disease causing genetic mutations and genetic 

risk factors and the sequence of events that lead from amyloid deposition, to 

neurodegeneration, to atrophy and ultimately dementia. The amyloid cascade 

hypothesis remains the pre-eminent hypothesis for AD pathogenesis but the author 

sets out the details of an increasingly complicated model of AD biology; evidence 

implicating several biological pathways is given. It is proposed that AD will need to 

be diagnosed earlier, the complexities of AD pathobiology more completely 

understood and the facility to track disease and monitor therapeutic engagement  

established. The introduction explains why biomarkers are key to meeting all of 

those aims.  

 

An overview of currently available biomarkers, their limitations and biomarkers in 

development across all modalities is provided and a case made for the development 

of novel CSF derived biomarkers.   
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10.2   Do CSF prehandling methods affect measured biomarker 

concentrations?  

 

The work in chapter 3 advances knowledge of the preanalytical confounding 

variables in the measurement of CSF analytes, specifically Aβ1-42. Building on 

knowledge that a number of preanalytical factors are known to influence CSF Aβ1-

42 concentration, the hypothesis that aliquot storage volume and CSF volume to 

surface area could influence amyloid adsorption and measured Aβ1-42 concentration 

was tested. A two-fold difference in measured Aβ1-42 concentration was identified 

between the smallest and largest aliquot volumes. This confounding variable has the 

potential to significantly impact the validity of a laboratory’s assay and could mean 

that individuals are misdiagnosed. Whilst adding a buffer detergent such as Tween 

seems to correct this problem to some extent, its effect on amyloid kinetics and 

conversion rates to oligomers and fibrils in vitro is unknown. A more pragmatic 

approach might be to suggest that volumes of CSF aliquots stored are standardized 

within and between laboratories. 

  

It was also hypothesized that handling methods used in clinical practice to transfer 

samples from the bedside to the laboratory might also adversely influence measured 

biomarker concentrations. Since most research studies of CSF biomarkers have used 

samples collected according to strict research protocols it was important to 

determine whether the conclusions were applicable to clinically acquired samples. 

Importantly no significant differences were found between samples transferred 

according to gold standard research protocols compared to those ‘mishandled’ by 
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standard hospital portering services. This provides reassurance that research CSF 

can be acquired from non-specialist centres, and that research CSF findings and 

reference ranges are applicable to clinical cohorts, provided a standard operating 

procedure is followed.     

        

10.3   Can amyloid PET be used to determine cutpoints for existing 

biomarkers of amyloid pathology, in the absence of sufficient 

pathology proven cases? 

 

There are very few large studies of individuals who have given research CSF and 

who have also subsequently died and received a pathological diagnosis. However, 

amyloid PET has now been pathologically validated in several studies. The aims of 

this chapter were to determine whether comparing CSF molecular biomarkers and 

amyloid PET might provide a useful means of determining clinical CSF cutpoints in 

a local population of individuals with suspected AD, individuals anticipated to be 

healthy controls, or suspected to have other neurodegenerative diseases. As 

expected, there was a strong correlation between amyloid PET status and the ‘core’ 

biomarkers of AD pathology. In cases where the two methods of PET interpretation 

were concordant, CSF biomarker concentrations lay clearly on one side of the 

cutpoints determined in other large multi-centre studies, and our local cutpoints for 

distinguishing AD from healthy controls and most other neurodegenerative diseases. 

However, in discordant cases, CSF concentrations tended to lie in a range around 

those cutpoints, suggesting a diagnostic ‘grey-zone’. This is a helpful and important 

concept for the interpretation of clinical CSF biomarker concentration values in 

clinical practice.   
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10.4   Can an extended panel of cross-sectional quantitative CSF 

biomarkers be used to improve clinical decision making in the 

differential diagnosis of AD? 

  

Although core biomarkers of AD pathology are already in use in clinical practice for 

differentiating AD from healthy controls, their utility in differentiating AD from 

other neurodegenerative diseases is less well established.  The second major problem 

is that it is a challenge to blind clinicians to the CSF results which will inevitably 

influence the clinical diagnosis. The author sought to overcome this problem by 

establishing and independently verifying pre-LP diagnosis.   

 

Based on meta-analysis data, it has now been established that T-tau, Aβ1-42, P-tau 

and NFL have greatest diagnostic utility in distinguishing AD from healthy 

controls. In this study the same biomarkers emerge as having maximum utility for 

distinguishing AD from other neurodegenerative diseases.  

Single biomarkers, or simple ratios (Tau/ Aβ1-42 or AβX-40/X-42) can differentiate 

AD from SD or bvFTD with high sensitivity and specificity without the need for 

multiple biomarkers or complex formulae.  

By contrast none of the biomarkers were able to distinguish AD from either PNFA 

or DLB. This is likely to be due to these clinical syndromes being due to either 

mixed pathology (DLB) or being underpinned by one a number of pathologies 

(PNFA). Furthermore combining multiple biomarkers into a diagnostic model does 

not significantly improve diagnostic utility. 
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Incorporating biomarkers that are more specific to the underlying pathology of these 

diseases may improve diagnostic specificity.  

 

10.5   Can an extended panel of cross-sectional quantitative CSF 

biomarkers help explain clinical heterogeneity within AD? 

 

In this chapter an extended panel of CSF biomarkers was used to explore phenotypic 

diversity within AD. Typical memory led AD and the atypical variants, posterior 

cortical atrophy, logopenic aphasia and frontal variant AD are underpinned by the 

same neurodegenerative pathology, yet there seem to be important  biological 

differences; it was hypothesized that differences in amyloid processing, 

neuroinflammation or large fibre myelinated axon involvement might , in part, 

explain some of this clinical heterogeneity. The aim of the study was to determine if 

an extended panel of biomarkers measured cross-sectionally could detect group 

differences. Typical and atypical AD groups were well matched demographically and 

had no significant differences in either markers of amyloid processing or 

neuroinflammation, however levels of CSF NFL were higher in the atypical group, 

suggesting greater involvement of large fibre myelinated axons.  Within atypical 

AD, levels of T-tau and P-tau were lowest in the PCA group, which also had lowest 

rates of cognitive decline suggesting a more indolent course. Conversely, the frontal 

AD group had fastest rates of cognitive decline, highest levels of T-tau and lowest 

levels of Aβ1-42 and AβX-40/42 ratio, suggesting a more aggressive disease course.  

 

Taken together these findings suggest there may be subtle differences in amyloid 

deposition, processing and rates of neurodegeneration between clinical subtypes. 

This work builds on previous observations demonstrating differences in brain Tau 
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deposition and genetic variability between AD subtypes and begins to unpick some 

of the biological heterogeneity within AD.  

 

In future, wider biomarker panels probing different biological pathways are likely to 

further elucidate clinical heterogeneity. This work should a) be targeted towards 

known biological pathways discussed in the introductory chapters, with particular 

attention to pathways related to the genetic risk factors identified for PCA and LPA 

and b) involve further hypothesis generating experiments using CSF from well 

phenotyped atypical cases, early in their disease course.     

  

10.6   Are cross-sectional biomarkers able to predict rate of AD 

clinical progression? 

 

The author postulated that CSF markers that correlate with atrophy rates could be 

used to predict rates of neurodegeneration and clinical disease progression. It had 

previously been demonstrated that rates of hippocampal and whole brain atrophy 

correlate well with clinical disease progression but few studies to date had explored 

the relationship between CSF biomarkers and atrophy rates.  Although the clinical 

cohorts collected by the author had insufficient longitudinal data to explore atrophy 

rates for this thesis, these will be the subject of future work. In the meantime the 

established and publically accessible ADNI cohort was used to explore this 

relationship instead. The ADNI sub-cohort studied had CSF data that had been 

analysed using a large panel of ELISA based assays. Since the author had no prior 

knowledge of the biomarkers included in the multiplexed assay it was largely an 

unbiased study with a large number of participants, but methodologically this work 

would have been considerably strengthened by validation using an independent 
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cohort. As expected, none of the biomarker in this panel of biomarkers significantly 

correlated with atrophy rates in individuals with negative CSF amyloid profiles, 

however it was demonstrated that a number of biomarkers were correlated with 

brain atrophy in the amyloid positive group, even after correction for nuisance 

variables and for multiple comparisons. Chromogranin A and Cystatin C, markers of 

amyloid processing and neuroinflammation respectively, had previously been 

implicated in AD pathogenesis and emerged as strong predictors of atrophy. 

Notably Trefoil factor 3 was correlated with whole brain atrophy, ventricular 

expansion rate and hippocampal atrophy in a regression models controlling 

stringently for nuisance variables and also emerged as a predictor of atrophy using 

an exploratory reverse stepwise analysis. Trefoil factor 3 has not previously been 

identified as an AD biomarker in humans but has been patented as a potential 

marker of NOTCH activity and is therefore of considerable interest as a marker of 

disease progression and potentially of drug target engagement.    

 

In summary, this chapter identifies a number of possible CSF biomarker candidates 

of clinical disease progression in individuals with amyloid pathology, which require 

to be validated in an independent cohort of individuals with clinical AD. The role of 

trefoil factor 3 in AD pathogenesis should also be the subject of further study.  

      

10.7   Could mass spectrometry be used to rapidly identify and 

validate new biomarkers for AD? 

 

In the introduction of this thesis a case was made for the development of new 

biomarkers, and in earlier chapters the limitations of biomarkers to aid decision 

making in clinical diagnosis, explain phenotypic diversity and explain rate of disease 
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progression was outlined in detail. As efforts to develop disease modifying drugs for 

AD have been redoubled, the number of candidate biomarkers identified in GWAS 

studies and exploratory hypothesis generating experiments has increased. Means of 

rapidly developing assays capable of testing hypotheses using human biofluids has 

become a priority in the field and the time taken to develop effective ELISA assays 

has been a bottleneck in this process. Using a targeted mass spectrometry approach, 

with assays developed ‘in house’ by Dr Kevin Mills’ lab this present work has 

demonstrated that this type of assay can measure novel markers, not necessarily 

possible to measure using ELISA, and that they can be rapidly developed and tested 

on human CSF within weeks. Furthermore, using an existing panel of biomarkers, 

several were significantly different in AD and non-AD CSF in two independent 

clinical cohorts. This work shows that this technique, widely used in other diseases, 

has potential to rapidly validate CSF biomarkers in AD and other neurodegenerative 

diseases in a fast, high throughput cost effective multiplexed assay.  

 

Further work might include using this technique to develop a bespoke panel of 

biomarkers for AD, and to explore whether they can also be detected in other more 

accessible biofluids such as blood, urine, or even saliva where protein concentrations 

are likely to be lower. As genetic risk factors that might explain variance in disease 

progression or clinical phenotype are identified, this technique has the potential to 

rapidly develop assays that might be used to measure gene products of interest or 

probe related biological pathways.        

 

10.8   Final Comments 

There are two major conclusions from this thesis with implications for changing 

clinical practice. First, the aliquot storage volume of CSF samples is key to accurate 
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and reproducible measurement of amyloid moieties. Second, samples can be 

transferred to the laboratory in a timeframe that is compatible with normal 

prehandling clinical practices, even in regional neurology centres. The author 

envisages that CSF biomarkers will become more widely used in routine clinical 

assessment of cognitive impairment in memory clinics outside major centres in the 

UK, particularly if disease-modifying treatments become available. There will be a 

place for amyloid and tau PET scans in clinical diagnosis, but these imaging 

modalities are likely to be expensive and expose individuals to radiation, and 

capacity will be limited. As new biomarkers become available, PET tracers are 

unlikely to be developed in a timely fashion to keep up with clinical demand. By 

contrast CSF biomarkers can be more rapidly developed, validated and translated 

into clinical practice, as demonstrated in chapter 9, and lumbar punctures can be 

carried out in most clinical settings with limited training.  

 

Ultimately for accurate diagnosis of AD during life, the field requires biomarkers 

that are specific to the proteins or pathogenic processes that result in 

neurodegeneration. For DLB this might be α-synuclein; in FTLD, biomarkers of 

specific tauopathies or TDP-opathies will be required. The author believes that 

simple measurements of these proteins alone may be insufficient to detect the earliest 

signs of pathogenicity, particularly as the field moves towards the presymptomat ic 

diagnosis of neurodegenerative disease. Rather, evidence of dysfunction of protein 

metabolism will be required. In Alzheimer’s disease this might be the ability to 

measure and quantify reliably the propensity of amyloid to form toxic oligomeric 

structures or to measure the extent to which tau misfolds and forms tangles. As yet 

no such ‘functional’ assays exist and will be a major challenge over coming years.  

However, the author believes that CSF, which is in direct contact with the brain and 



 265 

therefore most likely to directly reflect metabolic processes occurring in the brain, is 

most likely to yield meaningful discoveries.             
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Appendices 

Appendix A: Mini Mental State Examination  

 

Not included due to copyright restrictions 
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Appendix B.   Standard Operating Procedure for Cerebrospinal 

Fluid Collection and Biobanking (complete version) 

      

UCLH R&D No: 12/0344  

Author: Ross Paterson MBChB MRCP   

Principal Investigator: Dr Jonathan Schott BSc MD MRCP 

Collaborators  

Consultant Neurologists at the Dementia Research Centre (Professor Martin 

Rossor, Professor Nick Fox, Dr Jason Warren, Dr Catherine Mummery) 

Cerebrospinal fluid laboratory at the Institute of Neurology (Dr Michael Lunn, 

Professor Henrik Zetterberg) 

Collaborating centres within and outside the European Union  

 

Start date of project: 16-May-2013  

End date of project: 16-May-2021 

Project Duration: 8 years 

Clinical and laboratory staff will follow standard operating procedures (SOPs) for 

CSF and blood sample collection and handling, and log all sample information in a 

relational database that is also used to track sample location. This is an outline of 

those procedures and a description of the basic sample information that will be 

collected. 

 

Identification of Individuals:  

 

Suitable research subjects will be identified via the specialist cognitive disorders 

service at the National Hospital for Neurology and Neurosurgery or when they 

attend the National Hospital Day care unit having been referred for lumbar puncture 

by a member of the specialist cognitive disorders team.  Any patient who is 

undergoing lumbar puncture for suspected neurodegenerative disease as a part of 

their usual clinical work-up and who is under the care of a dementia research centre 

clinician would be eligible.   

Subject may be identified at one of 2 time points: 

(1)At the specialist cognitive disorders clinic 
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In the specialist cognitive disorders clinic subjects will be provided with written 

information, asked to sign the Data Protection Act form and they will be asked to 

sign the consent form if they feel ready to do so.  

(2)At the National Hospital day care unit 

The Dementia Research Fellow responsible for managing the CSF database (or 

deputy) will review the day care unit admission list each Friday afternoon in order to 

identify potential participants who may or may not have previously been identified in 

clinic. 

The consultant in charge will be informed by email at least 48 hours notice prior to 

the admission and given the opportunity to opt-out.  

The CSF laboratory technician will be informed of prospective participants by email 

48 hours prior to admission. The pseudonymised subject code will be emailed by 

Ross Paterson or his deputy.   

 

Seeking Consent  

All patients will have signed the data protection act form and have indicated their 

willingness to be approached by the research team.  

Informed written consent will be sought by a member of the research team which 

will be either one of the PIs, medical doctors or clinical research nurses working at 

the dementia research centre. This should be somebody other than the 

consultant neurologist directly responsible for the patient.   

Where a potential participant is deemed to lack the capacity to give informed 

consent, a consultee will be identified. The personal consultee will usually be the 

participant’s next of kin, spouse, partner or other relative or friend.  

In the event that a personal consultee is unable or unwilling to undertake the role of 

consultee, they may suggest that someone else takes on the role as personal 

consultee and other appropriate individuals may be approached.  

If another personal consultee cannot be identified, the Mental Capacity Act requires 

that a nominated consultee should be appointed. A nominated consultee can be a 

professional person involved in the care of the person who lacks capacity. For 

example, a member of staff working in a care home where the participant resides 

may be appointed as a nominated consultee. A doctor or healthcare professional may 

be an appropriate nominated consultee if they are not involved in the research in any 

capacity.  
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The consultee will be provided with an information sheet outlining their 

responsibilities as the consultee. They will also be given a copy of the participant 

information sheet providing them with detailed information about the research 

study. The outcome of the discussion with the consultee and their views on the 

presumed wishes and feelings of the research participant in relation to this research 

study will be recorded on a record of consultation sheet which will be filed in the 

patient notes. A copy of the record of consultation will be given to the consultee.  

If the time between consent and the lumbar puncture exceeds three months then 

the patient will be reconsented. Written consent will be filed in the clinical notes.  

A copy of the patient information sheet will be given to the patient. A copy of the 

consent form will be filed in the patients notes. The original consent form will be 

passed to Suzie Barker and an entry will be signed and dated in the notes indicating 

the study reference number.  

 

 

Research pack preparation and sample labelling 

 

A transparent bag containing the following will be prepared in advance by the 

Clinical research fellow (Ross Paterson or deputy): 

2 blood bottles (as shown in Figure 1) 

2 polypropylene CSF tubes  

1 urine container 

5 spare labels  

Clinical information sheet (Figure 2) 

Lab transfer sheet (Figure 3)  

Spare consent form  

 

 Each blood, CSF and urine vessel will be labelled with a pseudonymised code 

printed on paper designed to withstand temperatures of -80 degrees Celsius or less. 

The clinical information sheet (Figure 2) and lab transfer form (Figure 3) will have a 

label with the same code attached.  

 

The unique DRC code will be created in the following format:  

 (Hyphens separate the different components of the ID) 
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DRC_0001-20120131-1 

[SubjectID]-YYYYMMDD-# 

 

DRC_XXXX=[SubjectID]=A number generated by the clinical research fellow. Numbers 

will be generated as sequential integers in the order that subjects are recruited.  

YYYY= year sample is collected 

MM=month sample is collected 

DD=day sample is collected 

#= number of occasions this subject has donated CSF or blood for research in this project.  

 

The code will be generated on Microsoft excel software.   

A barcode will be generated using Barcode appropriate software  

Labels displaying the code and barcode will be produced in 2 sizes (12.70 x 25.40mm 

and 66.68 x 25.4mm) on a Brady BBP11 Thermal Transfer printer on nylon cloth 

(Brady material 499).  

 

The subject-specific code stickers would be attached to the front of the clinical notes 

at the point at which consent is obtained. Clinical details (outlined in table 1) would 

be collected using a brief questionnaire by a member of the cognitive disorders team 

and logged and stored along with this code in a secure clinical database by Suzie 

Barker at the Dementia Research Centre.  

 

Appendix B, Table 1   Information to be collected in the questionnaire at the time 

of lumbar puncture 

Issue Clinical information Comments 

1 Name  

2 Hospital Number  

3 Date of birth   

4 Date of first symptom  

5 First symptom  

6 Pre-LP diagnosis  

7 Consultant  

8 Date and time of lumbar 

puncture 
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9 Age at lumbar puncture  

10 Manometer used Yes/No 

 

 

 

Lumbar puncture 

This will be performed by the doctor in the patient’s usual clinical team. The 

procedure would be undertaken in the usual clinical setting.   

The CSF sample must be collected between 8am and 12pm and samples may be 

collected up to 4pm in exceptional circumstances.  

In addition to samples taken for routine clinical analysis, CSF will be collected in 

two screw-top polypropylene tubes (Sarstedt 62.610.018). Guidelines for CSF 

collection are outlined in Table 2.   

These should be the last tubes filled  

Pressure readings using a manometer should be avoided unless there is a compelling 

clinical reason to measure it.  

Blood collection  255 

 

Venous blood will be collected using the vacutainer system at the same time as blood 

samples are taken for clinical analysis.  

The following vacutainer tubes will be collected:  

1 or 2 x EDTA tubes (lavender top), total 10ml 

1x Clot activator tubes (gold top), total 8.5ml 

The optimal time from withdrawal to spinning and freezing is less than 60minutes.  

 

 

Appendix B, Figure 1   Blood bottles to be filled with venous blood 
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Urine Sampling 

Urine should be collected in a 100ml polypropylene screw-top container (Starstedt, 

product code : 75.1354.001)  

A mid stream spot collection (taken at any time of the day) is adequate 

At least 25ml is required.   

 

Transferring samples to the laboratory   

All research samples including blood, CSF and urine will be stored transferred and 

processed together and should not be separated.  

Clinical samples should be handled and transported separately. 

Samples should be accompanied by the lab transfer sheet and no other clinical 

information.  

The CSF laboratory technician will be contacted by the doctor performing the 

lumbar puncture or a member of the research team by telephone call 02034484204 

(or on the CSF laboratory technician’s personal mobile if this is known to the 

clinician) immediately after the sample has been successfully collected.  

Samples (blood, CSF and urine) will be left in the designated metal box on the 

daycare unit desk for collection.  

The CSF technician will personally collect samples and deliver them to the CSF 

laboratory within 30 minutes.    

If the CSF technician or his deputy is unavailable then he will inform the DRC 

research fellow or his deputy in advance. In this situation a member of the specialist 

cognitive disorders team will collect the samples and deliver them to the lab 

manager who will freeze the CSF and urine at -80 Celsius, and store the blood at 

ambient temperature until the CSF technician or his deputy can process them at a 

later date.    
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Appendix B Table 2  Overview of the procedure 

Issue  Ideal Situation 

1 Preferred Volume In addition to CSF collected for 

routine clinical examination (e.g. cell 

count, oligoclonal bands, cytology 

etc.) a further 15ml should be 

collected between two polypropylene 

screw-top containers (Sarstedt 

62.610.018).  

2 Time of collection  Ideally between 8-12am to avoid 

potential for diurnal variation in CSF 

biomarkers. Always before 4pm.  

3 Other samples that should be 

collected simultaneously 

Blood for storage  

Urine for storage   

4 Local anaesthesia As per usual clinical guidelines 

5 If bloody  To be sent to CSF laboratory 

regardless 

6 Storage conditions Room temperature before, during and 

after spinning. 

7 Transfer to laboratory Within 30 minutes. 

CSF technician to be contacted by 

telephone 02034484204 or on the 

CSF laboratory technician’s personal 

mobile if this is known to the clinician  

8 Post lumbar puncture advice As per usual clinical guidelines 

9 Manometer Avoid unless a good clinical reason as 

CSF markers of neurodegeneration 

adhere to it 

 

 

  

Laboratory Procedures 

 

The CSF laboratory technician will receive a mobile phone call from the doctor 

performing the lumbar puncture informing them that the sample has been collected.  
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They will pick up the CSF sample, blood samples, completed data transfer sheet 

(Figure 3) and ensure that each of them is properly labelled with the unique DRC 

code and barcode. The samples will be transferred in the clear plastic bag provided 

by the research group. They will ensure that they reach the CSF laboratory within 

30 minutes.  

Upon arrival the samples will be logged in a standard import spreadsheet for the 

database. This will be done either manually or by using a barcode scanner that will 

be read using appropriate software.  

 

CSF: 

The sample will be centrifuged (3000rpm for 10 minutes) and the supernatant fluid 

aliquoted in volumes of 1.0ml within 1.5ml polypropylene tubes. The tubes will be 

allocated storage positions using Item tracker software, and the individual aliquots 

given specific positions on the rack with individually unique identifiers. The location 

information will be stored in the database.  

Unique identifiers for each aliquot generated using appropriate software will be 

printed on nylon labels using a Brady BBP11 Thermal Transfer printer with Ribbon 

appropriate for storage conditions of up to -100C.   

 Labels will be fixed to the tubes at ambient temperature.  

Date and time of sampling, collector, condition, date and time of arrival, date and 

time of freezing and storage condition, cell count, sample quality comments (for 

example, indicating possible contamination) will also be logged in the database.  

 Samples will be stored in a -80 freezer within one hour of arrival.  

The freezers have a monitoring and alarm system for ensuring that sample 

conditions are maintained, and there is a backup freezer should a freezer fail.  

 

Blood 

EDTA Samples (Lavender):  

Preparation of Guthrie cards:  A spots of blood will be extracted from the EDTA 

sample with a Pasteur pipette and dropped onto the Guthrie card.  These cards will 

be dried well and stored in an alphabetical filing system at -80C. 

After blood has been spotted on card the sample will be discarded..   

Clot activator samples (Gold):  

The serum fraction produced by the gel separator plug is transferred directly to 

labelled cryostorage tubes (colour coded) and stored at -80C, again in 2 tubes. 
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Unique identifiers for each aliquot generated using appropriate software will be 

printed on nylon labels using a Brady BMP53 printer with Ribbon appropriate for 

storage conditions of up to -100C.   

 Labels will be fixed to the tubes at ambient temperature.  

Samples will be stored in a -80 freezer within the Institute of Neurology within one 

hour of arrival.  

 

Urine 

Urine will be aliquoted as two samples of 1ml within 1.5ml polypropylene tubes and 

the remaining volume will be stored as a single aliquot within the original screw top 

polypropylene container. 

Unique identifiers for each aliquot generated using appropriate software will be 

printed on nylon labels using a Brady BMP53 printer with Ribbon appropriate for 

storage conditions of up to -100C.   

Labels will be fixed to the tubes at ambient temperature.  

Samples will be stored in a -80 freezer within the Institute of Neurology within one 

hour of arrival.  

 

 

Transferring samples between centres: 

Sharing of samples between laboratories will not take place without discussion 

between the CSF laboratory and the PI or his nominees. Samples will be 

anonymised. Mechanisms for transfer sample transfer will be the responsibility of 

the CSF laboratory. 

 

Clinical Follow-up 

Subjects will be routinely asked whether or not they experienced a headache after 

the lumbar puncture.  

This information will be documented by a member of the specialist cognitive 

disorders team during their next clinical visit 

The Dementia Research Centre Clinical Research Fellow responsible for managing 

the CSF database (or deputy) will review the relevant specialist cognitive disorders 

clinic lists each week to identify subjects who have had a lumbar puncture since their 

last clinic visit. Their attending clinician will be asked to collect this information 

which will be documented in the research database.  
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Appendix B, Figure 2   Data collection sheet and sample transfer sheet 
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Appendix C.   Clinical Dementia Rating scoring sheet 

Not included online due to potential copyright restrictions 
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Appendix D.  Overview of Young Onset Alzheimer’s Disease 

(YOAD) study 

 Visit 1 Visit 2 Visit 3 

Day 1 Day 2  Day 1 Day 2 

Screening 

visit 

Continuation into full study 

Neurological 

assessment  

 

X 
  X  

Neuropsychology 

assessment 
X   X  

MRI –  

standard structural 
X   X  

MRI –  

advanced 

sequences (fMRI 

and sMRI) 

 X X  X 

Smell testing 

 
X     

Blood and urine 

samples 
X   X  

Eye tracking 

 
 X    

Lumbar puncture 

(optional) 
    X 

Consent for brain 

donation 
   X  

Appendix D.   Overview of Young Onset Alzheimer’s Disease (YOAD) 

study design (produced in collaboration with Dr Catherine Slattery and reproduced 

with her permission). Day 1 of the first visit includes the screening assessments for 

suitability to continue into the full study. ‘X’ indicates that the investigation of 

procedure was carried out at that point.   
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Appendix E.  Mean and standard deviation of all proteins included 

in the ELISA multiplex panel in Chapter 8  

 

 

Appendix E.1 Mean and standard deviation of each measured analyte across all 287 

subjects.  *: transformed data. The statistics are presented for the transformed 

values (see methods, chapter 8). Where data have been transformed the units relate 

to data before transformation. Continued in Appendix E.2/3.  
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Appendix E.2  Mean and standard deviation of each measured analyte across all 287 

subjects (continued).  *: transformed data. The statistics are presented for the 

transformed values (see methods). Where data have been transformed the units 

relate to data before transformation. 
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Appendix E.3 Mean and standard deviation of each measured analyte across 287 

subjects (continued). *: transformed data. 
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Appendix F.    Proteins and peptides included in mass spectrometry 

assay 

Name Protein  

Precursor 

m/z 

Product 

m/z 

Peptide 

sequence 

Detectable 

in 100ul CSF 

(Cohort 1)? 

Detectable in 

100ul CSF 

(Cohort 2)? 

Apolipoprotein AII APOA2 SPE 487.0511 659.4627 

SPELQAE

AK Yes yes 

 APOA2 SPE 487.0511 788.5582    

Apolipoprotein E 

(total) APOE AAT 749.7949 642.4312 

AATVGSL

AGQPLQE

R Yes yes 

 APOE AAT 749.7949 827.6254    

Apolipoprotein E 

E2 isoform 

ApoE E2 

carbo 554.79 345.14 

CLAVYQA

GAR Yes yes 

 

ApoE E2 

carbo 554.79 835.5545    

Apolipoprotein E 

112 E3 ApoE E3 112 611.76 491.24 

LGADME

DVCGR Yes not tested 

 ApoE E3 112 611.76 606.27    

Apolipoprotein E 

158 E3 

APOE E3 

158 475.0873 502.3396 

LAVYQA

GAR Yes yes 

 

APOE E3 

158 475.0873 665.4433    

Apolipoprotein E 

E4 isoform APOE E4 503.5173 835.4926 

LGADME

DVR Yes not tested 

 APOE E4 503.5173 892.499    

Apolipoprotein E 

E4 isoform Aqua 

peptide APOE E4 AP 506.524 841.5126 

AAQARLG

ADMED[

V(13C5; 

15N)]R Yes yes 

 APOE E4 AP 506.524 898.519    

Apolipoprotein H 

(beta2microglobuli

n) 

ApoH non 

carbo 796.0762 503.325 

ATFGCH

DGYSLD

GPEEIEC

TK Yes yes 

 

ApoH non 

carbo 796.0762 531.799    

Carboxypeptidase 

E 

CarboxypepE

-ELL 817.2226 356.2624 

ELLVIELS

DNPGVH

EPGEPEF

K Yes yes 

 

CarboxypepE

-ELL 817.2226 820.165    

CD166 CD166-QIG* 838.2949 397.0361 

QIGDALP

VSCTISAS

R Yes yes 

 CD166-QIG* 838.2949 829.1371    



 284 

Chitinase 3 Like 

protein 1 (YKL40) CH3L1 LVM 546.0934 439.7986  Yes yes 

 CH3L1 LVM 546.0934 577.3608 

LVMGIPT

FGR   

Chitinase 3 Like 

protein 1 (YKL40) CH3L1 TLL 761.7649 654.4573 

TLLSVGG

WNFGSQ

R Yes yes 

 CH3L1 TLL 761.7649 1008.5999     

Clusterin CLUS_LFD 625.6611 585.9436 

LFDSDPI

TVTVPVE

VSR Yes yes 

 CLUS_LFD 625.6611 686.5015    

Beta-Ala-His 

dipeptidase CNDP1 TVF 633.6272 533.4147 

TVFGTEP

DMIR Yes yes 

 CNDP1 TVF 633.6272 1065.6713    

Beta-Ala-His 

dipeptidase 

CNDP1 

WNY 506.0911 284.1387 

WNYIEG

TK Yes yes 

 

CNDP1 

WNY 506.0911 497.3354    

Cystatin C 

CystatinC 

ALD 614.1272 300.2003  Yes yes 

 

CystatinC 

ALD 614.1272 610.383 

ALDFAVG

EYNK   

Ectonucleotide 

pyrophosphatase/p

hosphodiesterase 

family member 2 

ENPP2 

WWG* 772.4634 929.4495 

WWGGQ

PLWITAT

K Yes yes 

 

ENPP2 

WWG* 772.4634 1171.4946    

Fibrinogen beta 

chain 

FIBB_MGP_

3p 846.65 333.18 

MGPTEL

LIEMED

WK Yes yes 

Ganglioside GM2 

activator 

GM2_by_K

M* 775.6234 769.6363  Yes yes 

 

GM2_optimu

m* 775.6234 213.176 

SEFVVPD

LELPSWL

TTGNYR   

Insulin like Growth 

Factor 2 IGF2_SCD 906.9619 315.2079 

SCDLALL

ETYCATP

AK Yes yes 

 IGF2_SCD 906.9619 363.0458     

Lysosome-

associated 

membrane 

glycoprotein 2 

LAMP2_GIL

_2P_02* 656.91 829.45  Yes yes 

 

LAMP2_GIL

_2P_03* 656.91 359.21 

GILTVDE

LLAIR   

Limbic system 

associated 

membrane protein 

LSAMP 

Doubly 529.9043 521.1044 

INSANGL

EIK Yes yes 

 LSAMP 529.9043 831.6159    
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Doubly 

Osteopontin 

Osteopontin-

1 927.9 511.36 

AIPVAQD

LNAPSD

WDSR Yes yes 

 

Osteopontin-

1 927.9 835.81    

Pappalysin-1 

PAPP A 

LDG 3+ ok 488.3037 365.4114 

LDGSTHL

NIFFAK 

yes- not 

quantifiable 

due to peak 

interference yes 

 

PAPP A 

LDG 3+ ok 488.3037 495.5653    

Prosaposin* 

SAPA_EIV_2

P_02 865.46 215.18 

EIVDSYL

PVILDIIK Yes not tested 

 

SAPA_EIV_2

P_03 865.46 910.53    

Serum Amyloid A4 

SerumAmyloi

dA4-EAL 567.0596 363.2195 

EALQGV

GDMGR Yes yes 

 

SerumAmyloi

dA4-EAL 567.0596 535.3104    

Apolipoprotein E 

Heavy peptide TIMP1-GFQ 617.5534 404.1179 

GFQALG

DAADIR Yes yes 

 TIMP1-GFQ 617.5534 717.3912    

Metalloproteinase 

inhibitor 1 

TREM2_VL

V_492 492.6411 632.0681 

VLVEVLA

DPLDHR Yes yes 

 

TREM2_VL

V_492 492.6411 688.6233    

Triggering 

receptor expressed 

on myeloid cells 2 

TRFE_EFQ_

3p 426.5 387.21    

 

TTHY_AAD

_2p 698.13 606.36 

AADDTW

EPFASGK Yes not tested 

 

TTHY_YTI_

3p 787.82 1002.3 

YTIAALL

SPYSYST

TAVVTNP

K Yes yes 

Transthyretin Ubqtn_TIT 894.7511 298.1879 

TITLEVE

PSDTIEN

VK Yes No 

Transthyretin Ubqtn_TIT 894.7511 1002.5528    

Ubitqutin species 

derived peptide 

VITAMIN D 

BINDING 

PROTEIN 789.54 657.24 

VPTADLE

DVLPLAE

DITNILSK Yes yes 

 

VITAMIN D 

BINDING 

PROTEIN 789.54 1053.93    

VITAMIN D 

BINDING 

PROTEIN 

Vitrnctn 

FED* 712.1811 435.3108 

FEDGVL

DPDYPR Yes yes 

 

Vitrnctn 

FED* 712.1811 647.4367    
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Vitromectin 

Vitrnctn 

SIA* 835.4319 310.2264 

SIAQYWL

GCPAPG

HL Yes yes 

 

Vitrnctn 

SIA* 835.4319 423.2977    

Vitromectin 

VSetTM2-

GPE* 1008.031 627.2576 

GPEDLDP

GAEGAG

AQVELLP

DR   

 

VSetTM2-

GPE* 1008.031 1198.2634  Yes yes 

 

Yeast 

Enolase AVD 

789 790.1596 661.4872 

AVDDFLI

SLDGTAN

K   

Vset 

transmembrane 

domain 2 

Yeast 

Enolase AVD 

789 790.1596 805.5706    

Yeast Enolase 

internal standard 

protein 

Yeast 

Enolase AVD 

789 790.1596 918.6694    

  

Yeast 

Enolase GNP 

708 709.0596 377.2864 

GNPTVE

VELTTEK   

 

Yeast 

Enolase GNP 

708 709.0596 451.4681  Yes yes 

  

Yeast 

Enolase GNP 

708 709.0596 948.6764    

 

Yeast 

Enolase SIV 

614 614.5796 306.2782  Yes yes 

  

Yeast 

Enolase SIV 

614 614.5796 514.8752 

SIVPSGAS

TGVHEA

LEMR   

 

Yeast 

Enolase SIV 

614 614.5796 547.8778 

TLLSVGG

WNFGSQ

R Yes yes 

  

Yeast 

Enolase SIV 

614 614.5796 821.3544     

b-amyloid 40 

b-amyloid 40 

2+ 543.5673 412.31    

 

b-amyloid 40 

2+ 543.5673 561.3157 

GAIIGLM

VGGVV Yes yes 

Triggering 

receptor expressed 

on myeloid cells 2 

TREM2PEP

1 562.01 937.18 

VVSTHNL

WLLSFLR Yes yes 

 

TREM2PEP

1 562.01 1050.27    

Neural Cell NCAM1 FIV 662.6772 532.9085 FIVLSNN Yes not tested 
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Adhesion Molecule 

1 

YLQI 

 NCAM1 FIV 662.6772 597.0048    

Trefoil 3 trefoil3_IPG 726.8572 715.201 

IPGVPWC

FKPLQEA

ECTF No not tested 

 trefoil3_IPG 726.8572 721.1159    

glucosylceramidase 

1 

GBA1-

2_Doubly 731.16 1100.6 

NFVDSPII

VDITK Yes no 

 

GBA1-

2_Doubly 731.16 1199.67    

Insulin like Growth 

Factor 2 IGF1-GPE 770.1011 347.1612 

GPETLCG

AELVDAL

QFVCGD

R Yes yes 

 IGF1-GPE 770.1011 606.2991    

Pappalysin-1 PappA VSF 802.0043 786.5862 

VSFSSPLV

AISGVAL

R Yes yes 

 PappA VSF 802.0043 1095.86    

Lysosome-

associated 

membrane 

glycoprotein 1 

LAMP1_FFL

QGIQLNTIL

PDAR 923.9249 458.272 

FFLQGIQ

LNTILPD

AR Yes yes 

 

LAMP1_FFL

QGIQLNTIL

PDAR 923.9249 571.3269    

Myelin basic 

protein MBP_TQD 487.8949 285.1158 

TQDENP

VVHFFK No not tested 

 MBP_TQD 487.8949 616.4953    

Ubiquitin carboxyl-

terminal hydrolase 

isozyme L1 UCHL1-LGF 532.7281 747.3007 

LGFEDGS

VLK Yes no 

 UCHL1-LGF 532.7281 894.3056    

DJ1 DJ1_triply 554.2234 674.1549 

GLIAAICA

GPTALLA

HEIGFGS

K Yes no 

 DJ1_triply 554.2234 723.7188    

Serum Amyloid P 

SerumAmyloi

dP 578.9681 508.3865 

VGEYSLY

IGR Yes yes 

 

SerumAmyloi

dP 578.9681 708.5315    

Ras-related protein 

Rab-30 

Rab30_QNT 

3+ 585.2757 442.2915 

QNTLVN

NVSSPLP

GEGK Yes yes 

 

Rab30_QNT 

3+ 585.2757 487.2676 
 

  

 

Yeast 

Enolase SIV 

614 614.5796 306.2782    
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Yeast 

Enolase SIV 

614 614.5796 514.8752    

 

Yeast 

Enolase SIV 

614 614.5796 547.8778    

 

Yeast 

Enolase SIV 

614 614.5796 821.3544    

Ubiquitin carboxyl-

terminal hydrolase 

isozyme L1 

UCHL1-

MPF 615.1096 734.5051 

MPFPVN

HGASSED

TLLK Yes no 

 

UCHL1-

MPF 615.1096 856.5666    

Alpha synuclein A syn quadru 643.7273 339.3462 

EQVTNV

GGAVVT

GVTAVA

QK Yes no 

 A syn quadru 643.7273 346.3015    

Tau protein 

(MAPT)  T-tau LQT 655.7134 472.3165 

LQTAPVP

MPDLK Yes no 

 T-tau LQT 655.7134 896.6035    

Tau protein 

(MAPT) heavy 

peptide 

T-tau LQT 

AP 659.2219 479.3165 

SRLQTAP

VPMPD[L

(13C6; 

15N)]K   

 

T-tau LQT 

AP 659.2219 903.6035    

 GBA2 ACG 691.522 743.1383    

 GBA2 ACG 691.522 836.2809    

Aldolase B AldoB-IAD  715.1687 709.1391 

IADQCPSS

LAIQENA

NALAR No not tested 

 AldoB-IAD  715.1687 858.7665    

Synapsin 1 Synapsin 1 727.7049 443.3207 

EMLSSTT

YPVVVK Not very well yes 

 Synapsin 1 727.7049 541.5081    

Neural Cell 

Adhesion Molecule 

1 NCAM1 YIF 759.2849 1093.695 

YIFSDDSS

QLTIK Yes yes 

 NCAM1 YIF 759.2849 1240.867    

Insulin-like growth 

factor-binding 

protein 2 IBP2-TPC* 808.6957 644.3944 

TPCQQEL

DQVLER 
Yes yes 

 IBP2-TPC 808.6957 758.3367    

b-amyloid 38 

b-amyloid 38 

2+ 444.4611 363.1562 

GAIIGLM

VGG Yes yes 

 

b-amyloid 38 

2+ 444.4611 525.3007    

Endothelial protein 

C receptor EPCR-TLA 516.0596 433.2602  Yes no  
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 EPCR-TLA 516.0596 816.6147 

TLAFPLT

IR   

Protein S100B S100B 569.9873 703.7626 

AMVALID

VFHQYSG

R Yes yes 

 S100B 569.9873 753.2795    

Neurofilament light 

protein NFL-VLE 578.2011 387.2939 

VLEAELL

VLR 

not very well 

due to 

interfering 

peak not tested 

 NFL-VLE 578.2011 942.7229    

Insulin B 

InsB digest 

651 4+ 651.4043 521.3715 

FVNQHLC

GSHLVEA

LYLVCGE

R No not tested 

 

InsB digest 

651 4+ 651.4043 797.3206    

 GBA2 NVI 663.5311 514.3973    

 GBA2 NVI 663.5311 888.35    

Malate 

dehydrogenase 

MalateDehyd

rCyto-FVE 697.7287 546.3637 

FVEGLPI

NDFSR Yes yes 

 

MalateDehyd

rCyto-FVE 697.7287 848.5662    

 

Yeast 

Enolase AVD 

789 790.1596 661.4872    

 

Yeast 

Enolase AVD 

789 790.1596 805.5706 

AVDDFLI

SLDGTAN

K   

 

Yeast 

Enolase AVD 

789 790.1596 918.6694    

Lysosome-

associated 

membrane 

glycoprotein 1 

LAMP1_NM

TFDLPSDA

TVVLNR_89

7 897.3534 364.1983 

NMTFDL

PSDATVV

LNR Yes yes 

 

LAMP1_NM

TFDLPSDA

TVVLNR_89

7 897.3534 1071.726    

Trefoil 3 Trefoil3_vdc 424.9557 529.736 

VDCGYP

HVTPKEC

NNR No not tested 

 Trefoil3_vdc 424.9557 587.2962    

Pro-orexin 

14 OREXIN 

PROPEP TC 451.4787 512.5109 

AGAEPAP

RPCLGR Yes yes 

 

14 OREXIN 

PROPEP TC 451.4787 641.1357    

Progranulin PRGN_VHC 492.2181 237.1425 

VHCCPH

GAFCDLV

HTR No not tested 
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 PRGN_VHC 492.2181 413.234    

Chitotriosidase 

CHITO_AD

G_2P_02 501.65 311.2 

ADGLYP

NPRER not very well yes 

 

CHITO_AD

G_2P_01  501.65 646.2    

Fibrinogen A 

FIBA_HPD_

2p 532.19 621.25 

HPDEAAF

FDTASTG

K Yes yes 

Glial fibrillary 

acidic protein GFAP 589.5873 616.4967 

LADVYQ

AELR Yes no  

 GFAP 589.5873 779.5966    

Glutathione S 

transferase omega GSTO1-GSA 661.1811 553.3864 

GSAPPGP

VPEGSIR Yes yes 

 GSTO1-GSA 661.1811 658.3671    

 

Yeast 

Enolase GNP 

708 709.0596 377.2864 

R.GNPTV

EVELTTE

K.G [15, 

27]   

 

Yeast 

Enolase GNP 

708 709.0596 451.4681    

 

Yeast 

Enolase GNP 

708 709.0596 948.6764    

Trefoil 2 

Tref_Fac2_Q

ES 791.7243 377.1338 

QESDQCV

MEVSDR No not tested 

 

Tref_Fac2_Q

ES 791.7243 782.7479    

Trefoil 2 

TREF_FAC2

_NCG 848.8381 332.1084 

NCGYPGI

SPEECAS

R No not tested 

List of peptides and transitions included in Multiplex targeted proteomics assay 

(courtesy of Dr Wendy Heywood, who designed the assay);  *Denotes biomarkers 

identified using 2D-LC-MSe profiling of neurodegenerative CSF; Red colour 

denotes peptides that could not reliably be detected in CSF and were not included in 

the final panel. 
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