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Abstract

The teleparallel equivalent of general relativity is an intriguing alternative formula-

tion of general relativity. In this thesis, we examine theories of teleparallel gravity

in detail, and explore their relation to a whole spectrum of alternative gravitational

models, discussing their position within the hierarchy of Metric Affine Gravity mod-

els. Consideration of alternative gravity models is motivated by a discussion of some

of the problems of modern day cosmology, with a particular focus on the dark en-

ergy problem. Modifications of gravity in the teleparallel framework are examined as

potential models to alleviate some of these issues and the relationships between var-

ious teleparallel and non-teleparallel modified gravity models are analysed in depth.

In particular f(T,B) gravity, where T is a torsion scalar and B is a derivative of

a torsion vector, is introduced as a way of analysing both f(T ) gravity and f(R)

gravity, where R is the Ricci scalar, within the same unified framework. Various

theoretical issues of all of these theories are discussed. In a similar way, teleparallel

scalar-tensor models are analysed, taking into account coupling between torsion and

a scalar field, with dynamical systems techniques utilised to analyse the cosmology

of these models. An interesting conformal relationship is found to hold between

teleparallel scalar-tensor models and f(T,B) gravity.
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Chapter 1

Introduction

The last 12 months will go down in scientific history as a momentous year for our

understanding of the laws of gravity. Just a few months after the general theory of

relativity celebrated the one hundredth anniversary of its publication in November

2015, one of its grandest predictions was finally confirmed. Gravitational waves

were directly detected by the LIGO collaboration, confirming their existence beyond

doubt. This confirmation happened one hundred years after they were first predicted

by Albert Einstein in 1916 [4].

Einstein dedicated many years of his life to perfecting arguably his greatest

achievement: his general theory of relativity. For the two centuries preceding Ein-

stein, the laws of gravity had been described using Newton’s laws of gravitation: an

empirical law outlined by Isaac Newton in his seminal Principia in 1687. In New-

ton’s view gravity acted as a conventional force: two objects with mass experience

a mutual attraction, in a similar way to two magnets with opposite poles mutually

attracting each other. This force law works very well in many circumstances, and

to this day Newtonian gravity is an accurate description of reality, provided the

objects in question are moving slowly comparative to the speed of light, and that

the objects are not excessively massive. Indeed it was Newton’s laws which were

1
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sufficient for taking man to the moon.

However in 1905, during a seminal year, Einstein published his special theory

of relativity, outlining in detail the relationship between space and time, and de-

termining how light and matter travel at high speeds. It revolutionised the way we

describe the underlying fabric of the universe. It was based on two postulates: the

speed of light is the same for all observers in a vacuum, and that all physical laws

are invariant in all inertial (non-accelerating) frames of reference. However, this spe-

cial theory of relativity was inconsistent with Newton’s universal law of gravitation:

Newton’s gravity acted instantaneously and was not bounded by this upper speed

limit.

This set Einstein on a ten year quest to reconcile his theory of special relativity

with gravity. In doing so, using powerful ideas from a branch of mathematics known

as differential geometry, he completely revolutionised how we think of gravity. His

general theory of relativity replaced the gravitational force laws of Newton within

an elegant geometric framework. Now matter in a gravitational field travelled along

“straight lines” in spacetime, but the gravitational effects of matter caused spacetime

itself to deform and curve, so that these straight lines themselves were curved. That

is, particles now followed geodesics of a curved manifold. Gravity was no longer a

force, it was a manifestation of the curvature of the underlying spacetime.

Over the subsequent century, general relativity has passed pretty much every

test that has been thrown at it, and continues to agree with observational and

experimental evidence to a remarkable degree of precision. The discovery of gravi-

tational waves at the Laser Interferometer Gravitational-Wave Observatory (LIGO)

detectors in America, provided the first test of general relativity in the strong field

regime [5]. Further gravitational wave events have subsequently been detected by

the experiment, and the detectors are now at such a sensitivity that many more

events are expected to be detected in the near future. The first event detected was

that of two black holes coalescing, and the observed signal coincides with what is
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to be expected from numerical solutions of the field equations of general relativity.

On the other scale, in the weak field regime of general relativity, solar system ex-

periments over the last century place very strong bounds, to many decimal places,

of any deviations from general relativity.

So it seems like we have a theory of gravity that is theoretically consistent and

experimentally supported, at least at the classical level.1. In which case, it may ap-

pear legitimate to ask: what is the point of this thesis? Why do we need to continue

studying gravity theoretically? What is the point of exploring alternative theories

of gravity? Well it appears that something is not quite right in our understanding

of the universe. There are three unexplained gravitational phenomena, observed by

astrophysicists and cosmologists, which are difficult to explain with general relativ-

ity alone, which hint at the possibility of new physics. These phenomena appear at

length scales beyond those at which we have been able to accurately test general

relativity.

Let us outline the phenomena I am referring to. The first of them to be discovered

is now commonly referred to as the dark matter problem: essentially this problem

is about why there is a huge amount of missing mass in the universe. Experimental

evidence for the existence of dark matter comes from two main areas: the behaviour

of galactic rotation curves, an issue first observed by Rubin [6] in 1980, and the

mass discrepancy problem in galactic clusters. Both of these effects potentially

imply there exists additional matter at galactic and extra-galactic scales, that only

interacts with normal matter via the weak nuclear force and its main interaction,

the gravitational force [7].

Let us take a closer look at the behaviour of galactic rotation curves of spiral

galaxies, which give strong evidence for the presence of some additional form of

matter. Observations of neutral hydrogen clouds lying at large distances from the

1That is ignoring problems with quantum field theory, in which famously there is no known
consistent theory unifying general relativity with quantum field theory, in part due to quantum
theories of gravity being non-re-normalisable. Alas, this is not a subject for this thesis.
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galactic center reveal that these clouds are moving at an approximately constant

tangential velocity vtg. However, galactic dynamics are well described by Newton’s

law of gravity, and this together with the equation for the centrifugal force yield a

relation between the tangential velocity and the Newtonian potential,

v2
tg

r2
=
GM

r3
, (1.1)

with G Newton’s gravitational constant. Assuming the validity of this formula, for

parts of the outer galaxy to move with approximately constant tangential velocity,

it would require the mass of this region to grow linearly with r. This is in stark

contrast to observations which show that these regions where the clouds are present

contain little luminous matter. Thus, it is proposed an additional matter component

is required to explain this behaviour, which has been dubbed dark matter, as we

cannot see it. There exists a plethora of dark matter models, for example see [8],

which usually have roots derived in theories of particle physics.

Nonetheless, despite many attempts to detect dark matter particles, they have so

far evaded all searches. Until they have been conclusively detected, there remains the

possibility that dark matter does not exist, and some other phenomena is causing this

behaviour. Perhaps equation (1.1) is incorrect, it could be that the right hand side of

the equation is modified at large distances to account for the observed discrepancies?

Admittedly, this is rather a niche view in the current literature, although it does lend

motivation to studying alternative theories of gravity. We will not touch directly on

the dark matter problem in this thesis.

Let us move on to the second of these gravitational problems: this is the inflation

problem. Inflation was first proposed in 1980 as a way of potentially explain the non-

existence of magnetic monopoles in the observable universe. Shortly after, it was also

realised that inflation could possibly solve two additional problems of early universe

cosmology: the horizon problem and the flatness problem. Broadly speaking, the
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question is why is the universe as isotropic as it is? Why is it, that when we look

into the Cosmic Microwave Background radiation, areas of the sky which have never

been in causal contact are in thermal equilibrium? The idea behind inflation is that

the universe underwent a period of rapid exponential expansion very shortly after

the big bang, increasing the volume of the universe by approximately 60 orders of

magnitude. This rapid expansion allowed any inhomogeneities in the early universe

to be smoothed out to an extent that gives us the now observed Cosmic Microwave

Background.

One can account for a period of early universe inflation in the universe relatively

simply with just one additional degree of freedom, assuming the existence of an

extra particle in the universe known as the inflaton, equivalently requiring a suitable

chosen scalar field to exist. At the moment there are many models of inflation which

are consistent with observable data. And thus until we have better observational

bounds on the space of possible models, there remain many options open to be

explored theoretically.2

The final and most recently discovered of these three problems is another prob-

lem of cosmology: this is the dark energy problem. This problem was not observed

until the late 1990s, with its discovery completely unanticipated by cosmologists.

It was found that not only was the universe expanding (as has been known since

Hubble in the late 1920s), but that the expansion rate was increasing: the universe

was accelerating. This Nobel prize winning discovery came about from observa-

tions of distant supernovae, and in the subsequent two decades this finding has

been confirmed by a variety of increasingly precise cosmological measurements. The

reason for this accelerated expansion has been attributed to something now com-

monly referred to as dark energy. However physicists are still lacking a satisfactory

theoretical description as to what this dark energy is.

2Additionally there are some physicists, in a minority these days, who do not believe in inflation
at all, believing it to raise more philosophical questions and difficulties than it answers.



CHAPTER 1. INTRODUCTION 6

The standard cosmological model assumes the existence of an object called the

cosmological constant to explain dark energy. This constant was first proposed by

Einstein himself, when he discovered that the field equations of general relativity

could exhibit a steady state or static cosmological universe solution if this constant

existed. At the time this was the preferred cosmological model. However, when

Hubble discovered the expansion of the universe, there was no longer any need for

a static universe solution, and so the constant was disregarded.3 However, in recent

decades, the idea of the constant has been subsequently resurrected as it provides

a means of generating an accelerating solution. At the moment, its predictions are

consistent with all observations to date, see [9]. However, the cosmological constant

model suffers from a variety of theoretical difficulties. Most of these are related to

the fact that it has an extremely small observed value, compared to predictions of

what its value should be that arise from quantum field theoretical considerations.

Many alternatives have been proposed to this simple cosmological constant model.

One such approach is to assume that dark energy is instead a dynamical quantity.

One could add an additional form of energy into the universe via an object called a

scalar field to account for this: the standard way to do this is called quintessence.

However cosmological observations mean that quintessence models are required to

be increasingly fine tuned to match the observed behaviour, and so many alternative

models have been proposed.

One could solve all three of the dark energy, dark matter and inflation problems

by assuming there are additional matter or energy components in the universe. In

fact this is the approach taken in the current standard cosmological model, which

is known as ΛCDM cosmology, where Λ is the cosmological constant and CDM

stands for cold dark matter. But there are alternative models: one could instead

consider modifying the laws of gravity i.e. changing the general theory of relativity.

3Moreover it was later found that this static solution was in fact not stable to cosmological
perturbations.
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Despite general relativity’s incredible experimental success, these successes have all

been at relatively small length scales, that is sub-galactic scales, solar system scales

or smaller. Assuming these laws hold at much greater length scales: galactic and

greater, is a massive extrapolation of many orders of magnitude. It is therefore

imperative that the potential for alternative theories of gravitation to explain these

large length scale phenomena should be explored, and indeed it has been the case

that over the last couple of decades such alternatives have been increasingly inves-

tigated.

A further reason to study modified gravity models is that there is in fact an

interesting relationship between certain theories of modified gravity and models of

general relativity where additional matter fields are present. In fact if one adds a

scalar field into the universe, via a symmetry transformation one can transform this

into a modified gravity model. Thus studying modified gravity gives us another way

of analysing inflation models or simple scalar field dark energy models.

Modifications of general relativity began being explored almost immediately after

Einstein first proposed his theory in 1915. Initial attempts were made by Einstein,

Weyl and others to unify general relativity with electromagnetism. Over the past

century a plethora of other modifications have been considered, motivated by a

variety of different reasons: there have been attempts to quantize gravity, to unify

gravity with the strong and weak nuclear forces, to remove singularities from general

relativity and to include micro-structural properties such as interactions between

spin and the gravitational field.

One could fill many pages with a list of all the different modifications of gravity

that have been proposed. To name but a few, there is f(R) gravity, f(T ) grav-

ity, scalar tensor gravity, bimetric gravity, modified Gauss-Bonnet gravity, massive

gravity, Horndeski gravity, teleparallel dark energy, hybrid metric Palatini gravity

and we could go on. With such a plethora of modified theories out there, how do we

make sense of them all? One way is to try and unify different theories into broad
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unified frameworks, that allows one to study the features of the theory needed to

agree with observations. Another is to look at if modifications are really different,

or are they in fact physically equivalent? One can look at the effects of a conformal

transformation, which changes the length and time scales of the theory, and map

different modifications into other modifications.

One test any viable modified theory of gravity must pass is that it has a consistent

cosmology which is able to replicate the current known cosmological history and

observations. This alone does not guarantee that the modification is correct, one

must also ensure that the theory of gravitation as a whole is consistent, and that

it can pass the many solar system constraints that observations have placed. This

means at small scales the theory must well approximate general relativity with any

deviations being very small.

One intriguing alternative to general relativity is called teleparallel gravity and

it is this theory, along with its modifications, that is the main study of this thesis.

Teleparallel gravity was in fact studied by Einstein himself as a way to try and

unify general relativity with the laws of electromagnetism. This attempt ultimately

failed once it was realised that the gravitational and electromagnetic interactions

had to be treated differently due to their different properties, such as their radically

different field strengths. But Einstein’s work in this area led him to construct a

theory which was completely physically equivalent to general relativity, however it

has a very different interpretation. This interpretation is arguably less revolutionary

than general relativity itself, with the curvature of the universe being replaced by

simple force laws. This theory is known as the Teleparallel Equivalent of General

Relativity (TEGR).

Teleparallel gravity, as is general relativity, is itself a special case of a more

general gravitational theory known as metric affine gravity. Metric affine gravity is

a very broad theory which allows one to take into account micro-structural properties

of matter, such as spin and hypermomentum. The consideration of this additional
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structure has shown itself to have some desirable physical features, such as the ability

to avoid the singularities that are prevalent in general relativity and is potentially

more suitable for quantisation attempts. This theory is very broad, and its structure

will in fact encompass all of the gravitational theories we study in this thesis. It

has a number of special cases which have been extensively studied in the literature,

such as Einstein-Cartan theory, along with the TEGR.

Now with two equivalent theories, general relativity and the TEGR, both leading

to the same observational consequences it poses the question: when one wants to

modify gravity, which of the two theories do you modify? As soon as one modifies the

theories, the equivalence between them breaks down, and so there is not necessarily

a reason to favour one approach or the other: it is only studying the physical

properties of the theories that can lead us towards the correct approach. Modified

teleparallel theories of gravity have shown themselves to be of great potential use in

the inflation and dark energy problems. They differ from conventional metric based

modifications and possess interesting properties. We will have a look at some of

these during this thesis.

Ultimately, it is only observational data that will eventually settle the question of

what is the correct theory of gravity, and whether alternatives to general relativity

are viable theories. New observational results are appearing all the time, for example

the LIGO gravitational wave detections, and such data is continually improving the

bounds on any deviations from the general theory of relativity.
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Thesis Outline

This thesis will begin in Chapter 2 by introducing the differential geometric frame-

work of a general theory of gravitation, introducing the relevant spaces and geomet-

rical objects required for defining a theory of gravity. In particular we will introduce

the metric, tetrad, connection, the curvature tensor, the torsion tensor and the non-

metricity tensor. In Chapter 3 these differential geometric concepts will be used

to define different theories of gravity. We will start with general relativity, before

broadening out to look at some other theories, culminating in the very general metric

affine gravity.

Chapter 4 will move on to looking at teleparallel gravity and the TEGR. We will

explore various properties of the theory, looking at the equivalent of the geodesic

equation and issues of Lorentz invariance. The equivalence with general relativity

will be demonstrated explicitly, and we will also see how the theory can be embedded

into a Metric Affine framework.

Chapter 5 will look at how we can use the laws of gravity to study the evolution

of the universe as a whole: the subject of cosmology. This will include an in-depth

look at the dark energy and cosmological constant problems. Dynamical systems

techniques in cosmology will be introduced, which will allow us to explore the broad

dynamical behaviour of a range of different theories to see if they have potential

to exhibit a viable cosmology. A scalar field model is introduced as an illustrative

example of these techniques. We will then introduce various metric and teleparallel

based modified gravity theories, briefly outlining some of their properties. Two

of the theories introduced are known as f(R) gravity, in the general relativistic

framework, and f(T ) gravity, in the teleparallel framework. We will also briefly

mention some other teleparallel modified gravity theories.

Chapter 6 will examine a broader modification of gravity, f(T,B) gravity. This

modification will include both of these f(R) and f(T ) gravity modifications as par-
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ticular limiting cases. Writing the theory in this way allows us to explore in detail

the structure and advantages/disadvantages of both of these sub-theories, and we

will discuss issues of Lorentz invariance and the conservation equation, before taking

a glimpse at the cosmology of these models. This chapter is heavily based on the

paper [1].

In Chapter 7 we will take a similar approach to considering gravitational modifi-

cations within the teleparallel and relativistic frameworks. We will examine scalar-

tensor modifications: these are scalar field models, but those which possess a non-

minimal coupling between the scalar field and the gravitational sector. We will

perform a very general dynamical systems analysis, and see that there are a vari-

ety of interesting cosmological phenomena that can be observed, depending on the

choice of coupling parameter between the scalar field and gravity. This chapter is

based on and extends the results of [2, 10].

Chapter 8 will then look at the topic of conformal transformations within telepar-

allel theories. It is a well known result that f(R) gravity can be transformed to a

simple minimally coupled scalar field model, and vice versa, by simply rescaling the

metric appropriately. This result is known not to apply directly to f(T ) gravity, but

by taking a fresh look at this we will see that there are some very interesting equiv-

alences between certain types of f(T,B) gravity models and nonminimally coupled

scalar field models. This forms an interesting link between the models studied in

Chapter 6 and Chapter 7. This chapter is heavily based on [3].

Finally, in Chapter 9 we will conclude this thesis. The main ideas will be sum-

marised and some of the broad themes that appear during this thesis will be dis-

cussed. Various conventions appear throughout the literature on teleparallel grav-

ity, we will summarise the conventions used in this thesis in Appendix A. The

papers [1], [2], [3] are included as Appendix B, C and D respectively.



Chapter 2

General linear spaces: curvature,

torsion & non-metricity

One of Einstein’s great insights was to realise that the gravitational interaction can

be described with a dynamical theory of geometry. And so to analyse gravity, one

must first understand geometry. In particular, mathematically, theories of gravity

occur in the language of differential geometry and so one needs a firm understanding

of differential geometry. In this chapter we will introduce some of the necessary and

important geometrical constructs that are required to formulate a theory of gravity.

The definition of a spacetime will be introduced, along with that of a metric, a

tetrad and a connection. These will then be used to introduce various geometrical

objects that characterise the spacetime, including the curvature, torsion and non-

metricity tensors. We will see that the presence or absence of these geometrical

objects allow us to define various spaces and subspaces that are of physical and

mathematical interest. Altogether, these objects and spaces will form the basis for

formulating a very general framework of a theory of gravity that will be introduced

fully in the next chapter: metric affine gravity.

12
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2.1 Spacetime and geometry

The space in which we will be working in throughout this thesis is called a four

dimensional, or a (3 + 1) dimensional, spacetime1, which has the properties of a

continuum. Three of these dimensions are spatial, while the remaining one is tem-

poral. In particular spacetime is an abstract space called a manifold, which we

denote by M. Broadly speaking a manifold locally has the differential structure

of four dimensional Euclidean space R4. However it does not necessarily share its

global properties. This local Euclidean property means that locally at any point

we can always choose a particular set of coordinates xµ that are valid for a suit-

ably small neighbourhood around that point, with µ here denoting these coordinate

or spacetime indices, which lie in the range 0, ..., 3, with 0 denoting the temporal

coordinate.

2.1.1 The metric

The manifolds of interest to us will come equipped with some additional structure

defined on them, in the form of a metric, which we denote by gµν and a connection,

Γρµν which we will discuss later in this chapter. The metric describes how to measure

local distances and angles in the spacetime, and determines its causal structure. It is

a symmetric rank 2 tensor. In order to describe a spacetime, the metric is required to

have a Lorentzian signature, that is has signature (+−−−) or (−+++), depending

on convention. This means that the metric, which is required to be non-degenerate,

has three eigenvalues of one sign, with the other eigenvalue of the opposing sign.

This Lorentzian property means that mathematically the metric is actually only

a pseudo-metric, as it is lacking in the property of positive definiteness: there are

1One can construct more general theories of gravity in higher (n + 1)-dimensions, which, by
motivation from theories such as string theory or braneworld models, are frequently studied in the
literature.
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non-zero vectors whose inner product with respect to the metric is null. It is these

null vectors which describe the light-cones and causal structure of the spacetime.

Given a metric and coordinates xµ, one can define the local line element on the

spacetime as follows

ds2 = gµνdx
µdxν , (2.1)

where throughout this thesis Einstein’s summation convention is used, with repeated

indices being summed over their entire range. The metric’s determinant is denoted

by g, which due to the metric’s non-degeneracy is non-vanishing. Hence the metric

possesses an inverse, denoted with upper indices, gµν , so that

gµνg
νρ = δρµ. (2.2)

The simplest example of a Lorentzian spacetime manifold is Minkowski space.

This is the geometric framework of Einstein’s theory of special relativity. Globally

Minkowski space is flat and has a constant metric in Cartesian-type coordinates

(ct, x, y, z) given by

ηµν = diag(1,−1,−1,−1), (2.3)

or alternatively with all the signs switched over depending on signature convention.

In the coordinates, c is the speed of light, which from henceforth for the duration of

this thesis will be set equal to unity, c = 1, using natural units. Minkowski space ad-

ditionally possesses a trivial connection2. Minkowski space describes the geometric

setting for the universe without the presence of gravity, and indeed all other physics

2Although this does not mean the connection is necessarily identically zero. For example
Minkowski space written in spherical polar coordinates has a non-zero connection. This is because
the connection is not a tensor, so vanishing in one coordinate system does not imply vanishing in
another.
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can be formulated on a Minkowski space background, including Electromagnetism

and Quantum Field Theory. Minkowski space allows for the formulation of theories

that remain the same for all inertial observers. However, if one wants to include

gravity, requiring a description of non-inertial observers, one needs to go beyond

Minkowski space.

However, for a more general spacetime possessing a non-trivial metric, due to

the manifold structure at each point p of the manifold we can define an associated

tangent space, Tp(M), which is flat and has the structure of Minkowski space. The

union of all of the tangent spaces on the manifold is known as the tangent bundle.

This point leads us onto defining the concept of a tetrad.

2.1.2 The tetrad

In this section we introduce the concept of a tetrad or vierbein (German for four

legs). At every point p of our manifold M, the tetrad is defined to be a basis

of orthonormal vectors lying in the tangent space Tp(M), and we denote them by

ea(x
µ), where the Latin indices are coordinates on the tangent space, and again

Greek indices correspond to indices of suitably chosen local spacetime coordinates.

Both take values in the range µ, a = 0, 1, 2, 3. The orthonormality condition means

that their inner product with respect to the metric, gives the Minkowski metric

ea · eb = ηab. (2.4)

Now, we can always choose to work in the local coordinate basis ∂µ of our manifold,

and thus we can express the tetrad in component form in terms of this basis

ea = eµa∂µ, (2.5)
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and it is frequently more convenient to explicitly work with eµa . Written as a ma-

trix, the tetrad is non-singular, and so this means we can define the inverse tetrad,

alternatively sometimes referred to as the cotetrad, eaµ which is defined according to

the relations

eµme
n
µ = δnm , (2.6)

eνme
m
µ = δνµ . (2.7)

The physical metric gµν on the manifold can be expressed in terms of the tetrad

and the Minkowski metric as

gµν = eaµe
b
νηab . (2.8)

The tetrad uniquely determines the metric, but not vice versa. In general the tetrad

possesses 16 individual components, whereas the metric only has 10. These addi-

tional 6 components are related to Lorentz invariance: a Lorentz transformation of

the form e′aµ = Λa
be
b
µ will still result in the same physical metric. Here Λa

b is an

element of the Lorentz group SO(3, 1), which is a six dimensional group correspond-

ing to six degrees of freedom (3 boosts and 3 rotations), whose elements satisfy the

condition ηcdΛ
c
aΛ

d
b = ηab. Likewise there is a simple relationship between the in-

verse metric and the cotetrad, with the inverse metric being expressed in terms of

the cotetrads as follows

gµν = eµae
ν
bη

ab . (2.9)

One can also define the quantity e to be the determinant of the tetrad eaµ, which

is equivalent to the volume element of the metric, so that e =
√
−g where g is the

determinant of the metric.

The tetrad field allows one to compare the direction of tangent vectors at different
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points on the manifold, and thus gives rise to the concept of distant parallelism,

something we will return to in Chapter 4.

2.1.3 The connection

In this section we will define the concept of a connection on our manifold. The con-

nection physically determines the locally inertial observers, and defines the geodesic

structure of our spacetime. Mathematically the connection can be completely in-

dependent of the metric, in fact a connection can be perfectly well defined on a

manifold which possesses no metric. However some compatibility conditions are re-

quired when one imposes physical requirements on the spacetime, for example one

may want to impose the requirement that photons have to follow null geodesics of

the connection.

The connection is an object of fundamental importance if one wants to move

beyond the rigid spacetime of Minkowski space. To quote Einstein in [11] (and

translated from the original German in [12]):

“...the essential achievement of general relativity, namely to overcome

rigid space (i.e., the inertial frame), is only indirectly connected with the

introduction of a Riemannian metric. The directly relevant conceptual

element is the displacement field of infinitesimal displacement of vectors.

It is this which replaces the parallelism of spatially arbitrarily separated

vectors fixed by the inertial frame (i.e., the equality of corresponding

components) by an infinitesimal operation. This makes it possible to

construct tensors by differentiation and hence to dispense with the intro-

duction of rigid space (the inertial frame). In the face of this, it seems

to be of secondary importance in some sense that some particular Γ field

can be deduced from a Riemannian metric ... ” A. Einstein

Let us now formally define this connection. If one parallelly displaces a vector
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V µ from the point xµ to the point xµ + dxµ, then the vector changes according to

dV µ = −ΓµνρV
νdxρ, (2.10)

where Γρµν is the connection on our manifold. In general this connection has 43 = 64

independent components. This connection naturally defines a covariant derivative

on our manifold, a tensorial generalisation of the partial derivatives. On a vector

V ν the covariant derivative ∇µV
ν is defined as

∇µV
ν = ∂µV

ν + ΓνµρV
ρ, (2.11)

with this relation generalising naturally to higher rank tensors.

An important point to note is that the connection is not a tensor. Thus if it

vanishes in one frame, that does not mean it vanishes in all frames. Another impor-

tant remark is that the connection is not a property of the manifold or spacetime.

Different connections can be defined upon the same underlying spacetime, the con-

nection itself does not determine the manifold. And hence to specify the geometric

setting we are working in, we must define the connection on top of the manifold.

This point will be important later on, when we look at equivalent theories of gravity

with different connections defined on the same underlying spacetime.

We have now defined some interesting additional structure on our manifold: the

metric, telling us how to measure distances and angles, and the connection, telling

us how vectors change under parallel transport. Equipped with these two objects,

we can now move forward and define some interesting geometrical tensors which will

give us information that characterise the underlying spacetime.
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2.2 Tensors

2.2.1 The torsion tensor

The first tensor we will define is called the torsion tensor. We have already remarked

that the connection does not transform as a tensor under coordinate transformations.

However, its antisymmetric part does transform as a tensor, and so we define the

torsion tensor to be simply (twice) this antisymmetric part of the connection

T λµν := Γλνµ − Γλµν (2.12)

which has 24 independent components in general. The torsion tensor has an inter-

esting geometrical interpretation: if one builds infinitesimal parallelograms in the

manifold (by parallel transport), the failure of the parallelogram to close is propor-

tional to the torsion tensor.

From the definition, it is clear that the torsion tensor is antisymmetric in its

last two indices. As a whole, it vanishes identically if and only if the connection is

symmetric.

2.2.2 The curvature tensor

Let us now define the curvature tensor. Given a connection, the Riemann curvature

is defined in terms of the connection as follows

Rρ
µλν := ∂λΓ

ρ
µν − ∂νΓ

ρ
µλ + ΓρσλΓ

σ
µν − ΓρσνΓ

σ
µλ. (2.13)

The Riemann curvature tensor provides a measure of the curvature of the manifold.

In particular, if one takes a closed loop in the manifold, and transports a vector

at a point in the tangent space around the loop, the Riemann tensor measures the
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deviation of the vector in the tangent space from its original position. We note that

the curvature tensor is antisymmetric in its last two indices, with

Rρ
µλν = −Rρ

µνλ. (2.14)

A priori the curvature tensor possesses no other symmetries.

The curvature tensor we see is defined independently of the metric. And so,

without invoking a metric, there are three possible ways to contract the Riemann

tensor to define what is known as a Ricci tensor. The first of these, the standard

Ricci tensor is defined as being the contraction of the first and third indices of the

Riemann tensor

Rµν := Rρ
µρν , (2.15)

and we emphasise no metric was required to perform this contraction.

Alternatively, one could look at an alternative contraction of the Riemann cur-

vature tensor, instead taking the contraction over the first and second indices. This

defines an object known as the homothetic curvature

R̂µν = Rρ
ρµν . (2.16)

This vanishes if the connection is symmetric, however in general this tensor is non-

trivial. This tensor is fully antisymmetric, and so has a vanishing trace. The

standard Ricci tensor does not have a direct physical interpretation, however this

is not the case for the homothetic curvature. This measures how the length of

a vector changes when it is transported along a closed loop. If the homothetic

curvature identically vanishes, the connection is found to be volume preserving, so

that lengths and volumes are unchanged by parallel transport. Finally, the third
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possible contraction of the Riemann tensor gives us

R̄µν = Rρ
µνρ, (2.17)

however, due to the antisymmetry of the Riemann tensor in its last two indices, we

have simply that this is negative the standard Ricci tensor

R̄µν = −Rµν , (2.18)

and so there are essentially only two independent Ricci tensors.

Now, assuming that there is a metric on our manifold, there is only one non-

trivial contraction of these Ricci tensors. The Ricci scalar, or scalar curvature, is

the contraction of the Ricci tensor with the inverse metric

R := Rµνg
µν , (2.19)

with the other two Ricci tensors simply contracting to give

R̂µνg
µν =0 (2.20)

R̄µνg
µν =−R. (2.21)

The Ricci scalar has the physical interpretation of measuring the deviation of the

volume of a unit geodesic ball from the standard unit ball.

A non-trivial torsion means that covariant derivatives of scalar fields do not

commute, with their difference being proportional to torsion

∇[µ∇ν]φ = −Tµνρ∇ρφ. (2.22)

On the other hand, the Riemann curvature is relevant when considering the non-
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commutativity of vectors and other higher rank tensors, for example the following

identity holds for an arbitrary vector V ρ

(∇µ∇ν −∇ν∇µ)V ρ = Rρ
µνσV

σ − 2Tµν
σ∇σV

ρ, (2.23)

a relation which gives rise to the Riemann tensor’s physical interpretation: measur-

ing the deviation of a vector after parallel transport over a closed loop.

2.2.3 The non-metricity tensor

We additionally have another tensor which has important physical consequences.

The non-metricity tensor is defined on manifolds that are in possession of a metric

and a connection, and is simply defined to be the covariant derivative of the metric

Qλµν := −∇λgµν = −∂λgµν + Γρλµgρν + Γρλνgµρ. (2.24)

In general this tensor has 40 independent components. By the symmetry of the

metric, the non-metricity tensor clearly possesses the symmetry Qλµν = Qλνµ.

It is often imposed that the non-metricity identically vanishes, that is the metric

is covariantly constant. This postulate ensures that both lengths, in particular the

unit length, and angles are preserved under a parallel displacement. This ensures

that spacetime has a local Minkowski structure, and spacetime can be viewed as a

set of Minkowski grains glued together by the affine connection. This postulate is

well supported by the many experiments performed to test special relativity. How-

ever, it should be clear that this is an a posteriori constraint, which is determined

by experimental evidence only, and there is no theoretical justification for this as-

sumption on its own. Thus we will continue to analyse very general manifolds not

imposing that the non-metricity vanishes until later in this thesis.



CHAPTER 2. GENERAL LINEAR SPACES: CURVATURE, TORSION & NON-METRICITY 23

2.2.4 Additional connections and tensors

In this subsection we will briefly discuss some of the other objects and tensors related

to the curvature, torsion and non-metricity tensors that will be used throughout this

thesis.

But first we will look at a particularly important connection. This is the Levi-

Civita connection Γ̄, which is the connection used in general relativity. This is

defined as the following combination of first derivatives of the metric

Γ̄λµν :=
1

2
gλσ(∂νgσµ + ∂µgσν − ∂σgµν). (2.25)

This specific connection is torsion free (its torsion tensor vanishes, T̄ λµν = 0) and

metric compatible (its non-metricity tensor vanishes, Q̄µνλ = 0). Moreover, it can be

shown that it is the unique such connection which satisfies both of these properties.

It is readily seen that such a connection is symmetric.

Now let us introduce some important tensors. The distortion tensor is defined

to be the difference between the connection and the Levi-Civita connection

Nλ
µν := Γ̄λµν − Γλµν . (2.26)

(Again, we see that differences between connections are tensors.) This measures

the deviation of our spacetime from being Riemannian, that is it measures the post-

Riemannian component. The torsion and non-metricity tensor can be found in terms

of the antisymmetric and symmetric parts of the distortion respectively

T λµν = 2Nλ
[µν] (2.27)

Qµνλ = −2Nµ(νλ). (2.28)

On the other hand the contortion tensor K is defined as the following combina-
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tions of the torsion tensor

Kλ
µν =

1

2
(Tµ

λ
ν + Tν

λ
µ − T λµν). (2.29)

The following relation between the contortion tensor and the distortion tensor can

be found to hold

Nλ
µν = −Kλ

µν +
1

2
(Qλ

µν −Qµν
λ −Qνµ

λ), (2.30)

so that if the non-metricity tensor vanishes, we have Nλ
µν = −Kλ

µν and so we can

choose to work only with one of these tensors. In the teleparallel literature it is the

contortion tensor that is most commonly used.

Using everything we have defined so far, we can decompose a general connection

into 3 different pieces, a Levi-Civita piece, a piece associated with torsion and a

piece associated with non-metricity part, as so

Γλµν = Γ̄λµν +Kλ
µν +

1

2

(
−Qµ

λ
ν +Qλ

νµ −Qνµ
λ
)
. (2.31)

Another way of looking at this is we are splitting up the connection into a Rieman-

nian and post-Riemannian part. Using this one can similarly split up the curvature

tensor into different components. This sort of decomposition will prove to be useful

later on in this thesis.

2.2.5 Bianchi Identities

The curvature, torsion and non-metricity tensor all obey certain differential geo-

metrical relations that have important physical consequence. There is an identity

for each of these tensors, relating their derivatives to algebraic combinations of the

three different tensors. These three identities are known collectively as the Bianchi

identities.
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Given a specific connection, the torsion and curvature tensors satisfy two identi-

ties known as Bianchi identities which reveal certain symmetries of the tensors. The

Bianchi identity for torsion is given by

∇νT
λ
ρµ +∇µT

λ
νρ +∇ρT

λ
µν = Rλ

ρµν +Rλ
νρµ +Rλ

µνρ

+ T λρσT
σ
µν + T λνσT

σ
ρµ + T λµσT

σ
νρ. (2.32)

The Bianchi identity for curvature is given by

∇νR
λ
σρµ +∇µR

λ
σνρ +∇ρR

λ
σµν = Rλ

σµδT
δ
νρ +Rλ

σνδT
δ
ρµ +Rλ

σρδT
δ
µν . (2.33)

If the connection does not contain torsion, the latter two identities simplify dramat-

ically and reveal a cyclic symmetric in the Riemann tensor and its first derivatives.

The final Bianchi identity tells us that the derivatives of the non-metricity tensor

satisfy

∇µQναβ −∇νQµαβ = Rλ
αµνgλβ +Rλ

βµνgλα + T λµνQλαβ (2.34)

If the non-metricity vanishes this identity reveals an additional symmetry of the

curvature tensor. We note that in the literature these identities are usually dis-

played using coordinate free notation, but to be consistent with the notation used

throughout this thesis we have chosen to display them in coordinate notation.

2.3 Linear spaces

Now we have introduced the various geometrical objects that are needed, and the

relationships between them, we can now define and classify different spaces according

to the geometrical objects presiding in them.
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2.3.1 Linear space L4

The first space we will look at is known as a general linear space, which we will

denote as L4. This is defined to be a four dimensional manifold with a linear affine

connection. If additionally a metric is present the space is given by the pair (L4, g).

This space is the setting for Metric Affine Gravity, which will be introduced in the

next chapter.

There are no further restrictions placed on the geometry of this space. By this

we mean that in general, in this space the connection is allowed to possess curvature,

torsion, and the non-metricity tensor is in general non-vanishing. This means the

connection has its full 64 degrees of freedom. The remaining spaces we will define

will all be special cases of L4, with some additional geometric constraints defined

upon them.

2.3.2 Riemann-Cartan space: U4

The first such space we will look at is called Riemann-Cartan space, or U4 space, and

it is a four dimensional manifold in possession of a metric and a linear affine con-

nection, but with the constraint that the non-metricity tensor vanishes identically,

so that

Qλµν := −∇λgµν = 0, (2.35)

in other words the metric is covariantly conserved. Therefore in a U4 space distances

and angles are preserved by parallel transport, and this ensures that locally space-

time has the property of Minkowski space, which is experimentally supported to a

high precision by many experiments testing special relativity.3

Such a Riemann-Cartan spacetime possesses an important property: it is in-

3Although it may be noted that experiments have not been at a sufficient sensitivity to detect
effects at the level at which we would expect a non-trivial non-metricity to show up.
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variant under local Lorentz transformations. This is crucial for building a physical

theory that is independent of the observer. In Riemann-Cartan space, the distor-

tion tensor equals the contortion tensor due to the vanishing non-metricity, and

thus there is only need to consider one of these objects. In the literature it is the

contortion tensor K which is used interchangeably to mean contortion or distor-

tion, a convention which we will adopt from now on. Riemann-Cartan space is the

geometric setting for Einstein-Cartan gravity, to be introduced in the next chapter.

2.3.3 V4 space

The next space we consider is called Riemannian space, or V4 space, which is a

subspace of Riemann-Cartan space U4. It is a four dimensional manifold with a

metric and a linear affine connection, however this time as well as vanishing non-

metricity, the additional constraint that the torsion vanishes is imposed. So we have

that both

Qλµν = 0, (2.36)

T λµν = 0 (2.37)

must hold. Thus V4 space is a subspace of U4 space, with the subspace condition

being that the torsion tensor vanishes.

In such a space the connection is symmetric due to the torsion component van-

ishing. In fact, this condition along with the vanishing non-metricity uniquely deter-

mine the connection in terms of the metric and in fact it is the Levi-Civita connection

defined in (2.25). This space still allows for interesting geometric structure due to

the potential presence of curvature in the space. This space is the setting for General

Relativity, to be introduced in the next chapter, and many other curvature based

modifications of gravity, which will be examined later in Chapter 5.
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2.3.4 R4 space

At this stage we will now introduce an important subspace of V4, that is R4 space.

This is defined to be a V4 space with the additional constraint of vanishing curvature,

that is the Riemann tensor vanishes

Rλ
µνρ = 0. (2.38)

This ensures that the space is globally flat, and uniquely determines the metric to

be isometric to the Minkowski metric, with a trivial connection. Such a spacetime

is the setting for Special Relativity, and there is no longer any degrees of freedom

for a dynamical geometry in this space.

2.3.5 Weitzenböck space W4

Finally to conclude this section we note another possible definition of a subspace of

L4. We note that V4 is a space with curvature but vanishing torsion. However, we

could alternatively define a subspace of V4 by considering this situation reversed,

and require the subspace to have torsion but vanishing curvature.

In fact, given a metric compatible torsion free connection on a manifold, it is al-

ways possible to define an alternative connection on the manifold with vanishing cur-

vature but non-trivial torsion, this is due to a result going back to Weitzenböck [13].

And as such we will call such a space a Weitzenböck or W4 space. In such a space

there is distant parallelism: lengths and angles are unchanged by parallel transport.

Moreover the parallel transport of a vector is path independent. This space forms

the basis for teleparallel gravity, which will be introduced in Chapter 4.
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2.4 Discussion

In this chapter some of the elementary concepts of differential geometry required to

formulate a theory of gravity were explored. We introduced spacetime as a manifold,

which possesses a metric for measuring distances and angles, and a connection which

defines the concept of parallel transport on the manifold. The most general space

that possesses these objects is a general linear space L4. We have introduced various

interesting geometrical objects and tensors that can be defined on L4, including

curvature, torsion, non-metricity, contortion and distortion. We have examined

various subspaces of L4, where constraints are applied on the torsion, curvature and

non-metricity tensors, some of which are taken to vanish. In particular we have

looked at Riemann-Cartan, Riemann, Weitzenböck and Minkowski space.

Let us briefly mention a few more spaces that have been considered in the grav-

itational literature. Weyl-Cartan space is a subspace of L4 such that the only ge-

ometrical constraint imposed is that the trace of the non-metricity tensor vanishes

identically, that is

tr(Q) = 0. (2.39)

If one then considers a vanishing torsion on this Weyl-Cartan space, one gets the

space known as Weyl space. Such a space has also been considered as a setting for a

gravitational theory. Of course there are a range other subspaces of L4 with various

constraints on the tensors, but we will not discuss any of these further.

Let us end this chapter with a diagram outlining the relationships between the

numerous different geometric spaces discussed in this chapter. The Diagram 2.1

outlines the hierarchy of how these different spaces are interrelated. In the next

chapter we will look at how one can define theories of gravity within the geometric

framework of these different spaces.
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Metric affine space L4

Weyl-Cartan space

Riemann-Cartan space U4 Weyl space

Riemann space V4 Weitzenböck space W4

Minkowski space R4

tr(Q) = 0

T = 0

Q = 0, R = 0

Q = 0

T = 0 R = 0

R = 0 T = 0

Figure 2.1: Diagram showing the relationships between the various subspaces of a
general linear space L4 discussed in this chapter.



Chapter 3

Gravitational theories

In this chapter we will explore how the differential geometry concepts of the last

chapter can be used to construct theories of gravitation. We will begin with a

brief review of classical Newtonian gravity. Although a conceptually simple theory,

Newtonian gravity is widely applicable and it is still used when performing most

solar system scale calculations. It is thus important that any gravitational theory

behaves as Newton’s in certain appropriate limits.

We will then move on to discussing some aspects of the current accepted theory

of gravitation, Einstein’s theory of general relativity. Although a very successful and

consistent theory, it is based on some assumptions which are not necessarily a priori

justified. We will see if we relax some of these restrictions, using the differential

geometry concepts from the previous chapter, we can define a more general class

of theories of gravity, known as Metric Affine Gravity, of which general relativity

is simply a special case. These potentially open the door to interesting physical

phenomena, which may be able to alleviate some physical problems associated with

general relativity.

We end this chapter by taking a look at a frequently studied particular special

case of metric affine gravity, known as Einstein-Cartan theory, that is still more

31
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general than general relativity. This will be introduced as a first look at a full

gravitational theory in which torsion plays a non-trivial role. In the next chapter

we will then move on to the main topic of this thesis, teleparallel gravity, which is

a further interesting special case of metric affine gravity.

3.1 Newtonian gravitation

Before Einstein developed his general theory of relativity, the laws of gravity had

been described by Isaac Newton in his seminal 1687 Principia (following on from

earlier ideas of Kepler and Galileo). Newton’s theory is a classical theory, where

gravity is an attractive, instantaneous force acting between two massive objects.

The theory can successfully account for the planetary motion of every planet in the

solar system, except Mercury, to a high degree of accuracy.

In Newtonian gravity, the equations of motion of a particle in a gravitational

potential φ are given by

mr̈ = −m∇φ(r) (3.1)

where r is the three dimensional position vector of the particle and m is the mass

of the particle. The geometric setting for Newtonian gravity is much simpler than

the structures considered in the previous chapter. Newton’s gravity takes place in

the setting of the product manifold R×R3. Additionally, the metric on the spatial

part of the manifold, R3, is simply the global Euclidean metric

ds2 = dx2 + dy2 + dz2, (3.2)

with gravity having no effect on the metric.

With the advent of Einstein’s special theory of relativity, there was a realisation

that the Newtonian theory of gravity could not be the full picture. Special relativity
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no longer permits instantaneous interactions, with information restricted to travel-

ling at the speed of light or less, and this led to the formulation of the general theory

of relativity. However, in many circumstances, Newtonian gravity is still an accurate

description of the gravitational interaction, in particular when the gravitational field

is weak and sources are slowly moving. This is called the Newtonian limit, and it is

crucial that any proposed theory of gravity must coincide with Newtonian gravity

in the Newtonian limit in order to be viable.

3.2 General relativity

General relativity is now over one hundred years old and it is the currently ac-

cepted, or standard model, for gravitation. Einstein formulated his general theory

of relativity in the years leading up to 1915. The force laws of Newtonian gravity

were replaced by a more sophisticated geometric framework, where the gravitational

interaction is induced via the curvature of the underlying spacetime.

Over the last century general relativity has shown itself to be a phenomenally

successful theory, passing countless observational and experimental tests to an ex-

traordinarily high precision. There are three classical experimental tests of general

relativity which Newtonian gravity is not able to account for. There is the deflection

of light by the sun: Newtonian gravity can only account for half of this deflection,

GR is needed to explain the remainder. There is also the perihelion precession

of Mercury: Mercury’s trajectory is not a closed ellipse, for which GR is needed

to fully explain the exact amount of precession. Additionally GR can account for

observations of gravitational redshift. Moreover, in 2016 we received observational

confirmation of another of general relativity’s predictions: the discovery of gravi-

tational waves. The Laser Interferometer Gravitational-Wave Observatory (LIGO)

project detected the gravitational waves emitted during the merger of two black

holes. This is one of the first tests of GR in the strong field limit, and the observa-
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tions of the event were consistent with numerical simulations of black hole mergers

using the field equations of GR.

One of the most important features of general relativity is the concept of univer-

sality of free-fall. All objects, regardless of their internal properties such as inertial

mass, will undergo the same acceleration in a gravitational field1. No other physical

law of nature has this property. It is this concept which naturally suggests that it

is the underlying spacetime structure that is changed by gravitation, therefore this

suggests that it is the metric that is changed. In general relativity, the change in

spacetime is characterised by an underlying curvature of the spacetime, and makes

no reference to any force laws. This curvature then means free particles follow the

geodesics of the spacetime.

To mathematically describe general relativity, we will need some of the geomet-

rical objects and concepts introduced in the previous chapter. General relativity

takes place inside a V4 space, which we recall means that both the torsion and the

non-metricity vanish identically. These two conditions uniquely determine the con-

nection on the manifold in terms of the metric. They imply that the connection is

given by the Levi Civita connection, which we recall is given by

Γ̄µνρ =
1

2
gµλ(∂νgρλ + ∂ρgνλ − ∂λgνρ). (3.3)

And so given a metric on the spacetime, we automatically know the connection.

Thus the dynamics of the theory only needs to determine the metric.

In general relativity, freely falling particles in the spacetime, with coordinates

xµ, (µ = 0, 1, 2, 3), will follow geodesics: curves which extremise the length between

1In particular this means that the inertial mass mi of an object is equal to its gravitational
mass mg.
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its endpoints. By varying the following action

S =

∫
ds, (3.4)

where ds is the line element of the metric, ds =
√
−gµνdxµdxν , one finds the geodesic

equation. After some algebra, one finds this is given by

ẍµ + Γ̄µνρẋ
ν ẋρ = 0. (3.5)

This determines how particles move in a curved spacetime in general relativity. It

is here we see the fundamental importance of the connection.

The other crucial aspect of general relativity determines how matter and energy

induce this curvature in spacetime. This relationship is encoded within the Einstein

equation, which is given by

R̄µν −
1

2
R̄gµν =

8πG

c4
Tµν . (3.6)

Here the tensor Tµν is the energy momentum tensor of matter, determining the type

of energy and momentum present at each point of the spacetime. The first Bianchi

identity in a V4 space (that is equation (2.33) in the absence of torsion), readily

implies after contraction that the left hand side of Einstein’s equation is covariantly

conserved

∇µ

(
R̄µν −

1

2
gµνR̄

)
= 0. (3.7)

This in turn implies that the energy momentum tensor is conserved, as is required

for a sensible physical theory.

One can write the Ricci tensor and scalar explicitly in terms of the metric and

its second derivatives, and doing this reveals that the Einstein equation is a set of



CHAPTER 3. GRAVITATIONAL THEORIES 36

ten coupled second order partial differential equations. For a general system this

is very difficult to solve. However, by invoking symmetry principles, one is able to

construct exact solutions for the metric for some physical situations. Perhaps the

most important solution is the Schwarzschild solution, which describes the vacuum

exterior of a static spherical star or black hole of mass M , given by

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θ dφ2

)
. (3.8)

Nowadays there are many known solutions to the Einstein equation, and indeed

very accurate numerical solutions to many complex physical models that cannot be

found analytically.

Much of modern physics is derived from a variational principle, and so we require

an action from which the Einstein field equations can be derived. This is given by

the Einstein-Hilbert action, first proposed by the mathematician Hilbert in 1915,

and is simply given by the volume integral of the Ricci scalar

SEH =

∫ [
1

16πG
R̄ + Lm

]√
−g d4x . (3.9)

In this action Lm is called the matter Lagrangian. By varying this action with

respect to the metric tensor, one recovers Einstein’s field equations, where the energy

momentum is defined to be the following variation of the matter Lagrangian

Tµν =
2√
−g

δLm

δgµν
. (3.10)

As mentioned in the introduction, despite general relativity’s observational suc-

cess, there are a variety of reasons one might want to modify it. The first is that

there is no consistent theory of quantum gravity: gravity has not been unified with

quantum field theory and the remaining forces of nature. At high energies and small

length scales, such as at the start of the universe, this can potentially cause a break
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down of general relativity. Its inability to be consistently unified with quantum the-

ory might indicate we need to consider a different theory. Another reason we might

wish to consider modified theories is classical, and is due to cosmological anomalies

which general relativity cannot explain, as outlined in the introduction. These issues

will be discussed in detail in Chapter 5.

One way to consider modifications of general relativity is to assume that we

are still working in a V4 space, but modify Einstein’s field equations by considering

alternatives or extensions of the Einstein-Hilbert action. This maintains a lot of

the geometric structure of the spacetime: the Levi-Civita connection remains the

connection and free particles will still follow geodesics. We will discuss this approach

in Chapter 5. On the other hand, we could instead move beyond the restrictive

geometric setting of Riemannian V4 space and consider theories including torsion

and non-metricity. And thus for the remainder of this chapter, we will discuss more

broad gravitational theories using the differential geometric concepts of the previous

chapter.

3.3 The Palatini variation

The first approach we will look at is in fact equivalent to general relativity, but the

theory has a slightly different interpretation and requires less a priori assumptions

about the underlying geometry of the spacetime manifold. The Palatini variation2 of

general relativity again is based on the Einstein-Hilbert action. However, we do not

begin by making such a restrictive assumption on the form of the connection; that is

we are not assuming that the connection is the torsion free Levi-Civita connection,

however we still assume it is metric compatible. Thus we begin in a generic U4

space. We start with an arbitrary affine connection, entering the action through the

2The Palatini variation was actually developed by Einstein in 1925, but in the intervening years
due to a historical misunderstanding became known by the Palatini variation after the Palatini
identity used in the calculation.
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Ricci tensor, and treat it as an independent field.

SEH =

∫ [
1

16πG
R(g,Γ) + Lm

]√
−g d4x , (3.11)

The idea is now to vary this action with respect to both the metric and the connec-

tion independently. This leads to two sets of field equations. But in fact, the field

equation for the connection is an algebraic one, and its solution simply imposes that

the connection is in fact the Levi-Civita one. If one considered a Lagrangian which

was not linear in the Ricci scalar, this is no longer necessarily true. But due to this

result, it is often thought that there is no particular reason to consider the Palatini

variation over the standard metric variational principle if one is simply considering

the Einstein-Hilbert action.

However the situation is not necessarily that straightforward. As noted in [14],

there is an implicit assumption in the standard Palatini variation: this is that the

matter Lagrangian is independent of the connection. This means that any covariant

derivatives of the matter fields were implicitly assumed to be defined in terms of the

Levi-Civita connection, as opposed to the independent connection. This is certainly

not true for certain types of matter. And thus it cannot be consistently argued that

the Palatini variation of the Einstein-Hilbert action reduces to general relativity

when certain matter fields are present. To work towards a more consistent theory,

we will now go beyond this simple Palatini approach into a more general theory

incorporating a generic connection.

3.4 Metric Affine Gravity

In this section we will have a brief look at Metric Affine Gravity, which is a very

general theory of gravity that takes place in the full linear space L4. This means

torsion, curvature and non-metricity are all present. Metric affine gravity is a gauge



CHAPTER 3. GRAVITATIONAL THEORIES 39

theory of gravity: that is interactions of the gravitational field are described by

promoting global symmetries to gauge symmetries. It is beyond the scope of this

thesis to discuss the gauge theoretical aspects in great detail, however we will men-

tion some of their properties. Frequently in the literature a coordinate free notation

is adopted, however for the purposes of this thesis, we will use a coordinate based

notation, following the covariant approach to metric affine gravity found in [15].

Metric Affine Gravity takes into account the potential microstructural properties

of matter such as spin, dilation current or proper hypercharge as possible physical

sources for the gravitational field. It puts them on an equal footing with macroscopic

properties like the energy and momentum of matter. This can be motivated by con-

sidering extending theories of three dimensional elastic continuum with microstruc-

ture to a higher dimensional spacetime, giving interesting physical interpretations to

this post-Riemannian geometry. No longer just considering Riemannian spacetime

allows the underlying geometry to have interesting microstucture, similar to liquid

crystals or dislocated metal. In fact concepts such as torsion and non-metricity

are widely used in three dimensional theories of lattice defects, with non-metricity

having the interpretation as densities of point defects and torsion having the inter-

pretation of line defects or dislocations.

Considering these post-Riemannian geometries has some other potential upsides.

For example, by considering cosmological solutions, it can be deduced that in a Rie-

mannian geometry the universe originated from a singularity: this is problematic

as all physics breaks down at singularities. Non-Riemannian geometry potentially

alleviates this problem by removing this big bang singularity. There are also mo-

tivations from attempts to quantize gravity: the failure to do this to date suggest

the need to consider geometries which are not dominated by a classical distance

concept.

The first generalisation to the rigid framework of V4 space is to work within a

U4 space, where a non-trivial torsion is allowed to be present. It was first noted by



CHAPTER 3. GRAVITATIONAL THEORIES 40

Kibble in [16], that one can write gravity in a gauge theoretical approach. Kibble

did this by taking gravity to have the local symmetry group SO(3, 1) o R4, the

semidirect product of the Lorentzian special orthogonal group and the four dimen-

sional translation group (with global translations). That is the Lorentz group gets

promoted to the Poincaré group. This allows for the presence of torsion and puts

gravity into a Riemann-Cartan geometry, or a U4. The gauge fields are the tetrad

which is associated to the global translations, and the (spin) connection, associated

to the Lorentz group.

However, this was later generalised to an even more general framework, by Hehl

et al [17], called Metric Affine Gravity, taking place in a general linear space L4. This

generalises the local symmetry group from the Lorentz group SO(3, 1), promoting

it to the full general linear group GL(4,R). Thus the full local symmetry group

of the theory is the affine group A(n,R) = GL(4,R) o R4, which is the semidirect

product of the general linear group GL(4,R) and the translation group R4. Allowing

for this broader symmetry group means we go beyond just the Lorentz invariance

of SO(3, 1), and this means non-metricity becomes present. On a general four

dimensional vector x, the affine group acts as follows

x→ x′ = Λx+ τ, (3.12)

where Λ = Λα
β ∈ GL(4,R) and τ ∈ R4. The linear connection and the coframe

are gauge field potentials, with the curvature and the torsion corresponding to their

respective gauge field strengths. Additionally the metric is a further fundamental

field with the non-metricity as its corresponding field strength. The matter source

of non-metricity is called hypermomentum.

Let us take a look at the general field equations of such a gravitational theory,

following closely the results found in [15]. There will be two sets of field equations:

one for the metric and one for the independent connection. A general Lagrangian
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for the action, assuming a minimal coupling between matter and gravity, will take

the form

L = Lgrav(gµν , Rµνρ
λ, Tµν

λ, Qµνλ) + Lm(gµν , ψ
A,∇µψ

A). (3.13)

Here Lgrav is the Lagrangian of the gravitational sector, which in general is an ar-

bitrary function of the curvature, torsion and non-metricity tensor, and the matter

Lagrangian Lm depends on the matter fields ψA and their covariant derivatives.

Thus the connection only enters the matter Lagrangian via these covariant deriva-

tives. In view of the relations between the distortion tensor and torsion (2.27) and

non-metricity (2.28), the gravitational Lagrangian can equally be described by

Lgrav = Lgrav(gµν , Rµνρ
λ, Nµν

λ), (3.14)

which is a function of now only the metric, curvature and distortion, with the degrees

of freedom due to torsion and non-metricity contained entirely in the distortion

tensor.

The field equations for such a Lagrangian are given by varying with respect to

both the metric and the connection independently. The field equations can be dis-

played in various equivalent forms, the form we choose to show here is the following

set of equations

(∇µ +Nρµ
ρ)Hλµ

ν +
1

2
Tµρ

λHµρ
ν − Eνλ = −Σν

λ (3.15)

(∇ρ +Nσρ
σ)Hλρµ

ν +
1

2
Tρσ

λHρσµ
ν − Eλµ

ν = ∆µ
ν
λ. (3.16)

where the tensors H are the partial derivatives of the Lagrangian with respect to
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the torsion and curvature

Hλµ
ν := −∂Lgrav

∂Tλµν
, (3.17)

Hµνρ
λ := −2

∂Lgrav

∂Rµνρ
λ
, (3.18)

Mµνρ : = −∂Lgrav

∂Qµνρ

, (3.19)

where in addition we have defined M to be the partial derivative of the Lagrangian

with respect to the non-metricity. The gravitational hypermomentum density is

defined as

Eλµ
ν = −Hλµ

ν −Mλν
µ = − ∂Lgrav

∂Nλµ
ν
, (3.20)

and the generalised energy-momentum tensor of the gravitational field is

Eν
µ = δµνLgrav +

1

2
QνρλM

µρλ + Tνλ
ρHµλ

ρ +Rνλρ
ρHµλσ

σ. (3.21)

Finally the sources of the field equations are

Σν
µ :=

∂Lm

∂∇µψA
∇νψ

A − δµνLm, (3.22)

∆µ
ν
λ :=

∂Lm

∂Γλµν
. (3.23)

We refer to [18] for an explicit fluid model that possesses microstructure in the form

of hypermomentum.

We have thus constructed a very general theory of gravity, with an arbitrary

Lagrangian and no prior geometric restrictions on the manifold and we have seen

the dynamical structure of the field equations. This theory and field equations

incorporate almost every single modified gravity model that will be considered within



CHAPTER 3. GRAVITATIONAL THEORIES 43

this thesis3. Let us now take a look at an explicit special case of this theory.

3.5 Einstein-Cartan Theory

In this section we will look at a particular example of a theory of metric affine gravity,

which takes place in the restricted U4 subspace of L4, so that the non-metricity

tensor vanishes. The particular form we will look at has been much studied in the

literature, and it is known as Einstein-Cartan theory, or sometimes as Einstein-

Cartan-Sciama-Kibble theory. This is a relatively straightforward way of including

a non-trivial torsion into a gravitational theory and the theory shares many features

with general relativity. The theory takes into account just one additional piece of

microstructure, in the form of the spin of the matter fields.4

In this theory, the connection has both curvature and torsion, with the met-

ric Levi-Civita part of the connection being determined by the curvature via the

standard matter energy momentum tensor, and the torsion component of the con-

nection determined by the spin of the matter. On macroscopic scales this agrees

with general relativity as spin is irrelevant at these scales. However on microscopic

scales this theory is different as spin becomes important. Although at the time of

its formulation, spin was not known to Cartan and its identification as the source

of torsion was only made later.

The theory is described by the following action

L =
√
−g
(

R

16πG
+ Lm

)
. (3.24)

This has the same form as the Einstein-Hilbert action, however one does not impose

3The only modification not covered by these equations are those in which there is a nonminimal
coupling between gravitational and the matter sector. For the general field equations in this case
we refer to [15].

4By spin we should emphasise we are referring to intrinsic spin of elementary particles, rather
than any macroscopic spin.
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a priori that the connection is the Levi-Civita connection, and the matter Lagrangian

is not necessarily independent of torsion. The symmetric stress energy tensor is still

given by the variation of the matter sources with respect to the metric

tµν =
δLm
δgµν

. (3.25)

But additionally we now have a source of torsion, which comes from the variation

of the matter Lagrangian with respect to the contortion (or equivalently distortion)

tensor

τρ
νµ =

δLm
δKµν

ρ
. (3.26)

This source of torsion is associated with the spin density of matter.

The variation of the above action yields the following set of field equations

Rµν − 1

2
gµνR = 8πG (tµν + (∇ρ + 2Tρσ

σ)(τµνρ − τ νρµ + τ ρµν)) , (3.27)

(where we recall the Ricci scalar is that of an arbitrary metric compatible connection,

and not that of the Levi-Civita connection), and

Tµν
ρ = 8πGτµν

ρ. (3.28)

The second of these equations is purely algebraic and directly relates the spin density

to the torsion tensor. This means that torsion does not propagate as a wave, and it

will vanish identically in a vacuum.

Due to this algebraic relationship, it is possible to substitute this expression for

torsion into the first field equation to retrieve a pure Einstein equation of the form

R̄µν − 1

2
R̄gµν = 8πGτ̃µν (3.29)
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where we recall R̄µν is the Ricci tensor of the Levi-Civita connection and τ̃µν is an

effective energy momentum tensor which is formed entirely of terms containing the

spin density and the symmetric energy momentum density.

Thus we have an effective Einstein equation. In a vacuum, this equation will

coincide with general relativity, it is only the presence of spin in matter that will

potentially lead to different solutions. This theory is interesting for a number of

reasons. As we discussed earlier, metric affine gravity has the potential to eliminate

the big bang singularity prevalent in general relativity. In fact Einstein-Cartan

theory can do this alone. The minimal coupling between the torsion tensor and

quantum form of matter known as Dirac spinors, generates a spin-spin non-linear

self-interaction which becomes significant at high energy densities, such as those

occurring in the early universe. This interaction stops the big bang singularity from

appearing, replacing it with a big bounce type scenario arising at a non-zero(and

hence non-singular) scale factor.

In this chapter we have started having a look at various theories of gravity that

can be defined in the geometric spaces introduced in the previous chapter. We

have seen an incredibly general theory of gravity, metric affine gravity, whose field

equations encompass all gravity models that will be studied through the rest of this

thesis. We took a more in depth look at general relativity, along with a generalisation

of GR which includes a non-trivial torsion. In the next chapter we will have a look

in detail at another special case of Metric Affine Gravity: the Teleparallel Equivalent

of General Relativity.



Chapter 4

The teleparallel equivalent of

general relativity

Almost immediately after Einstein formulated his general theory of relativity, mod-

ifications of the theory began to be considered. These early studies were focused

on unifying gravity with the other known force of nature at the time, electromag-

netism, into a consistent geometric framework. The first attempt at this was made

by the mathematician Hermann Weyl in 1918 [19]. His work did not succeed, how-

ever Weyl’s work introduced for the first time important notions such as gauge

transformations and gauge invariance.

In the late 1920s Einstein himself attempted to unify electromagnetism and

gravitation, using the mathematical structure of teleparallelism, also referred to

as absolute parallelism. Teleparallelism means being able to calculate the angle

between distant vectors. Einstein’s idea was to introduce the tetrad field, which we

recall is a field of orthonormal bases of the tangent space, defined at each point of

the four dimensional spacetime manifold. This tetrad would have sixteen linearly

independent components, six more than the metric of general relativity, which only

has ten independent components. Einstein’s idea was that these additional six

46
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components would be related to the six components of the electromagnetic field.

Alas, this attempt again did not work, and it was later realised that these additional

six components are eliminated by the Lorentz invariance of the theory: two tetrads

described the same physics if one can write one as a Lorentz transformation of

the other. However, despite the original unification goal failing, this work led to

the development of an alternative description of gravitation, known as teleparallel

gravity .

Teleparallel gravity has its roots in work done by Einstein and Cartan in the

1920s, where as we saw in the previous chapter, a manifold with both curvature and

torsion was introduced. This theory later identified the source of torsion as intrinsic

spin. However, teleparallel gravity takes an alternative approach to including tor-

sion, and its theory is based on a geometrical result going back to Weitzenböck [13]

who observed that it is always possible to define a specific connection such that

the underlying space is globally flat, meaning that the Riemannian curvature of

the spacetime is everywhere vanishing. However in order to compensate for this,

the Weitzenböck connection possesses a non-trivial torsion. This theory has some

appealing properties: it means that the result of parallel transport is independent

of the path taken, and lengths and angles are invariant under parallel transport.

Einstein was able to develop a theory of gravity using only this Weitzenböck con-

nection. Moreover, he was able to show that for a particular parameter choice of this

teleparallel gravity, the theory had the exact same dynamics as general relativity:

they were two physically equivalent theories. This particular choice of parameters

is known as the teleparallel equivalent of general relativity, or TEGR for short.

During the 1920s there were some other attempts to unify electromagnetism

and gravitation. Along with the aforementioned Einstein-Cartan theory, Kaluza

and Klein developed a five dimensional theory, Kaluza-Klein theory, with the fifth

dimension compactified in an attempt to incorporate electromagnetism. But after

this initial period in the 1920s, no new advances were made in the teleparallel theory
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until the 1960s. The unification idea was dropped, because it was realised that

the gravitational and electromagnetic fields must be treated differently due to their

vastly different strengths. Moreover they become significant on very different scales.

The universe is believed to be overall charge neutral, and so the gravitational force,

which is attractive becomes the dominant force on large scales. However on small

length scales charge is of far more importance than the gravitational interaction.

Teleparallelism was later resurrected by Møller in the 1960s, no longer with uni-

fication in mind, but instead to find a tensorial complex for the gravitational energy

momentum tensor. This work led to Pellegini and Plebanski finding a Lagrangian

formulation of teleparallel gravity, which later in 1976 was proven by Cho to be

equivalent to the Einstein Hilbert action up to a boundary term.

The theory gained prominence again in the 21st century after the advent of the

discovery of dark energy. This will be discussed in detail in the following chap-

ters, but this led to modifications of gravity being increasingly considered. Most of

these modifications considered modifying the metric formulation of general relativ-

ity. However there are many promising results showing that modifications of the

TEGR action could succesfully account for phenomenon such as dark energy and

inflation. Moreover these teleparallel modifications had some nice features that were

lacking in the GR modifications.

Even though teleparallel gravity is dynamically completely equivalent to general

relativity, it has a very different physical interpretation. In this theory torsion, as

opposed to curvature, represents the gravitational field. Torsion describes the grav-

itational interaction as acting as a force, whereas general relativity geometrises the

interaction so that no force is in fact present. There are no geodesics in teleparallel

gravity, rather there are force equations, similar to Maxwell’s theory. Another key

difference is that while both formulations are invariant under local Lorentz trans-

formations, in GR all geometrical quantities are naturally Lorentz scalars, while

in teleparallel gravity expressions typically depend on the chosen frame. This has
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important implications, particularly when considering modifications of the theories.

For further information on the history and properties of TEGR we refer to the

important papers [20–29] and also [30].

In this chapter I will introduce the basics of teleparallel gravity, defining the

tetrad and Weitzenböck connections and introducing the general teleparallel La-

grangian. I will then show which Lagrangian is equivalent to general relativity, and

prove this equivalence. The issue of local Lorentz invariance will also be discussed,

and the theories relation to metric affine gravity will be derived. This will form the

basis for later chapters, when we consider modifications of this theory.

4.1 Teleparallelism

General Relativity is a metric theory of gravity, taking place in Riemannian V4 space

where the Riemann curvature tensor is constructed from the Levi-Civita connection,

with the metric determined by the Einstein field equations. However, the teleparallel

equivalent of general relativity is an equivalent formulation based on a globally flat

space where gravity is described by torsion instead of curvature. That this is indeed

possible is not trivial and is based on the work of Weitzenböck who noted that by

choosing a different connection on the same space1 in a specific way it is possible to

ensure that space is indeed globally flat [13].

Let us take a closer look at this result. Firstly we note that one can decompose

a general connection into two pieces: a tetrad part and an object called the spin

connection

Γλµν = eλb∂νe
b
µ + eλaA

a
bνe

b
µ (4.1)

where Aabν is the spin connection. We can solve (4.1) to find the spin connection in

1As we discussed in Chapter 2 we can define different connections on the same underlying
manifold.
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terms of the connection and tetrad

Aabν = eaλ∂νe
λ
b + eaλΓ

λ
µνe

µ
b . (4.2)

Denoting the covariant derivative associated with the connection Γ by ∇µ, this can

alternatively be written as

Aabν = eaλ∇νe
λ
b . (4.3)

In the teleparallel formulation of General Relativity one works with the Weitzenböck

connection, that is we work in a W4 space. This particular connection is given by

Γλµν = eλb∂νe
b
µ = −ebµ∂νeλb . (4.4)

This is equivalent to have chosen a vanishing spin connection. Using this specific

connection, it is found that its Riemann curvature tensor vanishes identically,

Rρ
µλν = 0. (4.5)

Although imposing that the connection is given by the Weitzenböck connection

requires introducing some geometry a priori. As we will see at the end of this

chapter, one can impose this by adding a Lagrange multiplier term coupled to the

curvature tensor.

The Weitzenböck connection can be decomposed into a sum of the Levi-Civita

connection and the contortion tensor, using the relation (2.31) in the absence of

non-metricity, as follows

Γλµν = Γ̄λµν +Kλ
µν . (4.6)

This will turn out to be a very important relation for comparing general relativity
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and teleparallel gravity.

Why is this Weitzenböck connection physically interesting? Well if we consider

a vector V a at a point p of our manifold in the tangent space Tp, and a vector V ′a

at another point p′ in the tangent space Tp′ , then they will be defined to be parallel

if they have the same components expressed in terms of the tetrad basis, that is if

V µ = V ′µ. That is if we parallel transport the vector V a, we wish to get the same

vector, meaning

0 = dV a = d(V µeaµ) = eaµdV
µ + V µ∂νe

a
µdx

ν , (4.7)

which after rearrangement and multiplication by the cotetrad gives

dV µ = −eµa∂νeaρV ρdxν = −ΓµρνV
ρdxν . (4.8)

But this is nothing but the definition of the connection (2.10), and we see here

that the particular connection here is the Weitzenböck connection. Thus this is the

connection that possesses the property of distant parallelism.

4.2 Equivalent of the geodesic equation

In teleparallel gravity, the interpretation of the gravitational field is rather different.

Instead of it being a geometric effect, as in general relativity, where particles follow

geodesics of a curved manifold, rather free particles follow force law equations. In

this section we will show this explicitly, following closely [30, 31].

Teleparallel gravity is a gauge theory of the translation group, with the gauge

transformations being local translations of the tangent space coordinates

x′a = xa + εa(xµ). (4.9)
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That is a severely restricted form of the symmetry group of metric affine grav-

ity (3.12). We can decompose the tetrad of teleparallel gravity into a trivial inertial

component and a gravitational potential as so

eaµ = ∂µx
a +Ba

µ (4.10)

where from the gauge theoretical point of view, Ba
µ is the translational gauge po-

tential. This is a one-form taking values in the Lie algebra of the translation group

Bµ = Ba
µ∂a, (4.11)

where ∂a are the generators of infinitesimal translations.

Let us consider the motion of a spinless particle in this gravitational field Ba
µ.

The action integral for this motion is given by

S =

∫ b

a

[
−mcdσ −mcBa

µua dx
µ
]
, (4.12)

analogously to the action integral for a particle travelling in an electromagnetic field.

Here, dσ = (ηabdx
adxb)1/2 is the Minkowski space interval in the tangent space. ua is

the particle four velocity in the tetrad frame. The first term in this action represents

the motion of a free particle, and the second represents a coupling of the particle to

the gravitational field. Variation of the action (4.12) gives the following equation of

motion

eaµ
dua
ds

= T aµρuau
ρ (4.13)

where for compactness the torsion here is defined as

T aµν = eaρT
ρ
µν , (4.14)
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which also has the interpretation as the translational gauge field strength.

One of the crucial aspects of teleparallel gravity is that this equation is a force

law. In particular, it is the non-trivial torsion that is playing the role of the force.

This is in stark contrast to general relativity, where no forces are present, and free

particles simply follow geodesics. The two equations are completely equivalent, but

this is a radically different interpretation. Let us indeed show that this equation

gives rise to the same dynamics as the geodesic equation. By the antisymmetry of

the torsion tensor, and using the definition of the contorsion tensor, it is readily

seen that

T λµρu
ρuλ = −Kλ

µρu
ρuλ. (4.15)

Now using the relation (4.6), we find that

duλ

ds
+ Γ̄λµνu

µuν = 0, (4.16)

which is nothing but the geodesic equation of general relativity.

There is another feature of this teleparallel theory of interest. In action (4.12),

we implicitly assumed the weak equivalence principle, that is that the two masses in

the action, the inertial mass mi and the gravitational mass mg, are identical with

mi = mg = m. This is a fundamental assumption of general relativity, and without

it the theory would be inconsistent, as it would imply that the metric depends

on the ratio mg/mi of a test particle: this would mean that the gravitational field

depends on the properties of test particles. This is not the case in teleparallel gravity,

and one does not have to impose the weak equivalence principle from the start. The

weak equivalence principle (WEP) is a physical assumption that can only be verified

experimentally. To date it has passed all experimental tests, however there are some

theoretical difficulties with it [32], mainly from a quantum level [33]. If one does
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not assume the WEP, the force law is modified to become [31]

(
∂µx

a +
mg

mi

Ba
µ

)
dua
ds

=
mg

mi

T aµρuau
ρ. (4.17)

Because neither Ba
µ nor T aµν depend on the relation mg/mi, the field equations

can be solved for the gravitational potential Ba
µ, and then (4.17) can be solved

to give the motion of the test particle. Thus we can consistently solve the field

equations without assuming the WEP, and any future experimental evidence indi-

cating deviations from the WEP may indicate that a teleparallel model should be

considered.

4.3 The action

Einstein initially proposed several possibilities for the Lagrangian of teleparallel

gravity. He considered all possible contractions of the torsion tensor with itself,

which can be parametrised by the following Lagrangian

S =

∫
e(c1T

σ
µνTσ

µν + c2T
σ
µνT

νµ
σ + c3Tσµ

σT νµν) d
4x , (4.18)

=

∫
e (c1L1 + c2L2 + c2L3) d4x , (4.19)

where c1, c2 and c3 are all constants and L1, L2 and L3 are three invariants of

the torsion tensor. These invariants were first discussed by Weitzenböck [13]. This

action is quadratic in the torsion tensor and has three free parameters: it is a three

parameter theory of gravity.

Einstein tried several combinations of the parameters c1, c2 and c3. The first he

looked at was c2 = 1 and c1 = c3 = 0 (which was also found to be equivalent to

c1 = 1 and c2 = c3 = 0). This could be interpreted as a set of vacuum Einstein

and Maxwell equations, however this interpretation was viewed as artificial and
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synthetic and did not in the end provide a consistent theory. However, later he

tried the parameter choice c1 = 1/2, c2 = 1/4 and c3 = −1, and he found that the

field equations of the action (4.19) were completely equivalent to those of general

relativity, a result we shall prove shortly. In fact, with this choice of parameters,

one can write the action in a more compact form using the superpotential, which is

defined as the following combination of torsion and contortion

Sρµν := Kµνρ − gρνT σµσ + gρµT σνσ. (4.20)

Associated with this superpotential is the following invariant, sometimes known as

the torsion scalar T

T =
1

2
SρµνTρµν =

1

2
T σµνTσ

µν +
1

4
T σµνT

νµ
σ − TσµσT νµν . (4.21)

This means that the action of the teleparallel equivalent of general relativity (TEGR)

can be written compactly as

STEGR =

∫
1

2
SρµνTρµν e d

4x =

∫
Te d4x . (4.22)

The field equations of this action are then derived by varying the action (4.22),

along with an additional matter Lagrangian with respect to the tetrad field eaµ.

This gives

e−1∂µ(eSµνa )− T σµaSσνµ −
1

4
ea
νT = 4πT νa (4.23)

where the tensor T νa = ea
µT νµ is the standard energy momentum tensor, defined by

T νa =
1

e

δ(eLm)

δeaν
. (4.24)
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The following conservation law holds,

∂ν (e(ja
ν − Taν)) = 0 (4.25)

where ja
ν is the gauge current, which represents the energy momentum of the grav-

itational field

ja
ν =

1

4π

(
ea
σT ρµσSρ

νµ − 1

4
ea
νT

)
. (4.26)

4.3.1 Equivalence with general relativity

Let us show that the above TEGR theory is in fact equivalent to general relativity.

One could either show this equivalence at the level of the action or at the level of

the field equations. Here we choose to show this at the level of the action, as the

results derived in this calculation will be very important later on in this thesis.

Let us begin by decomposing the Riemann curvature of a general U4 connection

in terms of the Riemann curvature of the Levi-Civita connection and an additional

torsion component. As always, quantities calculated using the Levi-Civita connec-

tion will be denoted with a bar. We find

Rρ
µλν = R̄ρ

µλν + ∇̄λK
ρ
µν − ∇̄νK

ρ
µλ +Kρ

σλK
σ
µν −Kρ

σνK
σ
µλ , (4.27)

Now contracting this, we get the Ricci tensor, which is given by

Rµν = R̄µν + ∇̄ρK
ρ
µν − ∇̄νK

ρ
µρ +Kρ

σρK
σ
µν −Kρ

σνK
σ
µρ . (4.28)

And finally we can find the Ricci scalar by contracting this again, to find

R = R̄ + T − 2∇̄µ
(
T ννµ

)
. (4.29)
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Now, imposing the teleparallel condition that the Riemann curvature vanishes,

Rρ
µλν = 0, that is choosing the connection to be the Weitzenböck connection, allows

us to find the Ricci scalar of the Levi-Civita connection in terms of torsion

R̄ = −T + 2∇̄µ
(
T ννµ

)
(4.30)

In the derivation of these equations, use has been made of the identities

K(µν)λ = T µ(νλ) = Sµ(νλ) = 0, (4.31)

Sµνµ = 2Kµ
νµ = −2T µνµ. (4.32)

Now, we can rewrite the covariant derivative in the expression (4.30) using the

relation ∇µV
µ = e−1∂µ(eV µ), to give

R̄ = −T +
2

e
∂µ(eT µ) , (4.33)

where we have also defined T µ := T ννµ. Now the second term of this relationship

is a boundary term: it is just a total derivative, and so in the Lagrangian it will

have no effect on the dynamics of the system. Thus the Einstein-Hilbert action is

completely equivalent to the teleparallel action, up to a minus sign, and they give

rise to the same dynamics.

Later in this thesis we will study this boundary term in greater detail, and so

we will introduce the notation

B =
2

e
∂µ(eT µ) = 2∇µT

µ . (4.34)

and hence the relationship (4.33) can be written compactly as

R̄ = −T +B. (4.35)
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An important issue to note is that although the Ricci scalar contains second deriva-

tives of the metric, the torsion scalar contains only up to first derivatives of the

tetrad. The second order quantities are grouped entirely into the boundary term, a

fact that has important consequences when considering modifications of the theories.

4.3.2 Lorentz invariance

An important theoretical point which we will address now is the issue of local Lorentz

invariance in teleparallel theories of gravity. In any theory of gravity we require two

invariance principles to hold. The first is that the theory is invariant under local

coordinate transformations, xµ → xµ + εµ, so that the action is required to be a

generally covariant scalar. The second principle is that of local Lorentz invariance,

which is required so that special relativity is recovered in local inertial frames. This

means that at every point we should be able to redefine our coordinates so that we

are in a local inertial coordinate system. To do this we require the action to be

invariant under the following infinitesimal Lorentz transformation

Λa
b = δab + ωab(x

µ), (4.36)

where |ωab| � 1 is infinitesimal and antisymmetric due to the Lie Group structure

of the Lorentz group.

Let us examine how our action is changed by local Lorentz transformations.

Under the transformation (4.36), the tetrad is a Lorentz vector in the latin index,

and so transforms as

δeµa = ωbae
µ
b . (4.37)

We begin looking at how the matter action transforms under such a transformation.
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We find it is modified in the following way

δSm =

∫
T aµeδeµad4x =

∫
T aµeωbaeµb d

4x (4.38)

Now due to the antisymmetrisation of the function ωab, it is an easy calculation to

show that this vanishes if and only if the energy momentum tensor is symmetric

T µν = T νµ. (4.39)

Thus the symmetry of the energy momentum tensor is a consequence of local Lorentz

invariance of the matter action. In a similar fashion, conservation of the energy

momentum tensor is a direct result of the requirement that the matter action is

invariant under local coordinate transformations.

Now let us look at the gravitational sector of the Lagrangian. Now we know

that even though the connection is not a tensor, the torsion tensor, which is the

antisymmetric part of the connection is indeed a tensor under spacetime coordinate

transformations due to this antisymmetry. In terms of the Weitzenböck connection

explicitly, this is because the partial derivatives can be promoted to covariant deriva-

tives in the torsion tensor. Similarly, as the contortion tensor and superpotential are

built algebraically out of the torsion tensor, these too, along with their appropriate

contractions, are also invariant under infinitesimal coordinate transformations.

However, the situation is not so straightforward when we check whether they

are Lorentz scalars. We know that the Ricci scalar of the Levi-Civita connection

is invariant under local Lorentz transformations. This however is not true for the

torsion scalar T or the boundary term B: the particular combination of −T + B

is invariant, alas the individual terms are not. Applying a Lorentz transformation

results in a non-trivial spin connection, which in turn means that the Weitzenböck

connection does not transform correctly and the corresponding torsion tensor do

not transform as Lorentz scalars. This is not a significant problem for TEGR,
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insomuch as the term breaking Lorentz invariance is a boundary term, and so the

field equations will remain locally Lorentz invariant.

As we will come to see later in this thesis, violation of Lorentz invariance will

become an issue when one considers modifications of the TEGR action. It should

be emphasised at this stage that local Lorentz invariance is a very well tested as-

sumption experimentally, and sacrificing this principle without evidence contrary to

its validity should not be considered lightly. It is a major weakness of such theories

that they do not possess this property - losing Lorentz invariance means that spe-

cial relativity is not valid locally. This means many important physical properties

are lost, including the speed of light being constant in all inertial reference frames,

the principle of relativity, and many predictions of the standard model of particle

physics. Such theories give rise to a frame dependent description of reality.

Let us briefly review the main experimental evidence supporting the validity of

local Lorentz invariance. One such way to test Lorentz violations is to assume that

electromagnetic interactions suffer a small violation of Lorentz invariance, giving

rise to a change in the speed of electromagnetic interactions c compared to the

limiting speed of matter. These experiments measure deviations of the speed c by

considering the quantity

δ = |1− c−2|. (4.40)

The first such experiment to test for such Lorentz violations were the famous

Michelson-Morley experiments, where a beam of light is split and sent down two per-

pendicular arms. Descendants of the Michelson Morley experiment have bounded δ

to below 10−9.

Further experiments measuring local Lorentz variance include measurements of

the speed of light independent of the velocity of its source, measurements of the

isotropy of the speed of light and time dilation experiments. But those that have
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obtained the best bounds are the so called clock anisotropy measurements. Lack of

local Lorentz invariance would cause shifts in the energy levels of atoms depending

on their orienartation relative to the universal reference frame. Looking for these

shifts, these experiments have bounded δ to below 10−18. For a review of the various

bounds that these different experiments have obtained, we refer to [34] and references

within. Thus Lorentz invariance is well supported and any violation to Lorentz

invariance would have to be very small, less than 10−18. It should be noted that

although some of the teleparallel models alluded to above are Lorentz violating, in

recent work methodologies have been developed that restore local Lorentz invariance

back into some of these teleparallel modifications [35].

4.4 Embedding teleparallel gravity into MAG

One can also embed teleparallel gravity into a metric affine gravity framework. From

a gauge-theoretic point of view, teleparallel gravity is distinguished from other met-

ric affine models by reducing the affine symmetry group to the translation sub-

group. This takes place in the previously mentioned Weitzenböck space, where we

impose two constraints on the general affine framework by setting the curvature

and nonmetricity equal to zero. Thus, geometrically and physically we can treat

teleparallelism as a particular case of metric affine gravity.

To impose these conditions on our metric affine framework, we essentially insert

two Lagrange multipliers into the action, thus restricting the form of connection

in our L4 space. Following the approach used in [20], we consider the following

Lagrangian density

S =

∫ [
e (c1T

σ
µνTσ

µν + c2T
σ
µνT

νµ
σ + c3Tσµ

σT νµν)

+
1

2
µαβ ∧Qαβ − ναβ ∧Rα

β
]
d4x , (4.41)
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Here the quantities µαβ and ναβ are Lagrange multipliers, and thus varying the

action with respect to these imposes the geometrical constraints Qαβ = 0 and Rα
β =

0 and so we return to the geometrical framework of a Weitzenböck spacetime W4.

When the coupling constants are taken again to be c1 = 1/2, c2 = 1/4 and c3 =

−1 we again recover the field equations of general relativity. However, the energy

momentum tensor on the right hand side of the field equation is not the metrical one

of general relativity, rather it is the canonical energy momentum current. This is

important, because if the matter field possesses a non-trivial spin, then the energy

momentum tensor differs from the metrical one. However, this can cause some

consistency problems when spin is included, and thus it has been shown in [20] that

teleparallel gravity only makes sense when spinless matter is considered.

An interesting property of the action (4.41) is that the solutions to the field

equations only admit black hole solutions such as the Schwarzschild metric or its

charged equivalents when the coupling constants c1, c2, c3 are chosen to coincide

with the general relativistic case, and thus this naturally picks out TEGR as the

sole physically supported theory from this class of theories [20].

4.5 Discussion

In this chapter we have taken an in depth look at some of the properties of the

teleparallel equivalent of general relativity (TEGR). We have seen that we can de-

fine a theory which leads to the same field equations and physical consequences as

general relativity, but taking place in a different geometrical setting. This differing

framework dramatically changes the physical viewpoint of the laws of gravity. Cur-

vature is replaced by torsion, meaning the geometric laws of general relativity are

replaced by classical force laws and thus the theory sits somewhat more naturally

in the spectrum of other physical laws.

However, considering TEGR alone does not help us understand some of the
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physical phenomena such as dark energy, dark matter and inflation that general

relativity fails to explain. Thus there is a potential need to go beyond these theories.

In the next chapters we will look at some of the cosmological behaviour a modified

theory of gravity should possess, and begin looking at some modifications to this

teleparallel action.



Chapter 5

Cosmology, dark energy &

modified gravity

In this chapter we will move beyond studying theories of gravity in the abstract sense,

and look at one of their most interesting applications: the subject of cosmology.

We will discuss some of the challenges facing cosmologists today and introduce a

number of models that can potentially deal with these challenges. We shall see that

modifications of teleparallel gravity are among those which are excellent candidates

to be viable models of our universe.

Cosmology is the study of the dynamics and large scale structure of the universe

and its study has fascinated humanity since the dawn of civilisation. Its study aims

to understand the origin, evolution and eventual fate of the universe as a whole. It

was not until the decades after the publication of the general theory of relativity that

cosmology moved from a branch of philosophy to a subject that could be studied

using scientific techniques. The pioneering theoretical work of physicists in the 1920s

such as Friedman, Lemâıtre and Einstein, along with Hubble’s observations of the

expansion of the universe, showed that Einstein’s equations were able to model not

just local gravitational fields, but the universe as a whole. Gravity was no longer just

64
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the force that governed how the planets orbit the sun: it was now able to describe

the dynamics of the entire universe. Over the last century the study of cosmology

has progressed enormously: from the realisation that the universe began in a big

bang in the mid twentieth century, to the current era, where cutting edge satellites

are able to record data from the earliest instances of the universe.

As we discussed in the introduction, one of the great challenges for modern day

cosmologists is to explain the observed accelerated expansion of the universe. This

phenomena is now widely known as dark energy and was discovered in the late 1990s

from observations of distant supernovae. General relativity alone does not predict

this. The simplest way to account for this, making only a minimal modification

to general relativity, is to assume the existence of a small positive cosmological

constant. This does not affect the physics at smaller scales, however it modifies

the behaviour of the universe at much larger scales. This cosmological constant is

currently part of the standard ΛCDM model of cosmology, and it is consistent with

all observations to date.

However, the cosmological constant suffers from a number of theoretical diffi-

culties; to be discussed later in this chapter. This has led cosmologists to propose

many alternative models to explain the accelerated expansion. One of the simplest

ways is to promote this constant to a variable in the form of a scalar field. Adding a

scalar field into the universe is one of the simplest modifications we can make, as we

simply add one additional degree of freedom and they are usually enough to describe

the large-scale effects of high energy gravity theories, at least at an effective level.

Scalar field models are also frequently invoked to explain inflation, a period of rapid

exponential expansion at the beginning of the universe. The canonical way to do

this is adding a kinetic and potential term for a scalar field into the Lagrangian, and

in the context of late time cosmology this theory is known as quintessence. Such a

model can provide a late time accelerated expansion of the universe, however such

simple models are becoming increasingly disfavoured by observations.
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This has led to the study of various alternative theories. One way is to con-

sider non-canonical scalar field models, such as a phantom model, where the kinetic

term has the incorrect sign, or other various modifications of the scalar field La-

grangian. Another suggestion is to introduce a coupling between the gravitational

part of the Lagrangian and the scalar field. This class of models are known as non-

minimally coupled scalar field models, and are a generalisation of the Brans-Dicke

theories which were first proposed in the 1960s, which were motivated by designing

a gravitational theory with a varying gravitational coupling constant.

Instead of considering additional matter components, an alternative approach to

the dark energy problem is to consider modified theories of gravity. We examined

in the last two chapters different theories of gravity in the metric affine framework,

however these alone are not able to account for the accelerated expansion of the

universe, and so alternative modifications to these theories are needed. One can

consider modifying gravity in the metric framework, taking place in a V4 space,

which leads to theories such as f(R) gravity, where the gravitational Lagrangian is an

arbitrary form of the Ricci scalar. Alternatively, one could consider modifications in

the teleparallel framework, working in aW4 space, and this leads to the consideration

of theories such as f(T ) gravity, where the gravitational Lagrangian is an arbitrary

function of the torsion scalar. Both of these approaches have their advantages and

disadvantages, which we will discuss later on.

An important criterion for testing whether a theory of gravity is potentially

viable is to examine whether it exhibits cosmology consistent with observations.

Frequently it is not possible to find the exact cosmological solutions for a theory of

gravity, and so to analyse the generic behaviour of the cosmology at hand, one can

use the mathematical techniques of dynamical systems. The idea is that one rewrites

the cosmological field equations as a system of autonomous ordinary differential

equations. By examining the critical points of such systems, one can study the

behaviour of the system by looking for the generic asymptotic early time and late
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time behaviour. This can then be related to physical observables to examine whether

the model generically behaves as we expect our universe to.

In this chapter I will introduce the basics of cosmology, looking at the Friedmann-

Robertson-Walker (FRW) universe. The necessary dynamical systems techniques

relevant for studying cosmology will be introduced: these techniques will be impor-

tant in later chapters, where they will be applied to various models in the telepar-

allel framework. I will then discuss the dark energy problem, and problems with

the current standard model which assumes the existence of a non-zero cosmologi-

cal constant. A range of alternative possible models which have been proposed to

explain this problem will be discussed, including scalar field models and modified

theories of gravity.

5.1 FRW Universe

In order to mathematically describe the universe as a whole, certain physical as-

sumptions need to be made to create a tractable model. Modern day cosmology is

based on a postulate known as the cosmological principle, or sometimes the Coperni-

can principle which says that the universe is isotropic, meaning it is invariant under

rotations around a point, and homogeneous, meaning it is invariant under spatial

translations. More broadly speaking, the universe is the same everywhere and in

every direction. From the vantage point of the earth, it appears that the universe is

highly isotropic around this point. However, it is impossible to verify from one point

that the universe is homogeneous: isotropy around another point in space would be

required to verify this. It is only by comparing our models to observations that we

will be able to verify whether the assumption of homogeneity is valid. However, this

principle is assumed so that one can study the universe scientifically, and philosoph-

ically the assumption is appealing as it does not put humanity at a special place in

the universe.
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Isotropy and homogeneity mean that our spacetime is highly symmetric. It

implies that each three dimensional spatial hypersurface is a maximally symmetric

manifold. This leaves three possible choices for the spatial component of our metric,

which in spherical polar type coordinates (r, θ, φ) are given by

dΣ2
(k) =

1

1− kr2
dr2 + r2(dθ2 + sin2 θdφ2). (5.1)

If k = +1 the universe is spatially closed, or compact and has the topology of a three

sphere S3. If k = 0 the universe is said to be flat, and the metric is just that of

standard Euclidean space. If k = −1, the universe is spatially open, and the metric

describes a hyperboloid H3.

In cosmology, one frequently chooses to work with a cosmological time t, which

is chosen so that an observer at rest will measure this to be the proper time of the

universe. This leads to the metric taking the following form, called the Friedmann

Robertson Walker metric, displayed here in spherical polar type coordinates

ds2 = −dt2 + a(t)2

(
1

1− kr2
dr2 + r2(dθ2 + sin2 θdφ2)

)
(5.2)

or alternatively in Cartesian type coordinates

ds2 = −dt2 +
a(t)2(

1 + k
4
(x2 + y2 + z2)

)2 (dx2 + dy2 + dz2) (5.3)

The function a(t) is the scale factor of the universe. It determines the relative size

and evolution of the universe. If a(t) is increasing then distances between points

are increasing, and so the universe is expanding. Likewise, if a(t) were decreasing,

then distances between points are decreasing in length, and so the universe would be

contracting. These coordinates are known as comoving coordinates as an observer

at rest in these coordinates will remain at constant (r, θ, φ) for all future time.

The following metric can be derived from a tetrad. The metric does not uniquely
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define a tetrad, and so in some theories of gravity one must be careful in the choice

of tetrad. When the spatial curvature is zero, with k = 0 the choice of tetrad

eaµ = diag(1, a(t), a(t), a(t)) (5.4)

gives the FRW metric and can be consistently used. However when k = ±1 one

needs to be more careful with the choice of tetrad, and this choice depends on what

theory of gravity is being worked on. We will discuss this point in a little more

detail later on.

Now that we have examined the metric of the FRW universe, we must now

consider the right hand side of the field equations, that is the energy content of the

universe we are modelling. In order to model the universe as a whole, one assumes

that all matter in the universe behaves as a perfect fluid, with energy density ρ and

pressure p. This means that the energy momentum tensor takes the following form

Tµν = (ρ+ p)UµUν + pgµν , (5.5)

where Uµ is the four velocity of the fluid. Alternatively in comoving coordinates one

can write this as the following diagonal matrix

T µν = diag(ρ, p, p, p). (5.6)

Inserting the FRW metric (5.2) and the energy momentum tensor (5.5), into the

Einstein field equations gives the following system of equations, known collectively

as the Friedmann equations

3
k

a2
+ 3H2 = κ2ρ , (5.7)

k

a2
+ 2Ḣ + 3H2 = −κ2p . (5.8)
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Alternatively these equations could equivalently be derived in the TEGR using the

FRW tetrad. The conservation of the energy momentum tensor gives the following

equation

ρ̇+ 3H(ρ+ p) = 0, (5.9)

however this equation is a direct consequence of the two Friedmann equations. We

thus have two independent equations for three unknown quantities, H, ρ and p.

In order to close the system, one must then posit an equation of state, that is a

relationship between the pressure and density of the universe, p = f(ρ). Frequently

in cosmology, a simple linear equation of state of the form p = wρ is considered,

with w a constant, physically constrained to lie in the range 0 ≤ w ≤ 1/3. When

w = 0 the fluid is called dust, which on cosmological scales is an accurate model of

baryonic matter or cold dark matter. When w = 1/3, one has the equation of state

of radiation.

For an arbitrary linear equation of state, the Friedmann equations can be solved

for the scale factor to give

a(t) =


a0(t− t0)

2
3(w+1) , w > −1

eH0t, w = −1

a0(t0 − t)
2

3(w+1) , w < −1

(5.10)

with a0, t0 and H0 constants. Here we have shown that we can analytically solve

the Friedmann equations if we have a single perfect fluid matter field with linear

equation of state. However, if one looks at more complicated models, with additional

or different types of matter, it is frequently too difficult to solve for the scale factor

explicitly. And so a way to learn about the phenomenology of such models is to use

dynamical systems techniques.
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5.2 Dynamical systems in cosmology

Frequently when one encounters Friedmann equations, it is either impossible to

solve them analytically, or one has to specify initial conditions which are not always

clear in a cosmological context. In order to mathematically study the behaviour of

solutions, independently of initial conditions, one can use techniques from a branch

of mathematics known as dynamical systems. These techniques are widely used in

cosmological applications since they allow one to study all possible evolutional paths

when there is no possibility of finding an exact solution.

A dynamical system in general is a system of first order ordinary differential

equations (ODEs). The dynamical system is said to be autonomous if the ODEs

are independent of any explicit dependence of time. The general n-dimensional

dynamical system thus takes the form

ẋ = f(x), x = (x1, ....., xn), (5.11)

where f : Rn → Rn is a generic (usually differentiable) function, and the dot ˙denotes

differentiation with respect to the time variable. The system is autonomous as f is

independent of the time t.

One can learn a lot about the mathematical behaviour of the solutions of the

system (5.11) by looking at critical or fixed points of the system. These are defined

as follows:

Definition 1 (Critical point). A point x = x0 is said to be a critical point of the

dynamical system (5.11) if f(x0) = 0.

These critical points are important, because when the system is at one of these

points, the dynamical system (5.11) is stationary, and so once the system is at that

point it will remain at that point for all time. However it may be that if one applies
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a small perturbation to the critical point, the system may then move away from the

critical point. Therefore it is important to look at the stability of the critical point.

There are two related but distinct types of stability that will be introduced. The

first is that of a stable fixed point:

Definition 2 (Stable fixed point). Let x0 be a fixed point of system (5.11). It is

called stable if ∀ε > 0 , ∃δ > 0 such that if ψ(t) is any solution of (5.11) satisfying

|ψ(t0)−x0| < δ, then the solution ψ(t) exists ∀t ≥ t0 and it will satisfy |ψ(t)−x0| < ε

∀t ≥ t0.

But a point being stable is not always the main interest, particularly in a cos-

mological setting: there is no guarantee that generic solutions will end up attracted

to that point. This leads to the further definition of an asymptotically stable fixed

point:

Definition 3 (Asymptotically stable fixed point). Let x0 be a stable fixed point of

the system (23). It is called asymptotically stable if ∃δ > 0 such that if ψ(t) is any

solution of (5.11) satisfying |ψ(t0)− x0| < δ, then lim
t→∞

ψ(t) = x0.

In order to perform linear stability analysis, one must consider the n×n Jacobian

matrix formed of the following partial derivatives

J =
∂f

∂x
. (5.12)

One then evaluates J at each of the critical points, and subsequently find the eigen-

values of the matrix at these points. This matrix will have n eigenvalues, which

provide information about the stability of the critical point. A critical point is said

to be hyperbolic if none of the eigenvalues of the Jacobian matrix have a vanishing

real part. Otherwise the point is said to be non-hyperbolic and linear stability anal-

ysis does not apply. If all of the eigenvalues have a negative real part, the critical

point is stable. If all of the real parts of the eigenvalues are positive, the point is
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unstable. If there are a mixture of negative and positive real parts, the point is

said to be a saddle, and along some directions trajectories are attracted towards the

point, whereas along other directions trajectories are repelled from the point.

In this thesis I will only consider dynamical systems in which linear stability

analysis is sufficient to analyse the stability of critical points. There are some cases

in which linear stability analysis is not sufficient, and in this case a more involved

stability analysis needs to be performed, for example one can use Lyapunov functions

or centre manifold theory1. Later in this chapter we will take a first look at an

example of a cosmological dynamical system, but for now let us move on to discussing

one of the problems of modern day cosmology.

5.3 Dark Energy

One of the great challenges of modern day cosmology is to explain the “dark energy”

problem. In the late 1990s it was suggested by type-Ia supernovae surveys [37, 38]

that the universe’s expansion rate was accelerating. This important observation

has subsequently been confirmed by cosmological observations of ever increasing

precision, from measurements of the cosmic microwave background (CMB) [9, 39],

the Hubble constant [40], baryon acoustic oscillations [41] and again type-Ia super-

novae [42]. Unfortunately, despite all this evidence from astronomical observations,

on the theoretical ground we still lack a fully satisfactory explanation of this phe-

nomenon.

By accelerated expansion, we mean that the second derivative of the scale factor

is positive,

ä > 0. (5.13)

1See [36] for an introduction on how to do this.
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We can see from (5.10) that this can only happen in a standard matter model with

linear equation of state if the equation of state (EoS) parameter satisfies

w < −1/3. (5.14)

This is problematic: such a matter model is unphysical due to the implication that

any such matter would possess a negative pressure.

A related issue to the dark energy problem is the cosmic coincidence problem.

This is concerned with why we are currently at the point in the history of the

universe at which the dark energy and dark matter energy densities are of the same

order of magnitude. These two energy densities decay at different rates with respect

to the evolution of the scale factor, and so it is only for a very brief cosmic window

at which they are of the same order of magnitude. It seems incredibly unlikely that

we would be alive at such a special time. It is hoped therefore that an alternative

model of dark energy could potentially explain this, perhaps by having a scenario

where the two energy densities are of similar orders of magnitude for longer periods

of time. The remainder of this chapter will be devoted to examining a range of dark

energy models.

5.4 The cosmological constant

Let us first analyse the simplest way one can add a dark energy component into

the universe, a cosmological constant. This term was first introduced by Einstein in

the 1920s, in an attempt to find static solutions to the cosmological field equations.

When it was later observed by Hubble that the universe was in fact expanding,

Einstein eliminated this term. However, since the observation of the accelerated

expansion of the universe, this constant term has been resurrected as a possible

explanation for this dark energy. The constant is added to the Einstein-Hilbert
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action in the following way

SEH =

∫ [
1

2κ
(R− 2Λ) + Lm

]√
−g d4x , (5.15)

where Λ is the cosmological constant, having units of (length)−2. This modifies the

Einstein field equations to include an additional cosmological constant term on the

left hand side of the equation

Rµν −
1

2
gµνR + Λgµν =

8πG

c4
Tµν . (5.16)

This is a relatively harmless modification to the gravitational action. As the con-

nection is metric compatible, the conservation equation still holds automatically,

and provided the constant is small enough it has minimal effect on the dynamics of

objects at solar system scales. In fact cosmological observations indicate that the

cosmological constant must be approximately

Λ ≈ 10−52m−2. (5.17)

With this cosmological term, the Friedmann equations are modified to become

3
k

a2
+ 3H2 − Λ = κ2ρ , (5.18)

k

a2
+ 2Ḣ + 3H2 − Λ = −κ2p . (5.19)

From this we can see that we can interpret the cosmological constant as another

perfect fluid, with a constant energy density ρΛ = Λ/κ2 and a constant pressure

pΛ = −Λ/κ2, and thus has a linear EoS with wΛ = −1. If we are at a scale where

the cosmological constant term dominates, so that we neglect the matter energy

density and pressure (ρ = 0 and p = 0), then we can solve these equations exactly
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to find the form of the scale factor

a(t)2 = eHt, (5.20)

where the Hubble parameter is simply the constant

H =

√
Λ

3
. (5.21)

Such a solution is called the de Sitter universe2. This solution can describe the late

time asymptotic behaviour of many cosmological models.

The cosmological constant is currently part of the accepted standard model of

dark energy, with the model agreeing with cosmological observations to date. How-

ever, its presence generates a number of theoretical difficulties. Its extremely small

value, as indicated in (5.17) is contrary to theoretical predictions. We will briefly

discuss these issues here, however for a more comprehensive discussion we refer

to [43].

The cosmological constant can be viewed as a matter fluid with a constant en-

ergy density ρΛ = Λ and negative pressure pΛ = −ρΛ. This is analogous to the

contribution of the vacuum energy from matter fields, the energy-momentum tensor

of a field in its vacuum state

〈0|Tµν |0〉 = −ρvacgµν (5.22)

with ρvac being the constant energy density of the vacuum. From a classical per-

spective, this vacuum energy term can be identified with the value of the matter

fields lying at their minimal energy state. Additionally from a quantum perspective,

the Heisenberg Uncertainty Principle forbids both the kinetic and potential energies

to vanish simultaneously, giving rise to a zero point energy of the quantum fields,

2If the cosmological constant were negative one would get an alternative anti-de Sitter solution.
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thus giving a source of energy in the form of vacuum energy. Thus two cosmological

constant type terms are present in the universe, one from classical considerations

and the other from the quantum level.

A non-vanishing value of the vacuum energy becomes present in the Standard

Model of particle physics during a symmetry breaking phase transition. It is be-

lieved, assuming the Standard Model of particle physics, that the universe has under-

gone two such phase transitions: the Electro-Weak and the QCD phase transition.

These two phase transitions give rise to the following vacuum energy densities

ρEWvac ≈ 108 GeV4 ρQCDvac ≈ 10−2 GeV4 (5.23)

However, the observed value of the cosmological constant, written in GeV is

ρΛ = 10−47GeV4. (5.24)

Comparing this value to that of the Electroweak or QCD scale indicates that we

have a discrepancy at the level of 50 orders of magnitude.

Moreover, this problem cannot easily be solved if we further consider the quan-

tum vacuum point energy. From quantum mechanical considerations, we would

expect the energy density of the quantum vacuum to be approximately

ρQMvac ≈ −108 GeV4. (5.25)

This value is still 55 orders of magnitude away from what we would hope for. Now

we could suppose there existed a bare cosmological constant in the universe, which

just happened to cancel out all of these other quantum and classical contributions.

However, this would require an extraordinary degree of fine tuning of over 50 orders

of magnitude.

We have already mentioned the cosmic coincidence problem, which the cosmo-
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logical constant cannot alleviate. In order for galaxy formation to occur, a period of

matter domination is required to have taken place. If the cosmological constant were

slightly larger, then such a phase would not have occurred, with a direct radiation

to dark energy phase transition occurring instead. Moreover, humanity appears to

be alive during the very small time frame in the universe’s potential history at which

the matter to dark energy phase transition is occurring. Again, this is only because

of the particular value of the cosmological constant. It was much more likely that

we would exist in the late time attracting dark energy phase of the universe. This

is a rather philosophical point, but we can see that alternative dark energy models

are potentially needed to be able to alleviate this cosmic coincidence problem.

We have thus seen this currently accepted ΛCDM model faces a range of the-

oretical difficulties. For the remainder of this chapter we will take a look at some

alternatives to the standard model, considering dark energy as an additional dy-

namical matter field or as an artefact of a modified gravity model

5.5 Scalar field dark energy models

The immediate thing one would do if one wants to go beyond the cosmological

constant model is to promote the constant to being a dynamical quantity. A scalar

field represents the simplest way to add just one dynamical degree of freedom into

the cosmological framework, and moreover it is usually enough to describe the large-

scale effects of high-energy or modified gravity theories, at least at an effective level.

Scalar fields have a prominent role in present cosmology not only since they provide

simple inflationary solutions for the early universe, but also for their applications

to late-time cosmology. In fact simple scalar field models have been employed to

characterize both the inflaton, a hypothetical field introduced to drive the primordial

inflationary phase, and dark energy. Moreover, since a scalar field can exhibit an

effective negative pressure, it makes it a good candidate for dark energy.
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There are different ways one can add a dynamical scalar field into the Lagrangian.

Some simple ways are by adding to the matter sector a canonical scalar field [44–57],

known as quintessence, a phantom scalar field [58–63], or a combination of both of

these fields called quintom [64–73]. Reviews of these models can be found in [74]

and [75].

Let us take a look at the canonical quintessence approach. One adds a scalar

field to the Lagrangian as follows

S =

∫ [
R

2κ2
− 1

2
∂µφ∂

µφ− V (φ) + Lm

]√
−g d4x , (5.26)

where the scalar field φ has a kinetic energy term and a potential V (φ)3. In this

Lagrangian, the gravitational sector and the scalar field are separated, and so one

says the scalar field is minimally coupled. Such a model can account for the acceler-

ated expansion of the universe, however to account for the latest cosmological data,

these models must be increasingly fine tuned, with the potential required to be very

flat.

Current cosmological observations leave open the possibility that the effective

equation of state of the universe lies below the phantom barrier at weff = −1.

However quintessence models are always constrained by the condition weff > −1. In

order to account for this possibility, many authors have considered models known

as phantom scalar fields. These follow from the same action as above, however the

sign in front of the kinetic energy term changes. These models can have interesting

cosmological applications, however they suffer from a range of theoretical difficulties.

The kinetic energy term having the wrong sign causes problems such as instabilities

and negative energies.

There are numerous other ways to consider an additional dark energy field into

3One could easily rewrite this action in the teleparallel framework. As there is no coupling
between torsion and the scalar field, one could simply change the Ricci scalar to the torsion scalar,
and one would recover the exact same dynamics. However we have chosen the curvature formulation
as quintessence has mainly been studied in the literature in this form.
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the action. One such approach is to consider an interaction of a scalar field with

the matter sector. Such models are known as Scalar-Fluid models [76, 77], and are

interesting due to their potential to hide the effects of the scalar field at solar system

scales, the so called Chameleon mechanism [78–80]. One can also consider higher

order fields, such as vector fields or three form fields to potentially describe dark

energy, or more complex fluid models such as a Chapylgin gas. A full review of all

such models is beyond the scope of this thesis.

5.5.1 Dynamical systems analysis: Quintessence

Let us now use the dynamical systems techniques introduced earlier in the chapter

to analyse the quintessence models. This will be particularly relevant later on in this

thesis when we discuss a generalisation of this model in the teleparallel framework.

Assuming a FRW universe which is spatially flat4, one arrives at the following

two Friedmann equations

3H2 = κ2 (ρ+ ρφ) , (5.27)

3H2 + 2Ḣ = −κ2 (p+ pφ) . (5.28)

In these equations we have defined the energy density and pressure of the scalar

field as follows

ρφ =
1

2
φ̇2 + V (φ), (5.29)

pφ =
1

2
φ̇2 − V (φ). (5.30)

Varying the action (5.26) with respect to the scalar field also gives an equation for

4For a dynamical systems analysis of quintessence models in the presence of spatial curvature,
see [81]
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the scalar field, the Klein-Gordon equation,

φ̈+ 3Hφ̇+ V ′(φ) = 0. (5.31)

For simplicity, we will assume that there is only one matter field, which we

will assume has the linear equation of state p = wρ. Similarly, one can define the

equation of state wφ of dark energy or scalar field as the following ratio of the scalar

field pressure and energy density

wφ =
pφ
ρφ

=
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

. (5.32)

And also we define the total or effective equation of state as

weff =
p+ pφ
ρ+ ρφ

. (5.33)

Other important quantities are the matter energy density and the density parameter

of the dark energy/scalar field, which are respectively

Ωm =
κ2ρ

3H2
, Ωφ =

κ2ρφ
3H2

. (5.34)

Inspired by these definitions, we now introduce the dimensionless variables

σ2 =
κ2ρ

3H2
, x2 =

κ2φ̇2

6H2
, y2 =

κ2V

3H2
, (5.35)

which were first used by Copeland et al. in [82]. The first Friedman equation (5.27)

written in these variables becomes the algebraic constraint

1 = σ2 + x2 + y2, (5.36)

which will define the boundary of our phase space. This means we can always write
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the variable σ in terms of x and y, and in what follows we choose to only work with

x and y. We can rewrite physical quantities in terms of only these variables. Of

particular importance will be the effective equation of state, which in terms of x

and y is given as

weff = w − (w − 1)x2 − (1 + w)y2. (5.37)

We now define the quantity N = ln a and denote derivatives with respect to N

by a prime

x′ =
dx

dN
=

1

H

dx

dt
. (5.38)

We will use N as a time variable. Using these variables, the equations of motion can

be written as the following autonomous system of first order differential equations

x′ = −3

2

(
2x+ (w − 1)x3 + x(w + 1)

(
y2 − 1

)
−
√

2√
3
λy2

)
, (5.39)

y′ = −3

2
y

(
(w − 1)x2 + (w + 1)

(
y2 − 1

)
+

√
2√
3
λx

)
. (5.40)

Here we have defined the quantity λ by

λ = − 1

κV (φ)

dV

dφ
. (5.41)

In order to close the system, we must specify what this quantity λ is, that is we must

decide on the form of the potential of the scalar field. The most common choice in

the literature is to consider the potential to be of the exponential form

V (φ) = V0e
−κλφ (5.42)

with V0 a constant and λ a dimensionless constant. This choice means the param-
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eter λ defined in (5.41) just becomes a constant. A further frequently considered

potential is an inverse power law, of the form

V (φ) =
M4+α

φα
. (5.43)

However, this potential requires us to consider a third autonomous equation to close

the system. In fact, the exponential form for V is the only one which consents to

close the autonomous system of equations without introducing another variable, and

it is this case we will consider here.

Point x y

O 0 0

A± ±1 0

B
√

3
2

(1+w)
λ

√
3
2

√
(1+w)(1−w)

λ
0

C λ√
6

√
1− λ2

6

Table 5.1: Critical points of the autonomous system (5.39)-(5.40).

We are now in a position to find the critical points of the dynamical system, by

setting the right hand side of equations (5.39) and (5.40) equal to zero and solving.

These are displayed in Table 5.1. We find the following five potential critical points:

• Point O. This point occurs at the origin of our phase space. It is the matter

dominated era of the universe, with the energy density of matter satisfying

Ωm = σ2 = 1, with the effective EoS weff = 0.

• Points A±. These two points are dominated by the kinetic energy of the scalar

field, with the effective EoS that of a stiff fluid, weff = 1. No acceleration

is present at these point. The points are either unstable or saddle points

depending on whether the magnitude of 3 +
√

3/2λ is less than
√

6 for A− or

whether 3 −
√

3/2λ is less than
√

6 for A+. Such points are unphysical, yet
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frequently appear as the early time attractors in quintessence type models;

see [82] for example.

• Point B. For this point to exist, it is required that the parameter λ of the

potential is sufficiently large, requiring λ > 3(1 + w). This point is a scaling

solution, meaning that its effective equation of state mimics that of the matter,

with weff = w. These are of great interest from a cosmological perspective, as

they are potentially able to solve the cosmic coincidence problem.

• Point C. For this point to exist, the potential is required to be sufficiently

small, with λ2 < 6 for this point to exist. For a suitably flat potential λ2 < 2,

this point can describe an accelerating universe, however the effective equation

of state is bounded below by −1, and thus crossing into the phantom regime

is not possible, and λ has to approach zero for weff to approach −1.

These critical points mean that the dynamical system as a whole exhibits some

interesting cosmological behaviour. For certain choices of the parameter values, the

system can exhibit late time accelerating attractor solutions, as required to describe

dark energy. In this case the system asymptotically approaches a cosmological

constant type solution.

Of most interest to us is the point C, which is entirely scalar field dominated,

and exists only for λ2 < 6. For a suitably flat potential λ2 < 2, this point can

describe an accelerating universe, however the effective equation of state is bounded

below by −1, and thus crossing into the phantom regime is not possible. Moreover

λ has to approach zero for weff to approach −1. For λ2 < 3 the late time attractor

is given by this point C, whereas for λ2 > 3 point B is the global attractor. Hence

it is possible in these models to achieve a late time accelerating attracting solution,

as is required to explain dark energy.

A typical plot of the two dimensional phase space of these quintessence models is

displayed in Fig. 5.1, where the parameter choice λ = 1 is made. Such a choice means
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Figure 5.1: Phase space showing trajectories of standard quintessence models, for
the particular parameter choice w = 0 and λ = 1. The point C is the late time
accelerating attractor, with the shaded region indicating the region of acceleration.

that the scaling solution B does not exist. Here we see that many trajectories pass

close to the matter dominated origin before passing through the shaded acceleration

region. All trajectories then end at the late time attractor at point C, which in this

case is accelerating.

Although initially a promising theory, it was realised that to agree with observa-

tions, a large amount of fine tuning of the parameter λ was required in order to get

an effective equation of state close to −1. Moreover the effective EoS of the critical

points in this model are bounded below by −1, whereas cosmic observations are

consistent with an EoS below −1 [9]. Thus models beyond this simple exponential

scalar field model are potentially required. In Chapter 7 we will look at generalising

this model to include a coupling of the scalar field to the torsion tensor.
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5.6 Modifications of gravity

In this section we will discuss an alternative approach to the dark energy problem

and consider modified theories of gravity. It is not just the dark energy problem that

leads to considering alternative models of gravity: as discussed in the introduction

there are also the dark matter and inflation problems.

There are essentially two approaches one could take when attempting to solve

the dark matter, dark energy and inflation problems. We could modify the matter

content of the universe, by inserting an additional dark matter and dark energy

component into the right hand side of the field equations of general relativity or

TEGR. We have already seen this approach earlier in the chapter where dark energy

was inserted into the right hand side of Einstein’s equations via either a cosmological

constant, or a dynamic quintessence scalar field. This approach can similarly be

considered for dark matter, where simply one adds additional matter into the right

hand side of the equations, and similarly for inflation one can consider a scalar field

known as an inflaton.

An alternative approach is to instead consider modifying the gravitational sector

(i.e. the left hand side of Einstein’s equations). Doing so means examining modified

theories of gravity. This is a completely sensible and consistent approach: the

phenomena we need to explain is entirely of a gravitational nature (dark matter or

dark energy has not been detected via any of the other three fundamental forces).

Or it may be the case that modified gravity is required to describe dark energy,

but dark matter is indeed a particle such as a weakly interacting massive particle

(WIMP). Whatever the case, further degrees of freedom, beyond the ones of general

relativity and Standard Model particles, are needed in order to account for the

observations at both early and late times and all such approaches should continue

to be explored.

There are many modifications of gravity that have been proposed in the literature



CHAPTER 5. COSMOLOGY, DARK ENERGY & MODIFIED GRAVITY 87

with the aim of describing these phenomena, and I will discuss some of them in this

chapter. I will take a particular focus on the models that have been studied in both

the teleparallel and curvature frameworks. This list is certainly not comprehensive,

and for a recent review of modified theories of gravity, see [83].

5.6.1 Brans-Dicke and Scalar-Tensor gravity

One of the first well studied modifications of gravity was formulated in the early

1960s, called Brans-Dicke theory (sometimes referred to as Jordan-Brans-Dicke the-

ory). Originally the theory was motivated by generalising general relativity to in-

clude a gravitational constant G that was allowed to vary dynamically in space and

time. To do this they replaced the inverse of the gravitational constant, 1/G by a

scalar field. This leads to the consideration of the following action

S =

∫
1

16π

(
φR− ω∂µφ∂

µφ

φ

)√
−gd4x+ Sm (5.44)

where ω is the dimensionless Dicke coupling constant. Note the 1/G factor in front of

the Ricci scalar is no longer present and has been replaced by the scalar field. Brans-

Dicke theory predicts different behaviour for the perihelion precession of Mercury

and gravitational light deflection of the Sun, with both of these being dependent

on the value of ω. The Cassini-Huygens experiment from 2003 puts a bound of

ω > 40, 000 to 2σ. Brans-Dicke theory today is currently still a viable theory,

however there is little experimental evidence for a varying gravitational constant.

However, predecessors of Brans-Dicke theory are actively studied today. In mod-

ern day language, Brans-Dicke theory is a particular example of a wider class of

theories known as scalar-tensor theories. They have the following general action

S =

∫ (
1

2κ
A(φ)R− ω(φ)∂µφ∂

µφ− V (φ)

)√
−gd4x+ Sm, (5.45)
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where both A and ω are generic functions of the scalar field, with V the potential

of the scalar field. In these models, there is an interaction term between the scalar

field and the gravitational sector, and this is referred to as a nonminimal coupling.

The coupling becomes minimal again if the function A(φ) = constant. Such a

class of theories is very general, and contains many interesting models as subclasses.

They contain Brans-Dicke theories, along with the quintessence models and phantom

quintessence models, and many more. Alternatively, one could consider coupling a

scalar field to suitable torsion scalars in the TEGR. We will discuss these theories

more extensively, along with their teleparallel equivalents in Chapter 8.

5.6.2 f(R) gravity

So far we have considered adding a scalar field into the Einstein-Hilbert action, with

a potential for a nonminimal coupling between the scalar field and the gravitational

sector. In this section, we will discuss a different approach to modifying gravity:

rather than adding in an extra ingredient into the Einstein-Hilbert action, such as

a scalar field, we will directly modify the form of the Einstein-Hilbert action.

One way to do this is to promote the Ricci scalar in the Einstein-Hilbert action

to rather be a general function of the Ricci scalar, which we denote by f(R). Such

a modification is naturally known as f(R) gravity, and it is one of the most well

studied modified forms of gravity [84–86]. The function f is taken to be an arbitrary

(sufficiently smooth) function of the Ricci scalar, and one recovers general relativity

when one sets f(R) = R− 2Λ. Thus the gravitational sector of the action takes the

following form5

Sf(R) =
1

2κ

∫
f(R)

√
−g d4x . (5.46)

5Note that we are still working in a V4 space, however one can also consider f(R) gravity in a
U4 or an L4 space.
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Recall that with the Einstein-Hilbert action, one could vary the action with

respect to just the metric, or alternatively with respect to both the metric and

connection, treating the two fields as a priori independent (the Palatini variation).

In that case, both types of variations led to the same field equations, with the

connection constraint imposing that the connection was just of the Levi-Civita form.

However, this is no longer the case when one considers f(R) gravity, and depending

on the variation used one gets different field equations, and so two different theories:

metric f(R) gravity and Palatini-f(R) gravity. The Palatini version of f(R) gravity

suffers some theoretical difficulties, for example it appears to be in conflict with the

standard model [87, 88] and suffers from the existence of singularities appearing in

stars [89]. We will thus not discuss this case further, and consider only metric f(R)

gravity.

Now assuming a Levi-Civita connection, the Ricci scalar depends on second

derivatives of the metric tensor. Varying the action with respect to the metric will

thus result in a double integration by parts, which will give rise to terms taking

the following form ∇µ∇νF where, as is common in the f(R) literature, F = f ′(R).

Thus generically the theory will be fourth order (unless f ′ is constant, in which case

we recover general relativity). Performing this variation gives the following field

equations

FRµν −
1

2
fgµν + gµν2F −∇µ∇νF = 8πGTµν , (5.47)

where 2 = ∇µ∇µ. Such theories have been extensively studied in a variety of

applications. The Starobinsky model of f(R) gravity, where f takes the form f(R) =

R + αR2, is a strong candidate to describe inflation, whereas functions of the form

f(R) = Rn have been shown to have interesting properties when analysing galaxy

rotation curves [90]. They also are of great interest for applications in late time

acceleration. For a dynamical systems analysis of the cosmology of general f(R)
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models, see [91].

These f(R) gravity theories have interesting relations to scalar tensor theories.

By applying a Legendre transformation to the metric, one can show that the two

theories are essentially physically equivalent: one can conformally transform an f(R)

gravity to get a scalar tensor theory, and vice versa. This will be discussed in detail

in Chapter 8.

5.6.3 f(T ) gravity

Considering f(R) gravity makes sense when we are working in the metric formulation

of gravity. If instead we took the TEGR to be the fundamental theory, it is no longer

natural to consider working with a function of the Ricci scalar. In this case it is

natural instead to consider modifying the teleparallel Lagrangian to promote the

torsion scalar T to be a general function of the torsion scalar: such a theory is

called f(T ) gravity, where again f is a sufficiently smooth function of its argument.

The Lagrangian takes the following form

Sf(T ) =
1

2κ

∫
f(T ) e d4x . (5.48)

Despite the fact that teleparallel gravity and general relativity are equivalent, due to

the relation R = −T+B where B is a boundary term, this is no longer the case when

one considers non-linear functions of the torsion scalar. One can no longer write

that f(R) = f(T ) + boundary term. Thus f(T ) gravity is a distinct modification

of gravity to f(R) gravity, and this distinction leads to the consideration of f(T,B)

gravity, which will be discussed in the next section.

This class of f(T ) theories were first considered in [92], motivated by potential

early universe inflationary applications. However, they have also been shown to

potentially exhibit interesting late time phenomenology, with applications in the

dark energy problem [93]. If we vary action (5.48) with respect to the tetrad, we
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arrive at the following set of field equations

4e
[
fTT (∂µT )

]
Sν

µλ + 4eaν∂µ(eSa
µλ)fT − 4efTT

σ
µνSσ

λµ − efδλν = 16πeΘλ
ν , (5.49)

where we have used Θ to represent the energy momentum tensor in the teleparallel

context. At first appearance this theory is somewhat nicer than f(R) gravity because

these field equations are second order, in contrast to f(R) gravity which we recall

has fourth order terms in its field equations. However a deeper analysis reveals

there are a few theoretical difficulties with f(T ) gravity. The theory in general is

not locally-Lorentz invariant, which f(R) gravity manifestly is.

For a time there was much confusion in the literature about the correct tetrads

that must be used when working in f(T ) gravity. For example, consider the case

of a FRW metric with spatial curvature. What tetrad should one use? In spherical

polar type coordinates, naively one could pick the following tetrad

e = diag(1,
a(t)√

1− kr2
, a(t) r, a(t) r sin θ), (5.50)

which recovers the correct FRW metric (5.2). However, in f(T ) gravity this imposes

a constraint on the field equations which means that they can only be solved for

a particular choice of functional form of f(T ). However, the choice of functional

form of f should certainly be independent of the tetrad, and this would appear as

if certain types of solutions of the theory were inconsistent with f(T ) gravity.

To remedy this issue, one must instead choose between “Good and bad tetrads”,

see [94]. A good tetrad is one that does not impose a functional form on f(T ) from

the field equations. This issue has been clarified further in [35,95], where it is noted

that by not setting the spin connection equal to zero, that is not specifying the

gauge, one can recover a consistent set of field equations without resorting to ‘good

tetrads’, which turn out to be necessary only when the gauge is restricted. We will

take a more in-depth look at f(T ) gravity in the next chapter.
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5.6.4 Other teleparallel modifications

There are many more modifications of gravity which have been considered by various

authors, and it is beyond the scope of this thesis to discuss them all in detail here.

However we will take a look at a few more here, focusing on those which have been

considered within the teleparallel framework.

Modified Gauss-Bonnet Gravity

Gauss-Bonnet gravity is a theory of gravity based on the Gauss-Bonnet theorem

of geometry. Gravity in higher dimensions can be extended in directions beyond

simply considering higher dimensional general relativity, while still preserving many

of the features that make general relativity appealing. Gauss-Bonnet gravity is a

particular natural theory to consider, and appears in the low energy effective action

of string theory. This theory is a generalisation of Einstein gravity that adds an

extra term to the standard Einstein-Hilbert action

LGB = R2 − 4RABRAB +RABCDR
ABCD =: G, (5.51)

which is quadratic in the Riemann tensor. When varying this extra term with

respect to the metric only second order derivatives remain in the field equations,

with the higher derivative terms cancelling out exactly, and thus the theory shares

many of the nice properties of general relativity. In four dimensions Gauss-Bonnet

gravity and general relativity are equivalent, since by the Gauss-Bonnet theorem,

the Gauss-Bonnet term in the action reduces to a total dervative, giving a surface

integral and thus does not add a contribution to Einstein’s equation. But when

analysing gravity in higher dimensions this extra term is non-trivial and it is thus

natural to consider this extra Gauss-Bonnet contribution when considering higher

dimensional theories.
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However if one is only interested in four dimensional theories one can still consider

the Gauss-Bonnet term in a non trivial way. This led to a formulation of gravity

known as modified Gauss-Bonnet gravity, with the following action

S =

∫
f(R,G)

√
−gd4x, (5.52)

where f is a sufficiently smooth function of both of its arguments: the Ricci scalar

and the Gauss-Bonnet term. If f has non-linear terms in G, then this theory departs

from that of standard f(R) gravity. However, the cost of adding a non-linear term

in G is that the field equations will no longer be second order.

One can follow a similar approach in teleparallel gravity. There is an equivalent

to the Gauss-Bonnet term in teleparallel gravity [96], given by TG, leading to the

modified gravity

S =

∫
f(T, TG)ed4x (5.53)

which differs from the metric equivalent. Additionally one can extend this to include

additional terms beyond the Gauss-Bonnet term, Lovelock polynomials, that also

satisfy the Gauss-Bonnets term’s nice properties. This is known as Lovelock gravity,

and a teleparallel equivalent of this model has been discussed in [97].

Nonminimal matter coupling

Another modification that has been studied in both the metric and teleparallel

frameworks has been to consider coupling the matter sector to the gravitational

sector. In the context of torsion, the following action has been considered [98],

where a coupling between the torsion scalar and the matter Lagrangian is present

S =

∫
1

2κ
{T + f1(T ) + [1 + f2(T )]Lm} ed4x. (5.54)
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Here the fi are arbitrary functions of the torsion scalar, and λ is a factor with

dimensions (mass)−2 which controls the strength of the coupling. Such a model

can exhibit very interesting cosmological phenomenology. Late time de Sitter type

solutions are possible, along with a crossing of the phantom barrier, and early time

inflationary solutions. Thus the model is able to obtain a unified cosmic history.

A further type of nonminimal matter coupling in the teleparallel framework has

been to consider coupling the torsion scalar to the trace of the energy momentum

tensor. The following action was considered in [99]

S =

∫
1

2κ
(T + f(T, T )) e d4x+ Sm , (5.55)

where T is the trace of the energy momentum tensor, T = Θµ
µ. Similar to the

torsion matter coupling, this model can also provide a unified cosmic history, with

early time inflationary solutions, late time quintessence, phantom or de Sitter type

solutions along with a dynamical crossing of the phantom barrier. Such couplings

have previously been considered in the curvature formulation, with their counter-

parts defined in the natural way, making the replacements: T → R, e→
√
−g.

Born-Infield teleparallel gravity

A further interesting modification, a particular type of f(T ) gravity, is the Born-

Infield action [100]. This has the following action

S =

∫
λ

2κ

(√
1 +

2T

λ
− 1

)
ed4x. (5.56)

The parameter λ controls the scale at which deviations from general relativity oc-

cur. In the limit λ→ 0, this action simple recovers the standard Lagrangian of the

TEGR. Such a theory is motivated from the Born-Infield approach to electrodynam-

ics, which is able to regularise the singularities which appear, for example, around a
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point charge. In terms of the teleparallel Born-Infield action, it has been shown that

it is able to regularise the early time Big Bang singularity which appears in general

relativity, with the scale factor converging to a non-zero constant. Alternatively a

potential bounce universe scenario is possible [101].

The above is certainly not a comprehensive list of the possible types of teleparallel

gravity, but gives a flavour of the type of modifications being studied today. One

could easily consider a plethora other types of modification, for example one could

consider a teleparallel version of the unimodular f(R) gravity, where one constrains

the determinant of the tetrad to be equal to one. Now that we have given an overview

of the state of research and the challenges facing cosmology and modified gravity

today, we will devote the rest of this thesis to exploring some of these modified

teleparallel models in detail.



Chapter 6

f (T, B) gravity

In this chapter we will explore the modification of gravity, f(T,B) gravity. This

model was first considered in [1] and this chapter follows that work closely.

We discussed in the previous chapter how in the curvature formulation of gravity,

when working in a V4 space, one can consider modifying the Einstein-Hilbert action

to promote the curvature scalar to a general function of the curvature scalar, i.e.

considering f(R) type gravities. Alternatively, if one works in a Weitzenböck space,

W4, one can generalise the TEGR action to a general function of the torsion scalar,

giving the f(T ) class of gravities. Despite the equivalence of the Einstein-Hilbert

action and the TEGR action, this no longer holds true between f(T ) and f(R)

gravity: one can no longer write that f(T ) = f(R) + boundary term, and so the

actions lead to different dynamics.

These two different modifications have different properties, some of which are

desirable, others not so. f(R) gravity has fourth order field equations, which are very

uncommon for physical laws1, where usually one hopes to understand the system

by just knowing position and velocity. Moreover fourth order equations are very

difficult to solve mathematically, and can give rise to instabilities. On the other

1One such example of a physical law which has a fourth order equation is the Euler - Bernoulli
equation, which describes how a beam is deflected given a certain load.

96
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hand, the field equations of f(T ) gravity remain second order, and so are easier to

deal with, and physically more desirable. The second order parts of the Ricci scalar

are not present in the torsion scalar, they are entirely contained within the boundary

term B. However, f(T ) gravity suffers from a different theoretical difficulty: it is not

locally Lorentz invariant2 [102, 103]. f(R) gravity on the other hand is completely

locally Lorentz invariant.

The difference between these two actions is simply the effect of the boundary

term. Thus if we also consider a function depending on both the torsion scalar

and the boundary term, we can construct a theory which contains both f(R) and

f(T ) gravity as limiting cases. In order to better understand the structure of these

modifications in the teleparallel framework, the following action is proposed

STB =

∫ [
1

16πG
f(T,B) + Lm

]
e d4x , (6.1)

where f is a suitably smooth function of both of its arguments, the torsion T and

boundary term B. The Lagrangian density Lm is the standard matter Lagrangian.

We are considering this action in the Weitzenböck space, that is assuming our man-

ifold has a Weitzenböck connection.

A similar model was proposed shortly after we proposed our model, in [104],

where the action contained the function f(T−a1B), where a1 is some constant. This

is less general than the f(T,B) model considered here, with f(T,B) containing this

as a particular special case. However this restricted model does still include both

f(T ) (when a1 = 0) and f(R) gravity (when a1 = 1) as limiting cases.

In this chapter, we will derive the field equations of f(T,B) gravity, explore its

limiting cases and take a look at the theoretical issues of Lorentz invariance and the

conservation equation. We will end by taking a glimpse at the cosmology of these

2However recently the issue of local Lorentz invariance in f(T ) gravity has been subject to
some debate [35, 95]. The authors claim that by choosing an appropriate non-vanishing spin
connection, one can restore local Lorentz invariance. This is tied up with the issue of “Good and
Bad tetrads” [94].
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models.

6.1 Field equations

Now that we have described the action of the f(T,B) gravity, we now must derive

the field equations of the theory. The derivation of the field equations for this

Lagrangian is quite an involved process, so we will present the lengthy derivation

explicitly. Variations of the action with respect to the tetrad gives

δSTB =

∫ [
1

κ

(
f(T,B)δe+ efB(T,B)δB + efT (T,B)δT

)
+ δ(eLm)

]
d4x , (6.2)

where the three variations explicitly are

efB(T,B)δB =
[
2eeνa∇λ∇µfB − 2eeλa2fB −BefBeλa − 4e(∂µfB)Sa

µλ
]
δeaλ , (6.3)

efT (T,B)δT =
[
− 4e(∂µfT )Sa

µλ − 4∂µ(eSa
µλ)fT + 4efTT

σ
µaSσ

λµ
]
δeaλ , (6.4)

f(T,B)δe = ef(T,B)eλaδe
a
λ . (6.5)

The two variations (6.4) and (6.5) are both standard variations that are required to

derive the field equations for f(T ) gravity, and the presence of the boundary term

does not change this. For that reason we will not present this derivation explicitly.

On the other hand, the variation involving the δB term (6.3) is not standard,

so we will explicitly derive this below. Let us first derive some useful variations

and relations that will be needed during our derivation. Using that δe = 1
2
gµνδgµν

and gµν = ηabeµae
ν
b , we can find the variation of the inverse metric and the volume

element

δgµν = −
(
gνλeµa + gµλeνa

)
δeaλ , (6.6)

δe = eeλaδe
a
λ . (6.7)
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Now varying the relationship between the tetrad and the cotetrad (2.7) we find the

relation of the variation of the inverse tetrad is given by

δeσm = −eσneµmδenµ . (6.8)

And by taking partial derivatives of (2.7), one can also find a similar relation for

the partial derivatives of the inverse tetrad

∂νe
σ
m = −eσneµm∂νenµ . (6.9)

Using (6.6) and (6.9), the variation of the torsion vector δT µ can be written as

δT µ = −
(
eµaT

λ + gµλTa − T λaµ
)
δeaλ + gµνeλa

(
∂λδe

a
ν − ∂νδeaλ

)
. (6.10)

Using ∂λe = egµν∂λgµν and the compatibility equation for the metric ∇λ(g
µν) = 0

we find

∂λe = eΓλ
ρ
ρ , (6.11)

∂λg
µν = −

(
Γλ

νµ + Γλ
µν
)
. (6.12)

Finally we note for reference that the affine connection in terms of the Weitzenböck

connection and contorsion tensor is given by

Γ̄λµν = Γµ
λ
ν −Kµ

λ
ν = Γν

λ
µ −Kν

λ
µ . (6.13)

Initially performing the boundary term variation of our f(T,B) action, using

the explicit form of the boundary term, it is found that

efB(T,B)δB = −
(
fBB + 2(∂µfB)T µ

)
δe− 2e(∂µfB)δT µ , (6.14)
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where we used that the torsion vector is given by the contraction of the torsion

tensor, which explicitly in terms of the tetrad yields

T µ = gµνT σσν = gµνeσa

(
∂σe

a
ν − ∂νeaσ

)
. (6.15)

Now we can start working out the individual terms in (6.14). If we integrate by parts

and disregard the boundary term, the final term on the right hand side of (6.14)

becomes

e(∂µfB)δT µ =
[
∂ν

(
eλa(eg

µν)(∂µfB)
)
− ∂ν

(
eνa(eg

µλ)(∂µfB)
)

− e(∂µfB)
(
eµaT

λ + gµλTa + T λa
µ
)]
δeaλ . (6.16)

Using (6.11), (6.12) and the above equation (6.15), the first term of (6.16) can be

written in terms of covariant derivatives as

∂ν

(
eλa(eg

µν)(∂µfB)
)

= eeλa2fB − e(∂µfB)
(
eλaΓν

µν − eλaΓνµ ν + Γµλ a

)
. (6.17)

Using the same idea, the second term of (6.16) becomes

∂ν

(
eνa(eg

µλ)(∂µfB)
)

= eeνa∇λ∇µfB + e(∂µfB)
(
gµλ(Γa

ν
ν − Γν

ν
a)

− Γa
λµ − Γa

µλ + Γλµ a −Kλµ
a

)
. (6.18)

By replacing these last two equations (6.17) and (6.18) into (6.16) we find

e(∂µfB)δT µ = −
[
e(∂µfB)

(
eµaT

λ + gµλTa + T λa
µ + gµλ(Γa

ν
ν − Γν

ν
a)

− Γa
λµ − Γa

µλ + Γλµa −Kλµ
a − Γa

µλ + Γµλa + Γν
µν − Γνµν

)
− eeλa2fB + eeνa∇λ∇µfB

]
δeaλ . (6.19)
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And finally, if we use the symmetry of the affine connection, that is equation (6.13),

we can simplify the term as

e(∂µfB)δT µ = −
[
e(∂µfB)

(
eµaT

λ + Γλµa − Γa
µλ −Kλµ

a

)
− eeλa2fB + eeνa∇λ∇µfB

]
δeaλ . (6.20)

Now, by replacing this expression into (6.14) and using (6.7) we find

efB(T,B)δB =
[
2eeνa∇λ∇µfB − 2eeλa2fB −BefBeλa

+ 2e(∂µfB)
(
eµaT

λ − eλaT µ + Γλµa − Γa
µλ −Kλµ

a

)]
δeaλ . (6.21)

Into this we will now introduce the superpotential, which we recall is given in terms

of the torsion and contorsion as 2Sa
λµ = Ka

λµ + eµaT
λ − eλaT µ, to obtain

efB(T,B)δB =
[
2eeνa∇λ∇µfB − 2eeλa2fB −BefBeλa

+ 2e(∂µfB)
(

2Sa
λµ −Ka

λµ + Γλµa − Γa
µλ −Kλµ

a

)]
δeaλ . (6.22)

The last four terms on the right hand side are identically zero due to the relation-

ship (6.13). Thus, cancelling these we obtain the final result which is

efB(T,B)δB =
[
2eeνa∇λ∇µfB − 2eeλa2fB −BefBeλa − 4e(∂µfB)Sa

µλ
]
δeaλ . (6.23)

Now we have obtained the variations, we can now formulate the field equations.

The energy momentum tensor is defined as follows

Θλ
a =

1

e

δ(eLm)

δeaλ
. (6.24)

Note we have used Θ to denote the energy momentum tensor, as opposed to T to
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avoid confusion with the torsion tensor. Putting everything together, we find that

the field equations for f(T,B) gravity are given by

2eeλa2fB − 2eeσa∇λ∇σfB + eBfBe
λ
a + 4e

[
(∂µfB) + (∂µfT )

]
Sa

µλ

+ 4∂µ(eSa
µλ)fT − 4efTT

σ
µaSσ

λµ − efeλa = 16πeΘλ
a. (6.25)

And contracting this with eaν we arrive at the field equations in spacetime indices

only

2eδλν2fB − 2e∇λ∇νfB + eBfBδ
λ
ν + 4e

[
(∂µfB) + (∂µfT )

]
Sν

µλ

+ 4eaν∂µ(eSa
µλ)fT − 4efTT

σ
µνSσ

λµ − efδλν = 16πeΘλ
ν . (6.26)

where Θλ
ν = eaνΘ

λ
a is the standard energy momentum tensor. In the following sec-

tions we will explore the limiting cases of this theory, that result in f(T,B) gravity

coinciding with f(T ) gravity and f(R) gravity. In particular we will derive the

teleparallel equivalent of f(R) gravity.

6.2 f (T ) gravity limit

Let us begin with examining the field equations (6.26) when we choose the function

f to be independent of the boundary term. In order to match the sign convention

employed, we simply set

f(T,B) = f(T ) , (6.27)

so that fB = 0. Doing this, we find

4e
[
fTT (∂µT )

]
Sν

µλ + 4eaν∂µ(eSa
µλ)fT − 4efTT

σ
µνSσ

λµ − efδλν = 16πeΘλ
ν , (6.28)
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which, as expected, are the standard f(T ) field equations. Let us make an important

remark about this limit. One verifies immediately that this is the unique form of

the function f which will give second order field equations. Recall that linear terms

in the boundary term B do not effect the field equations. Therefore, the generic

field equations contain terms of the form ∂µ∂νfB which are always of fourth order

and can vanish if and only if fB is a constant, so that f is linear in the boundary

term.

Therefore, for a nonlinear function f , f(T ) gravity is the only possible second

order modified theory of gravity constructed out of R, T and B. As mentioned

before, the price to pay is the violation of local Lorentz invariance.

6.3 f (R) gravity limit

Here we will show carefully how we recover standard f(R) gravity in this model, and

also find the teleparallel equivalent of f(R) gravity. The teleparallel equivalent of

f(R) gravity was found in the Einstein frame, where one conformally transforms the

theory to a scalar tensor theory, in [102], however here we will derive the equivalent

in the Jordan frame. Recall the relationship (4.33)

R = −T +B , (6.29)

which suggests to consider our function f to be of the particular form

f(T,B) = f(−T +B) . (6.30)

We also introduce the standard notation for the derivative of f from f(R) gravity

F (R) = f ′(−T +B) = −fT = fB . (6.31)



CHAPTER 6. F(T, B) GRAVITY 104

Inserting this form of function into our general f(T,B) field equation (6.26) leads

to the following field equations

2eδλν2F − 2e∇λ∇νF + eBFδλν − 4eaν∂µ(eSa
µλ)F + 4eFT σµνSσ

λµ

− efδλν = 16πeΘλ
ν . (6.32)

This equation is the field equation for the teleparallel equivalent of f(R) gravity3.

As this is not an obvious observation, let us prove this statement by rewriting the

field equation in the usual form, as expressed in the f(R) literature (5.47).

We can rewrite the fourth term in (6.32) as

4eaν∂µ(eSa
µλ) = 2∂µ(eKν

µλ)− 2∂ν(eT
λ) + eBδλν + 4eSσ

λµWµ
σ
ν . (6.33)

Inserting this back into (6.32) gives

2eδλν2F − 2e∇λ∇νF − 2F∂µ(eKν
µλ) + 2F∂ν(eT

λ)

− 4eFSσ
λµΓν

σ
µ − efδλν = 16πeΘλ

ν . (6.34)

Now, we need to replace torsion with curvature. The Ricci tensor of the Levi-Civita

connection satisfies the identity

R̄µν = ∇νKλ
λ
µ −∇λKν

λ
µ +Kλ

ρ
µKν

λ
ρ −Kλ

λ
ρKν

ρ
µ . (6.35)

We can rewrite this to derive the following identity

R̄λ
ν =

1

e

(
∂σ(eKν

λσ) + ∂ν(eT
λ)
)
− 2Sσ

λµΓν
σ
µ . (6.36)

3Although for simplicity we have expressed this equation using covariant derivatives ∇ of the
Levi-Civita connection, these can easily be rewritten in the teleparallel framework using the relation
∇µV µ = 1

e∂µ(eV µ).
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Using this final identity (6.36), it is then easy to see that the field equations reduce

to the f(R) field equations in standard form

FR̄µν −
1

2
fgµν + gµν2F −∇µ∇νF = 8πΘµν , (6.37)

where Θµν is the energy-momentum tensor. Thus we conclude that equation (6.32)

is indeed the correct field equation of the teleparallel equivalent of f(R) gravity.

6.4 f (B) gravity

In this section we will consider a possible new modification of gravity. A naturally

intriguing possibility would be to consider a functional form of f(T,B) that is in-

dependent of the torsion scalar T , that is an f(B) gravity. However, such a theory

could not reduce to general relativity, or TEGR, in a suitable limit and thus is not

of great theoretical interest. However, if we considered instead a functional form

f(T,B) = −T + f(B) (6.38)

then we have a genuinely new modification of gravity not covered by either of the

f(T ) or f(R) subcases. This now has the property of reducing to GR or TEGR when

the function f(B) is simply linear (as linear boundary terms in the Lagrangian do

not effect the field equations). Moreover, we will see in a later chapter, when we

consider conformal issues, that this subcase has some interesting relationships to

some particular scalar field models.

In this case, let us derive the field equations. We now have fT = −1 and so

2eδλν2fB − 2e∇λ∇νfB + eBfBδ
λ
ν + 4e∂µfBSν

µλ

− 4eaν∂µ(eSa
µλ) + 4eT σµνSσ

λµ − efδλν = 16πeΘλ
ν . (6.39)
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Of course, these field equations will still remain fourth order and suffer issues of lack

of Lorentz invariance. We will come back to this model in Chapter 8.

6.5 Lorentz invariance

In this section we will investigate the issue of local Lorentz invariance in these

modified torsion models. As we did earlier in this chapter, when we considered the

f(R) limit, let us rewrite our general field equation in a covariant form in terms

of the Einstein tensor and the metric. If we insert the expression for the Ricci

tensor (6.36) into the field equation (6.26) we find

2eδλν2fB− 2e∇λ∇νfB + eBfBδ
λ
ν + 4e

[
(fBB + fBT )(∂µB) + (fTT + fBT )(∂µT )

]
Sν

µλ

+ 4eaν∂µ(eSa
µλ)fT − 4efTT

σ
µνSσ

λµ − efδλν = 16πeΘλ
ν . (6.40)

Using the two relations R = −T + B = −T + 2∂µT
µ and Rλ

ν = Gλ
ν + 1

2
(B − T )δλν ,

along with some algebra, we find that we can write the field equation in the following

covariant form

Hµν := −fTGµν + gµν2fB −∇µ∇νfB +
1

2
(BfB + TfT − f)gµν

+ 2
[
(fBB + fBT )(∇λB) + (fTT + fBT )(∇λT )

]
Sν

λ
µ = 8πΘµν . (6.41)

It is readily seen that if one considers the f(T ) limit, then this equation coincides

with the covariant form of the f(T ) field equations, as presented in [103].

We note that this equation is manifestly covariant. However, it is not in general

invariant under local Lorentz transformations. As we saw in Chapter 4, a necessary

condition for the field equation to be locally Lorentz invariant is for the antisym-

metric part of the equation to be identically zero, as the energy-momentum tensor

is required to be symmetric. In particular, this implies that the coefficient of Sν
λ
µ



CHAPTER 6. F(T, B) GRAVITY 107

must vanish identically, see for example [103]. Requiring this straight away gives

two conditions that must be satisfied

fBB + fBT = 0 , and fTT + fBT = 0 . (6.42)

This coupled system of second order partial differential equations can be solved to

give the following first order condition

fT + fB = c1 , (6.43)

where c1 is a constant of integration. Solving this first order equation gives us a

general f of the form

f(T,B) = f̃(−T +B) + c1B = f̃(R) + c1B . (6.44)

Since B is a total derivative term, the resulting field equations are unchanged by

terms linear in B. Hence, we can set c1 = 0 without loss of generality. We already

showed that an f of this form simply reduces to the f(R) field equations, which are

manifestly Lorentz invariant. Hence we can conclude that the above field equations

are Lorentz invariant if and only if they are equivalent to f(R) gravity. Therefore,

the teleparallel equivalent of f(R) gravity is the only possible Lorentz invariant

theory of gravity constructed out of R, T and B. Conversely to the above, the price

to pay is the presence of higher order derivative terms.

6.6 Conservation equations

We have just investigated the issue of local Lorentz invariance. Now let us move

onto another potential problem: requiring that the matter action is invariant under

infinitesimal coordinate transformations. As we saw in Chapter 4, this gives thee
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condition that the energy momentum tensor Θµν is divergence free

∇µΘµν = 0 . (6.45)

(also shown in [103]). Hence we require the left-hand side of our field equations to

also have this property. Let us show that this is indeed the case and that there is

no need for this to be imposed as an extra (independent) condition.

For compactness, let us define the vector

Xλ =
[
(fBB + fBT )(∇λB) + (fTT + fBT )(∇λT )

]
. (6.46)

Taking the covariant derivative of Hµν , we find after some simplification

∇µHµν = −
[
Rµν −

1

2
Bgµν + 2∇ρSνρµ

]
Xµ. (6.47)

Now using

Rµν = −2∇ρSνρµ +
1

2
Bgµν − 2SρσµKνσρ, (6.48)

this simplifies to

∇µHµν = 2SρσµKνσρX
µ. (6.49)

However, we know that the energy momentum tensor is symmetric, and hence

H[µν] = −S[νµ]
λXλ = 0. (6.50)

This implies

∇µHµν = 2H [ρσ]Kνρσ = 0, (6.51)
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which follows from K being antisymmetric in its last two indices. This means that

on shell the left-hand side of the field equations are conserved.

6.7 Cosmology

In this section we will take a first look at the cosmology of a general f(T,B) model.

Both f(R) and f(T ) gravity both can exhibit interesting late time and early time

phenomenology, so it is in some sense trivial that f(T,B) gravity will do so too.

Nonetheless we will briefly analyse the cosmology of such models looking at the field

equations and possible implications.

Let us work in a spatially flat FRW universe, so that we choose the diagonal

FRW tetrad, that gives rise to the standard FRW metric. The torsion scalar and

boundary term of such a tetrad are given by

T = −6H2, B = −18H2 − 6Ḣ, (6.52)

respectively. Plugging the tetrad ansatz into the field equations, assuming a perfect

fluid energy momentum tensor, gives the following cosmological field equations, as

can be readily seen from [105]

f +
6ȧḟB
a
− 12fT ȧ

2

a2
− 6fB (aä+ 2ȧ2)

a2
= κ2ρ (6.53)

f − 4ȧḟT
a
− 6fB (aä+ 2ȧ2)

a2
− 4fT (aä+ 2ȧ2)

a2
+ 2f̈B = −2κ2p. (6.54)

Traditionally, one would now specify the form of the function f(T,B) and at-

tempt to find the scale factor. However, one can also invert this process, these

field equations can also be used to find functional forms of f(T,B) that are able to

produce particular cosmological solutions. This process is known as reconstruction.

For example, in a recent paper [104], using a restricted form of the type of f(T,B),
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it was found that a de-Sitter type solution can be produced by the following f(T,B)

gravity

f(T,B) = −T + a1B + [(2− 3a1)(−T + a1B)]
1−3a1
2−3a1 . (6.55)

Other approaches one could take to analysing the above field equations would

be to rewrite them as a dynamical system, in line with what we did in the previous

chapter. This has been analysed in depth for f(R) gravity, however in order to close

the system one is generally required to perform function inversions, a process which

is typically not very easy to perform (although recently a new approach to dealing

with this issue has been considered [106]). Such an analysis is beyond the scope

of this thesis, and later in this thesis we will see that with the help of a conformal

transformation we can analyse the cosmology in a simpler way.

6.8 Discussion

In this chapter we have taken a look at a very general teleparallel modification which

incorporates a number of teleparallel modifications into one framework. The results

of this chapter can be visualised using Fig. 6.1. The starting point is a gravitational

action based on an arbitrary function f(T,B) which depends on the torsion scalar

and a torsion boundary term. If this function is assumed to be independent of

the boundary term, one arrives at f(T ) gravity which we identified as the unique

second order gravitational theory in this approach. Likewise, if the function takes

the special form f(−T +B), we find the teleparallel equivalent of f(R) gravity. This

theory is identified as the unique locally Lorentz invariant theory. Any other form

of f(T,B) will result in gravitational theories which are neither of second order nor

locally Lorentz invariant.

This analysis has subsequently been expanded on further, where the effects of



CHAPTER 6. F(T, B) GRAVITY 111

f(T,B) f(T )

f(R) GR

f = f(−T +B)

f = f(T )

f = R

f = T

Figure 6.1: The relationship between different modified gravity models. f(R)
gravity is the unique Lorentz invariant theory. f(T ) gravity is the unique theory

with second order field equations.

a Gauss-Bonnet term, a boundary Gauss-Bonnet term and the trace of the en-

ergy momentum tensor have been incorporated into a large very general theory,

f(T,B, TG, BG, T ) which incorporates a very large class of theories [105].

Only the beginning of a study of f(T,B) cosmology has been considered here,

but further investigations of these models would be of great interest to study in the

future. Also of interest would be to see if there are potential non-trivial f(T,B)

models which undergo interesting cosmic phenomenology, such as bounce universes

which have the potential to eliminate the big bang singularity.

Whether f(T,B) gravity is a viable description of the universe remains to be

seen. However, even if that were not to be the case, the framework of studying these

models is very useful from a theoretical point of view, allowing us to understand the

differences and structure of the underlying sub-models f(R) and f(T ) gravity. We

should mention at this point that there have been several studies in the literature of

f(R, T ) models, being functions of the Ricci scalar and the torsion scalar4. Of course,

such models are completely equivalent to f(T,B) gravity, using the relationship

R = −T +B. However, it appears that considering the boundary term directly is a

more natural way of framing the theory from a teleparallel point of view.

4It is important not to get these papers confused with the many more papers on f(R, T ) models
where T is defined to be the trace of the energy momentum tensor!



Chapter 7

Nonminimally coupled teleparallel

models

In the last chapter we explored how one can consider a broader class of theories

in the teleparallel framework by considering a function depending on the boundary

term B as well as the usual teleparallel scalar. In this chapter we will perform a

similar analysis, where we will look at the equivalence between scalar-tensor theories

in the teleparallel and curvature frameworks.

In Chapter 5 we briefly discussed scalar-tensor theories as a generalisation of

Brans-Dicke theories in the curvature framework. These are a generalisation of

quintessence theories where one considers a coupling between the scalar field and

the gravitational sector. The standard approach is to consider a coupling between

the scalar field and the Ricci scalar, of the form ξRφ2 [107–109]. Such a nonminimal

coupling has motivations from different contexts. It appears as a result of quantum

corrections to the scalar field in curved spacetimes [110, 111] and it is also required

by renormalisation considerations [109]. It also appears in the context of superstring

theories [112]. Such models have attempted to explain the early time inflationary

epoch, however the simple model with a quadratic scalar potential is now disfavoured

112
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by the current Planck data [113–115].

In recent years an alternative formulation has been considered where the coupling

occurs between the scalar field and torsion of the form ξTφ2 [116–127]. This gives

rise to different dynamics and interesting phenomenology, for example phantom

behaviour and dynamical crossing of the phantom barrier: the universe is able to

pass from an effective EoS weff > −1 to an effective EoS weff < −1. A dynamical

systems analysis of these models were considered in [117], and the observational

constraints on such models were found in [121]. Other types of nonminimal coupling

to the torsion sector have been considered, for example in [128] a coupling between

torsion and derivatives of the scalar field are considered.

In this chapter, we consider an approach where we examine a nonminimal cou-

pling between the scalar field to both the torsion scalar T and the boundary term

B. We note that coupling a scalar field to a boundary term is not a new idea, for

example a nonminimal coupling between a scalar field boundary term such as the

Gauss-Bonnet term and higher Lovelock polynomials have previously been consid-

ered [129, 130]. This theory encompasses both nonminimally coupled teleparallel

gravity and nonminimally coupled general relativity in suitable limits.

This chapter is based on and extends the results derived in the joint work [2],

and the erratum [10].

7.1 Scalar field - torsion coupling

Let us first briefly review previous studies of nonminimally coupled scalar fields. The

first approach to nonminimally coupling a scalar field to the gravitational sector is

to consider a coupling to the Ricci tensor as follows

S =

∫ [
R

2κ2
+

1

2
(∂µφ∂

µφ+ ξRφ2)− V (φ) + Lm

]√
−g d4x . (7.1)
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As we discussed in Chapter 5, this approach was originally considered in the context

of Brans-Dicke theories motivated by introducing a variable gravitational constant.

Minimally coupled quintessence corresponds to taking ξ = 0 in the above La-

grangian. As we have already seen, quintessence alone can give rise to many interest-

ing features from late time accelerated expansion of the universe to inflation [44–46].

However simple models of scalar field inflation are becoming disfavoured by the lat-

est Planck data. A further issue with this simple quintessence approach is that the

effective equation of state must always satisfy weff > −1 and require a very flat fine

tuned potential in order to explain current cosmological observations.

When ξ 6= 0, the system is said to have a nonminimal coupling and is referred to

as being in the Jordan frame. This can be transformed to a minimal coupling via

a conformal transformation, with the resulting frame known as the Einstein frame.

Such a transformation reduces the system to a quintessence model with a coupling

between the scalar field and dark matter. Physical quantities in this frame can then

be transformed back into physical quantities in the Jordan frame. We will look

at this conformal relationship in the next chapter. For a review of the dynamics

of these models, see chapter 9 of [74] and references therein. Alternatively, one

can work directly in the Jordan frame: a dynamical systems analysis for various

potentials have been considered by various authors, see [131–134] and references

within.

In recent years, an alternative approach to nonminimally coupled scalar fields has

been considered in a teleparallel setting. Coupling a scalar field to torsion has been

considered, giving rise to what are known as teleparallel dark energy theories [116].

The following action is considered

S =

∫ [
− T

2κ2
+

1

2
(∂µφ∂

µφ− ξTφ2)− V (φ) + Lm

]
e d4x . (7.2)

This gives rise to different dynamics to the case of the nonminimal coupling to the
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Ricci scalar. Of course with a minimal coupling, setting ξ = 0, the two theories again

become equivalent due to the teleparallel equivalence. This theory again has a richer

structure than simple standard quintessence behaviour, with both phantom and

quintessence type dynamics possible, along with dynamical crossing of the phantom

barrier.

The equivalence between general relativity and teleparallel gravity breaks down

as soon as one nonminimally couples a scalar field: the field equations result in

different dynamics. In this chapter, we will consider a more general action, as

considered in [2, 135], with the aim of unifying both of the previously considered

approaches. We examine

S =

∫ [
− T

2κ2
+

1

2
(∂µφ∂

µφ− ξTφ2 − χBφ2)− V (φ) + Lm

]
e d4x. (7.3)

When one sets χ = −ξ one will recover an action which is equivalent to (7.1), and

when one sets χ = 0 the action (7.2) is recovered.

One can also recast this action in a different form via an integration by parts of

the boundary term.

S =

∫ [
− T

2κ2
+

1

2
(∂µφ∂

µφ− ξTφ2) + χφT µ∂µφ− V (φ) + Lm

]
e d4x. (7.4)

where now we have a coupling between a derivative of the scalar field and the

torsion tensor contraction T µ. Such a term has been considered several times in the

literature, and first goes back to [136] in the 1980’s, who considered this in a Brans-

Dicke type model in the context of Møller’s tetradic theory [137]. More recently

such a coupling has also been considered by others in [127,138].

A particularly interesting subcase of these models will be when ξ = 0, corre-

sponding to a pure coupling between the boundary term and φ, as this is a poten-

tially unexplored model and is not covered by either of the previous two limiting

theories. Such a coupling was studied in detail in [2]. One could in principle choose
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a more general coupling η(φ)B between the potential and the boundary, however

for this work we will restrict ourselves to analysing the choice η(φ) = φ2, which

ensures that the constant χ is dimensionless. A more general function might have

some interesting inflationary applications.

We now derive the field equations of the action (7.3). Varying the action with

respect to the tetrad field yields the following field equations

−
(

2

κ2
+ 2ξφ2

)[
e−1∂µ(eSa

µν)− eλaT ρµλSρνµ −
1

4
eνaT

]
− eνa

[
1

2
∂µφ∂

µφ− V (φ)

]
+eµa∂

νφ∂µφ− 4(ξ + χ)eρaSρ
µνφ∂µφ− χ

[
eνa2(φ2)− eµa∇ν∇µ(φ2)

]
= T νa ,

(7.5)

where 2 = ∇µ∇µ and ∇ is the covariant derivative with respect to the Levi-Civita

connection. Here T νa is the standard energy momentum tensor derived from varying

the matter sector, and is not to be confused with torsion.

As we saw in the last chapter, the term in the field equations containing Sρ
µν is

Lorentz violating [103]: it has a non-trivial antisymmetric component. This term

vanishes only in the case when we have ξ = −χ, which corresponds to the case where

the nonminimal coupling reduces to that of a coupling to only the Ricci scalar. This

result is very similar to the one obtained in the last chapter and in [1], where the

only Lorentz invariant f(T,B) modification was f(T,B) = f(−T +B) = f(R).

Now it can be shown that the Einstein tensor of the Levi-Civita connection can

be related to the torsion sector via the relation

Gσ
ν = −

[
2e−1∂µ(eSa

µν)− 2eλaT
ρ
µλSρ

νµ − 1

2
eνaT

]
eaσ. (7.6)
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This means we can write the field equations in a covariant form as follows

(
2

κ2
+ 2ξφ2

)
Gµν − gµν

[
1

2
∇λφ∇λφ− V (φ)

]
+∇µφ∇νφ

−4(ξ + χ)Sµ
λ
νφ∂λφ− χ

[
gµν2(φ2)−∇µ∇ν(φ

2)
]

= Tµν . (7.7)

It is readily seen that this equation reduces to the correct field equation for a non-

minimal coupling of a scalar field to the Ricci scalar when one takes χ = −ξ.

Finally we have the modified scalar field equation. This is obtained by vary-

ing the action with respect to the scalar field, yielding the following Klein-Gordon

equation

2φ+ V ′(φ) = −(ξT + χB)φ. (7.8)

Now we have examined the field equations of the system, we will devote the rest of

this chapter to examining the cosmological applications of this model.

7.2 Cosmology

In this section we will derive the background equations for the cosmology of the

above models. We will consider the standard spatially flat FLRW tetrad, and assume

the energy momentum tensor of the matter sector is standard barotropic matter

given by an isotropic perfect fluid, with a linear equation of state. We will also

assume all dynamical quantities, including the scalar field φ, are homogeneous,

depending only the time t.

Inserting the FLRW tetrad into the field equations (7.5) gives us the following
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Friedmann equations

3H2 = κ2 (ρ+ ρφ) , (7.9)

3H2 + 2Ḣ = −κ2 (p+ pφ) . (7.10)

Here we have defined the energy density and pressure of the scalar field as follows

ρφ =
1

2
φ̇2 + V (φ)− 3ξH2φ2 + 6χHφφ̇, (7.11)

pφ =
1

2
(1− 4χ)φ̇2 − V (φ) + 2Hφφ̇(2ξ + 3χ)

+ 2φ2Ḣ(ξ + 6χ2) + 2χφV ′(φ) + 3H2φ2(ξ + 4χξ + 12χ2) . (7.12)

Using the FLRW metric, the Klein-Gordon equation (7.8) reduces to

φ̈+ 3Hφ̇+ 6(ξH2 + χ(3H2 + Ḣ))φ+ V ′(φ) = 0. (7.13)

In the above derivations we have used the relations (6.52) for the FLRW torsion

scalar and boundary term. In this model matter obey the standard conservation

equation,

ρ̇+ 3H(ρ+ p) = 0 (7.14)

as can be seen by a lengthy but straightforward calculation. Similarly, the scalar

field energy density and pressure also satisfy

ρ̇φ + 3H(ρφ + pφ) = 0, (7.15)

so even in the presence of a nonminimal coupling there is no transfer of energy

between the matter sector and the dark energy sector.

One can define the equation of state of the dark energy/scalar field as the fol-



CHAPTER 7. NONMINIMALLY COUPLED TELEPARALLEL MODELS 119

lowing ratio of the scalar field pressure and energy density, and the total or effective

equation of state respectively as

wφ =
pφ
ρφ
, weff =

p+ pφ
ρ+ ρφ

. (7.16)

We can also define the standard matter energy density and the energy density of

the scalar field, respectively, as

Ωm =
κ2ρ

3H2
, Ωφ =

κ2ρφ
3H2

, (7.17)

so that the relation 1 = Ωm + Ωφ holds.

7.3 Dynamical systems analysis

Now let us use dynamical systems techniques introduced in Chapter 5 to analyse the

behaviour of the cosmology of this system. This system has been analysed for various

special cases in the literature. When χ = 0, the model reduces to a “teleparallel

dark energy model”, where there is a nonminimal coupling only between the torsion

scalar and the scalar field: the dynamical systems analysis in this case has been

studied in [117,123]. Likewise, when χ = −ξ, the system becomes a model in which

there is a nonminimal coupling between the scalar field and the Ricci scalar, which

has been studied extensively, see [131–134]. Finally, a further limiting case of this

framework is when ξ = 0, when there is a pure coupling between only the boundary

term: the dynamical systems analysis of this was performed in [2]. In this thesis, we

will present, for the first time, an analysis of the dynamics of the full action (7.3),

without restricting ourselves to these limiting cases.

The first thing we must do is define appropriate dimensionless variables. We
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choose the following definitions

σ2 =
κ2ρ

3H2
, x2 =

κ2φ̇2

6H2
, y2 =

κ2V

3H2
, z = κφ , (7.18)

which straightforwardly generalise the normalised variables used to analyse standard

quintessence, introducing just one extra variable z, see Chapter 5 or [82]. The first

Friedmann equation (7.9) written in these variables is simply the constraint

1 = σ2 + x2 + y2 + 2
√

6χxz − ξz2, (7.19)

which will define the boundary of our phase space. The shape of this boundary will

of course depend on the values of the coupling constants χ and ξ.

Due to this algebraic relation, the phase space will be three dimensional, and we

choose to work with the variables x, y, and z. Since the energy density of matter is

non-negative, the relation

x2 + y2 + 2
√

6χxz − ξz2 ≤ 1 (7.20)

must be satisfied. As in standard quintessence, due to symmetries of the system,

we can assume without loss of generality that our potential is positive and so we

only need to consider y > 0. There is no restriction on the sign of x or z, since φ̇

can be positive or negative, as can the scalar field. This means that the phase space

is potentially not compact, it will depend on the values and signs of the coupling

constants.

To that end, if we further introduce the variables

u = x+
√

6χz, v =
√
|6χ2 + ξ|z (7.21)
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then the phase space boundary can be rewritten as

u2 ± v2 + y2 ≤ 1, (7.22)

where the minus sign corresponds to the case 6χ2 + ξ > 0, and the plus sign is the

case when 6χ2 + ξ < 0. In the former case, we see that the boundary is simply

hyperbolic space, H2. In the latter, the space is that of a unit sphere, which is

indeed compact. In the limiting case when ξ = −6χ2, the above u − v variables

break down, and the phase space instead becomes an infinitely long cylinder.

As before, we define the quantity N = ln a and denote derivatives with respect

to N by a prime. The equations of motion can be written as the following slightly

lengthy autonomous system of first order differential equations

x′ =
1

2 ((ξ + 6χ2) z2 + 1)

(
− 3x3(4χ+ w − 1)− 3x

(
y2(2λχz + w + 1)

− z2(ξ(12χ+ w − 2) + χ(1− 12χ(w − 1)))− w + 1
)

+
√

6x2z(4ξ − 3χ(4χ+ 3w − 3)) +
√

6
(
y2
(
λ+ λξz2 − 3χ(w + 1)z

)
+ 3χz

(
z2(ξ(4χ+ w − 2) + χ) + w − 1

) ))
, (7.23)

y′ =− y

2 ((ξ + 6χ2) z2 + 1)

(
3x2(4χ+ w − 1)

+
√

6x
(
λ+ λ

(
ξ + 6χ2

)
z2 + z(6χ(w − 1)− 4ξ)

)
+ 3

(
y2(2λχz + w + 1)− z2

(
4ξχ+ ξw + 12χ2 + χ

)
− w − 1

) )
, (7.24)

z′ =
√

6x. (7.25)

The above dynamical system is rather lengthy, so let us write (7.23)-(7.25) in the

more compact form

x′i = fi(x, y, z), (x1, x2, x3) = (x, y, z). (7.26)



CHAPTER 7. NONMINIMALLY COUPLED TELEPARALLEL MODELS 122

In the system we have defined the quantity λ by

λ = − V
′(φ)

κV (φ)
. (7.27)

In order to close the system we will have to specify a form of λ. For the autonomous

system to remain three dimensional, one needs to choose a form of the potential

such that λ can be written in terms of the variables x, y and z. As in Chapter 5,

we will assume the potential V to have an exponential form of the kind

V (φ) = V0 e
−λκφ . (7.28)

This ensures that λ is simply a constant.

However this is not the only choice that will give a closed three dimensional

system. One could also consider a power law potential of the form

V (φ) =
Mα+4

φα
, (7.29)

where α is a constant and M is a positive constant with the units of mass. This

would allow one to write λ in terms of z as

λ =
2
√

6αχ

z
, (7.30)

however we will leave the analysis of such a potential for future work.

We can rewrite the important physical quantities in terms of the new variables

x, y and z. We find that the effective equation of state can be written as

weff =
1

3 ((ξ + 6χ2) z2 + 1)

(
− 3x2(w + 4χ− 1) + 2

√
6xz(2ξ − 3(w − 1)χ)

+3
(
w − y2(2χλz + w + 1) + z2

(
4ξχ+ 6χ2 + ξw

)) )
. (7.31)
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Now at a fixed point, one can integrate the second Friedmann equation (7.10) ex-

plicitly to find a, and it is found that

a ∝ (t− t0)2/[3(1+weff)]. (7.32)

This means that the universe’s expansion will be accelerating if the effective equation

of state satisfies weff < −1/3. Another useful physically important quantity is the

deceleration parameter q, defined to be

q = −1− Ḣ

H2
=

1

2
+

3

2
weff , (7.33)

which will tell us if the universe is accelerating or not, depending on whether it is

negative or positive respectively. Similarly, we can also express the energy density

of the matter and scalar field in terms of x, y and z

Ωm =
κ2ρm
3H2

= σ2 = 1− x2 − y2 − 2
√

6χxz + ξz2, (7.34)

Ωφ =
κ2ρφ
3H2

= x2 + y2 + 2
√

6χxz − ξz2. (7.35)

7.3.1 Finite critical points

We are now able to find the finite critical points of the dynamical system, corre-

sponding to the solutions of

fi(x, y, z) = 0, i = 1, 2, 3, (7.36)

that lie within the phase space. We emphasise that here we are looking for finite

critical points, however in some cases the phase space is not compact, so there may

be critical points lying at infinity. These will have to be considered separately and

we will investigate these shortly.
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Point x y z Existence

O 0 0 0 ∀λ, ξ, χ

A± ±1 0 0 ξ = χ = 0

B
√

3
2

(1+w)
λ

√
3
2

√
(1+w)(1−w)

λ
0 ξ = χ = 0, λ2 > 3(1 + w)

C λ√
6

√
1− λ2

6
0 ξ = χ = 0 & λ2 < 6

D 0 1 λ
6χ

ξ = 0 & ∀λ, χ

E 0 1 0 λ = 0 & χ 6= 0/ξ 6= 0

F 0
√

2(ξ+6χ)√
λ

√
z

ξ+3χ−
√

(ξ+3χ)2−λ2ξ

λξ
λ2ξ < (ξ + 3χ)2 & ξ > 0

G 0
√

2(ξ+6χ)√
λ

√
z

ξ+3χ+
√

(ξ+3χ)2−λ2ξ

λξ
λ2ξ < (ξ + 3χ)2 & ξ > 0

H± 0 0 ± 1√
−ξ ξ < 0 & χ 6= 0 & ∀λ

Table 7.1: Potential finite critical points of the autonomous system (7.23)-(7.25).

A list of all of the potential critical points is displayed in Tab. 7.1, along with the

points’ conditions for existence. We have listed all potential critical points, however

not all of them exist for all values of the coupling constants χ and ξ. We can

essentially break down the analysis into five distinct cases that we need to consider:

• χ = ξ = 0. In this case the action is minimally coupled and becomes simply

standard quintessence. The points O, A±, B and C are the only points which

potentially exist, with the existence of B and C depending on the size of the

parameter λ. This model was discussed in Chapter 5. It should be emphasised

that the points A±, B and C can only exist in the minimally coupled case,

as soon as χ or ξ are non-zero they are no longer critical points, but they are

displayed here for completeness.

• χ = 0, ξ 6= 0. This case corresponds to a nonminimal coupling between the

scalar field and the torsion scalar. This dynamical system was extensively
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analysed in [117]. In this case, the critical points O, E, F and G are the only

points that can potentially exist.

• ξ = 0, χ 6= 0. In this case, there is a nonminimal coupling to the boundary

term only. This dynamical system was analysed in detail in [2]. In this case,

only the finite critical points O and D exist.

• λ = 0. This case, when λ vanishes, has to be treated separately, and corre-

sponds to the potential simply being a constant. In this case, the points O, E

and H± can potentially exist.

• χ, ξ, λ 6= 0. Finally, in the case when the constants λ, χ and ξ are all non-zero,

the system can possess the critical points O, F , G and H±. Such a case has

not been considered previously in the literature, except for the limiting case

when there is a coupling to the Ricci scalar, that is when χ = −ξ.

As we saw in Chapter 5, in order to determine the linear stability of these points,

one must analyse the Jacobian matrix of partial derivatives

J =
∂fi(x, y, z)

∂xj
, i, j = 1, 2, 3 (7.37)

evaluated at each of the critical points and examine the sign of the eigenvalues. The

eigenvalues and stability properties of the critical points are displayed in Tab. 7.2.

The points A±, B and C exist only for χ = ξ = 0, in which case the variable z is

superfluous and the system reduces to a two dimensional system. Hence only the

eigenvalues of the reduced two dimensional system are displayed. The eigenvalues

for the points F and G are too lengthy to be displayed, and it is not possible to

analytically derive conditions for stability. Instead we will have to resort to analysing

the stability by numerically investigating phase space plots.

We are interested in the behaviour of the universe at each of these points, that

is: how is the scale factor evolving? We have displayed the effective equation of
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Point Eigenvalues Stability

O 3
2
, 1

4

(
−3±

√
−96ξ − 144χ+ 9

)
Saddle node

A± 3, 3∓
√

3
2
λ Unstable node: A+ λ <

√
6

Unstable node: A− λ > −
√

6

Saddle node: otherwise

B 3
4

+ 3
√

24−7λ2

4λ
,−3

4
+ 3

√
24−7λ2

4λ
Stable node: 3 < λ2 < 24/7

Stable spiral: λ2 > 24/7

C λ2 − 3, 1
2

(λ2 − 6) Stable node: λ2 < 3 & λβ > (λ2 − 3)

Saddle node: β < (λ2 − 3)/λ

D −3, 3
2

(
−1 +

√
λ2−48χ+6√
λ2+6

)
, Stable spiral: 48χ > λ2 + 6

3
2

(
−1−

√
λ2−48χ+6√
λ2+6

)
Stable point: 0 < 48χ < λ2 + 6

Saddle point: χ < 0

E −3, 1
2

(
−3−

√
−24ξ − 72χ+ 9

)
, Stable spiral: 8ξ + 24χ > 3

1
2

(
−3 +

√
−24ξ − 72χ+ 9

)
Stable node: 0 < 8ξ + 24χ < 3

Saddle point: 8ξ + 24χ < 0

F ∆1,∆2,∆3 See discussion.

G ∆4,∆5,∆6 See discussion.

H±
ξ
χ
, ξ
χ

+ 3, 2ξ
χ

+ 3 Unstable node: χ < 0

Saddle point: −3χ < 2ξ < 0

Stable node: 2ξ < −3χ < 0

Table 7.2: Stability and eigenvalues of the critical points of the dynamical sys-
tem (7.23)-(7.25).
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Point weff q Acceleration

O w 1+3w
2

No

A± 1 2 No

B w 1+3w
2

No

C λ2−3
3

−1 + λ2

2
λ2 < 2

D −1 −1 Yes

E −1 −1 Yes

F −1 −1 Yes

G −1 −1 Yes

H± 2 + ξ
χ

1 + 2ξ
3χ

ξ
χ
< −2

Table 7.3: The effective equation of state, deceleration parameter and acceleration
properties of the critical points of the dynamical system (7.23)-(7.25).

state, the decceleration parameter, and whether acceleration is present in Tab. 7.3.

Let us discuss the behaviour of each of the finite critical points in turn:

• Point O. This is the only point that exists for all values of the parameters. It

is a matter dominated point, with the energy density of matter, σ2 = 1.

• Points A±, B and C. These four points only exist in the minimally coupled

quintessence model, with ξ = χ = 0. We refer the reader to Chapter 5 for a

discussion of the properties of these points. However we note that they can

also appear as quasi-critical points if the parameters χ and ξ are small.

• Point D. This point only exists when the coupling between the torsion scalar

and the scalar field vanishes, that is ξ = 0, but the coupling between the

boundary term remains χ 6= 0. In fact when these conditions are satisfied, the

Point D is the only finite non-zero critical point. The point is dominated by
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the energy density of the potential of the scalar field. It describes an acceler-

ating cosmological constant type universe, with weff = −1, and is generically

attracting, either being a stable spiral or stable node if χ > 0. If χ < 0 the

point is a saddle.

• Point E. This point only exists in the limiting case when the parameter λ

vanishes, that is when the potential is just that of a cosmological constant.

This point is a dark energy dominated, de Sitter type universe, and is stable

if ξ + 3χ > 0.

• Point F . This point exists generically for non-zero ξ. The eigenvalues of this

point have been denoted by ∆1,∆2 and ∆3, this is as the full expressions

are extremely long. These eigenvalues are also complicated to analyse their

stability properties analytically, but via numeric investigations, in Figure 7.1

we have plotted the stability region in χ−ξ parameter space when the potential

parameter satisfies λ = 1.

• Point G. Similar to Point F , this point exists generically for non-zero ξ. The

eigenvalues of this point have been denoted by ∆4,∆5 and ∆6, again as the

full expressions are too long. This point has similar difficulties as Point F , the

regions of stability are too complex to analyse analytically, however numerical

plots for the stability region in χ− ξ parameter space indicate that this point

is generically not stable.

• Points H±. These two points only exist when ξ < 0 and χ is non-vanishing.

Thus they can exists in the general relativistic case when χ = −ξ. They have

an effective EoS depending on the value of χ and ξ, with weff = 2 + ξ
χ
. The

total energy density of this point comes from the scalar field, with Ωφ = 1.

These points are stable only when they describe a phantom universe, with

weff < −1.
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Figure 7.1: Parameter space indicating the regions of stability in χ − ξ space of
the critical point F when the potential parameter λ = 1. Note that these points
only exist when ξ > 0. The non-smoothness of the boundary indicates numerical
difficulties due to the complicated form of the eigenvalues, with the true boundary

expected to be smooth.

7.3.2 Critical points at infinity

We have so far discussed the critical points of the dynamical system lying at finite

points in the x − y − z phase space. However, if the condition ξ + 6χ2 > 0 holds,

then the phase space is non-compact, and thus potentially there are critical points

lying at infinity, which trajectories of the system may asymptote towards, and so

to understand the global stability of the system we must carefully check whether

there are critical points at infinity. There are a number of approaches one can take

to doing this. One approach is to use projective coordinates, such as the technique

used in [131]. Another approach would be to compactify the variables by using a

function such as arctan or tanh, which was an approach utilised in [76].
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For the purposes of this thesis, we will apply the method used in [2,117], and use

Poincaré variables to compactify the phase space. For full details of this method we

refer to [139]. The main idea is to introduce compactified coordinates xr, yr and zr

which are defined as

xr =
x√

1 + r2
, yr =

y√
1 + r2

, zr =
z√

1 + r2
, (7.38)

where r is the standard spherical polar coordinate defined as r2 = x2 +y2 +z2. This

projects the dynamics into the Poincaré sphere. These variables can thus only take

finite values, as they lie in the restricted range −1 < xr, yr, zr < 1.

Now let us define the compactified radius measure ρ such that

ρ =
r√

1 + r2
, (7.39)

with this implying that x2
r + y2

r + z2
r = ρ2. This definition is useful, since any points

lying at infinity will have ρ = 1, and thus we can study the dynamics at infinity by

considering the limit ρ→ 1.

So that we can work with this new radius measure, we make a further coordinate

transformation, transforming our Poincaré variables into spherical polar Poincaré

coordinates as so

xr = ρ cos θ sinϕ, zr = ρ sin θ sinϕ, yr = ρ cosϕ. (7.40)

Before we begin to consider the Friedmann constraint, these variables are con-

strained to lie in the compact range ρ ∈ [0, 1], θ ∈ [0, 2π] and since we are re-

stricting ourselves to y ≥ 0 the angle ϕ lies in the restricted range ϕ ∈ [−π
2
, π

2
]. The

Friedmann constraint (7.20) can be written in Poincaré variables as

2x2
r + 2y2

r + (1− ξ)z2
r + 2

√
6χxrzr ≤ 1. (7.41)
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The physical phase space will therefore be the intersection of this ellipsoid region

with the Poincaré sphere

x2
r + y2

r + z2
r ≤ 1. (7.42)

Now, to understand the dynamics at infinity, we must transform the system (7.23)-

(7.25) into Poincaré spherical polar coordinates, and take the limit ρ → 1. In this

limit, the following equations are obtained

ρ′ = 0, (7.43)√
1− ρ2θ′ = −

λ cosϕ cotϕ
(√

6ξ sin θ − 6χ cos θ
)

2 (ξ + 6χ2)
, (7.44)

√
1− ρ2ϕ′ =

λ cosϕ
(√

6 cos θ (ξ − 3χ2 cos 2ϕ+ 3χ2) + 6χ sin θ cos2 ϕ
)

2 (ξ + 6χ2)
, (7.45)

and hence the angular part of the equation decouples. Setting the right hand side

of these equations equal to zero, we find there are two classes of solutions. There

are the critical points at infinity which obey the solution

cos θ = ± ξ√
ξ + 6χ2

, cosϕ = ±
√
ξ√

1− ξ
, (7.46)

which exist only for certain values of the parameters ξ and χ, namely only when

0 < ξ < 1/2. Alternatively the other class of solution is when

cosϕ = 0. (7.47)

In this latter case we still need to solve for θ. At infinity we can thus parametrise
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the critical points as

xr = ± cos θ,

zr = ± sin θ,

yr = 0. (7.48)

Now we can use this ansatz to find an equation for θ′. We go back to the equations

derived for x′r, y
′
r and z′r and inserting (7.48), and using the chain rule to find an

expression for θ′, we obtain

θ′ =
csc θ

4 (ξ + 6χ2)

(
2
√

6 sin θ
(
− 2ξ2 + ξ(2− 3χ)

+
(
2ξ2 + ξ(3χ+ 2) + 3χ(3− 8χ)

)
cos 2θ + 3χ(3− 8χ)

)
− 3

(
ξ(12χ− 1) + 12χ2 + 4χ− 1

)
cos 3θ +

(
ξ(36χ− 3) + 9(1− 2χ)2

)
cos θ

)
.

(7.49)

Now setting the right hand side of this equation equal to zero allows us to find the

value of θ for these critical points at infinity. In general this equation has six solu-

tions, however the obtained solutions are too complex to display here analytically.

Moreover not all of these points at infinity obey the Friedmann constraint (7.41),

however determining how many of the solutions do is difficult analytically for a gen-

eral ξ and χ. This is not a problem for the analysis, it is just important we are aware

of their existence when numerically investigating the phase space of the dynamical

system. However, let us mention the form of these points in a couple of the limiting

cases. When χ = 0, the critical points at infinity, in Poicaré coordinates (xr, yr, zr)

are given by [117]

K± :

(
∓
√

2

2
, 0,±

√
2

2

)
, L± :

(
±
√

2

2
, 0,±

√
2

2

)
, (7.50)



CHAPTER 7. NONMINIMALLY COUPLED TELEPARALLEL MODELS 133

with the additional two points being unphysical. On the other hand, if ξ = 0, all of

the six critical points are found to be unphysical.

In the Poincaré variables we have that the dark energy density parameter is

given by

Ωφ =
x2
r + y2

r + 2
√

6χxrzr − ξz2
r

1− x2
r − y2

r − z2
r

. (7.51)

At the critical points of (7.46), this dark energy density parameter is divergent.

Similarly, since the relation 1 = Ωm + Ωφ the matter energy density will also be

divergent at this point, and so these points are not of physical interest [117], they

are only of mathematical interest. The remainder of the critical points may or may

not be unphysical, it will depend on the values of the parameters χ or ξ, but to be

physical, we see that they must lie on the boundary of the Friedmann constraint,

otherwise the energy density parameter will be divergent (7.51). This is quite a

restrictive condition, it requires two ellipsoids to agree, that is the denominator and

numerator of (7.51) must both be zero, which in general will have at most four

solutions. Now that we have an understanding of some of the issues of the system

at infinity, we can now look at the system as a whole.

7.4 Cosmological implications

In this section we will discuss the cosmological interpretations of the dynamics of

the above system. The dynamics change extensively based on the parameter choices

for the coupling constants χ and ξ, and so the various subcases of parameter choices

will be analysed and discussed separately. We will not discuss the minimally coupled

quintessence case, which was analysed in Chapter 5.
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7.4.1 Teleparallel dark energy: χ = 0

Teleparallel dark energy is the subcase of parameter choices where there is a non-

minimal coupling to the torsion scalar only, so we must take χ = 0 but keep a generic

non-zero ξ into the action (7.3). The phase space analysis of this system was first

explored in [123], and a more detailed analysis, where the dynamics of the system

at infinity are taken into account, was performed in [117]. It is this latter analysis

that we review here. For generic ξ and λ, the system has three finite critical points,

the origin O, along with two further points F and G (and note these point labels

agree with those used in [117]). Along with these finite points, there are the further

critical points at infinity, K± and L± (7.50).

The critical points at infinity are found to either be saddle points or unstable.

The points K± can give rise to accelerating universe solutions, with suitably nega-

tive effective equation of state, and thus these models are able to undergo transient

inflationary periods if they are drawn towards the accelerating saddle point at infin-

ity. The points F and G both describe dark energy dominated points, with effective

equation of state weff = −1. The point G is only a saddle node, however the point

F is stable for λ2 < ξ, and thus for a large range of non-zero paramters λ and ξ

these models possess a late time accelerating attractor. Thus these models require

little fine tuning to get desirable cosmological behaviour. The critical points have

effective EoS weff = −1 for an arbitrary value of the potential constant λ, which is

a significant advantage over standard quintessence, which requires a very small λ to

achieve such an acceleration.

Another interesting consequence of this model is that it allows the effective equa-

tion of state to crossover into the phantom region with weff < −1, a property which

standard quintessence models cannot do alone, and is a region which is perhaps

slightly favoured by current cosmological observations.
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7.4.2 Boundary term coupling ξ = 0

Now let us consider another limiting case, where there is a coupling between the

scalar field and the boundary term only, which means we restore a non-zero χ but

now consider a vanishing ξ. Such a model was studied in the work [2].

The points A±, B and C only exist in the limit χ→ 0, and of course the points

exhibit the same behaviour as the above discussion about standard quintessence.

However, we mention these here as for small choices of our paramter χ they will

appear in the system as quasi-critical points. The point O exists also for χ 6= 0, and

corresponds to a matter dominated universe with no scalar field contribution. This

point remains a saddle point for all χ and λ.

Figure 7.2: Phase space showing trajectories of the dynamical system (7.23)-(7.25)
in Poincaré variables when χ = 1, λ = 2 and w = 0. Point D is the global attractor.

The phase space is an ellipsoid intersecting the Poincaré sphere.

The model has a further critical point at D. The point D exists only for χ 6= 0,

and so it is unique to this model, although its coordinates are independent of χ. At

this point the energy density from the kinetic energy of the scalar field vanishes, but

it has both contributions from both the matter sector and the potential energy of
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Figure 7.3: Phase space showing trajectories of the dynamical system (7.23)-(7.25)
projected onto the x − y plane when χ = 10−3, λ = 2 and w = 0. The points A±

and B are quasi-stationary. Point D is again the global attractor.

the scalar field. It has an effective equation of state weff = −1 independent of the

values of χ and λ. For positive χ this point is always a stable spiral, independent

of λ and hence it will always describe a late time accelerating attractor solution

without requiring any fine tuning.

In Fig. 7.2 we display some typical trajectories in the three dimensional Poincaré

phase space for the particular parameter choice λ = 2 and χ = 1. The boundary

of the phase space is given in Poincaré coordinates by the intersection of (7.41)

and (7.42). Trajectories can pass close to the matter dominate origin O, before all

trajectories end at the late time accelerating point D.

In Fig. 7.3 we display a two dimensional projection onto the x− y plane for the

phase space when the parameter values are λ = 2 and χ is chosen so that it is close to

zero, χ = 10−3. In this case the critical points of standard quintessence, points A±,

B and C behave as quasi-stationary points. Trajectories are still attracted close to

these points. In the plot shown, trajectories start near the early time unstable points

A± and are drawn towards the quasi scaling solution B. However, B is no longer a

true critical point and so trajectories then travel to the stable global attractor D,
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which is not present in standard quintessence.

Figure 7.4: Phase space showing trajectories of the dynamical system (7.23)-(7.25)
when χ = −10−3, λ = 2 and w = 0. Trajectories end at unphysical critical points

lying at infinity.

The dynamics of the system are less interesting from a cosmological point of view

when one considers a negative coupling χ. In this case the point D is no longer a

global attractor, and trajectories are instead drawn towards the unphysical critical

points at infinity. Such a scenario is displayed in Fig 7.4. The points H±∞ lie on

the boundary of the Poincaré sphere, and these are the mathematical critical points

at infinity corresponding to the fixed point of equation (7.49). Trajectories move

towards the quasi-critical point B before ending at one of these points at infinity,

but as already noted above they are unphysical since both Ωm and Ωφ are divergent

at these points. Such models are therefore not physically viable.

To summarise this model, it is found that for a positive coupling, the system

generically evolves to a late time dark energy dominated attractor, whose effective

equation of state is exactly −1. This is independent of the potential, and thus

requires absolutely no tuning of the potential to achieve this. Moreover while the

system is evolving close to this late time attractor, the phantom barrier can indeed

be crossed, a scenario impossible without the presence of the coupling. We display a

plot typical of such behaviour in Fig. 7.5. It is seen that the effective equation of state
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Figure 7.5: Plot of weff against N for a typical trajectory when the parameters
λ = 2, χ = 1 are chosen. The dashed line indicates the phantom barrier.

can cross the phantom barrier, and indeed cross from both directions, oscillating

around the barrier before settling at its final late time de Sitter type expansion.

The global dynamics of these models are simpler than the case of the nonmin-

imally coupled torsion scenario. There are fewer critical points, and there are no

longer any physical critical points at infinity. Teleparallel dark energy also possesses

saddle points describing an accelerating universe and hence can exhibit transient

periods of inflation. Such a scenario is not possible in this model as we have no

accelerating saddle points.

7.4.3 Cosmological constant potential λ = 0

The case when the parameter λ = 0 is relatively simple to analyse, and corresponds

to the potential just taking the form of a cosmological constant.

The only critical points existing in this scenario are the points O, E and H±, with

H± existing only if ξ < 0. In fact the point E exists only when the parameter λ = 0,

meaning that the potential is simply a constant. This point is entirely dominated by

the potential term, and the dynamics at this point simply corresponds to standard

de Sitter type expansion, with the potential behaving exactly as a cosmological

constant.
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Figure 7.6: Region plot of χ−ξ parameter space, showing when the critical points
E and H± are the late time accelerating attractor solutions when λ = 0, that is

when the potential takes the form of a cosmological constant.

The point E is the late time attractor of the system, with all its eigenvalues

entirely negative, provided ξ+3χ > 0. Otherwise the point is a saddle. Alternatively,

if ξ < 0, χ > 0 and 2ξ + 3χ > 0 , then the point H± is a stable late time attractor.

We can see in Figure 7.6 the different regions of parameter space where E and H±

are the stable solutions. We observe that they can never be stable simultaneously.

It is interesting to note that when H± is the stable attractor, this coincides with the

region in which it describes an accelerating universe: in fact it generically describes

a phantom acceleration, with weff < −1 exactly when it is stable.

In Figure 7.7 we see plots of a few trajectories in phase space of this λ = 0

model for the particular choice of parameters ξ = −5/4 and χ = −1/
√

6. With this

choice of parameters, the effective EoS of the point H+ lies just inside the phantom

zone, with weff = −1.06. We see that the phase space is described by an upper
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Figure 7.7: Phase space plot of trajectories in the λ = 0 model, for a particular
choice of parameters ξ = −5/4 and χ = 1/

√
6.

half ellipsoid. Many trajectories experience an era of matter domination, before

undergoing an era of cosmological constant type acceleration, before settling down

at the late time attractor, which is slightly in the phantom region. This behaviour

is potentially very interesting from a phenomenological point of view.

7.4.4 Full nonminimal coupling: ξ 6= 0 and χ 6= 0

Now we analyse the case where both of the coupling constant ξ and χ are non-zero.

This generic case has not been analysed previously in the literature.

Let us first analyse the case when the phase space of the system is compact,

which we recall is when the coupling parameters satisfy the condition 6χ2 + ξ < 0

(which immediately implies that the constant ξ < 0). This means we can display

the phase space of the system directly, without the need to transform to Poincaré

variables. In this scenario, the points O, G and H± are the critical points of the

system. In this case, we find that generically only the points H± are the late time
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Figure 7.8: Phase space plot of trajectories, for a particular choice of parameters
λ = 1, ξ = −9/64 and χ = 1/8.

attractor solutions. In this case, phase diagrams are very similar to the diagram 7.7,

where we had a cosmological constant potential, with the only difference being the

point E is replace by the point F , which in both cases lie on the boundary near the

top of the phase space, acting like saddle points. In fact the point E agrees with

the point F in the limit λ→ 0, so this behaviour makes sense.

However, the point F can be fine tuned so that it becomes stable: this occurs

in the range of parameter values when 0 < χ < 1/4 and −3χ/2 < ξ < −6χ2. We

have displayed the phase space and some trajectories for this particular scenario in

Figure 7.8 when the parameter choice λ = 1, ξ = −9/64 and χ = 1/8 was made.

We see again the phase space is an upper half ellipsoid, this time it is slightly more

stretched. We see that the trajectories undergo a period of matter domination before

ending at the late time attractor F , which is an accelerating solution. However, we

emphasise that to get this behaviour requires a fair degree of fine tuning, and this

behaviour is not typical.

Now let us take a look at what happens when the phase space is non-compact,
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Figure 7.9: Phase space plot in Poincaré coordinates, for a particular choice of
parameters λ = 1, ξ = 1 and χ = 1.

that is when ξ + 6χ2 > 0. We can essentially break this down into two scenarios:

when ξ < 0 we have the critical points O, G and H± present in the system, whereas

when ξ > 0 we have the points O, F and G. On top of this we potentially have

critical points lying at infinity.

The complicated analytic nature of the points F and G means that unfortunately

it is hard to say anything too detailed about exactly what is going on in this model

for any particular choice of parameters χ and ξ. Let us take a look at an example

when ξ = 1 and χ = 1. We have displayed a phase space plot in Poincaré coordinates

in Figure 7.9. We see that trajectories start on the boundary of the phase space,

before undergoing a period of matter domination, ending at the accelerating critical

point F on the boundary of the phase space. This behaviour is very similar to

the boundary term only coupling model ξ = 0, and it seems like the addition of

the torsion coupling term does not change the phenomenology of what can happen

in these models dramatically. However, despite this let us next discuss one of the

parameter choices in a little more detail.
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7.4.5 Ricci scalar coupling χ = −ξ

Having a non-zero χ and ξ contains one particularly physically interesting model,

that is when the parameters are chosen so that there is a nonminimal coupling

present between the Ricci scalar and the scalar field. Because of the relation

R = −T + B this occurs when χ = −ξ. The dynamical analysis of our previ-

ous discussion is completely applicable to this case, however due to this models

physical importance, we will discuss a few of the key features of the dynamics of

this model.

The compactness condition becomes ξ + 6χ2 = χ(6χ − 1) < 0. And thus if the

coupling constant 0 < χ < 1/6 the phase space is compact, whereas if not the phase

space is not compact. An interesting observation is that if χ = 1/6, the phase space

becomes an infinite cylinder. But it is this exact choice of coupling which renders

the scalar field equation conformally invariant, see for example [127]. In this model,

the points O, F , G and H± are the potential critical points of the system. The

points H± are always stiff matter states, with weff = 1, in this scenario, and so

are not of immediate physical interest to cosmological applications. Additionally

they only exist if ξ < 0 and are always found to be saddle points. The point F is

generically found to be the late time accelerating attractor solution for a positive ξ.

We note that the dynamics of this model are easier to study after a conformal

transformation has been applied. With the use of the conformal transformation,

as we shall see in the subsequent chapter, one can transform this theory into a

standard nonminimally coupled quintessence model, but one with an interaction

term between dark energy and matter, see for example [74]. The dynamics of that

model are easily understood, and one can then transform these dynamics back to

the nonminimally coupled frame (the Jordan frame) to get a full understanding of

the system1.

1However, a dynamical analysis of this model has been completed in the Jordan frame as well.
This can be found in [140].
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7.5 Discussion

In this chapter we introduced a model where a nonminimal coupling of a scalar field

to both the torsion scalar T and the boundary term B. This model incorporates

both nonminimal coupling to the Ricci scalar and a nonminimal coupling to the

torsion scalar in suitable limits, unifying both approaches into one general frame-

work. The cosmological dynamics of these models were investigated, with a detailed

breakdown into a range of different sub-cases and we found a variety of interesting

cosmological behaviour. We found that we could have a generic evolution to a late

time accelerating attractor solution without the need for a great deal of fine tuning:

an addition of a coupling to a boundary term generically led to late time acceler-

ating attractors. Additionally, we saw that for many of the models considered a

dynamical crossing of the phantom barrier was shown to be possible, a scenario not

possible with generic quintessence models.

In this chapter we focused on exploring the background cosmology of these mod-

els. In future work the cosmological perturbations should also be investigated, along

the lines of [122], which examined perturbation theory in the χ = 0 case. Also of

interest would be to analyse the Einstein static universe and stability issues of these

general models, in line with [141]. We should also note that all the models analysed

in this chapter used an exponential potential. It would be interesting to go beyond

this potential, analysing the model with either a different form such as a power

law, or attempting to analyse the dynamical system in general without restricting

ourselves to any potential in particular. Also of interest would be to look at the

existence of scaling solution in these models: these are of great interest in attempts

to solve the cosmic coincidence problem.

In the next chapter, we will see how these scalar field models are related to

the modified gravity models discussed in Chapter 6. Thus an understanding of the

cosmological dynamics in this chapter will allow us to understand the cosmological
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dynamics of f(T,B) gravity.



Chapter 8

Conformally equivalent theories of

gravity

In the previous two chapters we have introduced two different general modifications

in the teleparallel framework: first we looked at f(T,B) gravity and then we looked

at a teleparallel “scalar-tensor” type gravity, where a nonminimal coupling between

a scalar field and the torsion scalars T and B was present. In this chapter, after

an introduction to conformal transformations in a variety of different theories, we

will show that f(T,B) gravity and nonminimally coupled torsion models are in fact

physically related to each other in an interesting way. This chapter is largely based

on the work done in [3].

Theories of gravitation are dynamically equivalent if one can map one theory

to another by applying a conformal transformation to the metric. Conformal sym-

metry is a fundamental symmetry of spacetime and generalises the concept of scale

invariance. Within the curvature formulation of gravity, this has been used to show

that f(R) gravity, introduced in Chapter 5, is dynamically equivalent to just gen-

eral relativity with an additional matter field present, taking the form of a canonical

scalar field. This conformal transformation can be chosen so that this scalar field is

146
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minimally coupled to the gravitational sector, meaning there are no coupling A(φ)R

terms present within the action (where A(φ) is some generic function of the scalar

field φ). This transformed theory is known as the Einstein frame of f(R) gravity,

whereas the original action is referred to as the Jordan frame. There has been much

debate over the years about ‘Which frame is the true physical frame? ’ [142–144].

In fact, this choice of physical frame depends solely on the definition of clocks and

rulers.

This physical equivalence between the Jordan and the Einstein frame is often

exploited to great power. It allows one to choose which frame to perform calculations

in, or derive physical predictions, based on which frame it is simpler to do so. The

Jordan frame f(R) gravity has field equations which are fourth order, whereas the

Einstein frame has only second order field equations, and so in f(R) gravity it is

often simpler to work in the Einstein frame. There is also an interesting conformal

relationship between phantom scalar field theories and f(R) gravity. Recall phantom

theories are those in which the kinetic energy term of the scalar field has the incorrect

sign. In such a case, the phantom theory is generically conformally equivalent

to a complex f(R) gravity, that is the function f(R) has a non-trivial imaginary

part [145].

The purpose of this chapter is to consider the conformal equivalence between

different modifications in the teleparallel framework. f(T ) gravity, unlike f(R)

gravity, is known not to be equivalent to Einstein gravity with a minimally coupled

scalar field [146], a result we will review in this chapter. The transformation results

in an additional torsion scalar field coupling being present. In fact we will show

that this additional coupling can take the interpretation of a nonminimal coupling

between the scalar field and the boundary term B, just like the model studied in

the previous chapter. However, as observed in [103], the kinetic energy of this

nonminimally coupled scalar field has the incorrect sign, that is it is of the phantom

form, which can lead to instabilities at the level of perturbations.
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Furthermore, we look at the conformal behaviour of coupled A(φ)T theories and

show that they can be mapped to a particular class of f(T,B) theories of gravity.

We then start with an f(T,B) gravity, and examine conditions on the functional

form of f required to map to particular types of minimial and nonminimally coupled

scalar field theories. We also look at a particular subset of these models, which we

call f(B) gravity, where f(T,B) = −T + f(B), and are able to show that these are

conformally equivalent to a teleparallel dark energy theory, where only a nonminimal

coupling between a scalar field and the torsion scalar T is present.

8.1 Conformal transformations

In this section we will introduce the concept of a conformal transformation. A

conformal transformation g → ĝ is simply a rescaling of the metric of our space.

We multiply the metric by a scalar field Ω which is dependent on the spacetime

coordinates xµ, called the conformal factor, as so

ĝµν = Ω2(x)gµν , ĝµν = Ω−2(x)gµν . (8.1)

Ω is required to be real, meaning that the conformal transformation is positive

definite. Such a transformation preserves the causal structure of the spacetime: null

vectors in one frame will remain null in another. Hence theories related to each other

via a conformal transformation are dynamically equivalent, with the only difference

between the two theories being how one measures time and distance.

Equivalently we can define the conformal transformation acting on the tetrad.

Under the conformal transformation (8.1), it is easy to see that the tetrad and the

inverse tetrad must transform as [127,146,147]

êaµ = Ω(x)eaµ, êµa = Ω−1(x)eµa . (8.2)
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We also have that the volume element e, or equivalently
√
−g of our gravitational

actions transforms under this rescaling of the metric as

ê = Ω4e. (8.3)

This concept of a conformal transformation is valid in a general metric affine

linear space L4. In such a space, where there are no geometric relations between

the metric and connection, the transformation of the connection under a conformal

rescaling must be specified independently. Only if we impose some additional struc-

ture does an explicit transformation law for the connection become a priori spec-

ified. In a metric affine space, it is usually proposed that the connection remains

unchanged under a conformal transformation [147, 148], that is it is conformally

invariant, with

Γ̂αβγ = Γαβγ. (8.4)

This is required in for example, Poincare gravity, taking place in the Riemann-

Cartan spacetime U4 where the connection’s canonical dimension coincides with the

electromagnetic and Yang-Mills potentials, which are conformally invariant.

However, as this transformation law for the connection is independent of the

metric transformation, one could consider other types of transformation being pos-

sible. For example, in [149] the authors considered both additive and multiplicative

transformation laws for metric affine gravity of the form

Γ̂αβγ = f(Ω)Γαβγ + ∆(Ω)αβγ. (8.5)

The authors of this work were able to show that considering such a transformation

they were able to eliminate some of the issues present in conformal general relativity,

such as the existence of ghost modes. However, if we work in either V4 or W4 space,
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we will see that the connection transformation law becomes automatically specified.

8.1.1 Conformal transformations in V4 space

Let us consider now conformal transformations in the restricted setting of V4 space,

that is the geometrical setting of general relativity. In this case, we are working

with a pure metric theory, with the connection determined solely by the metric in

terms of the Levi-Civita connection.

Thus we can use the transformation law of the metric into the definition of the

Levi-Civita connection, to obtain the following transformation law for the connec-

tion. The Levi-Civita connection, Γ→ Γ̂ becomes

Γ̂αβγ = Γαβγ + Ω−1
(
δαβ∇γΩ + δαγ∇βΩ− gβγ∇αΩ

)
. (8.6)

Writing out the definition of the curvature tensor in terms of this connection then

induces the Riemann tensor transformation law [150]

R̂αβγ
δ = Rαβγ

δ + 2δδ[α∇β]∇γ(ln Ω)− 2gδσgγ[α∇β]∇σ(ln Ω) + 2∇[α(ln Ω)δδβ]∇γ(ln Ω)

−2∇[α(ln Ω)gβ]γg
δσ∇σ(ln Ω)− 2gγ[αδ

δ
β]g

σρ∇σ(ln Ω)∇ρ(ln Ω),

(8.7)

while the Ricci tensor transforms according to

R̂αβ = Rαβ − 2∇α∇β(ln Ω)− gαβgρσ∇ρ∇σ(ln Ω) + 2∇α(ln Ω)∇β(ln Ω)

−2gαβ g
ρσ∇ρ(ln Ω)∇σ(ln Ω). (8.8)

Finally, contracting this, simplifying and inverting, it is seen that the conformal
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transformation modifies the Ricci scalar R→ R̂, giving

R = Ω2R̂− 12∂̂µΩ∂̂µΩ + 6Ω2̂Ω. (8.9)

Thus we can see that the conformal transformation determines uniquely the trans-

formation laws of the other tensors defined on our spacetime.

8.1.2 Conformal transformations in Weitzenböck space

Now let us consider what happens in the situation when torsion is present. In

a Riemann-Cartan spacetime an additional geometric structure is imposed which

determines the transformation law of the connection and torsion tensor under a

conformal rescaling [147].

Teleparallel gravity is a special case of the Riemann-Cartan space, thus under

such a conformal transformation, it is easily calculated that the torsion tensor trans-

forms as [146,147]

T̂ ρµν = T ρµν + Ω−1(δρν∂µΩ− δρµ∂νΩ), (8.10)

which can be derived by writing out the torsion tensor in terms of the tetrad. A

similar calculation shows that the Weitzenböck connection transforms as

Γ̂µνρ = Γµνρ − Ω−1δµρ∂νΩ. (8.11)

Using the relation between contortion and the torsion tensor (2.29), we can derive

that the contortion tensor transforms as

K̂µν
ρ = Ω−2Kµν

ρ + Ω−3(δνρ∂
µΩ− δµρ∂νΩ). (8.12)
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Together these imply that the superpotential transforms as

Ŝρ
µν = Ω−2Sρ

µν + Ω−3(δµρ∂
νΩ− δνρ∂µΩ). (8.13)

Contracting these transformations, this allows one to calculate how the torsion

scalar transforms

T̂ = Ω−2T + 4Ω−3gµν∂νΩT
ρ
ρµ − 6Ω−4gµν∂µΩ∂νΩ, (8.14)

from which the inverse transformation can be derived

T = Ω2T̂ − 4Ωĝµν∂µΩT̂ν − 6ĝµν∂µΩ∂νΩ. (8.15)

where we note that partial derivatives remain unchanged under conformal trans-

formations, so that ∂µ = ∂̂µ. Finally for the purposes of this chapter, we need to

investigate how the boundary term B changes under a conformal transformation.

We find

B =
2

e
∂µ(eT µ) =

2Ω4

ê
∂µ(ê(Ω−2T̂ µ + 3Ω−3∂̂µΩ)), (8.16)

where, by contracting (8.10) we have used that the vector T µ transforms as

T µ = Ω2T̂ µ + 3Ω∂̂µΩ. (8.17)

Expanding out the partial derivative, this means that B transforms as follows

B = Ω2B̂ − 4ΩT̂ µ∂̂µΩ− 18∂̂µΩ∂̂µΩ +
6

ê
Ω∂̂µ(êĝµν ∂̂νΩ)

= Ω2B̂ − 4ΩT̂ µ∂̂µΩ− 18∂̂µΩ∂̂µΩ + 6Ω2̂Ω. (8.18)
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As a consistency check, we also note that the combination −T +B transforms as

−T +B = Ω2(−T̂ + B̂)− 12∂̂µΩ∂̂µΩ + 6Ω2̂Ω (8.19)

which using the relation R = −T + B, gives the correct transformation law for the

Ricci scalar (8.9).

As an aside, we note that in [127] it was observed that the tensor defined as

Cρ
µν = T ρµν + Sρµν (8.20)

is conformally invariant, that is under a conformal transformation it remains the

same

Ĉρ
µν = Cρ

µν . (8.21)

This can henceforth be thought of as the teleparallel equivalent of the Weyl tensor of

general relativity. There is a modified theory of gravity known as conformal gravity,

where the action of the theory is constructed out of the square of the Weyl tensor.

This tensor Cρ
µν can be used to construct a teleparallel version of this conformal

gravity, by considering an action based on the square of this tensor, and it would

be interesting to study the properties of this theory - this has yet to be done.

8.2 f(R) gravity transformed

In this section we will analyse conformal relations between modified theories of

gravity in the geometric setting of a V4 space, reviewing the relationship between

the Einstein and the Jordan frames of f(R) gravity.

Let us start with the following generic real f(R) theory of gravity, which has the
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following action

Sf(R) =
1

16πG

∫
f(R)

√
−g d4x . (8.22)

The first step is to now introduce two new auxiliary fields, denoted by φ and χ.

This allows us to consider the equivalent action

S =
1

16πG

∫
[χ(R− φ) + f(φ)]

√
−g d4x . (8.23)

To see that this action is indeed equivalent to (8.22), we observe that varying this

action with respect to the auxiliary field χ gives the equation of motion φ = R, and

inserting this solution back into the action (8.23) (so that the action is on shell), we

recover the f(R) gravity action (8.22).

Instead however, if we first vary the action (8.23) with respect to the other

auxiliary field φ, we find that χ = f ′(φ) and so we can eliminate χ. We therefore

arrive at the following equivalent action

S =
1

16πG

∫
[f ′(φ)(R− φ) + f(φ)]

√
−g d4x . (8.24)

This action is a particular type of scalar tensor gravity, see Chapter 5, with a

nonminimal coupling between the Ricci tensor and the scalar field. However, at the

moment the scalar field is non-dynamical, since it possesses no kinetic term.

Now we will apply a conformal transformation to the metric to transform to a

minimally coupled scalar frame. In this case we will choose the particular conformal

factor

ĝµν = f ′(φ)gµν . (8.25)

Now using the conformal transformation laws in the action (8.24), and defining a
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new scalar field σ as the following function of φ

σ =
√

3 ln f ′(φ), (8.26)

the action (8.24) takes the form

S =

∫
1

16πG

[
R̂− 1

2
ĝρν∂ρσ∂νσ − V (σ)

]√
−ĝ d4x . (8.27)

The potential of the scalar field V (σ) has been defined as

V (σ) =
φ

f ′(φ)
− f(φ)

f ′(φ)2
, (8.28)

which can be rewritten in terms of σ by inverting the relation (8.26). This frame is

referred to as the Einstein frame, where the theory takes the form of a scalar tensor

theory in which the gravitational sector and the scalar field are minimally coupled

and the action of the scalar field is of the canonical form.

Let us give an explicit example of how we can transform a particular f(R) gravity

to a scalar tensor theory, and observe how physical quantities become modified. We

also observe how cosmological singluarities can change their structure, which serves

as a warning that care must be taken in some circumstances when conformally

transforming between frames. We use an example which was considered in detail in

both [145,151], when f(R) = R−n in the Jordan frame.

Let us consider the vacuum cosmology of this model, assuming a flat FRW metric.

With such a form of f(R), it can be seen from the cosmological field equations of the

theory that the corresponding scale factor solution behaves as a power law, taking

the form

a ∼ (t0 − t)
(n+1)(2n+1)

n+2 . (8.29)
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Therefore, we can see that if either n < −2 or −1 < n < −1/2, a Big Rip singularity

appears at the time instance t = t0 in the Jordan frame with the scale factor

diverging, whereas if these conditions do not hold a Big Crunch singularity, with

the scale factor vanishing, is present at this point.

Let us see how the cosmology changes if one transforms to the Einstein frame.

The Einstein frame canonical scalar field reads,

σ ∼ (n+ 1) lnR ∼ −2(n+ 1) ln(t0 − t) , (8.30)

where we used the fact that the Ricci scalar of the power law FRW scale factor (8.29)

reads, up to a proportionality constant,

R ∼ 6(n+ 1)(2n+ 1)(4n+ 5)n

(n+ 2)2(t0 − t)2
. (8.31)

In the corresponding scalar-tensor theory, the time coordinate t̂ is given by,

dt̂ = ±e
1
2
σdt ∼ ±(t0 − t)−(n+1)dt , (8.32)

and consequently, we have t̂ = ±(t0 − t)−n. Therefore, in the case that n > 0,

when t approaches t → t0 in the Jordan frame, this corresponds to t̂ → ±∞ in

the Einstein frame. As a consequence, the singularity changes its structure, since it

does not appear in finite time for the scalar-tensor theory. However a new additional

singularity may be present, as when t approaches infinity in the Einstein frame, it

corresponds to the new time coordinate t̂→ 0, and thus any singularities at infinity

can be brought towards a finite time. On the other hand, when n < 0, the limit

t → t0 in the Jordan frame corresponds to t → 0 in the Einstein frame. We also
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find that the metric in the scalar-tensor theory behaves as

ds2
ST = eσ

(
−dt2 + a(t)2

∑
i=1,2,3

(dxi)2

)

∼ −dt̂2 + â(t̂)2
∑
i=1,2,3

(dxi)2 , â(t̂)2 ∼ a2
0t̂

2(n2−1)
n(n+2) , (8.33)

where the constant a0 is an arbitrary parameter. In this case the power of the scale

factor is negative only when −2 < n < −1 or 0 < n < 1, and thus a Big Rip

singularity becomes present then. Thus for the Big Rip singularity in the Jordan

frame, the scale factor now behaves as â(t̂)2 → 0 when t̂ → 0, in the Jordan frame

it becomes a Big Crunch singularity.

8.3 f(T) gravity transformed

Let us now consider the equivalent situation in a W4 space, examining what happens

when one attempts to conformally transform f(T ) gravity to a scalar frame. To do

this we follow the approach used in [103,146]. Let us start with the following f(T )

action

Sf(T ) = − 1

16πG

∫
f(T )e d4x . (8.34)

Following the same procedure as the case of f(R) gravity, we can introduce two

auxiliary fields χ and φ such that the f(T ) action takes the following form

S = − 1

16πG

∫
[χ(T − φ) + f(φ)] e d4x . (8.35)

Varying this action with respect to χ yields φ = T showing that the action is indeed

equivalent to the f(T ) action, unless f ′′(T ) ≡ 0, in which case we are already working

in Einstein gravity. Instead varying with respect to φ then yields χ = f ′(φ).
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Now introducing the notation F (φ) = f ′(φ) , we can recast the theory into the

following scalar-tensor type theory

S =
1

16πG

∫
[−F (φ)T − ω(φ)gµν∇µφ∇νφ− V (φ)] e d4x . (8.36)

In this particular case the kinetic term coefficient ω(φ) is identically zero, ω(φ) = 0,

and the scalar field potential V is given by

V (φ) = f(φ)− φf ′(φ). (8.37)

Now let us apply a general conformal transformation as outlined above (8.1).

Then the action (8.36) transforms to the following

S =
1

16πG

∫ [
− F (φ)(Ω−2T̂ − 4Ω−3ĝµν∂µΩT̂ν − 6Ω−4ĝµν∂µΩ∂νΩ)

− Ω−4V (φ)
]
ê d4x . (8.38)

In order for the coupling between the gravitational sector and the scalar field to be

minimal, we need to choose the conformal factor to be

Ω2 = F (φ). (8.39)

This means the action becomes

S =
1

16πG

∫ [
(−T̂ + 2F (φ)−1ĝµν∂µF (φ)T̂ν

+
3F ′(φ)2

2F (φ)2
ĝµν∂µφ∂νφ)− F−2(φ)V (φ)

]
ê d4x . (8.40)

Now in order to get the kinetic term to be of the correct form, we define a new
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scalar field implicitly by

dψ

dφ
=
√

3
F ′(φ)

F (φ)
, (8.41)

which can be solved for ψ to give

ψ =
√

3 lnF (φ). (8.42)

This results in the action taking the following form

S =
1

16πG

∫ [
−T̂ + 2F−1∂̂µFT̂

µ +
1

2
gµν∇µψ∇νψ − U(ψ)

]
ê d4x , (8.43)

where the new potential U is given by U(ψ) = V (φ)/F 2(φ). We note that we have

corrected a few algebraic errors which were presented in the original work of [146].

Let us examine the second term in the action (8.38). Using that

F−1∂̂µF = ∂̂µ(lnF ), (8.44)

we can integrate this term by parts to find that the action takes the following form

S =
1

16πG

∫ [
−T̂ − ln(F )B̂ +

1

2
gµν∇µψ∇νψ − U(ψ)

]
ê d4x . (8.45)

Now the factor in front of B̂ in the action can be expressed in terms of ψ, and so

finally the action becomes

S =
1

16πG

∫ [
−T̂ − ψ√

3
B̂ +

1

2
gµν∇µψ∇νψ − U(ψ)

]
ê d4x . (8.46)

this action represents a scalar field with a linear nonminimal coupling to a boundary

term. However, as has been noted in [103] the kinetic energy term has the incorrect

sign, thus the action is that of a phantom field, which generically leads to instabilities
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at the level of perturbations. This is very similar to the model discussed in the

previous chapter, where a quadratic coupling between B and the scalar field, ψ2B,

was present. However, there the kinetic term was of the canonical form and thus

was not subject to the instabilities that are present in f(T ) gravity.

8.4 Teleparallel dark energy and f(T,B) gravity

In this section we will work the other way around, that is we will start with a

teleparallel scalar tensor model, and transform it into a modified gravity theory.

Let us begin with the following action, where a nonminimal coupling between a

scalar field and the torsion scalar is present, sometimes referred to as teleparallel

dark energy

S =
1

16πG

∫ [
−A(φ)T − 1

2
∂µφ∂

µφ− V (φ) + Lm
]
ed4x. (8.47)

This action was first introduced in [116] for the particular choice A(φ) = 1 + ξφ2.

This was later generalised to include a more general coupling between φ and T

in [119, 120, 152]. Immediately from the results of the previous section, we know

that such a theory cannot be conformally transformed to an f(T ) gravity theory as

there is no coupling between φ and B present. However we will show in this section

that it can be conformally transformed to the broader class of theories known as

f(T,B) gravity.

Let us apply a conformal transformation to this theory in an attempt to remove

the kinetic term from this action. A general conformal transformation changes the

action to the following

S =
1

16πG

∫
Ω−4

[
− A(φ)(Ω2T̂ − 4Ω∂µΩT̂ µ − 6ĝµν∂µΩ∂νΩ)

− 1

2
Ω2ĝµν∂µφ∂νφ− V (φ)

]
ê d4x. (8.48)
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Now requiring that the kinetic term of the scalar field vanishes gives the following

condition

A(φ)

(
dΩ

dφ

)2

=
1

12
Ω2. (8.49)

Solving this will enable us to choose the conformal factor in terms of φ

Ω = exp

(∫
1

2
√

3A(φ)
dφ

)
. (8.50)

We can also formally invert this relation meaning we can write φ as a function of

Ω, φ = φ(Ω). So now the action becomes

S =
1

16πG

∫ [
−A(Ω)Ω−2T̂ + 4Ω−3A(Ω)∂µΩT̂ µ − U(Ω)

]
ê d4x, (8.51)

where again the new potential U(Ω) is given simply by

U(Ω) =
V (φ)

Ω4
. (8.52)

It appears at this stage that the presence of A(Ω) in the second term of (8.51)

ruins the possibility of this being equivalent to an f(T,B) gravity. However if we

introduce the function

G(Ω) =

∫
A(Ω)

Ω3
dΩ, (8.53)

we can write the second term of (8.51) as

Ω−3A(Ω)∂µΩ = ∂µG(Ω). (8.54)
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Now we can integrate this term by parts so that the action takes the form

S =
1

16πG

∫ [
−A(Ω)Ω−2T̂ − 2G(Ω)B̂ − U(Ω)

]
ê d4x. (8.55)

Now the scalar field Ω has no kinetic term and is just an auxiliary field. Varying

the action with respect to Ω and finding its equation of motion gives

2A(Ω)− ΩA′(Ω)

Ω3
T̂ − 2A(Ω)

Ω3
B̂ − U ′(Ω) = 0. (8.56)

Now this can be formally solved to find Ω in terms of T̂ and B̂, Ω = Ω(T̂ , B̂) and

so the action can be written as an f(T,B) theory, with the function f given by

f(T,B) = −A(Ω)Ω−2T̂ − 2G(Ω)B̂ − U(Ω). (8.57)

Thus we have established that a teleparallel dark energy theory with an arbitrary

coupling between T and the scalar field can be written as a particular instance of

f(T,B) gravity. In the next section we will derive conditions on the functional form

of f for such a teleparallel dark energy model.

We note there is one particular class of models for which the functional form of

the f(T,B) gravity will take the form

f(T,B) = −αT + f(B), (8.58)

so that we have an Einstein gravity plus some additional f(B) contribution. This

is when the coefficient of T̂ vanishes in (8.56), so that one can invert U ′(Ω) to find

Ω as a function of B̂ only. This is when the coupling function A takes the form

A(Ω) = αΩ2, (8.59)

where α is some positive constant. Finding this originally in terms of φ, we derive
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that the coupling function is given by

A(φ) = β2(1 +
φ

2β
√

3α
)2, (8.60)

where β is some arbitrary constant.

To conclude this section let us give an explicit toy example of a nonminimally

coupled teleparallel dark energy theory and transform it to an f(T,B) gravity. Let

us suppose the coupling function A(φ) is given by the simple form

A(φ) =
φ2

√
3
. (8.61)

This means that we can write Ω in terms of φ, using (8.50), simply as Ω =
√
φ. Now

let us choose a simple quadratic potential so that it can easily be inverted

U(φ) = m2φ2 = m2Ω4, (8.62)

where m is a constant. Then solving (8.56) for Ω gives

Ω =

(
T +B

2
√

3m2

)1/2

. (8.63)

Inserting this back into (8.57) will give us the following functional form of f(T,B)

f(T,B) =
1

12m2
(T +B)2. (8.64)

We can thus see that this teleparallel dark energy theory is conformally equivalent

to a particular type of f(T,B) gravity. And thus the study of f(T,B) gravity is

important; it is not simply a theory of purely theoretical interest.
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8.5 f(T,B) gravity transformed

In this section we will explore the consequences when one conformally transforms a

general f(T,B) gravity to a scalar frame. We start with the gravitational sector of

the f(T,B) action

Sf(T,B) =
1

16πG

∫
f(T,B)e d4x , (8.65)

and we introduce the four auxiliary fields χ1, χ2, φ1 and φ2, writing the above action

in the equivalent form

S =
1

16πG

∫
[f(φ1, φ2) + χ1(T − φ1) + χ2(B − φ2)] e d4x . (8.66)

Varying with respect to χ1 yields T = φ1 and with respect to χ1 gives B = φ2.

Now varying with respect to φ1 and φ2 gives χ1 = f (1,0)(φ1, φ2) and χ2 = f (0,1)

respectively. This leaves the following action

S =
1

16πG

∫ [
f(φ1, φ2) + (T − φ1)f (1,0)(φ1, φ2) + (B − φ2)f (0,1)(φ1, φ2)

]
e d4x ,

(8.67)

assuming that neither of the second derivatives f (2,0) or f (0,2) vanishes (the case of

f (0,2) = 0 is equivalent to f(T ) gravity and was examined earlier in this chapter.

We will cover the remaining case in the next section). We can rewrite this slightly

differently as the following scalar tensor type action with two scalar fields

S =
1

16πG

∫
[−F (φ1, φ2)T +G(φ1, φ2)B − V (φ1, φ2)] e d4x , (8.68)
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where we introduce the notation F (φ1, φ2) = −f (1,0)(φ1, φ2) andG(φ1, φ2) = f (0,1)(φ1, φ2).

The double potential V (φ1, φ2) is given by

V (φ1, φ2) = φ1f
(1,0)(φ1, φ2) + φ2f

(0,1)(φ1, φ2)− f(φ1, φ2). (8.69)

This is a particular instance of a teleparallel scalar-tensor theory with two scalar

fields. Conformal transformations with multiple scalar fields have been discussed

in [153,154].

Now let us apply a conformal transformation to the action (8.68). We find

S =
1

16πG

∫
[ (−Ω−2T̂ + 4Ω−3∂̂µΩT̂ µ + 6Ω−4∂̂µΩ∂̂νΩ)F (φ1, φ2)

+ (Ω−2B̂ − 4Ω−3T̂ µ∂̂µΩ + 6Ω−3∂̂µ∂̂µΩ− 18Ω−4∂̂µΩ∂̂µΩ

+
6

ê
Ω−3∂̂µΩ∂̂µê)G(φ1, φ2)− Ω−4V (φ1, φ2) ] ê d4x . (8.70)

We can integrate the term with ∂µê by parts to obtain

S =
1

16πG

∫
((−Ω−2T̂ + 4Ω−3∂̂µΩT̂ µ + 6Ω−4∂̂µΩ∂̂νΩ)F (φ1, φ2)

+ (Ω−2B̂ − 4Ω−3T̂ µ∂̂µΩ)G(φ1, φ2)− 6Ω−3∂̂µΩ∂µG(φ1, φ2)− U(φ1, φ2))ê d4x ,

(8.71)

where we have disregarded a boundary term and we also introduce the new potential

U(φ1, φ2) = Ω−4V (φ1, φ2).

We want to explore under what conditions one can choose a suitable conformal

factor to eliminate the coupling between either T or the boundary term B. It

is straightforward to observe that it is always possible to eliminate the coupling

between the scalar field and the torsion scalar T , one simply chooses the conformal

factor to be Ω2 = F (φ1, φ2). However, to eliminate couplings between the scalar

fields and B, or equivalently the vector T µ, requires a longer calculation. Integrating
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the boundary term by parts, we get left with the following coefficient of the vector

T µ in the above action (8.71)

(
4Ω−3∂̂µΩ(F (φ1, φ2)−G(φ1, φ2))− 2∂µ(Ω−2G(φ1, φ2))

)
T µ

=
(

4Ω−3∂̂µΩF (φ1, φ2)− 2Ω−2∂µ(G(φ1, φ2))
)
T µ. (8.72)

And thus a sufficient condition for the coupling between T µ to vanish is that

2Ω−1∂̂µΩF (φ1, φ2)− ∂µ(G(φ1, φ2)) = 0. (8.73)

Now can we choose a sufficient Ω = Ω(φ1, φ2) such that this will vanish? Expand-

ing (8.73) in terms of φ1 and φ2 partial derivatives gives the following two first order

partial differential equations

2Ω−1Ω(1,0)F (φ1, φ2)−G(1,0)(φ1, φ2) = 0, (8.74)

2Ω−1Ω(0,1)F (φ1, φ2)−G(0,1)(φ1, φ2) = 0, (8.75)

which we can rewrite as

Ω(1,0) =
Ω

2F
G(1,0), (8.76)

Ω(0,1) =
Ω

2F
G(0,1). (8.77)

Now for such a solution Ω to exist for these partial differential equations, we simply

require that the second mixed derivatives agree, that is if we differentiate the first of

these equations with respect to φ2 it must equal the second equation differentiated

with respect to φ1. After doing this calculation, we find the following condition on
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our original function f , which must be satisfied in order for such an Ω to exist

f (2,0)f (0,2) = (f (1,1))2. (8.78)

One such solution to this equation is f(R) gravity, when f (1,0) = −f (0,1), but the

equation has other solutions too, including separable solutions. For example, there

is the solution

f(T,B) = αT
1

1−kB
k

k−1 , (8.79)

for some constants k and α.

Finally we mention, for the couplings between both T and T µ to simultaneously

vanish, we require Ω = F 1/2 and the system (8.76)-(8.77) to hold. But then solv-

ing for these two conditions requires that F = −G, which is simply the case of

the teleparallel equivalent of f(R) gravity, when the functional form of f(T,B) is

f(T,B) = f(−T + B) = f(R). And so the unique class of f(T,B) gravity which

has an Einstein frame is f(R) gravity, as to be expected.

8.6 f(B) gravity

For completeness, in this section we will examine the final case of f(T,B) gravity

we have yet to explore. This is the case when we have the following action

Sf(T,B) =
1

16πG

∫
[αT + f(B)] e d4x , (8.80)

and without loss of generality we will set α = −1 so that the action takes the form

of Einstein gravity plus a boundary term modification. This action was not covered

by the analysis in the previous section since for this particular action fTT = 0.

Performing the standard transformation using auxiliary variables, the action can be
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recast into the following form

Sf(T,B) =
1

16πG

∫
[−T + F (φ)B − V (φ)] e d4x , (8.81)

where F (φ) = f ′(φ) and V (φ) = φf ′(φ)− f(φ).

Let us attempt to remove the coupling between φ and B in this action. Now ap-

plying a conformal transformation and performing some integration by parts recasts

this into the following form

S =
1

16πG

∫ [
− Ω−2T̂ + Ω−2(1 +G(φ))B̂ − 4Ω−3T̂ µ∂̂µΩF (φ)

+ 6Ω−4∂̂µΩ∂̂νΩ− 6Ω−3∂̂µΩ∂̂µF (φ)− U(φ)
]
ê d4x , (8.82)

where the new potential U(φ) = Ω−4V (φ). We now explore whether or not we can

choose a suitable Ω = Ω(φ) to remove the couplings between φ and both B̂ and T̂ µ.

Rewriting the partial derivatives in terms of φ and integrating by parts the term

with T̂ µ gives

S =
1

16πG

∫ [
− Ω−2T̂ + Ω−2(1 + F (φ) + Ω2H(φ))B̂

+

(
6Ω−4

(
dΩ

dφ

)2

− 6Ω−3F ′(φ)
dΩ

dφ

)
∂̂µφ∂̂µφ− U(φ)

]
ê d4x , (8.83)

where H(φ) is given by the following integral

H(φ) = 2

∫
F (φ)

Ω(φ)3

dΩ

dφ
dφ. (8.84)

In order for the boundary term to have no effect on the action, we require that

the coefficient of B̂ is simply a constant β, so that

Ω−2(1 + F (φ) + Ω2H(φ)) = β. (8.85)
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This will allow us to find Ω in terms of φ. Differentiating this with respect to φ

gives

− 2

Ω3

dΩ

dφ
+
F ′(φ)

Ω2
= 0. (8.86)

And so solving this for Ω gives

Ω = eF (φ)/2. (8.87)

Inserting this solution for Ω into our action (8.83) gives us

S =
1

16πG

∫ [
−e−F (φ)T̂ − 3

2

(
e−F (φ)F ′(φ)2

)
∂̂µφ∂̂µφ− U(φ)

]
ê d4x . (8.88)

Finally, introducing the new scalar field ϕ = 2
√

3(e−F (φ)/2 − β) recasts the action

into the following form

S =
1

16πG

∫ [
−A(ϕ)T̂ − 1

2
∂̂µϕ∂̂µϕ− U(ϕ)

]
ê d4x , (8.89)

where the coupling function A(ϕ) is given by

A(ϕ) = β2(1 +
ϕ

2
√

3β
)2, (8.90)

in agreement with the result (8.60).. Thus we have found that f(B) gravity, where

we have an additional f(B) term added to the Einstein Hilbert action, is conformally

equivalent to a particular instance of teleparallel dark energy. Moreover, as opposed

to f(T ) gravity, the kinetic term has the correct sign and so will not suffer from the

same potential instabilities to perturbations.
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f(T,B)

Function: f(B) f(T ) fTTfBB = f 2
TB

g → Ω2g : β2(1 + ϕ

2
√

3β
)2T − φ√

3
B A(φ)T No coupling

f(T,B) = f(−T +B)

Figure 8.1: The conformal equivalence of different f(T,B) gravity models. The
top line shows the particular functional form of the f(T,B) gravity considered, and
the bottom line shows the type of nonminimal coupling present in the action after
a particular conformal transformation. A minimal coupling is only possible in the
case when f(T,B) = f(R). The kinetic and potential energy of the scalar field
are also present in the conformally transformed action, with the kinetic term being

either the canonical or phantom type.

8.7 Discussion

In this chapter we have explored the conformal relationships between various modi-

fied teleparallel gravity theories. Conformally transforming these theories indicates

the need to take into account first derivatives of torsion. In particular the scalar B

given by the divergence of a contraction of the torsion tensor arises naturally when

one considers transformations of these teleparallel theories. We first reviewed f(T )

gravity, showing that it is conformally equivalent to a phantom teleparallel scalar

tensor theory with a linear nonminimal coupling between the scalar field and the

boundary term only, similar to a model discussed in Chapter 7.

Furthermore we looked at a teleparallel dark energy theory, where a generic

nonminimal coupling between the scalar field and the torsion scalar T was present.

We showed that in general this is conformally equivalent to a particular f(T,B)



CHAPTER 8. CONFORMALLY EQUIVALENT THEORIES OF GRAVITY 171

gravity, moreover if this f(T,B) gravity is nonlinear in both T and B then it must

satisfy the condition

fTTfBB = (fTB)2. (8.91)

We gave an explicit toy example of such a coupling and transformed it into a simple

f(T,B) theory, which did indeed satisfy condition (8.91). The other possibility is

that the coupling between φ and T takes the particular form

A(φ) = β2(1 +
φ

2β
√

3α
)2, (8.92)

in which case the model is conformally equivalent to a particular f(T,B) theory of

the form

f(T,B) = −αT + f(B), (8.93)

with only a linear dependence on the torsion scalar, and the particular f(B) is

dependent on the structure of the potential of the scalar field.

Moreover, we also looked at the case of f(B) gravity, where the functional form

of f(T,B) gravity is given by f(T,B) = −T + f(B). It was shown that this can

always be conformally transformed to a frame where there is a particular type of

nonminimal coupling between the scalar field and T . Thus we have an interesting

duality relation, f(T ) can always be transformed to a A(φ)B phantom scalar field

theory, whereas f(B) can always be transformed to a canonical A(φ)T theory.

We have derived various relationships between modified teleparallel theories of

gravity and teleparallel scalar-tensor theories. The unique form of these different

theories which has an Einstein frame is given by f(T,B) gravity which takes the

form f(−T+B), which is equivalent to f(R). In all other cases a form of nonminimal

coupling between the scalar field and the gravitational sector remains present. The
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various conformal relationships between the different theories considered have been

summarised in Figure 8.1.

We can see that a full consideration of the boundary term B is necessary for

a true understanding of the equivalence between scalar-tensor representations and

modified gravity representations of torsion based theories.



Chapter 9

General Conclusions

In this thesis we have looked at a variety of different models in the teleparallel

framework of gravitational theories. We have discussed some of the theoretical issues

surrounding them, along with a focus on their cosmological applications, exploring

the challenges and issues that contemporary cosmologists and astrophysicists must

address in the near future. The dark energy, dark matter and inflation problems are

unlikely to disappear any time soon, and a wide range of approaches to solving them

should continue to be explored, until cosmological and experimental data provides

us with some more definitive answers.

The teleparallel equivalent of general relativity is an interesting alternative the-

ory of gravity. Despite possessing the same dynamics as general relativity, it offers

a radically different physical interpretation. Einstein’s revolutionary view, viewing

gravity as a merely fictional force as a product of the curvature of space and time,

is turned on its head. We return to the viewpoint of thinking of gravity as a force,

acting through the medium of torsion. It would be interesting to speculate how

physics would have differed over the last century had Einstein developed TEGR

first. Would general relativity have come to be as popular today, or would it be seen

as some esoteric reworking of an ordinary force law?
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Modifying gravity continues to be an interesting avenue of study for a number

of reasons: one might want to attempt to solve the problems of modern cosmology,

or consider the effect of microstructure on gravity, or remove singularities present

in the early universe, or develop theories which are potentially able to be unified

with quantum field theory. In that regard, we introduced metric affine gravity,

an incredibly general theory of gravity whose various sub-models can potentially

address many of the above motivations for studying modified gravity. In this thesis,

we focused in particular on the dark energy problem, and to that end we considered

modifications of the TEGR.

The equivalence of general relativity and the TEGR poses the question: if we

want to modify the theory, which one of the two theories do we modify? Historically

it has been general relativity which is the most frequently and first to be modified.

TEGR has in some ways always been viewed as a curiosity, and its study has been

rather neglected by the mainstream physics community, due in part to the dynamics

of the theory being identical to general relativity. But modifying the two theories

gives rise to different dynamics, and thus this question is of great importance.

This thesis in some way attempts to unify the two approaches to modification,

using a larger framework enabling the study of both curvature and torsion based

modifications at the same time. We first looked at how we could consider a theory

more general than f(R) and f(T ) gravity, which we dubbed f(T,B) gravity, which

reduces to both of the other models in suitable limits. Moreover it also gives rise

to a greater potential class of modifications, which may have potentially interesting

cosmological applications in the future.

The second class we looked at is scalar-tensor type theories, again examining

a general model that included both the teleparallel and metric based theories as

limiting cases of the theory. A variety of interesting cosmological phenomenology

was observed that is potentially able to match observations well, and moreover on

the whole very little fine tuning is required to generate this interesting behaviour.
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These latter two theories, f(T,B) gravity and the teleparallel scalar-tensor mod-

els, were then shown to be in fact physically equivalent, up to a local rescaling of

time and space. It is much easier to work with the scalar field models from a com-

putational point of view: dynamical systems techniques do not require complicated

function inversions, and so any study of f(T ) or f(T,B) gravity models in future

should perhaps take place in their Einstein frame equivalents.

An underlying theme to this thesis is that rather than focusing on very specific

types of modified gravity model, our goal is to study very broad classes of theories

and examine their general features and properties. The mathematics of dynamical

systems has shown itself to be a vital tool in this regard, allowing us to understand

the broad behaviour of the phenomenology of different models, without having to

find exact solutions to the equations. On the other hand we have also reduced the

space of possible models available to study, by showing some types of model are in

fact just a physically equivalent way of writing another model. Broadening our space

of possible models brought new insights, showing that previously studied theories

that were thought to be different were in fact just different sides of the same coin.

In this thesis we have talked a lot about the dark energy problem, and the

ability of modified teleparallel theories of gravity to potentially alleviate this is-

sue. However, modified teleparallel theories have other potential uses. In fact f(T )

gravity was originally constructed as an inflationary type model, see [92], and sub-

sequently many further teleparallel inflation models have been considered, for ex-

ample [155, 156]. In fact in [155] reconstruction techniques were used to generate

an f(T ) gravity that underwent a period of inflation and dark energy expansion in

one consistent cosmology. Modified gravity models have also been applied in the

literature to the dark matter problem, for example f(R) = Rn models have been

applied to the rotation curve problem [157]. The author is unaware of any similar

studies in modified teleparallel theories, but they would be potentially interesting

to investigate in the future.
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It is hoped that this thesis will provide the reader with a useful introduction to

the subject of teleparallel gravity and its history and its place within the hierar-

chy of different theories of gravity. We also hope to have left the reader with an

understanding of the current topics that are being researched in the fields of cos-

mology and modified teleparallel gravity today. It is an exciting time to be working

within the field of gravity, with the advent of gravitational wave astronomy and new

increasingly precise cosmological data arriving every year.

To that end, it may be the case that in a few years new observational data comes

to light that rules out the modified teleparallel models considered in this thesis.

Despite this meaning the contents of this thesis was out of date, I would celebrate

that day. Science only progresses by formulating new hypotheses and continuously

and rigorously testing them until we can disprove them. If our hypotheses fail, it

means we have the opportunity to move on and develop even more novel and exciting

ideas.



Appendix A

Conventions

There are many different conventions in the literature on teleparallel and modified

gravity. This thesis has attempted to use uniform conventions throughout, which we

list below in this appendix. Largely we have stuck to the conventions used in [158].

Throughout this thesis we have used natural units, setting the speed of light and

Plank’s constant equal to unity, c = ~ = 1. Four dimensional spacetime coordinates

are depicted with Greek letters, µ, ν, ρ, ... whereas four dimensional tangent space

coordinates are depicted with Latin letters, a, b, c, ... where both sets of indices run

over the range 0, 1, 2, 3. We ave adopted the Einstein summation convention, where

repeated indices are summed over their entire range. We have used both signatures

(+,−,−,−) and (−,+,+,+) throughout this thesis, in an attempt to remain con-

sistent with the literature: the former is used when studying teleparallel gravity,

whereas the latter is used when studying general relativity and its modifications.

The Levi-Civita connection is denoted by Γ̄µλρ, whereas a general connection

is denoted without the bar. The Weitzenböck connection additionally has been

denoted as Γµλρ, but we have been explicit when we are using it to denote this

particular connection. The signs of tensors such as torsion, non-metricity, contorsion

have all been taken to be the same as when they were first introduced.
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Modified teleparallel theories of
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Modified teleparallel theories of gravity,

Phys. Rev. D 92 (2015) 10, 104042
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