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Abstract 21 

Increased incidence of C-cell carcinogenicity has been observed for glucagon-like-protein-1 receptor (GLP-22 

1r) agonists in rodents. It is suggested that the duration of exposure is an indicator of carcinogenic 23 

potential in rodents of the different products on the market. Furthermore, the role of GLP-1-related 24 

mechanisms in the induction of C-cell carcinogenicity has gained increased attention by regulatory 25 

agencies. This study proposes an integrative pharmacokinetic/pharmacodynamic (PKPD) framework to 26 

identify explanatory factors and characterize differences in carcinogenic potential of the GLP-1r agonist 27 

products. PK models for four products (exenatide QW (once weekly), exenatide BID (twice daily), 28 

liraglutide and lixisenatide) were developed using nonlinear mixed effects modelling. Predicted exposure 29 

was subsequently linked to GLP-1r stimulation using in vitro GLP-1r potency data. A logistic regression 30 

model was then applied to exenatide QW and liraglutide data to assess the relationship between GLP-1r 31 

stimulation and thyroid C-cell hyperplasia incidence as pre-neoplastic predictor of a carcinogenic 32 

response. The model showed a significant association between predicted GLP-1r stimulation and C-cell 33 

hyperplasia after 2 years of treatment. The predictive performance of the model was evaluated using 34 

lixisenatide, for which hyperplasia data were accurately described during the validation step. The use of a 35 

model-based approach provided insight into the relationship between C-cell hyperplasia and GLP-1r 36 

stimulation for all four products, which is not possible with traditional data analysis methods. It can be 37 

concluded that both pharmacokinetics (exposure) and pharmacodynamics (potency for GLP-1r) factors 38 

determine C-cell hyperplasia incidence in rodents. Our work highlights the pharmacological basis for GLP-39 

1r agonist-induced C-cell carcinogenicity. The concept is promising for application to other drug classes. 40 
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Abbreviations: AUC: area under curve; BID: twice daily; GLP-1r: glucagon-like-protein-1 receptor; MTC: 44 

medullary thyroid carcinoma; PKPD: pharmacokinetics/pharmacodynamics; QW: once weekly  45 



Introduction 46 

Glucagon-like-peptide-1 receptor (GLP-1r) agonists are used as adjunctive therapy to treat type II 47 

diabetes. Mimicking the effect of endogenous GLP-1, they improve the balance between insulin and 48 

glucagon secretion, lower gastric emptying and reduce appetite (Garber, 2012). The first GLP-1r agonist 49 

on the market in 2005 was exenatide (Byetta®, Amylin Pharmaceuticals), which requires twice daily 50 

administrations (BID). In 2012, a slow release microsphere formulation of exenatide (Bydureon®, Amylin 51 

Pharmaceuticals) was approved, requiring once weekly injection (QW). Just before that, liraglutide 52 

(Victoza®, Novo Nordisk) became available to patients with a dosing regimen based on a once daily 53 

administration. Subsequently other GLP-1r agonists were approved, inlcuding lixisenatide (Lyxumia®, 54 

Sanofi, once daily injection), dulaglutide (Trulicity®, Eli Lilly, once weekly injection) and albiglutide 55 

(Tanzeum®, GlaxoSmithKline, once- or biweekly). The latter two are antibody products to ensure a long 56 

dosing interval.  57 

A toxicological concern for these GLP-1r agonists is the increased incidence of thyroid C-cell adenoma and 58 

carcinoma in rodents (Joffe et al., 2009; Knudsen et al., 2010). Interestingly, this was shown for the long 59 

acting liraglutide (Knudsen et al., 2010; Madsen et al., 2012), but not for the short acting exenatide when 60 

administered subcutaneously (Knudsen et al., 2010). However, when administered by continuous 61 

infusion, exenatide also exhibited carcinogenic potential (Knudsen et al., 2010; Madsen et al., 2012). 62 

Based on the aforementioned findings, mechanistic studies were performed to better understand the 63 

causal relation between treatment with long acting GLP-1 receptor agonists and thyroid C-cell changes. 64 

Given that no carcinogenicity has been observed in GLP-1r knockout mice, these adverse events are likely 65 

to be GLP-1r specific (Knudsen et al., 2010; Madsen et al., 2012). Furthermore, plasma calcitonin 66 

concentrations were found to increase after sub-chronic treatment with GLP-1r agonists, as well as 67 

calcitonin mRNA levels in C-cells (Knudsen et al., 2010). Therefore, a mode of action was proposed for this 68 



carcinogenicity which includes i) stimulation of GLP-1r on the thyroid C-cells; ii) increased production and 69 

secretion of calcitonin; iii) C-cell hyperplasia, ultimately leading to C-cell adenomas and carcinomas (Joffe 70 

et al., 2009; Knudsen et al., 2010; Rosol, 2013). There is a general believe that the possibility of C-cell 71 

hyperplasia progressing to neoplasia is high, although no direct evidence exists to support this statement. 72 

The potential for carcinogenicity represents a serious concern during the development and regulatory 73 

approval of medicines. This concern is even greater when differences in the exposure profile seem to play 74 

a role in the incidence of events. From a clinical safety perspective,  identification of the mechanisms of 75 

action underlying these adverse events can provided the basis for predicting the risk of carcinogenicity, 76 

rather than relying on empirical evaluation of standard protocols (e.g., 2-year rodent carcinogenicity 77 

outcome) (Laan et al., n.d.; Moggs et al., 2016; van der Laan et al., 2016).  78 

In fact, to characterise which factors determine the potential for carcinogenic effects of short and long 79 

acting GLP-1r agonists, one needs to take into account both the pharmacokinetic (PK) and 80 

pharmacodynamic (PD) processes. The interaction between pharmacokinetic and pharmacodynamic 81 

processes ultimately determines the relation between administered dose and carcinogenic effect.  82 

When combined with modelling and simulation concepts, pharmacokinetic-pharmacodynamic data can 83 

provide the basis for a parametric approach, which allows not only for an integrated evaluation of the 84 

pathophysiological processes and drug effects in a given experimental condition, but also the 85 

extrapolation and prediction of the treatment effects across a range of scenarios (Danhof et al., 2005; 86 

Sahota et al., 2016, 2014). In addition, using the appropriate model parameterisation, it is possible to 87 

distinguish drug-specific processes from those that are specific for the biological system, disentangling 88 

disease or species-related effects from drug effects. For example, the processes leading to GLP-1r 89 

stimulation are dependent on the pharmacokinetics and the potency of each drug, but the relation 90 

between GLP-1r stimulation and C-cell hyperplasia are determined primarily by the downstream effects 91 



of the relevant pathways (i.e., biological system). Assuming selectivity of action for the different 92 

compounds, it is possible to integrate the data from different GLP-1r agonists and to develop a generic 93 

PKPD framework as a tool to predict the effects of novel compounds with a similar target or mechanism 94 

of action.  95 

The primary aim of the current investigation is therefore to develop a PKPD model that enables the 96 

identification of the factors that contribute to the differences between the various GLP-1 analogues and 97 

products. To that purpose, pharmacokinetic models will be developed to describe systemic exposure. 98 

Predicted drug levels will be combined with GLP-1r stimulation data for the development of a PKPD model. 99 

Subsequently, the relation between GLP-1r stimulation and C-cell hyperplasia, as a marker of pre-100 

neoplastic response, will be characterised using logistic regression. To ensure appropriate 101 

parameterization and generalizability of the model for prospective evaluation of novel compounds, model 102 

development will be based on data from liraglutide and exenatide QW. We will then evaluate the 103 

predictive performance of the proposed framework for the evaluation of carcinogenicity of GLP-1r 104 

agonists using lixisenatide as a paradigm compound. Finally, an overview of the carcinogenic potential 105 

relative to the GLP-1r stimulation in rats is provided for four GLP-1r agonists that are currently approved 106 

for type 2 diabetes in humans. 107 

 108 

Methods 109 

Data 110 

Data was extracted from dossiers that were available in the repository of the Dutch Medicines Evaluation 111 

Board. The companies responsible for the Marketing Application (AstraZeneca, Cambridge, England for 112 

the two exenatide-containing products; Novo-Nordisk, Bagsvaerd, Denmark,  for liraglutide; Sanofi, Paris, 113 



France for lixisenatide) agreed with the use of these data for this publication. Table I provides an overview 114 

of the studies that were used. Pharmacokinetic data, i.e. plasma drug concentrations were obtained from 115 

toxicokinetic studies for exenatide BID (European Medicines Agency, 2006), exenatide QW (European 116 

Medicines Agency, 2011), liraglutide (European Medicines Agency, 2009) and lixisenatide (European 117 

Medicines Agency, 2012), and data from the first dosing regimen was used for development of the 118 

pharmacokinetic models. Pharmacodynamic data were obtained from 2-year carcinogenicity studies for 119 

exenatide QW (European Medicines Agency, 2011), liraglutide (European Medicines Agency, 2009) and 120 

lixisenatide (European Medicines Agency, 2012). The incidence of thyroid C-cell hyperplasia after 104 121 

weeks was used as a pharmacodynamic measure and as a surrogate for the carcinogenic effect. I.e., the 122 

occurrence of hyperplasia preceded the observation of tumours, and showed a better dose-response 123 

relationship as compared with the adenoma (European Medicines Agency, 2009). Hyperplasia data were 124 

categorized in scores 0 (no hyperplasia) and 1 (hyperplasia) to allow quantification of the response. The 125 

carcinogenicity studies included preliminary death of animals, which were also evaluated for hyperplasia. 126 

The mortality rate was similar among dose groups, and not correlated with carcinogenicity. Since it is 127 

unknown whether a negatively scored animal would have developed hyperplasia between the time of 128 

death and the end of the study, data from before week 104 were excluded for the purpose of the current 129 

analysis. 130 

PK modelling 131 

PK models describing the time course of the plasma drug concentrations were developed based on a 132 

nonlinear mixed effects modelling approach, as implemented in NONMEM® version 7.2 (ICON plc, USA). 133 

One- and two-compartment models were tested and compared to describe the pharmacokinetics of the 134 

different drugs. Fixed and random effects were included in a stepwise manner, assuming the inter-135 

individual variability around the pharmacokinetic parameters to be log-normally distributed: 136 



𝜃𝑖 = 𝜃𝑇𝑉 ∗ 𝑒𝜂𝑖         (Eq. 1) 137 

where θTV is the typical value for the population, and ηi is a random variable with zero mean and variance 138 

ω2.  139 

A proportional error model described residual error:  140 

𝑌𝑖𝑗 =  𝐹𝑖𝑗 ∗ (1 + 𝜀𝑖𝑗)        (Eq. 2) 141 

where Fij is the predicted drug concentration, and εij is a random variable with zero mean and variance ω2.  142 

The models were evaluated using the following selection criteria: i) significant drop in objective function 143 

(> 3.84; p < 0.05, df = 1); ii) parameter precision; iii) goodness-of-fit; and iv) visual predictive check. 144 

 145 

GLP-1r stimulation and C-cell hyperplasia 146 

Linking the PK models to PKPD models describing GLP-1r stimulation: Subsequently, using the post-hoc 147 

parameter estimates from the PK modelling step, predicted plasma drug concentrations were linked to a 148 

sigmoid Emax drug effect model (eq. 3):  149 

𝐺𝐿𝑃1𝑟 𝑠𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =  
𝐸𝑚𝑎𝑥∗𝐶𝑑𝑟𝑢𝑔,𝑝𝑙𝑎𝑠𝑚𝑎

𝐸𝐶50+ 𝐶𝑑𝑟𝑢𝑔,𝑝𝑙𝑎𝑠𝑚𝑎
      (Eq. 3) 150 

As PK data was collected from a separate experiment, population predicted values were used, as 151 

imputation of individual drug concentration profiles was not possible. PKPD modelling was based on a 152 

hybrid approach in that EC50 values were obtained from in vitro calcitonin assays of the four GLP-1r 153 

agonists in a rat medullary thyroid carcinoma (MTC) 6-23 cell line (table II), assuming this to represent in 154 

vivo GLP-1r stimulation. This can be justified by the fact mechanistic studies have shown that calcitonin 155 

release is a direct consequence of GLP-1r stimulation (Knudsen et al., 2010; Madsen et al., 2012; Rosol, 156 



2013). In addition, the Emax was fixed to one, assuming similar intrinsic efficacy for all four GLP-1r agonists, 157 

which indeed was observed from in vitro assays (Knudsen et al., 2010). As a consequence, the simulated 158 

receptor stimulation is a relative measure.  159 

Logistic regression to predict C-cell hyperplasia incidence: Using the integrated PKPD model, the average 160 

plasma drug concentration at steady state (Css,drug,plasma) and GLP-1r stimulation at steady state (Rss,GLP-1r) 161 

were simulated for each drug following the dosing schemes of the carcinogenicity studies (table I, studies 162 

6 - 8). The Css,drug,plasma and Rss,GLP-1r were subsequently tested for association with C-cell hyperplasia 163 

incidence at week 104 using logistic regression (eq. 4) 164 

𝐻𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑠𝑖𝑎 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 (%) =  100% ∗
𝑒𝛼+ 𝛽∗[𝑃]

1+ 𝑒𝛼+ 𝛽∗[𝑃] ,     (Eq. 4) 165 

in which α is the intercept (i.e. the placebo effect) and β is the slope (i.e. the drug effect) of the logistic 166 

regression analysis. P denotes the predicting variable, either Css,drug,plasma or Rss,GLP-1r. 167 

The logistic regression was performed for exenatide QW and liraglutide, testing both Css,drug,plasma and 168 

Rss,GLP-1r as predictor for C-cell hyperplasia incidence at 104 weeks. P-values were calculated for the slope 169 

(β) of the regression model to determine whether the influence of the predicting variables were 170 

significant. R statistical software version 3.1.1 was used to perform the simulations and logistic regression 171 

analyses. 172 

Model validation and simulations: A hybrid model was constructed with Rss,GLP-1r linked to C-cell 173 

hyperplasia, using data from exenatide QW and liraglutide. This model was subsequently validated 174 

comparing the predicted with the observed hyperplasia incidence at week 104 after different dose levels 175 

of lixisenatide. Finally, with this model, the average incidence on C-cell hyperplasia for all four GLP-1r 176 

agonists was simulated for the dosing schemes as depicted in table I (studies 5 – 8).   177 

 178 



Results 179 

This study used a model-based approach to integrate data from four GLP-1r agonist products, which is not 180 

possible with the traditional protocols for the evaluation of carcinogenicity in preclinical species. Here we 181 

show that both pharmacokinetics and pharmacodynamics determine the C-cell hyperplasia incidence, 182 

thereby highlighting the pharmacological basis of GLP-1r agonist induced C-cell carcinogenicity.  183 

In the next paragraphs we present the results of the PK model development and subsequently show that 184 

GLP-1r stimulation is a good predictor of C-cell hyperplasia at 104 weeks. Then, the predictive 185 

performance of the model is shown for C-cell hyperplasia after different dose levels of lixisenatide. Finally, 186 

an overview is provided for GLP-1r stimulation and the predicted C-cell hyperplasia incidences for the four 187 

products under the simulated study designs.  188 

 189 

PK models 190 

Exenatide BID: A one-compartment model with first-order elimination was found to best describe the 191 

pharmacokinetics of exenatide BID. Even though exenatide BID was administered subcutaneously, its 192 

pharmacokinetic disposition had to be described as an i.v. bolus starting at 0.5 hours (first sampling). This 193 

assumption was required because no samples were collected that reflect the absorption phase. (table III).  194 

Exenatide QW: Given that the release of exenatide from the subcutaneously administered microspheres 195 

occurs in three phases, in which the fraction of first burst release is negligible, the pharmacokinetic model 196 

for exenatide QW included an initial zero order release phase at 0 hours and a second zero order release 197 

phase for the remaining drug at an estimated time point of 89 hours (table III). The fraction remaining for 198 

the second release phase was determined to be 0.54 by calculating the area under the curve (AUC) of the 199 

second peak relative to the total AUC of the average drug concentrations. The duration of the release 200 



phases were 57 and 205 hours, respectively. The bioavailability was fixed to 75% as provided by the 201 

assessment report (European Medicines Agency, 2011). A two-compartment model with first order 202 

elimination best described the pharmacokinetics of exenatide QW. Inter-individual variability was 203 

quantified for clearance and peripheral volume of distribution.  204 

Liraglutide: The time course of liraglutide concentrations in plasma was described by a one-compartment 205 

model with first-order elimination (table III). The characterization of first order absorption was allowed, 206 

since enough data points were obtained during the absorption phase.  207 

Lixisenatide: Distribution of lixisenatide from the subcutaneous region to plasma was characterised by a 208 

zero order process (table III). The bioavailability of the highest dose (2000 μg/kg) was fixed to 3% based 209 

on the results described in the assessment report (European Medicines Agency, 2012). In addition, to 210 

account for dose non-linearity, the bioavailability of the lower doses was estimated relative to the highest 211 

dose. 212 

Performance of the population PK models: In general the population parameters were estimated with 213 

sufficient precision(relative standard error (RSE) < 30%). By contrast,  parameters describing the inter-214 

individual variability for exenatide QW and the peripheral compartment had a RSE > 50%.  Nevertheless, 215 

the goodness-of-fit evalutation (figure S1) and the visual predictive checks (figure 1) showed reasonable 216 

description of the observed data, with exception of exenatide BID concentrations, which appear to be 217 

slightly over-predicted at 0.5 hours (figure 1A, figure S1).  218 

 219 

GLP-1r stimulation and C-cell hyperplasia 220 

Relationship between drug exposure and GLP-1r stimulation: To get insight into the role of the 221 

pharmacokinetics in the pharmacodynamics of GLP-1r agonists, the short acting exenatide BID was 222 



compared to the long acting liraglutide (figure 2). It is seen that for liraglutide the drug is not totally cleared 223 

from the system after 24 hours post dose, leading to drug accumulation following chronic dosing (figure 224 

2C). For exenatide BID, even with twice-daily administration, the drug is fully cleared from the system 225 

before the next administration and no accumulation occurs (figure 2A). Consequently, the GLP-1r 226 

stimulation, even after a low dose of liraglutide (0.075 mg/kg), is continuously above 75% during the first 227 

48 hours (figure 2D), whereas for exenatide BID it is back to 0% before the next administration (figure 2B).  228 

 229 

Logistic regression model development: No statistically significant association or relationship was found 230 

between the simulated CSS,drug,plasma and C-cell hyperplasia after treatment with exenatide QW or 231 

liraglutide (p = 0.08 and 0.11; figure 3A,C). However, their Rss,GLP-1r estimations were significantly 232 

associated with C-cell hyperplasia (p = 0.04 and 0.01; figure 3B,D). Furthermore, when combining the 233 

Rss,GLP-1r of both drugs, the association was even more significant (p < 0.001; figure 3E). The regression 234 

slopes (β in eq. 4) for GLP-1r stimulation and C-cell hyperplasia were 1.04, 0.99 and 0.97 for exenatide 235 

QW, liraglutide and the combined regression, respectively. Their similarity in the slope estimates suggests 236 

that the association between GLP-1r stimulation and C-cell hyperplasia is not compound specific (i.e. it 237 

does not depend on which compound is used).  238 

 239 

Model evaluation: The predictive performance of the hybrid model (table II) was subsequently evaluated 240 

with the experimental data from other studies using lixisenatide, showing reasonable agreement between 241 

observed data and model predictions (figure 4). The model appears to slightly under-predict the C-cell 242 

hyperplasia incidence in the placebo and highest dose group, but correctly predicts treatment effects for 243 

the low and medium dose groups. Furthermore, the model predicts maximal C-cell hyperplasia already 244 



after the lowest dose (47%), whereas the observed data show a slight dose dependent increase (45% - 245 

52%).   246 

 247 

Prediction of GLP-1r agonist-induced C-cell hyperplasia: Finally, an integrated overview of the 248 

relationship between GLP-1r stimulation and C-cell hyperplasia incidence was derived for all four GLP-1r 249 

agonist-containing products following treatment with the same dosing schemes of the carcinogenicity 250 

studies of each drug (figure 5). The incidence of C-cell hyperplasia does not exceed 50%, even when the 251 

stimulation of the GLP-1 receptor is maximal. A maximum of 50% hyperplasia has also been observed for 252 

liraglutide (Knudsen et al., 2010), and the effect appears to be saturable, as indicated by the fact that 253 

there was no dose-dependent increase for lixisenatide (figure 4). Also, even after placebo treatment, 254 

there is a 25% incidence of hyperplasia. This is substantiated by observations as shown in figures 3 and 4. 255 

Sprague-Dawley rats are known to spontaneously develop tumours (Nakazawa et al., 2001). Also, based 256 

on the tested dosing schemes, model predictions show that exenatide shows a relatively lower potential 257 

for C-cell hyperplasia when compared to liraglutide and lixisenatide. Moreover, for exenatide BID, 258 

modelling results predict lower incidence of hyperplasia than exenatide QW. It must be noted that the 259 

experimental designs and dosing schemes (table I) used in the simulations do not reflect the human dosing 260 

regimens, but rather the typical experimental protocols in rodents. The currently approved dosing 261 

regimen in humans results in exposures (based on AUC) that are 5, 23 and 130 higher for exenatide BID 262 

(U.S. Food and Drug Administration, 2008), 2.1, 10 and 26 higher for exenatide QW (European Medicines 263 

Agency, 2011), 0.5, 2.2 and 7.6 higher for liraglutide (Joffe et al., 2009), and >270 higher for lixisenatide 264 

(European Medicines Agency, 2012).  265 

 266 



Discussion 267 

In the current investigation we evaluate the feasibility of a PKPD framework in which the carcinogenic 268 

potential of GLP-1r agonists with respect to thyroid C-cells is evaluated in an integrative manner. It is 269 

based on the assumption that given the mechanism of action of these compounds, carcinogenicity results 270 

from GLP-1r stimulatory effects on C-cells. The degree of GLP-1r stimulation is in turn related to the extent 271 

and duration of exposure to the individual drugs. Whereas dosing regimen is a critical factor, the use of a 272 

PKPD model has shown that both exposure levels and drug potency on GLP-1r are determinants for the 273 

C-cell hyperplasia incidence.  274 

This work fits in the renewed interest in the characterisation of the relationship between pharmacological 275 

properties and carcinogenicity (Laan et al., n.d.; Moggs et al., 2016; van der Laan et al., 2016) as part of a 276 

weight-of-evidence approach in the prediction of carcinogenicity (International Council for 277 

Harmonisation, 2016; Sahota et al., 2016, 2014). Similar work has been done to explore the utility of a 278 

biomarker-guided approach to predict the long term safety of naproxen in humans on basis of rat studies 279 

(Sahota et al., 2015, 2014). The authors showed that, using a model-based approach, biomarker data 280 

could be integrated and interspecies differences could be assessed. Indeed, a model-based approach 281 

distinguishes the drug specific properties from the biological system-specific properties, thereby providing 282 

the basis for interspecies translation (Danhof et al., 2008). Such analysis is not possible by the traditional 283 

methods for the evaluation of carcinogenicity, in which experimental data is assessed in a fragmented 284 

manner. 285 

In the context of carcinogenicity evaluation, one of limitations of standard experimental protocol designs 286 

is the difficulty in establishing exposure-effect relationships in a strictly quantitative manner. These 287 

studies typically do not include detailed PK-analysis enabling further evaluation of the impact of inter-288 

individual variability and underlying disease processes. On the other hand, by using a model-based 289 



approach, data from different sources can be combined, enabling the integration of PK and PD data. We 290 

studied the carcinogenic potential of the various products with respect to exposure data of four GLP-1r 291 

products, potency for the GLP-1r, and the induction of (pre-)neoplastic phenomena, all within one model-292 

based PKPD framework. Such approach is not limited to GLP-1r products, but well applicable to other drug 293 

classes. As an example, multiple adrenergic β2-agonists appear to have a different carcinogenic potential, 294 

which may be caused by a distinct pharmacological profile (van der Laan et al., 2016).  295 

It should be highlighted that the GLP-1r stimulation, which is a key component of this framework, is causal 296 

to C-cell carcinogenicity in our analysis. In contrast to wild type mice, GLP-1r knockout mice were shown 297 

not to develop C-cell hyperplasia after treatment with GLP-1r agonists (Madsen et al., 2012). The knockout 298 

mice did not show a calcitonin response after treatment, which implies that this response is a direct 299 

consequence of GLP-1r stimulation. Calcitonin has therefore been suggested as a biomarker of GLP-1r 300 

agonist induced rodent C-cell carcinogenicity (Joffe et al., 2009). However, to our knowledge a causal 301 

relationship between increased calcitonin concentrations and C-cell hyperplasia has not been previously 302 

demonstrated. Other factors, such as age (Knudsen et al., 2010; Kurosawa et al., 1988), interfere with the 303 

treatment related effect in rats, and calcitonin levels after 7 months of treatment could not be correlated 304 

with C-cell carcinogenicity endpoints (Knudsen et al., 2010). Furthermore, both calcitonin synthesis and 305 

release are different between healthy C-cells and those with focal hyperplasia, complicating its use as 306 

biomarker for C-cell hyperplasia (Rosol, 2013). In addition, the sensitivity of calcitonin reflecting C-cell 307 

functionality is not optimal, although provocative testing with pentagastrin, Ca2+ or omeprazole has been 308 

proposed to handle this problem (Vitale et al., 2002). It is thus questionable whether calcitonin could be 309 

used as a causal biomarker for C-cell hyperplasia (Joffe et al., 2009). On the other hand, liraglutide caused 310 

upstream activation of mTOR (Madsen et al., 2012), which is associated with several hallmarks of cancer, 311 

such as tumorigenesis, cell survival and proliferation (Laplante and Sabatini, 2013). This suggests that GLP-312 

1r stimulation may lead to activation of these hallmarks, which could be causal to C-cell carcinogenicity, 313 



rather than calcitonin itself. In addition to investigating the role of calcitonin in C-cell hyperplasia, further 314 

efforts regarding biomarker discovery for GLP-1r induced C-cell carcinogenicity is warranted. 315 

The extrapolation of current findings and clinical implications of GLP-1r agonist carcinogenicity in rodents 316 

requires careful consideration of a number of factors. First, a much lower GLP-1r density has been shown 317 

in humans as compared to rodent C-cells, suggesting that findings in rodents are not likely to be relevant 318 

in the clinic (Körner et al., 2007; Waser et al., 2014). Also, in phase III clinical trials, no signs have been 319 

observed indicating C-cell carcinogenicity. Nonetheless, the earliest GLP-1r agonist, exenatide BID, is only 320 

on the market since 2005, and the earliest long-acting GLP-1r agonist, liraglutide, is only on the market 321 

since 2010. Moreover, histological studies have shown a consistent expression of the GLP-1r in MTC’s and 322 

hyperplastic C-cells (Gier et al., 2012), suggesting that some patient subgroups may be vulnerable to GLP-323 

1r agonist carcinogenicity. Therefore, a concern cannot be fully excluded (Joffe et al., 2009), and model-324 

based simulations could be utilized to assess the interspecies differences for C-cell hyperplasia, eventually 325 

for different patient subgroups as part of the risk mitigation procedure. 326 

We are aware of the limitations of the data available, and therefore we have made some assumptions. 327 

First of all, it was assumed that free plasma concentrations were reported, although it was not explicitly 328 

stated for every study whether concentrations were corrected for plasma protein binding. Whereas 329 

evidence may exist showing that plasma protein binding for these compounds is not restrictive, these data 330 

were not available either. This might have affected the interpretation of the results, since only the free 331 

drug concentrations exert pharmacological activity. The requirement for free concentrations should 332 

therefore be considered on a case-by-case basis. Second, because no information was available on the 333 

distribution of free drug to the thyroid, we assumed similar drug concentrations in plasma and thyroid. 334 

Drug distribution into tissue is influenced by characteristics of the drug (Danhof et al., 2007), and this 335 

assumption might have affected the predictive ability of the model. Third, the EC50 values were obtained 336 



from a calcitonin assay (rat MTC 6-23 cell line) assuming that this assay is representative for GLP-1r 337 

stimulation. However, the other frequently used cAMP assay showed similar relative potencies among 338 

the products with liraglutide and lixisenatide having a 65 – 130 and 0.5 – 1.8 higher potency than 339 

exenatide (Knudsen et al., 2010; Schwahn et al., 2013). Moreover, as discussed previously, calcitonin 340 

release is a direct consequence of GLP-1r stimulation (Knudsen et al., 2010; Madsen et al., 2012; Rosol, 341 

2013). Fourth, similar maximal effect was observed in the calcitonin and cAMP assays (Knudsen et al., 342 

2010; Schwahn et al., 2013). Therefore, the Emax was fixed to 1 and a relative GLP-1r stimulation was 343 

associated with C-cell hyperplasia incidence. Fifth, the ratio between the in vitro potencies of the products 344 

was assumed to be similar to the ratio between the in vivo potencies. However, the binding to the 345 

receptor, which can be an important determinant of the potency, may be dependent on the 346 

characteristics of the drugs (de Witte et al., 2016), and could affect the predictive ability of the model. 347 

Sixth, we have assumed that pharmacokinetics and pharmacodynamics do not change over a period of 348 

104 weeks. However, it is known that antidrug antibodies can develop over time for lixisenatide up to 12 349 

months (European Medicines Agency, 2012). Even though bound drugs are unlikely to show 350 

pharmacological activity, these antibodies do extend the half-life of the drug in the systemic circulation. 351 

This could lead to increased accumulation of the plasma drug concentration, and potentially to a higher 352 

steady state drug concentrations and the corresponding GLP-1r stimulation.  353 

Despite these assumptions, we believe that the current model parameterisation is sufficiently robust to 354 

support the assessment of compounds acting via GLP-1r system. The quality of the predictions for 355 

lixisenatide C-cell hyperplasia incidence (figure 4) indicates that model performance is appropriate. 356 

However, we acknowledge that further validation is required for wider use of the model and extrapolation 357 

of the findings to other products, e.g. albiglutide and dulaglutide.  358 



In conclusion, this study highlights the pharmacological basis for GLP-1r agonist-induced C-cell 359 

carcinogenicity. It is shown that GLP-1r stimulation is a better predictor of C-cell hyperplasia than plasma 360 

drug concentrations of exenatide QW and liraglutide. Our analysis indicates that non-linear processes of 361 

receptor binding and activation need to be taken into account for accurate prediction of delayed drug 362 

effects. It also stresses the role of pharmacological biomarkers for prediction of carcinogenic potential. 363 

Both the extent and duration of exposure and the potency of the drug determine the degree of GLP-1r 364 

stimulation, and thus the C-cell hyperplasia, indicating that both PK and PD properties contribute to C-cell 365 

carcinogenicity. Our work highlights the value of model-based approaches to improve risk assessment and 366 

management of drugs with carcinogenic potential in a way that is not possible with traditional methods. 367 

The role of regulatory agencies is unique in this regard, because they have access to carcinogenic data 368 

from multiple same-in-class products.  369 
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Table I. An overview of the studies and data that was used for model development 457 

 Sample 

size 

Drug Dosing Observation times Observation 

Pharmacokinetic data 

1 420 Byetta  

(exenatide BID) 

18, 70, 250 μg/kg,  

s.c., once daily 

0.5, 1, 2, 3, 4, 6, 9, 12 

hours 

Plasma drug 

concentration 

2 15 Bydureon 

(exenatide QW) 

2.4 mg/kg,  

s.c., biweekly 

15 min, 1, 4, 8 hours, 1, 3, 

5, 8, 11, 15, 18, 22, 25, 29, 

32, 36, 39 days 

Plasma drug 

concentration 

3 84 Victoza  

(liraglutide) 

0.1, 0.25, 1 mg/kg,  

s.c., once daily 

0, 1, 2, 4, 6, 8, 12, 24 

hours 

Plasma drug 

concentration 

4 234 Lyxumia 

(lixisenatide) 

5, 100, 2000 μg/kg,  

s.c., twice daily (t=0h; t=8h) 

10, 20 min, 1, 3, 8 hours Plasma drug 

concentration 

 

Pharmacodynamic data 

5 195 Byetta  

(exenatide BID) 

0, 18, 70, 250, s.c. once 

daily 

104 weeks C-cell 

hyperplasia 

6 227 Bydureon 

(exenatide QW) 

0.3, 1, 3.0 mg/kg,  

s.c., biweekly 

104 weeks C-cell 

hyperplasia 

7 256 Victoza  

(liraglutide) 

0.075, 0.25, 0.75 mg/kg, 

s.c., once daily 

104 weeks C-cell 

hyperplasia  

8 573 Lyxumia 

(lixisenatide) 

0, 40, 200, 1000 μg/kg, s.c. 

twice daily (t=0h; t=8h) 

104 weeks C-cell 

hyperplasia  

BID: twice daily; s.c.: subcutaneous; QW: once weekly 458 

  459 



Table II. Parameters of the PKPD model describing the GLP-1r stimulation and the C-cell hyperplasia incidence 460 

Parameter Value (RSE) 

Emax (%) 100 (fixed) 

EC50,exenatide (pM) 55 (fixed) 

EC50,liraglutide (pM) 5300 (fixed) 

EC50,lixisenatide (pM) 25 (fixed) 

α 1.1 (19%) 

β 0.97 (30%) 

EC50 values were obtained from a calcitonin assay in a rat MTC 6-23 cell line (Knudsen et al., 2010)   461 

α: intercept of the regression model; β: slope of the regression model   462 

  463 



Table III. Pharmacokinetic parameter estimates for exenatide BID, exenatide QW, liraglutide and lixisenatide  464 

Parameter Estimate (RSE%) 

 

Exenatide BID 

CLcentral (L/h) 0.35 (11%) 

Vcentral (L) 0.35 (15%) 

IIV  

CLcentral 0.14 (18%)  

 

Exenatide QW 

CLcentral (L/h) 0.72 (11%) 

Vcentral (L) 1.29 (24%) 

Vperipheral (L) 79.2 (15%) 

Qperipheral (L/h) 29.12 (17%) 

F 0.75 (FIX) 

Fraction1 0.46 (FIX) 

Fraction2 0.54 (FIX) 

Duration1 (h) 57.32 (15%) 

Duration2 (h) 204.57 (12%) 

Release1 (h) 0 (FIX) 

Release2 (h) 89.24 (2%) 

IIV  

CLcentral 0.08 (87%) 



Vperipheral 0.07 (118%) 

 

Liraglutide 

CLcentral (L/h) 0.005 (8%) 

Vcentral (L) 0.037 (9%) 

ka (h-1) 0.27 (3%) 

IIV  

Vcentral 0.46 (20%)  

 

Lixisenatide 

CLcentral (L/h) 0.03 (12%) 

Vcentral (L) 0.03 (12%) 

Duration (h) 0.19 (14%) 

Vperipheral (L) 0.0058 (109%) 

Qperipheral (L/h) 0.0019 (190%) 

Fdose < 2000 μg/kg 0.12 (14%) 

Fdose = 2000 μg/kg 0.03 (FIX) 

CLcentral: clearance from the central compartment; Duration: duration of the lixisenatide distribution from subcutaneous to plasma; Duration1: 465 

duration of the first exenatide QW release; Duration2: duration of the second exenatide QW release; F: bioavailability; Fraction1: fraction 466 

exenatide QW released during the first release; Fraction2: fraction exenatide QW released during the second release; IIV: inter-individual 467 

variability; ka: absorption rate constant; Qperipheral: Intercompartmental clearance between central and peripheral compartment; Release1: starting 468 

time of the first exenatide QW release; Release2: starting time of the second exenatide QW release; Vcentral: central volume of distribution; Vperipheral: 469 

peripheral volume of distribution 470 
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Figure 1. Prediction corrected visual predictive checks for the pharmacokinetic models of exenatide BID (A), exenatide QW (B), 473 

liraglutide (C) and lixisenatide (D). Dark grey shades represent the 90% prediction intervals of the median and light grey shades 474 

the 90% prediction intervals of the 95% confidence limits. Black solid lines represent the observed medians and black dashed 475 

lines the observed 95% confidence limits. Black dots represent the observed data.  476 
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Figure 2. Simulated pharmacokinetics (A) and pharmacodynamics (B) after exenatide BID (A and B) and liraglutide (C and D) 479 

from 0 – 48 hours.  480 
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Figure 3. Logistic regression between steady state plasma drug concentration or GLP-1r stimulation and C-cell hyperplasia risk 482 

for exenatide QW (A and B), liraglutide (C and D) and both drugs combined (E, only GLP-1r stimulation). The solid line 483 

represents the  predicted C-cell hyperplasia incidence (%), the small dots the observed hyperplasia incidence (0 = no 484 

hyperplasia, 100 = hyperplasia), and the large dots the observed hyperplasia incidence (%). The latter was calculated over 7 485 

bins with equal data density.  486 
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 489 

Figure 4. Predicted versus observed hyperplasia incidence (%) after 0, 40, 100 and 1000 μg/kg lixisenatide. 490 
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 492 

 493 

Figure 5. Overview of predicted hyperplasia incidence (%) for placebo and low, medium and high dose of exenatide BID, 494 

exenatide QW, liraglutide and lixisenatide as function of steady state GLP-1r stimulation. Simulations were performed 495 

according to the dosing schemes in table I (studies 5 - 8).  496 
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