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Abstract

Agreeing the level of energy savings that have been
delivered is a fundamental part of an Energy Per-
formance Contract. However, different measurement
options use different measurement boundaries and
may result in different answers. This is exacerbated
in a retrofit of an existing building where little de-
sign information is available and reducing uncertain-
ties through detailed surveys is generally cost and
time prohibitive. This study uses probabilistic en-
ergy modelling to explore the implications of differ-
ent measurement and verification strategies and con-
cludes that some building users may find a perfor-
mance guarantee offers them little protection. There
is a need for greater transparency when making de-
cisions about the most appropriate measurement and
verification strategy.

Introduction

Energy efficiency is frequently cited as a fundamen-
tal component of the UK’s strategy for achieving its
carbon reduction commitments (see, for example, De-
partment of Energy and Climate Change (2012)) but
uptake of energy efficiency opportunities has gener-
ally lagged behind expectations, Hausman (1979),
United States Congress Office of Technology Assess-
ment (1992). Energy Performance Contracts (En-
PCs) have been widely promoted as a mechanism for
increasing uptake of energy efficiency investments by
transferring the performance risk for the energy sav-
ing measure to the contractor responsible for its in-
stallation, European Commission (2014).

Measurement and verification of energy sav-
ings

The literature relating to EnPC is agreed on the im-
portance of a robust arrangement for measuring and
verifying (M&V) energy savings as a condition for a
successful project. To date, the bulk of that litera-
ture has focused on the development of EnPC mar-
kets across a range of international settings: Jensen
et al. (2013), Sarkar and Singh (2010), Urge-Vorsatz
et al. (2007), Goldman et al. (2005), Vine (2005),
Kavcic (2010), Patlitzianas et al. (2006), Marino et al.
(2010), Bertoldi et al. (2006), Satchwell et al. (2010),

Goldman et al. (2002). The majority of commenta-
tors identify standardised M&V processes as a key
market enabler (or, its absence as a key market bar-
rier). Only two of these commentators take a slightly
different view, with Jensen et al. (2013), placing a
higher emphasis on trust in the context of Danish
municipalities and Sarkar and Singh (2010) caution-
ing against over-complex M&V arrangements as a po-
tential market barrier in developing countries. In ad-
dition, a variety of US based studies quoted in Kats
et al. (1997) provide evidence of greater savings in
projects with robust M&V arrangements.

The most commonly used approach for measuring
and verifying savings is the International Perfor-
mance Measurement and Verification Protocol (IP-
MVP) which grew out the US EnPC industry stan-
dards, Efficiency Valuation Organization (2012) with
ten Donkelaar et al. (2013) reporting its use in just
under 50% of 100 European projects surveyed. How-
ever, it is important to note that IPMVP does not
present a detailed process for measuring savings but
a framework that can be adapted to fit a wide range
of circumstances. In particular, IPMVP contains 4
distinct options for measuring savings each with dif-
ferent measurement boundaries, since many ECMs
may affect other building systems across these mea-
surement boundaries, the total savings measured and
thus guaranteed, may vary depending on the option
selected.

For the EnPC market to achieve its aim of increas-
ing energy efficiency investments, it is essential that
clients have confidence in the level of guarantee of-
fered under the contract since otherwise, the risks of
investment will not be considered to be reduced. The
potential for differing levels of savings depending on
the measurement boundary selected leads to a risk
that clients and contractors may have very different
expectations of energy savings as a result of the in-
vestment in an EnPC with important consequences
at an industry level as a result of a lack of confidence
in future energy savings guarantees. To date, the
literature has sought to explore the market level im-
pacts of standardised M&V approaches as discussed
above but has not considered the question of how a
standardised M&V approach should be implemented



Figure 1: Archetypal UK primary school modelled in
EnergyPlus

and the unintended effects which might arise. This
study seeks to contribute to closing this gap by ex-
ploring the theoretical case of a lighting retrofit in an
archetypal UK school to understand the consequences
of alternative measurement options under IPMVP.

Simulation
A typical UK primary school (420 pupils aged be-
tween 4 and 11 years old, taught in classes of 30)
was modelled in EnergyPlus. A fundamental com-
plication of measurement and verification of energy
savings is that since the energy savings are an ab-
sence of consumption they cannot be measured di-
rectly. It follows from this that establishing the base-
line condition, the energy consumption which would
have taken place if no energy efficiency measure had
been installed is critical. Moreover, the literature on
the energy performance gap has repeatedly demon-
strated the difficulty in accurately calculating the en-
ergy performance of buildings in use, even where de-
tailed design information is available. Where such
information is no longer available and buildings may
have been incrementally modified over the years with
limited record keeping this situation is compounded.
Whilst in theory, much of this missing information
could be obtained from detailed surveys, in practice,
the cost of obtaining this information and the time
needed to do so mean that only limited survey work
is undertaken. To capture this uncertainty surround-
ing the baseline condition of the archetypal school a
stochastic approach is is required.

Screening

A literature review coupled with the lumped parame-
ter approach proposed by Garcia Sanchez et al. (2014)
was used to identify 91 variable input parameters,
covering building fabric, systems, settings and occu-
pant behaviour. Capturing the full range of variation
over this large input space is time-prohibitive as the
individual models are relatively time-consuming to
run (3̃.5 minutes for parallel simulation of 8 primary
school models). Consequently, a screening approach
is necessary to select the most influential parameters
which can be permuted in subsequent model runs
with values for the un-influential parameters being

fixed. Global Sensitivity Analysis (GSA) considers
variations across the full input space and is appropri-
ate for a complex, non-linear model such as a build-
ing simulation model where interactions between in-
put parameters are expected to be important, Saltelli
et al. (2008). The GSA setting used in this context
is a factor fixing setting. Variance based approaches,
developed from the work of Ilya M. Sobol’, represent
the state of the art for GSA but come at high compu-
tational cost and are recommended for models with
fewer than 20 input parameters Saltelli et al. (2008).
Various studies, eg. Pannier et al. (2016), Sarrazin
et al. (2016a) have shown that a repeated one-at-a-
time analysis first proposed by Morris Morris (1991)
provides results which are consistent with those cal-
culated using Sobol’ indices, Saltelli et al. (2006), for
a factor fixing setting. This approach creates a series
of sets of input parameters where each pair of sets
differs in only one input parameter, consequently the
variation in model output between the sets of input
parameters is only due to the varied parameter. The
Elementary Effect (EE) is the normalised difference
in output resulting from the two sets of input param-
eters. A series of k+1 sets of input parameters is
required to give 1 estimate of EE for each input pa-
rameter where k is the number of input parameters.
Notation used throughout follows Campolongo et al.
(2011).
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The procedure is repeated a number of times to give a
number of estimates for EE for each parameter, in his
original work, Morris used the mean and the standard
deviation of the estimates for each parameter to char-
acterise the sensitivity of the model output to changes
in that parameter. Two key concerns regarding the
original Morris Method have been addressed in more
recent work. The first, the potential for the estimates
of opposite sign to cancel each other out resulting in
an influential factor being incorrectly classified as un-
influential was addressed by taking the mean of the
absolute values of measured variance, µ* Campolongo
and Saltelli (1997). Where
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1

n
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The second concern, that the coarse search pattern
proposed with the original winding stairs approach



leads to inadequate coverage of the input space is ad-
dressed through the application of a radial sampling
design Campolongo et al. (2011) this is the form used
in equation 1.

Sampling the input space

Sobol’ sequences were used to generate samples from
the distribution U(0,1) for each parameter using the
sobolset routine in Matlab based on Bratley and Fox
(1988). Sobol’ sequences were created to systemati-
cally fill the input space based on previously selected
points and so are not strictly random numbers but
have been demonstrated to provide better coverage of
the input space than other sampling strategies such
as random numbers or Latin Hypercube sampling,
Homma and Saltelli (1996). The procedure set out in
Campolongo et al. (2011) was used to generate 8280
samples for a radial sampling strategy. Each sample
is mapped to the input space of the relevant param-
eter using the inverse of the cumulative probability
density function (CDF) for that parameter since the
CDF is by definition a continuous function between 0
and 1. However, this sampling strategy introduces in-
stability in the outputs when the delta between input
samples in the untransformed sample space is very
small since this is the denominator used in equation
(1), this causes a particular issue if the small delta
occurs in the tail of the distribution since the delta
in the input space after transformation may be sig-
nificant. To reduce the effects of this instability, sam-
ples with an untransformed input delta ≤0.01 were
excluded from the results.

The original formulation of the Morris Method uses a
uniform distribution for all parameters which would
tend to over-weight extreme values leading to type I
errors where non-influential parameters are identified
as influential. In the modified Morris Method used in
this study, 3 types of distribution were used.

• Normal distributions were used for parameters
where uncertainty is dominated by variation in
physical characteristics and the spread is small
relative to value. For example, boiler efficiencies,
infiltration, lighting gains (post-retrofit)

• Triangular distributions were used for parame-
ters where uncertainty was dominated by lack
of knowledge of existing installed components or
patterns of use and the spread is large relative
to value since using a normal distribution would
underweight extreme values and result in impos-
sible values. For example: lighting gains (pre-
retrofit), equipment gains, on/off times for light-
ing, equipment, occupancy or heating schedules

• Uniform distributions were used for parameters
where information concerning the distribution of
parameter values was not available or the pa-
rameter is a user-defined setting and all values
are assumed to be equally likely. For example,
domestic hot water loop outlet temperature.

Sarrazin et al. (2016b) highlight the need for ro-
bust techniques for testing for convergence of indi-
cators over successive estimates and propose a semi-
quantitative measure to do this:

SEET
i =

µi∗
maxµk∗

(3)

Equation (3) expresses the input factor sensitivity as
a fraction of the sensitivity for the most influential
input factor, ensuring that it takes a value between
0 and 1. A threshold of T = 0.05 is proposed as
the value for SEET

i below which parameters are con-
sidered to have negligible influence. A rolling aver-
age was computed as each additional estimate was
added to the sample and the difference between the
upper and lower values of the 95% confidence inter-
val computed. The screening result was considered
to have converged when the maximum difference be-
tween the upper and lower limits was less than 0.05
for all parameters. The number of runs required to
give good coverage of the input space was assumed to
be the number of estimates required for convergence
multiplied by the number of influential parameters.
This result was then validated according to the pro-
cedure for screening validation set out by Sarrazin
et al. (2016b). A subset of input factors X0 is defined
where

X0 = {xiwhenSi < T} (4)

and an additional set of model inputs is generated,
{y | X0 |} where the input parameters in X0 are fixed
while the remaining parameters are varied across
their input space. Empirical Cumulative Distribution
Functions (CDFs) are the calculated from the condi-
tional and unconditional model outputs and a two-
sample Kolmogorov-Smirnov (KS) statistic is used to
estimate the discrepancy between the two sets of out-
puts.

Testing the effects of different measurement
boundaries

The impact of different measurement boundaries was
explored for a single ECM, a lighting upgrade com-
prising 2 parts: relamping, modelled as a reduction
in lighting gains and lighting controls, modelled as
a change in the lighting hours. Difficulties of data
collection mean that very little data exists detailing
lighting practices in UK schools Drosou et al. (2015).
In Drosou et al. (2016) a study of lighting behaviour
in 4 UK classrooms suggested that lights were used
for most of the time that classrooms were in use.
Since Drosou’s data related to 2 secondary schools
and the current study is based on a primary school
where classrooms are in continuous use a simplified
profile was used for the lighting schedules, with a sin-
gle on and off time. A single occupancy schedule is
used for the whole building which is considered to
be appropriate for a primary school where occupancy
density is high and most spaces will be in continuous



use. Diversity was introduced in the sample by treat-
ing the on and off times as variables sampled stochas-
tically from symmetric triangular distributions. The
lower bounds for on time and off time are based on a
typical UK school day of approximately 9am to 3pm
Qualifications and Curriculum Authority (2002). Up-
per bounds for on and off time are estimated based
on potential for early morning cleaning schedules and
evidence in Taajamo et al. (2014) of an average 51
hour working week for UK teachers. The resulting
lighting schedules are shown in 2.

Figure 2: Lighting schedules prior to retrofit

Following retrofit, lighting hours are matched with
occupancy hours to reflect the installation of occu-
pancy sensors. Lighting fraction is introduced as
a variable to allow for a proportion of lights to be
switched off during the day. One of the very few
sources of data for lighting use in schools is Drosou
et al. (2016) where the authors report lights being
used in a secondary school classroom for 60% of the
school day in a building with occupancy sensing. This
was taken as the lower bound for the lighting frac-
tion as the space utilisation rate in primary schools
is typically much higher than in secondary schools.
Department for Education (0614).

Figure 3: Lighting schedules post-retrofit

IPMVP, Efficiency Valuation Organization (2012)
sets out 4 different approaches to measuring energy
savings:

Table 1: lighting gain values

Pre-retrofit Post-retrofit
(symmetric triangular
distribution)

(normal distribution)

Classroom: 12-21 W/m2 4.4 W/m2(SD 0.22)
Office: 12-14 W/m2 5.4 W/m2 (SD 0.27)
Hall: 12-13 W/m2 5.7 W/m2 (SD 0.27)
Ancillary: 8 - 10 W/m2 3.1 W/m2 (SD 0.16)

• Option A: Field measurements of specified key
performance parameters and estimates for other
parameters are used in engineering calculations.
The measurement boundary is defined by the cal-
culation undertaken and so may not encompass
all aspects of the ECM

• Option B: Field measurements are taken of the
energy use of the ECM-affected system. Mea-
surements can be short term or continuous and
would normally also cover the period prior to
installation to establish a baseline level of con-
sumption. The measurement boundary is the
system considered. Other systems which might
be affected are not included within the boundary.

• Option C: Energy use is measured at the whole
or sub-facility level. Savings are calculated from
analysis of the whole facility energy use pre and
post ECM installation and regression analysis is
typically used for routine adjustments.

• Option D: Savings are determined through a cal-
ibrated simulation model of the energy use of
the whole facility or sub-facility. Measurement
boundaries for options and C and D are concep-
tually the same and so option D is excluded from
this analysis.

Savings were calculated pre and post-retrofit for using
3 different methods:

• Option A savings were calculated by assuming
a baseline figure of 2000 annual lighting hours
with the exception of offices which are assumed
to have a baseline of 2500 annual lighting hours,
Philips (2010). 2000 hours per annum equates
to 10 hours of lighting per day (UK statutory
school year is 190 days with 5 inservice days
for teachers). Post retrofit, a 20% reduction in
lighting hours is assumed as a conservative esti-
mate based on manufacturers′ claims, Guo et al.
(2010). No allowance is made for uncertainty in
these estimates to reflect standard practices iden-
tified in interviews undertaken by the authors as
part of a broader study.

• Option B results are based on the lighting energy
consumption calculated by Energyplus.

• Option C results are based on the whole facil-
ity electricity and gas consumption calculated by
Energyplus.



Results and discussion

Screening and validation results

The relative impact of each parameter on electricity
and gas consumption is shown in figures 4 and 5 re-
spectively. In total, 90 estimates were obtained for
the sensitivity of each of the 91 parameters and the
impact of incrementally adding a new estimate at a
different point in the input space is plotted on the
x-axis. As successive estimates are added the results
stabilise so that after approximately 50 estimates the
separation between influential and non-influential pa-
rameters is unchanging. It can be seen that for many
of the input parameters, there are particular settings
which result in a large impact on the model outputs
but that for most parameters, these settings occur
infrequently with the result their impact is smoothed
by the averaging process. The screening results thus
indicate which parameters are most likely to be influ-
ential but this does not preclude the possibility of a
particular setting resulting in a large impact on the
outputs. It can be seen from figures 4 and 5 that the
separation into influential and non-influential param-
eters is distinct.
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Figure 4: Successive estimates of relative impact of
each parameter on electricity consumption
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Figure 5: Successive estimates of relative impact of
each parameter on gas consumption

6 parameters had a significant effect on electric-
ity consumption (Si > 0.05): classroom equipment
gains, classroom lighting gains, general equipment on-
time, general equipment off-time, general lighting on-
time, general lighting off-time.

13 parameters had a significant effect on gas con-
sumption (Si > 0.05): intermittent heating set point,
regular heating set point, intermittent heating set
back band, regular heating set back band, general full
occupancy end-time, general heating on-time, venti-
lation temperature, infiltration rate, boiler part load
ratio, boiler efficiency, domestic hot water loop exit
temperature, fibreboard thermal conductivity, class-
room ventilation rate. Of these 13, 3 had a much
greater effect: regular heating set point, ventilation
temperature and infiltration rate.

The screening results were validated by comparing
the cumulative distribution functions (CDFs) of the
outputs from two sets of 950 runs (19 influential pa-
rameters x 50 estimates). In the first set all parame-
ters are sampled from their input distributions using
the sobol’ sequence procedure detailed above, in the
second set, the samples for the non-influential param-
eters were fixed at their mean values. Figures 6 and
7 respectively, indicate that the 2 CDFs for electric-
ity consumption and for gas consumption are almost
identical, indicating that virtually all of the variation
in the outputs is explained by the influential variables
and confirming the screening results.

[h]

Calculation of energy savings

As discussed earlier, post-retrofit lighting hours are
linked to occupancy and so these were included in the
list of influential parameters. An additional variable
was included post-retrofit to model the percentage of
lighting in use. 1200 runs were undertaken for the
pre-retrofit condition with the non-influential param-
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Figure 6: Screening validation for electricity con-
sumption
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Figure 7: Screening validation for gas consumption

eters fixed at their mean value. Sample values for the
parameters which were influential but unchanged by
the lighting upgrade were reused in the post-retrofit
condition.

Electricity savings

Figure 8 shows in blue the annual electricity savings
calculated on a whole building basis and in red, the
lighting energy saving, reflecting the option C and
B savings calculations respectively. The annual elec-
tricity saving calculated using the option A method
is 1.6 x 1011 J, this is shown as a broken line. These
results indicate that there is good agreement between
the option B and C calculations. It is also clear that
the energy savings are closely linked to the number
of lighting hours pre-retrofit. In the majority of the
cases modelled here, lighting savings will be in ex-
cess of the option A predicted value. However, for
the lower quartile of lighting users, savings will be
lower than the value predicted as their original con-
sumption was lower than estimated, in these cases,
the performance guarantee offers no protection since
the savings are deemed to have been met based on the
engineering calculation. This is a concern since the
inclusion of a performance guarantee typically adds
cost to a procurement either directly or by limiting
the range of potential suppliers to those who have the
covenant strength to provide a guarantee. In these

cases a client has incurred an additional cost, in ex-
cess of the underlying installation cost for a guarantee
which offers them no protection.
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Figure 8: Electricity savings

Gas savings

Figure 9 shows the change in whole facility gas con-
sumption following retrofit. In the majority of cases,
the change is a negative one, i.e. more gas is con-
sumed post-retrofit. The number of parameters af-
fecting gas consumption is much greater than for elec-
tricity consumption and consequently the relation-
ship between lighting hours and increased gas con-
sumption is not as strong as for the change in electric-
ity consumption. The cases where gas consumption
decreases are linked to the increase in lighting hours
post retrofit which occurs in a small number of cases.
Both option A and option B ignore any impact on
other building savings and the expected change in gas
consumption in these cases is zero. However, as illus-
trated in figure 10, the increase in gas consumption
is a significant proportion of the electricity saving.
While the heat which was previously supplied by the
original lights is more efficiently and cheaply supplied
by the building′s heating system, for a client investing
in a guaranteed electricity saving, an increase in the
gas bill is likely to come as an unwelcome surprise.
Although these results might suggest that choosing
a whole building approach to measuring and verify-
ing energy savings is always in the clients interests,
ESCOs may not be willing to accept the additional
risks that this approach imposes on them. In par-
ticular, ESCOs are exposed to the wide ranging im-
pacts of occupant behaviour which are outside their
control. Better baseline information, particularly on
lighting hours of use would reduce the risks for both
parties significantly. The influential parameters iden-
tified through the parameter screening exercise pro-
vide a clear map of where to focus efforts to reduce
uncertainty.

Conclusion
Lighting retrofit projects offer the opportunity to sig-
nificantly reduce the electricity consumption of ex-
isting buildings. However, this will be partly offset
by an increase in gas consumption and greater atten-
tion needs to be paid to the impact of measurement
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Figure 9: Gas savings

boundaries and M&V strategy on the actual value of
the guarantee for clients. The trade off between cost
of monitoring and accuracy of results is likely to lead
to a sizeable proportion of clients receiving lower than
expected savings with no recourse under the guaran-
tee. Energy Performance Contracts rely on a guar-
antee of savings to create an incentive for investment
in energy efficiency but clients will see gas bills rise
significantly even though the guaranteed saving has
technically been achieved. This effect will be greater
for clients with higher overall hours of lighting use. If
this risk is not clearly explained to clients it is likely
to lead to a loss of confidence in the concept of energy
performance contracts as a whole.
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