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The motion of a 1D image feature, such as a line, seen
through a small aperture, or the small receptive field of
a neural motion sensor, is underconstrained, and it is
not possible to derive the true motion direction from a
single local measurement. This is referred to as the
aperture problem. How the visual system solves the
aperture problem is a fundamental question in visual
motion research. In the estimation of motion vectors
through integration of ambiguous local motion
measurements at different positions, conventional
theories assume that the object motion is a rigid
translation, with motion signals sharing a common
motion vector within the spatial region over which the
aperture problem is solved. However, this strategy fails
for global rotation. Here we show that the human visual
system can estimate global rotation directly through
spatial pooling of locally ambiguous measurements,
without an intervening step that computes local motion
vectors. We designed a novel ambiguous global flow
stimulus, which is globally as well as locally ambiguous.
The global ambiguity implies that the stimulus is
simultaneously consistent with both a global rigid
translation and an infinite number of global rigid
rotations. By the standard view, the motion should
always be seen as a global translation, but it appears to
shift from translation to rotation as observers shift
fixation. This finding indicates that the visual system
can estimate local vectors using a global rotation
constraint, and suggests that local motion ambiguity
may not be resolved until consistencies with multiple
global motion patterns are assessed.

Introduction

The processing of complex visual motion flows by
the visual system is generally assumed to follow three
consecutive stages (Bradley & Goyal, 2008; Duffy,
2003; Krekelberg, 2008; Pack & Born, 2008). Stage 1:
The parallel extraction of local motion signals over the
visual field by motion sensors with small receptive fields
that consequently suffer from the well-known aperture
problem (Wallach, 1935); Stage 2: Integration of
ambiguous motion signals into unambiguous 2D
velocity signals to solve the aperture problem; and
Stage 3: Analysis of the distribution of explicit 2D
motion vectors over visual space to extract higher order
motion components such as rotation and expansion.
Neurophysiological evidence suggests that computa-
tion of each stage may take place mainly in V1, MT,
and MST, respectively (Graziano, Andersen, & Snow-
den, 1994). This study challenges the critical compu-
tational assumption of this three-stage model: that the
aperture problem is solved in Stage 2 before the
computation of the complex motion flow in Stage 3.

The aperture problem is caused by the ambiguity of
local motion measurements. The motion of a 1D image
feature, such as a line, seen through a small aperture, or
the small receptive field of a neural motion sensor, is
underconstrained, and it is not possible to derive the true
motion direction. For a large object, seen through a
distributed set of apertures, local contours orthogonal to
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the global motion may convey the correct global motion,
but local contours parallel to the global motion slide
along themselves and consequently, the orthogonal
(normal) component of motion is zero (Hildreth, 1984).
For a solution of the aperture problem, these disparate
and spatially distributed local ambiguous estimates need
to be brought together in a way that delivers the correct
motion vector at each point on the object (Figure 1a).
The prevailing view is that visual system resolves the
aperture problem by combining multiple ambiguous
local measurements through an intersection of con-
straints (Adelson & Movshon, 1982; Weiss, Simoncelli,
& Adelson, 2002), vector average (Wilson & Kim, 1994)
or harmonic vector average (Johnston & Scarfe, 2013)
algorithm. Despite the difference in the combination
rule, these algorithms are based on a common assump-
tion, that the integrated local motion measurements
share the same unique global motion vector. This
‘‘rigidity’’ assumption is unquestionably valid for
integration of motion signals sampled at the same
location. For spatially distributed motion measure-
ments, however, a common vector is a too strong, and
often incorrect, assumption in a natural scene.

The natural optic flow produced on the retina by the
movements of objects or the observer has several
unique patterns that the visual system may use to
resolve the motion ambiguity. According to Koender-
ink (1986), the motion flow can in general be
decomposed into four components: translation, diver-
gence, deformation, and curl (the mathematical de-
scriptor of rotation). Due to perspective projection,
movements of a rigid object in the three-dimensional
space produces complex optic flows including diver-
gence and deformation components. Even when only
the movement of a rigid object in a frontal parallel
plane is considered, the motion flow on the retina often
contains a rotation component, in addition to a

translation component. The rotation flow is produced
not only by a rotation of the object, but also by the eye/
head rotation of an observer, around the viewing axis.
For rotation, the global motion solution implies a
particular spatial distribution of local velocities, rather
than a single global velocity (Figure 1b). A better
computation to resolve the aperture problem in this
case is to assume a rigid rotation in addition to a rigid
translation than to assume a rigid translation alone, in
interpreting the ambiguous motion measurements.
Whether the visual system implements such an elegant,
but complicated, computation has not been tested.
Rather, based on the three-stage model, it has typically
been thought that complex optic flows including global
rotation are processed in Stage 3 after local motion
measurement ambiguity is resolved in Stage 2 with the
assumption that the object motion is spatially smooth
(Hildreth, 1984; Weiss et al., 2002), or approximately a
rigid translation at least within the spatial neighbor-
hood over which the aperture problem is solved.

Here we report a novel ambiguous global flow
pattern (which, according to the standard view, should
always be seen as global translation regardless of the
size of integration window) appears to shift from
translation to rotation as observers shift fixation. This
indicates that the visual system can estimate local
vectors using a global rotation constraint, and suggests
that local motion ambiguity is not resolved until
consistencies with multiple complex motions are
assessed.

Ambiguous motion stimuli

We made a motion display consisting of multiple
ambiguous motion elements that is simultaneously

Figure 1. The true 2D motion vector is common across different local motion measurements for translation (a), while it changes in a

characteristic way for rotation (b). The visual system has to take into account this difference when integrating ambiguous local motion

measurements in order to correctly resolve the aperture problem.

Journal of Vision (2016) 16(15):7, 1–11 Rider, Nishida, & Johnston 2

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/935912/ on 04/05/2017



compatible with a global translation and a global
rotation. It consisted of multiple one-dimensional
motion elements (Amano, Edwards, Badcock, &
Nishida, 2009; Lorenceau & Alais, 2001; Lorenceau &
Shiffrar, 1992; Lorenceau & Zago, 1999; Mingolla,
Todd, & Norman, 1992; Rider, McOwan, & Johnston,
2014; Rubin, Hochstein, & Solomon, 1995; Takeuchi,
1998). Each element was a dynamic Gabor: a drifting
sinewave with a stationary Gaussian envelope (Amano
et al., 2009). With Gabor motion arrays, the true
motion direction can be estimated from an integration
of 1D motion signals from at least two Gabors having
different orientations (Adelson & Movshon, 1982). It
cannot be estimated from the movements of 2D
features such as line terminations and corners (Pack,
Livingstone, Duffy, & Born, 2003). In a standard
global Gabor array, giving rise to the perception of a
global translation, or to the perception of a global
rotation, once a global velocity is set, the local
orientation of the Gabor can be chosen at random,
with the local speed determined by the true 2D motion
vector at the location and by the choice of local
orientation (Amano et al., 2009; Figures 2a and b). This
leaves us one degree of freedom in designing a globally
ambiguous array. By setting the orientation and speed

of each Gabor motion to be consistent with two 2D
vectors at each location, it is possible to make a Gabor
array simultaneously consistent with a global transla-
tion and a single global rotation (Figure 2c). Further-
more, this pattern of local motion is also consistent
with rotation around any point that lies on a horizontal
line through the origin of the array (see Appendix A for
the mathematical proof). That is, the pattern is
consistent with a fast angular rotation about a near
point and a slow angular rotation about a far point.
For an infinitely far rotation point, the motion patterns
for the putative linear translation and rotation are
identical. The global motion remains ambiguous
regardless of the size of motion pooling window.

When we set the direction of global translation
upward or downward, the resulting ambiguous motion
array is circularly symmetric in orientation, and
vertically symmetric in direction. In our stimulus
presentation, we used a circular region in which all the
elements orient along concentric circles (Figure 3 left
and Supplementary Movie 1); note that the central
region was removed as it has been shown that global
motion perception is much weaker in the fovea
(Takeuchi, 1998). The reason for this symmetrical
arrangement was to exclude any possible bias caused by

Figure 2. (a) How to make the movement of multiple Gabor patches consistent with a global translation. Blue arrows indicate the true

motion vectors of the optic flow, which are common across patches. The orientation of each Gabor can be arbitrarily determined, and

the drifting speed of each Gabor is the true vector component projected to the normal direction of the Gabor orientation. (b) How to

make the movement of multiple Gabor patches consistent with a global rotation around a single point. Red arrows indicate the true

motion vectors of the optic flow, which changes depending on the patch location. Again, the orientation of each Gabor can be

arbitrarily determined, and the drifting speed of each Gabor is the true vector component projected to the normal direction of the

Gabor orientation. (c) How to make the movement of multiple Gabor patches consistent with a global translation and a global

rotation. Now at each location, there are two true vectors (red and black arrows). To make Gabor motion consistent with both of

them, the Gabor orientation is set parallel to the line connecting to the end points of the two vectors. Then for the two true vectors,

the component projected to the normal direction of the Gabor orientation becomes identical, as indicated by green arrows.
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an asymmetric stimulus arrangement, i.e., a mechanism
which extracts either a vector average or the intersec-
tion of constraints would signal the same vertical
direction. It should be noted that the rotation around
the center of the annular region, which one might
expect with this type of configuration, is not included in
the set of rotations consistent with the Gabor array (it
is a limiting case which is not explicitly included in the
set of solutions; see Appendix A).

If the visual system only uses the common vector
assumption to solve the aperture problem, as the
standard theories predict, the stimulus should be seen
as a global upward translation. On the other hand, if
the visual system uses rotation as an additional
constraint to solve the aperture problem, the stimulus
might be seen as a global rotation under some
conditions. Our preliminary observation suggests that a
global upward translation is seen when observers look
directly at the stimulus. However, when they view the
same stimulus in the periphery, they see rotation, the
center of which changes as the observers shift fixation
(see Supplementary Movie 1).

The following experiments confirmed this observa-
tion, and showed that this gaze-dependent motion
ambiguity is a unique feature of this stimulus.

Methods

Subjects

Subjects were one of the authors (AR) and three
naı̈ve observers who had normal or corrected-to-
normal visual acuity.

Stimuli and procedures

To measure the perceived motion of the ambiguous
array, we used a motion matching task in which
subjects adjusted the motion of a surrounding annulus
of (locally unambiguous) plaid patches until they had
the same global motion appearance as the Gabor array.
This task involved adjusting the speed and center of
rotation of the plaid array. Three fixation points were
used in different trials: one on either side of the Gabor
array and one in the center.

Stimuli were generated using Psychtoolbox and
presented on a Mitsubishi Diamond Plus 230SB monitor
(1024 3 768 pixels, 100 Hz refresh rate). The viewing
distance of 57 cm was maintained using a chinrest.

Figure 3. The design of the ambiguous array. Top left: the multi-ambiguous Gabor array. White dots indicate fixation points; only one

was shown during any given trial. Top right: the flanking plaid array; note that the Gabor array and plaid array were not on screen

simultaneously at any point. Bottom: global and local motions for three global solutions including a translation (centre) and two

rotations. Local motions are shown in green and are identical for all three patterns. Underlying global motion solutions are shown in

black for rotation and red for translation.
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The ambiguous stimulus array consisted of 176
Gabors arranged on a regular 1.188 by 1.188 grid
confined within an annulus covering 3.558–9.468 from
the center of the screen. The Gabors comprised a
sinewave grating, spatial frequency¼ 0.6 cycles/8,
multiplied by a 2D Gaussian, space constant¼ 0.248.
Contrast was fixed at 30%. The orientations of the
Gabors were orthogonal to a radial pattern centered on
the middle of the display. The motion of the Gabor
array was always consistent with a rigid vertical
translation with a speed of 1.188/s. The direction of
vertical translation alternated from trial to trial.

The comparison array consisted of 240 plaid patches
presented on the same grid pattern but more periph-
erally, i.e., within an annulus covering 9.468–14.188.
The orientation of one of the plaid components in each
patch was chosen at random; the second component
was always orthogonal to the first.

The target array and the comparison were spatially
and temporally separated with subjects pressing the
mouse button to toggle between the two. This should
minimize any influence of motion aftereffects or of
motion repulsion/assimilation. Plaid motion was set to
be consistent with a global motion that depended on
two variables: (angular) speed and the position of the
center of rotation. Subjects manipulated these variables
in real time using a trackball. The horizontal axis
controlled the speed, s, according to the relationship
s ¼ 3

x�h
h where x is the current horizontal position of the

trackball-controlled cursor (from 1 to 1024 pixels) and
h is the horizontal midpoint of the screen. This allowed
subjects to vary the speed from 1/3 to 3 times the
veridical speed of the array. The exponential relation-
ship between x and s ensures that a shift of a given
number of pixels will always produce the same
proportional change in speed. This relationship was
chosen as speed discrimination has been shown to be
consistent with Weber’s law, i.e., discrimination
threshold is proportional to the absolute speed
(Snowden & Braddick, 1991). The vertical axis
controlled the curvature of the velocity field by varying
the distance, d, of the center of rotation from the center
of the display (note the center of rotation was always
on the horizontal meridian), i.e.

d ¼ 3v

v� y
;

where v is the vertical midpoint of the display and y is
the current vertical position, measured in Gabor patch
sized units (i.e., 1 unit ¼ 1.18 cm). The denominator
goes to zero when v¼ y and in this case the distance to
center was set at 10,000 (i.e., a nominal distance of 118
m), which approximates a translation (a translation can
be considered to be identical to a rotation about some
notional point ‘‘at infinity’’). Subjects could therefore
adjust the speed and curvature of the plaid stimulus,

while freely switching between plaids and Gabors.
Subjects viewed the stimulus for as long as they wished;
and when they were satisfied the two motions appeared
similar, a button press recorded the coordinates of the
cursor and initiated the next trial. The cursor was not
displayed on screen at any time during the experiment.
Three fixation points were used: the center of the
display, 138 to the left and 138 to the right of center.
These three fixation points were randomly interleaved
over trials. There were 120 trials per block (20
repetitions of three fixation conditions for each of two
direction conditions: upwards and downwards). No
fixed limit was placed on trial duration, but each block
lasted approximately 30 minutes.

In control experiments, we used the following three
stimuli: (a) a segmented ambiguous array that was
constructed in the same way as the full array except
that Gabors falling within two 908 arcs centered on the
horizontal midline to the right and left of the array
were removed; (b) a translational Gabor array that
consisted of Gabor elements with random orientations,
and the speed of each Gabor was set to be consistent
only with a global vertical translation; and (c) a plaid
array that consisted of Gabor plaid elements. The
orientation of one of the plaid components in each
patch was chosen at random; the second component
was always orthogonal to the first. The motion of each
Gabor plaid simulated the local motion in the normal
direction of the ambiguous Gabor array.

Results

We found that subjects perceived three distinct types
of global motion depending on the position of fixation
relative to the center of the array (furthest left column
of Figure 4). Central fixation induced a perception of
vertical translation in three out of four subjects (blue
symbols). Fixation to the left (red symbols) or right
(green symbols) caused the array to appear to rotate
with a center approximately at fixation. It is clear that,
in the periphery, local motion ambiguity is resolved by
the global rotation constraint rather than the global
translation constraint.

Our stimulus is ambiguous not only in relation to the
type of global motion (translation or rotation), but also
with respect to the center of rotation. For the symmetric
full array, the perceived rotation was always centered on
the fixation point, but off-center rotation could also be a
solution. When 908 sections of the array to the left and
right of center were removed, stimulus (a), creating a
segmented array in which the motions are still consistent
with the same set of global solutions as the full array,
subjects again perceived rigid translation for central
fixation and rotations for peripheral fixations, but
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crucially the center of rotation was significantly different
from fixation (Figure 4, center column). This finding rules
out an explanation based on a simple tendency to
perceive rotation about fixation. Why did the perceived
motion become closer to the upward translation by
removing the left and right segments? This is possibly
because spatial interactions leading to a globally coherent
percept are disrupted, and the remaining upper and lower
segments contain many horizontal elements that tend to
appear to move upward unless being otherwise con-

strained by a global factor. It is clear from Figure 3 that
the largest differential in local velocity between transla-
tion and rotation about fixation is removed in the
segmented array (compare the red and black arrows in
Figure 3). When the 2D velocities implied by the two
global motion types are more similar, it might be that the
visual system may find a solution that approximates both.

One may consider that what we found was a general
visual eccentricity dependent effect, such as a differen-
tial tendency to cohere, regardless of the stimulus. To

Figure 4. Results of motion-matching experiments. Left column: full array; Centre column: segmented array; and Right column:

randomly oriented Gabors. Top: example of test stimulus with red, blue, and green fixation eye symbols denoting the left, center, and

right fixation points respectively. Top middle: diagram of motion space used in these graphs; thickness of arrows is proportional to the

global speed. Middle: individual results for four subjects; the black x symbols denote rotation around the two eccentric fixation

points. Bottom: mean values.
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test this, we measured global motion perception of
Gabor arrays with random orientations, whose carrier
motions were consistent with a global translation,
stimulus (b). These stimuli always appear to globally
translate. They never induced a perception of rotation
when viewed peripherally (furthest right column in
Figure 4 and Supplementary Movie 2). This indicates
that the eccentricity-dependent change in global motion
appearance is not a general phenomenon observed with
Global Gabor motion arrays.

Furthermore, when the local motion was made
unambiguous through the use of local plaid elements
displaying the normal component of the ambiguous
motion pattern elements, stimulus (c), a noncoherent
global motion could be observed which was not altered
by changes in fixation (see Supplementary Movie 3).
This indicates that when the local motion is unambig-
uously determined, observers see the local velocity field
as specified and do not integrate these local velocities
into a single global solution, and, in addition, that the
eccentricity-dependent change in global motion is
related to the solution of the aperture problem by
global constraints. Note that subjects were unable to
find a perceptual match to this stimulus among the set
of motions available, so no data is presented in Figure
4.

Discussion

We found that the same locally ambiguous motion
array can give rise to multiple global motion pattern
percepts depending on where in the stimulus the
observer looks.

Past studies have found several differences in motion
perception between the central and peripheral visual
fields (De Bruyn, 1997; Edwards & Nishida, 2004;
Hisakata & Murakami, 2008; Johnston & Wright,
1986; Mather, Cavanagh, & Anstis, 1985; Murakami &
Shimojo, 1993; Takeuchi, 1998; Tse & Hsieh, 2006; Yo
& Wilson, 1992), but these differences have been
ascribed to an increase in the spatial scale of motion
processing as a function of retinal eccentricity, and/or
reduced contributions of form-sensitive mechanisms in
the periphery. It is difficult on the basis of these factors
to explain why a global translation seen with the central
fixation is changed into global rotations for peripheral
fixations, since both types of global motion are
expected to be enhanced in peripheral vision, and our
stimulus was large enough to stimulate peripheral
vision even with central fixation. Furthermore, per-
ceived velocity is reduced in the visual periphery
(Johnston & Wright, 1986) which would act against the
perception of rotation for off-center fixations. In

addition, our control experiments with unambiguous
stimuli ruled out a simple effect of eccentricity.

Our key finding indicates that locally ambiguous
motion is not resolved to a single local explicit velocity
code on the basis of a local rigid assumption but rather
that a number of global motion options are entertained
prior to the selection of a single global motion solution
and its consequent local motion interpretation (Figure 5).
This may be viewed as an extension of ‘‘adaptive pooling’’
(Amano et al., 2009) to cover more complex motion fields
such as rotation. The rotation-sensitive mechanism
tapped by our stimulus may explain a number of studies
which have found a ‘‘complexity advantage’’ in which
sensitivity (Freeman & Harris, 1992; Lee & Lu, 2010) or
the motion aftereffect (Bex, Metha, & Makous, 1999) is
enhanced for rotations relative to translations.

A currently popular computational theory of visual
motion integration is a Bayesian model (Weiss &
Adelson, 1998; Yuille & Grzywacz, 1988), which
assumes that ‘‘smooth and slow’’ priors influence
motion integration more strongly in areas of the higher
uncertainty (e.g., in the periphery). This model cannot
explain our results. A rigid translation is the smoothest
possible (i.e., uniform) velocity field so a smoothness
prior should not favor rotation over translation when
the stimulus is viewed more peripherally, as is the case
with our stimulus. Further, it can be shown that for our
stimulus the translation solution is, on average, the
slowest global solution (see Appendix B). Worse still,
subjects tended to see rotation about a point near
fixation, in which case the velocity field is slowest near
fixation and is fastest in the periphery, so a slowness
prior that takes precedence in the ‘‘uncertain’’ periph-

Figure 5. Visual motion processing suggested by the present

study. Blue arrows indicate feedforward routes wherein 1D local

motion signals are integrated over space, orientation and

spatiotemporal frequency to compute 2D motion vectors, which

are then spatially pooled to compute motion flow patterns. Red

arrows indicate feedback routes through which the consistency

with global motion flow affects computation of 2D motion

vectors.
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ery is also inconsistent with our findings. Adding a
further prior for seeing rotation around fixation may
allow their model to predict our results, but it is not
clear how these disparate priors would need to be
balanced over visual space.

Lorenceau and colleagues (Lorenceau & Alais, 2001;
Lorenceau & Shiffrar, 1992; Lorenceau & Zago, 1999)
found several influences of form for line segments and
gratings, e.g., the presence of ‘‘virtual junctions’’
between differently oriented grating patches, can
influence the tendency to see global rotation. Since our
ambiguous stimulus has a specific orientation structure,
form information might have some influence on motion
percepts, but this factor cannot explain why global
motion perception changes with fixation.

Whereas the present study suggests a global com-
putation is required to resolve the aperture problem,
past neurophysiological studies have suggested local
motion integration is accomplished by neurons in MT
(Movshon, Adelson, Gizzi, & Newsome, 1985) which is
not sensitive to complex motions like rotation (Tanaka
et al., 1986). One possible resolution of this discrepancy
is that the aperture problem is not resolved by neurons
in MT, at least for the type of stimulus we used. In
agreement with this possibility, it has been shown that
the response of MT neuron is not always correlated
with the perceived global motion (Hedges et al., 2011).
Also, MT neurons do not respond to pattern motion
for ‘‘pseudoplaids’’—two Gabors spatially separate but
still within the cell’s receptive field (Majaj, Carandini,
& Movshon, 2007)—but it is worth noting that the
sparse stimuli they used do not contain the rich
contextual information of a multi-aperture array, such
as we use, and would not be perceived as moving
coherently. Imaging techniques indicate a selective
response for global motion in MT (Amano et al., 2012).
Another possibility is that the aperture problem is
solved in MT but with the acceptance that the IOC
solution (often termed the Pattern Direction) is only
one of many possible solutions if we allow the local
velocity to vary over space, as occurs with rotation. We
note that many (.40%) neurons in MT do not appear
to signal either the local (Component Direction) or
global (Pattern Direction, i.e., IOC) motion (Majaj et
al., 2007; Movshon et al., 1985). The population of
candidate solutions to the aperture problem would then
be examined by neurons in MST for consistency with
global complex flows such as rotation.

Alternatively, MT neurons may represent local
motion vectors consistent with the perceived motion
flow even for the stimulus we used, since it has been
shown that the motion integration performance of MT
neurons is dramatically altered by the stimulus context
(Huang, Albright, & Stoner, 2008). If this is the case,
our finding suggests the influence of feedback from
MST, where global complex flow information is

represented. The perception of rotation around fixation
may reflect a general preference of the neurons in MST
for global image rotations around the fixation point,
which are often produced when observers move their
head while gazing at a target (Duffy & Wurtz, 1995).

At present, we can only speculate about the
neurophysiological implications of our findings. We
can however conclude that in order to explain our
findings, one needs to update the standard computa-
tional view about visual motion processing, and our
stimulus will provide a useful tool to analyze this yet to
be determined neural network in the future.

Keywords: visual motion perception, aperture prob-
lem, optical flow, perceptual ambiguity
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Appendix A: Formal analysis of
stimulus ambiguity

Proof: The concentric dynamic Gabor array is
consistent with multiple global motion solutions including
a translation and rotation about some point (excluding
the central point) along a line orthogonal to the specified
translation through the center of the display.

We wish to show that the concentric Gabor array
used in these experiments is consistent with several
global motion patterns. To do this we define the local
2D motion at each position in the array for both
translation and rotation about a point and show that

when these vectors are projected onto the normal
components of the dynamic Gabors, they produce the
exact same set of vectors.

To simplify the mathematical description, we choose
our coordinate system so that the concentric arrange-
ment of 1D motion is centered on the origin. This means
the 1D motion (i.e., normal component) at each point is
parallel to the Gabor’s position vector, X¼ (x1,x2).

We assume, without loss of generality, that the
translation motion is upward, i.e., UT¼ (0,T). Then the
1D motion of each Gabor is given by projecting UT

onto X:

CT ¼
UT �X
X �X X ¼ ð0;TÞ � ðx1; x2Þ3

X

jXj2

¼ Tx2 3
X

jXj2
ð1Þ

where � denotes the dot product and 3 denotes
multiplication by a scalar. Now consider a rotation
centered on some arbitrary point on the x axis, i.e., Pc¼
(xc, 0). Then the underlying 2D motion at each point is
UR ¼ R(x2,�(x1 – xc)), where R is the angular
momentum. Projecting this onto X we can again find
the 1D motion in the normal component direction that
is consistent with this rotation.

CR ¼
UR �X
X �X X

¼ R
�
x2;�ðx1 � xcÞ

�
� ðx1;x2Þ3

X

jXj2

¼ Rðx1x2 � x1x2 þ xcx2Þ3
X

jXj2

¼ Rxcx2 3
X

jXj2
ð2Þ

Comparing Equations 1 and 2 we see that these will
give the same 1D motions if Rxc¼ T. So for a fixed
translation speed, T, and for every point on the x axis,
(xc, 0) (except for the case where xc¼0), there is a speed

Figure A1. A drifting Gabor is simultaneously consistent with

two 2D motion vectors, UT and UR (black arrows), if their

projection onto the Gabor’s normal component produces the

same motion vector (red arrow).
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of rotation, R, around that point such that the
concentric Gabor array is entirely consistent, i.e., an
infinite number of underlying global motions will
produce the exact same local velocities in this Gabor
array.

Appendix B: Analysis of the average
speeds of global motions

Proof: The global translation solution is always slower
than the average speed of any global rotation solution for
our stimulus.

Taking the center of our array as the origin, then at
any point (x1,x2) the local motion of a field rotating
about some arbitrary point (xc,0) is given by UR ¼
R(x2,–(x1� xc)) and similarly the translation motion is
given by UT ¼ (0,T), and, as we have already seen in
Appendix A, Rxc¼T. Now if we take a circle of points,
centered on the center of our array and of radius a,
then (x1,x2)¼ (a cos h,a sin h) for h � [0,2p]. The speed
of the rotating field at these points can be found by,

jURj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
�
x2

2 þ ðx1 � xcÞ2
�r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ða2sin2hþ a2cos2hþ x2

c � 2axccoshÞ
q

¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ x2

c � 2axccoshÞ
q

¼ fðhÞ

ð3Þ
To find the average speed of all points on this circle

we need to integrate f(h) over h � [0,2p] and divide by
2p. However, the integral of f(h) the has no closed
form. But we note that the square root in Equation 3
refers to the positive root (speed is always positive) so

the whole is always positive. Now, if we first assume
that xc � a then R(xc – acos h) � 0 and,

�
Rðxc � acoshÞ

�2

¼ R2ðx2
c þ a2cos2h� 2acoshÞ

� R2ðx2
c þ a2 � 2acoshÞ

¼
�
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2

c þ a2 � 2acoshÞ
q �2

¼
�
fðhÞ

�2

ð4Þ
so ( f(h))2 � (R(xc� acos h))2 and because they are both
positive this implies that f(h) � R(xc� acos h). We can
easily find the mean of the right hand side of this
inequality to put a lower bound on the mean of f(h), i.e.

1

2p

Z 2p

0

fðhÞdh � 1

2p

Z 2p

0

Rðxc � acoshÞdh

¼ 1

2p

Z 2p

0

Rxcdh�
1

2p

Z 2p

0

acoshdh

¼ 1

2p
2pRxc � 0 ¼ Rxc ¼ T

ð5Þ

Now, in the alternate case we assume that xc , a
then we can swap a and xc in Equation 4, noting that
now R(a�xccosh) . 0, and similarly show that f(h) �
R(a – xccos h), and the mean of this is Ra . Rxc¼T; so
again the average speed of rotation is greater than
translation. This is true for all values of xc and for any
circle centred on the centre of our array, so it is
certainly true for our annular arrangement. For
completeness we note that the inequality in Equation
(4) becomes an equality (for all values of h) if and only
if a¼0, i.e., the singular point at the centre of the array.
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