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Inference of Gene Flow in the Process of Speciation:
An Efficient Maximum-Likelihood Method for the

Isolation-with-Initial-Migration Model
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ABSTRACT The isolation-with-migration (IM) model is commonly used to make inferences about gene flow during speciation,
using polymorphism data. However, it has been reported that the parameter estimates obtained by fitting the IM model are very
sensitive to the model’s assumptions—including the assumption of constant gene flow until the present. This article is concerned
with the isolation-with-initial-migration (IIM) model, which drops precisely this assumption. In the IIM model, one ancestral
population divides into two descendant subpopulations, between which there is an initial period of gene flow and a subsequent
period of isolation. We derive a very fast method of fitting an extended version of the IIM model, which also allows for asymmetric
gene flow and unequal population sizes. This is a maximum-likelihood method, applicable to data on the number of segregating
sites between pairs of DNA sequences from a large number of independent loci. In addition to obtaining parameter estimates, our
method can also be used, by means of likelihood-ratio tests, to distinguish between alternative models representing the following
divergence scenarios: (a) divergence with potentially asymmetric gene flow until the present, (b) divergence with potentially
asymmetric gene flow until some point in the past and in isolation since then, and (c) divergence in complete isolation. We
illustrate the procedure on pairs of Drosophila sequences from �30,000 loci. The computing time needed to fit the most complex
version of the model to this data set is only a couple of minutes. The R code to fit the IIM model can be found in the supplementary
files of this article.
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THE two-deme, isolation-with-migration (IM) model is a
population genetic model in which, at some point in the

past, anancestral populationdivided into twosubpopulations.
After the division, these subpopulations exchanged migrants
at a constant rate until the present. The IMmodel has become
one of the most popular probabilistic models in use to study
genetic diversity under gene flow and population structure.
Although applicable to populations within species, many
researchers are using it to detect gene flow between diverging

populations and to investigate the role of gene flow in the
process of speciation. A meta-analysis of published research
articles that used the IMmodel in the context of speciation can
be found in Pinho and Hey (2010).

Several authors have developed computationalmethods to
fit IM models to real DNA data. Some of the most-used
programs are aimed at data sets consisting of a large number
of sequences from a small number of loci. This is the case of
MDIV (Nielsen and Wakeley 2001), IM (Hey and Nielsen
2004; Hey 2005), IMa (Hey and Nielsen 2007), and IMa2
(Hey 2010), which rely on Bayesian Markov chain Monte
Carlo (MCMC) methods to estimate the model parameters
and are computationally very intensive.

In the past decade, the availability of large data sets
spanning the entire genome has increased significantly. How-
ever, the MCMC-based implementations of the IM model
referred to above are computationally expensive even for
small numbers of loci, and their running times increase
linearly with the number of loci (Wang and Hey 2010).
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Fitting an IM model also provides a rather simplified picture
of the divergence process, which for some research purposes
is clearly insufficient (for example, if one wishes to know
whether a process of sympatric speciation has been com-
pleted, or whether gene flow occurred due to secondary
contact). In addition, Becquet and Przeworski (2009) and
Strasburg and Rieseberg (2010) showed that inference
based on the programs IM and IMa can become unreliable
if any of the assumptions made about population struc-
ture, recombination, or linkage is severely violated. For
these reasons, there has been a significant increase in the
demand for methods that not only scale well to genome-
sized data, but are also able to estimate increasingly re-
alistic models.

To improve efficiency and scalability, one possible strat-
egy is to work with summary statistics rather than full data
patterns. TheMCMC-based programMIMARof Becquet and
Przeworski (2007, 2009) uses the four summary statistics
studied byWakeley and Hey (1997) to fit the IMmodel, and
drops the assumption of no intralocus recombination.
Gutenkunst et al. (2009) introduced a method based on
the joint sample frequency spectrum (JSFS) that is able to
fit a range of demographic models incorporating multiple
populations, periods of migration and admixture, splits and
joins of populations, and changes in population sizes. Based
on the same type of data, the more recent implementation of
Kamm et al. (2016) can already deal with a large number of
individuals and populations, but does not yet include gene
flow.

Genome-scale data sets, even when stemming from just a
few individuals, tend to be more informative than data sets
consisting of many individuals but covering only a relatively
short genomic region. In fact, as the sample size for a single
locus increases, the probability that an extra sequence adds a
deep (i.e., informative) branch to the coalescent tree quickly
becomes negligible (see for example Hein et al. 2005, pp. 28–
29). Data sets of a small number of individuals per locus are
also more suitable for likelihood-based inference: if at each
locus the observation consists only of a few sequences, the
coalescent process of these sequences is relatively simple and
can more easily be used to derive the likelihood for the locus
concerned.

Among the methods designed for whole-genome se-
quence data of only a few individuals are those of Mailund
et al. (2012), Schiffels and Durbin (2014), and Steinrücken
et al. (2015). The fact that they are designed for full poly-
morphism data makes these methods computationally
more expensive than JSFS-based methods. However, they
rely on the coalescent with recombination modeled as a
hidden Markov process, i.e., they are able to capture the
linkage information present in the data. Presently, com-
plex models of demographic history can already be fitted
using this approach (see, for example, Steinrücken et al.
2015).

Arguably the only implementations that can be considered
fast are those based on blockwise-likelihood methods. These

implementations are also aimed at a small number of sam-
pled individuals, and use the information in each of a large
number of relatively short and well separated loci: because
recombination within loci is disregarded, it is considerably
easier to derive explicitly the likelihood for each locus; and
because linkage between loci is assumed to be negligible, the
likelihood of a data set is just the product of the likelihoods
for the individual loci.

Blockwise-likelihood methods for the standard two-
deme IM model have been developed, for example, by
Wilkinson-Herbots (2008) and Wang and Hey (2010),
for pairs of DNA sequences at a large number of indepen-
dent loci, and by Lohse et al. (2011) and Andersen et al.
(2014) for larger numbers of sequences at each locus.
Lohse et al. (2011) also developed a more general Laplace-
transform method to calculate blockwise likelihoods for a
range of demographic scenarios, which was further ex-
tended and efficiently automated in Lohse et al. (2016).
Zhu and Yang (2012) developed an implementation, based
on triplets of sequences, of an IM model with three species
with known phylogeny and symmetric migration between
two of them.

Some authors have focused on blockwise-likelihood meth-
ods for models of divergence that drop the assumption of
constant gene flow until the present, and which are therefore
more realistic in the context of speciation. In particular, Innan
and Watanabe (2006) considered a model in which the level
of gene flow between two subpopulations gradually de-
creases until they become completely isolated from each
other. Their calculation of the likelihood of the number of
nucleotide differences between pairs of sequences relies on
the numerical computation of the coalescence time density at
different points in time, which can be computationally expen-
sive. IM models in which gene flow is allowed to cease at
some point in the past—hereafter referred to as isolation-
with-initial-migration (IIM) models—have also been consid-
ered by, for example, Teshima and Tajima (2002), Becquet
and Przeworski (2009), Mailund et al. (2012), Wilkinson-
Herbots (2012), and Lohse et al. (2015).

In the present article, we applymatrix eigen-decomposition
techniques to expand on the work of Wilkinson-Herbots (2012)
on the IIM model, who derived explicit formulas for the dis-
tribution of the coalescence time of a pair of sequences, and
the distribution of the number of nucleotide differences be-
tween them. These analytic results enable a very fast compu-
tation of the likelihood under an IIM model, given a data set
consisting of observations on pairs of sequences at a large
number of independent loci (Lohse et al. 2015; Wilkinson-
Herbots 2015; Janko et al. 2016). However, for mathematical
reasons, this work adopted two biologically unrealistic as-
sumptions which may affect the reliability of estimates: sym-
metric migration and equal subpopulation sizes during the
migration period.

Here, we study amore general IIMmodel which allows for
asymmetric gene flow during the migration period. It also
allows for unequal subpopulation sizes during gene flow, as
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well as during the isolation stage. Both this model and other
simpler models studied in this article assume haploid DNA
sequences, which accumulate mutations according to the
infinite-sites assumption (Watterson 1975). An extension to
the Jukes–Cantor model of mutation is feasible but beyond
the scope of this article.

We first describe an efficient method to compute the
likelihood of a set of observations on the number of nucle-
otide differences between pairs of sequences, where each
pair comes from a different locus and where we assume free
recombination between loci and no recombination within
loci. As our method uses an explicit expression for the likeli-
hood, it is very fast, and efficient enough to easily deal with
asymmetric bidirectional gene flow, unequal population
sizes, mutation rate heterogeneity, and large numbers of
mutations. Second, we illustrate how to use this method
to fit the IIM model to real data. The data set of Drosophila
sequences from Wang and Hey (2010), containing over
30,000 observations (i.e., loci), is used for this purpose.
Finally we demonstrate, using this data set, how different
models representing different evolutionary scenarios can be
compared using likelihood-ratio tests. More specifically, we
compare three main scenarios: (a) divergence without gene
flow; (b) divergence with potentially asymmetric gene flow
until the present; and (c) divergence with potentially asym-
metric gene flow until some time in the past, and in isolation
since then.

Methods

For the purposes of the present article, and from a forward-in-
time perspective, the IM model makes the following assump-
tions: (a) until time t0 ago ðt0 . 0Þ; a population of DNA
sequences from a single locus followed a Wright–Fisher hap-
loid model (Fisher 1930; Wright 1931); and (b) at time t0
ago, this ancestral population split into two Wright–Fisher
subpopulations with constant gene flow between them. If
we take an IM model and add the assumption that, at time
t1 ago ð0, t1 , t0Þ; gene flow ceased, we get an IIM model.
Figure 1 illustrates the fullest IIM model dealt with in this
article.

In the IIMmodel of Figure 1, the population sizes are given
inside the boxes, in units of DNA sequences. All population
sizes are assumed constant and strictly positive. The param-
eters a, b, c1; and c2 indicate the relative size of each popu-
lation with respect to subpopulation 1 during the migration
stage. For example, if 2Nanc is the number of sequences in the
ancestral population, then a ¼ 2Nanc=2N: Between times t0
and t1 ago (two time parameters in units of 2N generations),
there is gene flow between the subpopulations: in each gen-
eration, a fractionmi of subpopulation i are immigrants from
subpopulation j ði; j 2 f1; 2g with i 6¼ jÞ; i.e., mi is the migra-
tion rate per generation from subpopulation i to subpopula-
tion j backward in time. Within each subpopulation,
reproduction follows the neutral Wright–Fisher model and,
in each generation, restores the subpopulations to their orig-

inal sizes, i.e., reproduction undoes any decrease or increase
in size caused by gene flow.

Under the IIMmodel, thegenealogyofa sampleof twoDNA
sequences from the present subpopulations can be described
by successive Markov chains, working backward in time. We
will define these in the simplest possible way, using the small-
est state space necessary for the derivation of the coalescence
timedistribution.Hence, during the isolation stage (until time
t1 into the past) and themigration stage (between t1 and t0Þ;
the process can only be in state 1—both lineages in subpop-
ulation 1, state 2—both lineages in subpopulation 2, state
3—one lineage in each subpopulation, or state 4—in which
lineages have coalesced. After t0; the lineages have either
coalesced already—state 4, or have not—state 0. Only states
1, 2, and 3 can be initial states, according to whether we
sample two sequences from subpopulation 1, two sequences
from subpopulation 2, or one sequence from each subpopu-
lation. When the genealogical process starts in state i
ðwith i 2 f1; 2; 3gÞ; the time until the most recent common
ancestor of the two sampled sequences is denoted TðiÞ;
whereas SðiÞ denotes the number of nucleotide differences
between them.

If time is measured in units of 2N generations and N is
large, the genealogical process is well approximated by a
succession of three continuous-time Markov chains; one for
each stage of the IIM model (Kingman 1982a,b; Notohara
1990). We refer to this stochastic process in continuous time
as the coalescent under the IIM model. During the isolation
stage, the approximation is by a Markov chain defined by the
generator matrix

(1)

with i 2 f1; 2g being the initial state (Kingman 1982a,b). If
3 is the initial state, the lineages cannot coalesce before t1:

During the ancestral stage, the genealogical process is ap-
proximated by a Markov chain with generator matrix

Figure 1 The IIM model. The left-hand-side subpopulation is subpopu-
lation 1; the right-hand-side subpopulation is subpopulation 2.
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(2)

(Kingman 1982a,b). In between, during the migration stage,
the approximation is by a Markov chain with generator matrix

(3)

(Notohara 1990). In this matrix, Mi=2 ¼ 2Nmi represents the
rate ofmigration (in continuous time) of a single sequencewhen
in subpopulation i. The rates of coalescence for two lineages in
subpopulation 1 or 2 are 1 and 1=b; respectively. Note that state
3 corresponds to the second row and column, and state 2 to the
third row and column. This swap was dictated by mathematical
convenience: thematrixQmig should be as symmetric as possible
because this facilitates a proof in the next section.

Distribution of the time until coalescence under
bidirectional gene flow (M1 > 0, M2 > 0)

To find f ðiÞT ; the density of the coalescence time TðiÞ of two line-
ages under the IIMmodel, given that the process starts in state i
and there is gene flow in both directions, we consider separately
the three Markov chains mentioned above. We let TðiÞ

iso
ði 2 f1; 2gÞ; TðiÞ

mig ði 2 f1; 2; 3gÞ; and Tð0Þ
anc denote the times until

absorption of the time-homogeneous Markov chains defined by
the generator matrices QðiÞ

iso; Qmig; and Qanc; respectively. Fur-
thermore, we let the corresponding probability density functions
(PDFs) [or cumulative distribution functions (CDFs)] bedenoted
by f ðiÞiso ; f

ðiÞ
mig; and f ð0Þanc (or FðiÞiso; F

ðiÞ
mig; and Fð0ÞancÞ: Then, f ðiÞT can be

expressed in terms of the distribution functions just mentioned:

f ðiÞT ðtÞ ¼

f ðiÞisoðtÞ for 0# t# t1;h
12 FðiÞisoðt1Þ

i
f ðiÞmigðt2 t1Þ for t1 , t# t0;h

12 FðiÞisoðt1Þ
ih
12 FðiÞmigðt0 2 t1Þ

i
f ð0Þancðt2 t0Þ for t0 , t,N;

0 otherwise;

8>>>><>>>>:
(4)

for i 2 f1; 2g: If 3 is the initial state,

f ð3ÞT ðtÞ ¼

8><>:
f ð3Þmigðt2 t1Þ for t1 , t# t0;h
12 Fð3Þmigðt0 2 t1Þ

i
f ð0Þancðt2 t0Þ for t0 , t,N;

0 otherwise:
(5)

The important conclusion todraw fromthese considerations is
that to find the distribution of the coalescence time under the
IIM model, we only need to find the distributions of the
absorption times under the simpler processes just defined.

A Markov process defined by the matrix Qanc; and starting in
state 0, is simply Kingman’s coalescent (Kingman 1982a,b). For
such a process, the distribution of the coalescence time is exponen-
tial, with rate equal to the inverse of the relative population size:

f ð0ÞancðtÞ ¼ 1
a
e2ð1=aÞt; 0# t,N: (6)

A Markov process defined by QðiÞ
iso; i 2 f1; 2g; is again King-

man’s coalescent, so

f ðiÞisoðtÞ ¼
1
ci
e2ð1=ciÞt; 0# t,N: (7)

Finally, with respect to the “structured” coalescent process
defined by the matrix Qmig; we prove in Appendix A that,
for i 2 f1; 2; 3g;

f ðiÞmigðtÞ ¼ 2
X3
j¼1

V21
ij Vj4lje2ljt; (8)

where Vij is the ði; jÞ entry of the (nonsingular) matrix V;whose
rows are the left eigenvectors of Qmig: The ði; jÞ entry of the
matrix V21 is denoted by V21

ij : The lj ðj 2 f1; 2; 3gÞ are the
absolute values of those eigenvalues of Qmig which are strictly
negative (the remaining one is zero). Since the lj are real and
strictly positive, the density function of TðiÞ

mig is a linear combi-
nation of exponential densities.

Substituting the PDFs from Equations 6, 7, and 8 into the
Equations 4 and 5, and denoting by A the three-by-three
matrix with entries Aij ¼ 2V21

ij Vj4; we obtain

f ðiÞT ðtÞ ¼

1
ci
e2

1
ci
t for 0# t# t1;

e2
1
ci
t1 P3

j¼1
Aijlje2ljðt2t1Þ for t1, t# t0;

e2
1
ci
t1 P3

j¼1
Aije2ljðt02t1Þ1

a
e2

1
a ðt2t0Þ for t0, t,N;

0 otherwise;

8>>>>>>>>>>>><>>>>>>>>>>>>:
(9)

for i 2 f1; 2g; and

f ð3ÞT ðtÞ ¼

P3
j¼1

A3jlje2ljðt2t1Þ for t1, t# t0;

P3
j¼1

A3je2ljðt02t1Þ1
a
e2

1
a ðt2t0Þ for t0, t,N;

0 otherwise:

8>>>>>>><>>>>>>>:
(10)

IfM1 ¼ M2 and b ¼ 1 (i.e., in the case of symmetric gene flow
and equal subpopulation sizes during the gene flow period),
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results 9 and 10 above simplify to the corresponding results
in Wilkinson-Herbots (2012)—in this case, the coefficient Ai3

in the linear combination is zero for i 2 f1; 2; 3g:
Distribution of the time until coalescence under
unidirectional gene flow, and in the absence of gene flow

If either M1 or M2 is equal to zero, or if both are equal to
zero, the above derivation of f ðiÞmig is no longer applicable,

as the similarity transformation in Part (ii) of the proof
(Appendix A) is no longer defined (see the denominators
in some entries of the matrix D). In this section, we derive
f ðiÞmig; the density of the absorption time of the Markov chain
defined by the matrix Qmig given in Equation 3, starting
from state i, when one or both the migration rates are zero.
Again, this is all we need to fill in Equations 4 and 5 and
obtain the distribution of the coalescence time of a pair of
DNA sequences under the IIM model. Having gene flow in
just one direction considerably simplifies the coalescent.
For this reason, we resort to moment-generating functions
(MGFs), instead of eigen-decomposition, and derive fully
explicit PDFs.

Let TðiÞ
mig again be defined as the absorption time of the

Markov chain generated by Qmig; now with M1 ¼ 0 and
M2 . 0; given that the initial state is i 2 f1; 2; 3g: We condi-
tion on the state of the coalescent after the first transition to
obtain the following system of equations for the MGF of TðiÞ

mig;

where s denotes a dummy variable:

E
n
exp
h
2sTð1Þ

mig

io
¼
 

1
1þ s

!

E
n
exp
h
2sTð2Þ

mig

io
¼
 

M2

1=bþM2 þ s

!
E
n
exp
h
2sTð3Þ

mig

io
þ
 

1=b
1=bþM2 þ s

!

E
n
exp
h
2sTð3Þ

mig

io
¼
 

M2

M2 þ 2s

!
E
n
exp
h
2sTð1Þ

mig

io

(see also more general equations in Wilkinson-Herbots
1998 and Lohse et al. 2011). Solving this system of equa-
tions and applying a partial fraction decomposition (anal-
ogous to the work done in Griffiths 1981 and Nath and
Griffiths 1993, for the case of symmetric migration and
equal population sizes), the distributions of Tð1Þ

mig; Tð2Þ
mig;

and Tð3Þ
mig can be expressed as linear combinations of expo-

nential distributions:

Thus we obtain the following PDFs:

f ð1ÞmigðtÞ ¼ e2t

f ð2ÞmigðtÞ ¼
"

bM2
2

ðM22 2Þð12 bþ bM2Þ

#
e2t

þ
"

4bM2

ð22M2Þð2þ bM2Þ

#
M2

2
e2

M2
2 t

þ
"

1
1þ bM2

þ b2M2
2

ð2þ bM2Þð12 bþ bM2Þð1=bþM2Þ

#

3

 
1
b
þM2

!
e2ð1=bþM2Þt

f ð3ÞmigðtÞ ¼
 

M2

M2 2 2

!
e2t þ

 
2

22M2

!
M2

2
e2

M2
2 t

for t. 0:
The PDF of the coalescence time of a pair of DNA sequences

under an IIMmodel withM1 ¼ 0 andM2 . 0 can now be easily
derived by comparing the above expressions with Equation 8:
f ðiÞT ðtÞ is given by Equations 9 and 10 above, but now with

l ¼
"
1

M2

2
1
b
þM2

#
;

and

In theopposite caseofunidirectionalmigration ðM1 .0;M2 ¼ 0Þ;
we obtained the distribution of the time until coalescence

E
n
exp
h
2sTð1Þ

mig

io
¼
 

1
1þ s

!

E
n
exp
h
2sTð2Þ

mig

io
¼
 

M2

1=bþM2 þ s

! 
M2

M2 þ 2s

! 
1

1þ s

!
þ
 

1=b
1=bþM2 þ s

!

¼
"

bM2
2

ðM22 2Þð12 bþ bM2Þ

# 
1

1þ s

!
þ
"

4bM2

ð22M2Þð2þ bM2Þ

# 
M2

M2 þ 2s

!

þ
"

1=b
1=bþM2

þ b2M2
2

ð2þ bM2Þð12 bþ bM2Þð1=bþM2Þ

# 
1=bþM2

1=bþM2 þ s

!

E
n
exp
h
2sTð3Þ

mig

io
¼
 

M2

M2 þ 2s

! 
1

1þ s

!
¼
 

M2

M2 2 2

! 
1

1þ s

!
þ
 

2
22M2

! 
M2

M2 þ 2s

!
:
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using essentially the same procedure as described above.
In addition, for M1 ¼ M2 ¼ 0; the derivation is trivial. The
results for these two cases can be found in Appendix B.

The distribution of the number S of segregating sites

Let SðiÞ denote the number of segregating sites in a random
sample of two sequences from a given locus, when the ances-
tral process of these sequences follows the coalescent under
the IIM model and the initial state is state i ði 2 f1; 2; 3gÞ:
Recall the infinite-sites assumption and assume that the dis-
tribution of the number of mutations hitting one sequence in
a single generation is Poisson with mean m. As before, time is
measured in units of 2N generations and we use the coales-
cent approximation. Given the coalescence time TðiÞ of two
sequences, SðiÞ is Poisson distributed with mean uTðiÞ; where
u ¼ 4Nm denotes the scaled mutation rate. Since the PDF of
TðiÞ; f ðiÞT ; is known, the likelihood LðiÞ of an observation from a
single locus corresponding to the initial state i can be derived
by integrating out TðiÞ:

LðiÞðg; u; sÞ ¼ P
h
SðiÞ ¼ s;g; u

i
¼
Z N

0
P
h
SðiÞ ¼ sjTðiÞ ¼ t

i
f ðiÞT ðtÞdt;

where g is the vector of parameters of the coalescent under
the IIM model, that is, g ¼ ða; b; c1; c2; t1; t0;M1;M2Þ: There
is no need to compute this integral numerically: because
f ðiÞT has been expressed in terms of a piecewise linear
combination of exponential or shifted exponential den-
sities, we can use standard results for a Poisson process
superimposed onto an exponential or shifted exponential
distribution.

The equations 18 and 29 ofWilkinson-Herbots (2012) use
this superimposition of processes to derive the distribution of
S under a mathematically much simpler IIM model with
symmetric migration and equal subpopulation sizes during
the period of migration. These equations can now be adap-
ted to obtain the probability mass function (PMF) of S under
each of the migration scenarios dealt with in this article. The
changes accommodate the fact that the density of the co-
alescence time during the migration stage of the model is
now given by a different linear combination of exponential
densities, where the coefficients in the linear combination, as
well as the parameters of the exponential densities, are no
longer the same. The PMF of S has the following general
form:

P
h
SðiÞ ¼ s

i
¼ ðciuÞs

ð1þ ciuÞsþ1

"
12 e2t1ð1ciþuÞXs

l¼0

ð1ci þ uÞltl1
l!

#

þ e2
1
ci
t1
X3
j¼1

Aij
lju

s

ðlj þ uÞsþ1

"
e2ut1

Xs
l¼0

ðlj þ uÞltl1
l!

2e2ljðt02t1Þ2ut0
Xs
l¼0

ðlj þ uÞltl0
l!

#

þ e2
1
ci
t12ut0ðauÞs

ð1þ auÞsþ1

"Xs
l¼0

ð1a þ uÞltl0
l!

#X3
j¼1

Aije2ljðt02t1Þ

(11)

for i 2 f1; 2g; and

P
h
Sð3Þ ¼ s

i
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e2ut1
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A3je2ljðt02t1Þ

(12)

for s 2 f0; 1; 2; 3; . . .g. As defined in the Distribution of the
time until coalescence under bidirectional gene flow (M1 . 0,
M2 . 0) section, under bidirectional migration l ¼
ðl1; l2; l3Þ is the vector of the absolute values of the strictly
negative eigenvalues of Qmig and Aij ¼ 2V21

ij Vj4: If migra-
tion occurs in one direction only, withM1 ¼ 0 andM2 . 0; the
matrix A and the vector l are those given in the Distribution
of the time until coalescence under unidirectional gene flow, and
in the absence of gene flow section. In the remaining cases,
when M1 . 0 and M2 ¼ 0 or when there is no gene flow, A
and l are given in Appendix B. In the special case ofM1 ¼ M2

and b ¼ 1; Equations 11 and 12 reduce to the results of
Wilkinson-Herbots (2012).

The likelihood of a multilocus data set

Recall that, for our purposes, an observation consists of the
number of nucleotide differences between a pair of DNA
sequences from the same locus. To jointly estimate all the
parameters of the IIM model, our method requires a large set
of observations on each of the three initial states (i.e., on pairs
of sequences from subpopulation 1, from subpopulation 2,

A ¼

1 0 0

bM2
2

ðM2 2 2Þð12 bþ bM2Þ
4bM2

ð22M2Þð2þ bM2Þ
1

1þ bM2
þ b2M2

2
ð2þ bM2Þð12 bþ bM2Þð1=bþM2Þ

M2

M2 2 2
2

22M2
0

2666664

3777775:
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and from both subpopulations). To compute the likelihood of
such a data set, we use the assumption that observations are
independent, so we should have no more than one observa-
tion or pair of sequences per locus and there should be free
recombination between loci, i.e., loci should be sufficiently
far apart.

Let each locus for the initial state i be assigned a label
ji 2 f1i; 2i; 3i; . . . ; Jig; where Ji is the total number of loci
associated with initial state i. Denote by uji ¼ 4Nmji the scaled
mutation rate at locus ji; where mji is the mutation rate per
sequence per generation at that locus. Let u denote the aver-
age scaled mutation rate over all loci and denote by rji ¼ uji=u

the relative mutation rate of locus ji: Then, uji ¼ rjiu: If the
relative mutation rates are known, we can represent the like-
lihood of the observation at locus ji simply by Lðg; u; sjiÞ: By
independence, the likelihood of the data set is then given by

Lðg; u; sÞ ¼
Y3
i¼1

YJi
ji¼1

Lðg; u; sjiÞ: (13)

In our likelihood method, the rji are treated as known con-
stants. In practice, however, the relative mutation rates at the
different loci are usually estimated using outgroup sequences
(Yang 2002; Wang and Hey 2010).

Data availability

In the Supplemental Material, File S1 contains the R code to
fit the IIM model (and other simpler models) to data sets
consisting of observations on the number of segregating sites
between pairs of DNA sequences from a large number of in-
dependent loci. File S2 contains the R code we used to sim-
ulate observations from the IIM model. File S3 contains R
functions that are required by File S1 and File S2. The raw
Drosophila sequence data used in this article were published
by Wang and Hey (2010); the processed Drosophila data to
which the models of Figure 7 were fitted are given in File S4.

Results

Simulated data

We generated three batches of data sets by simulation, each
batchhaving100data sets. Eachdata set consists of thousands
of independent observations, where each observation repre-
sents the number of nucleotide differences between two DNA
sequences belonging to the same locus,when thegenealogy of
these sequences followsan IIMmodel.Eachdata setof batches
1, 2, and 3 contains 8000, 40,000, and 800,000 observations,
respectively. In each data set, half of the observations corre-
spond to initial state 3, 1=4 to initial state 1, and 1=4 to initial
state 2.

The data sets shown in this section were generated using
the following parameter values: a ¼ 0:75; u ¼ 2; b ¼ 1:25;
c1 ¼ 1:5; c2 ¼ 2; t0 ¼ 2; t1 ¼ 1; M1 ¼ 0:5; and M2 ¼ 0:75:
Each observation in a data set refers to a different genetic
locus j, and hence was generated using a different scaled

mutation rate uj for that locus. For batch 1, we first fixed
the average mutation rate over all sites to be u ¼ 2: Then, a
vector of 8000 relative-size scalars rj was randomly gener-
ated using a Gamma (15, 15) distribution. The scaled muta-
tion rate at locus j was then defined to be uj ¼ rju; where rj
denotes the relative mutation rate at locus j, that is, the rel-
ative size of uj with respect to the average mutation rate u. All
data sets in batch 1 were generated using the same vector of
relative mutation rates. The generation of the mutation rates
uj used in batches 2 and 3 was carried out following the same
procedure.

When fitting the IIM model to data sets generated in this
manner, the relative mutation rates rj are included as known
constants in the log-likelihood function to be maximized.
So, as far as mutation rates are concerned, only the average
over all loci is estimated (i.e., the parameter u). To increase
the robustness and performance of the fitting procedure
(see also Wilkinson-Herbots 2015, and the references
therein), we found the maximum-likelihood estimates for
a reparameterized model with parameters u, ua ¼ ua; ub ¼ ub;
uc1 ¼ uc1; uc2 ¼ uc2; V ¼ uðt0 2 t1Þ; T1 ¼ ut1; M1; and M2:

The boxplots of the maximum-likelihood estimates
obtained for the three batches of simulated data are shown
in Figure 2 and Figure 3. For each parameter, the boxplots on
the left, center, and right-hand side refer to batches 1, 2, and
3, respectively. From the boxplots of time and population size
parameters, it is seen that the estimates are centered around
the true parameter values. Estimates for the migration rates
are skewed to the right for batches 1 and 2, possibly because
the true parameter values for these rates are closer to the
boundary (zero) than the ones for population sizes and split-
ting times. For all types of parameters, increasing the sample
size will decrease the variance of the maximum-likelihood
estimator, as would be expected from using the correct ex-
pressions for the likelihood. In the case of the migration rate
parameters, increasing the sample size eliminates most of the
skewness.

The three quantile-quantile (Q-Q) plots in Figure 4 show
the sample quantiles of the maximum-likelihood estimates of
uc1 (a size parameter) obtained from simulated data, plotted
against the theoretical quantiles of the standard normal dis-
tribution. Figure 5 and Figure 6 show the corresponding plots
for T1 (a time parameter) andM1 (a migration parameter). In
each figure, the left-hand side, center, and right-hand-side
Q-Q plots are based on simulation batches 1, 2, and 3, re-
spectively. It is clear from Figure 4, Figure 5, and Figure 6 that
the distributions of the maximum-likelihood estimates of uc1;
T1; and M1 become increasingly Gaussian as we increase the
number of observations. This is also true for the estimates of
the remaining parameters (results not shown). We note also
that the distributions of the time and population size esti-
mates already have a reasonably Gaussian shape for a sample
size of 8000 loci. Again, this is true for the estimates of the
remaining time and size parameters as well. The lack of ap-
proximate normality of the migration rate estimates for
smaller sample sizes suggests care should be taken when
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making inferences about these parameters—see Notes on our
method and results.

Drosophila DNA sequence data

Maximum-likelihood estimation: To illustrate our method,
weapply it toa real,multilocusdataset fromtwoclosely related
species of Drosophila: Drosophila simulans and D. mela-
nogaster. The DNA sequence data of Wang and Hey (2010)
consist of two subsets: a large subset, which we will call the
“Wang subset,” containing 30,247 blocks of intergenic se-
quence; and a smaller subset, which we will refer to as the
“Hutter subset,” consisting of 378 blocks of intergenic se-
quence. Loci in the Wang subset were sampled by Wang and
Hey (2010) from a genome alignment of four inbred lines, two
from D. simulans, and one from each of D. melanogaster and

D. yakuba. To take into account the assumption of no recom-
bination within loci and free recombination between loci, and
based on the findings of Hey and Nielsen (2004) regarding the
density of apparent recombination events inDrosophila, Wang
andHey (2010) chose a locus length of�500 bp and a space of
at least 2000 bp between loci. To build the Hutter subset, they
drew 378 pairs of D. melanogaster sequences from the data set
of Hutter et al. (2007), which consists of 378 blocks of se-
quence sampled from 24 inbred lines of D. melanogaster, with
an average locus length of 536 bp and an average distance of
�52 kb between consecutive loci. They then joined each of
these sequence pairs with their respective D. yakuba orthologs
from the simulans-melanogaster-yakuba genome alignment.
Our models are fitted to the D. melanogaster and D. simulans
sequences from both subsets. The D. yakuba sequences are
only used as outgroup sequences, to estimate the relative mu-
tation rates at the different loci and to calibrate time.

Since ourmethodusesonly onepair of sequences at eachof a
large number of independent loci, and requires observations for
all initial states, the followingprocedurewas adopted to select a
suitable set of data. According to the genome assembly they
stem from, sequences in the Wang subset were given one of
three possible tags: “Dsim1,” “Dsim2,” or “Dmel.”To each of the
30,247 loci in the Wang subset, we assigned a letter: loci with
positions 1, 4, 7, . . . in the genome alignmentwere assigned the
letter A; loci with positions 2, 5, 8, . . . were assigned the letter
B; and loci with positions 3, 6, 9, . . .were assigned the letter C.
A data set was then built by selecting observations correspond-
ing to initial states 1 and 3 from the Wang subset (we used the
Dsim1-Dsim2 sequences from loci A, the Dmel-Dsim1 se-
quences from loci B, and the Dmel-Dsim2 sequences from
loci C), while observations corresponding to initial state
2 were obtained from the Hutter subset by comparing the
two D. melanogaster sequences available at each locus.

To estimate the relative mutation rates rji; we use the ad hoc
approach proposed by Yang (2002), which was also used in
Wang and Hey (2010) and Lohse et al. (2011). Estimates are

Figure 3 Estimates of migration rates
and time parameters for simulated data.
For each parameter, the estimates shown
on the left, center, and right-hand-side
boxplots are based on sample sizes of
8000, 40,000, and 800,000 loci, respec-
tively. The values stated in parentheses
are the true parameter values used to
generate the data. Horizontal dashed
lines indicate the true parameter values
for each group of boxplots.

Figure 2 Estimates of population size parameters for simulated data. For
each parameter, the estimates shown on the left, center, and right-hand-
side boxplots are based on sample sizes of 8000, 40,000, and 800,000
loci, respectively. The values stated in parentheses are the true parameter
values used to generate the data. Horizontal dashed lines indicate the
true parameter values for each group of boxplots.
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computed by means of the following method-of-moments
estimator:

r̂ji ¼
J�kjiP3

m¼1
PJm

n¼1
�knm

; (14)

where J is the total number of loci, and �kji is the average of the
numbers of nucleotide differences observed in pairs of one
ingroup sequence and one outgroup sequence, at locus ji:

Table 1 contains the maximum-likelihood estimates for the
models shown in Figure 7. Note that the parameters of time and
population size have been reparameterized as in Simulated
data, and recall that M1 and M2 are the scaled migration rates
backward in time. In the diagrams, the left and right subpopu-
lations represent D. simulans and D. melanogaster, respectively.

Model selection: In this section, we use a series of likelihood-
ratio tests for nestedmodels to determinewhich of themodels

listed in Table 1 fits the data of Wang and Hey (2010) best.
The use of such tests in the present situation is not entirely
straightforward. We wish to apply a standard large-sample
theoretical result which states that, as the number of obser-
vations increases, the distribution of the likelihood-ratio test
statistic given by

D ¼ 2 2log  lðsÞ;

where

lðsÞ ¼
sup
f2F0

Lðf; sÞ

sup
f2F

Lðf; sÞ ; (15)

approaches a x2 distribution. In Equation 15, F0 denotes
the parameter space according to the null hypothesis ðH0Þ:
This space is a proper subspace of F; the parameter space

Figure 5 Q-Q plots of maximum-likelihood estimates of the parameter T1 obtained from simulated data, against the theoretical quantiles of the
standard normal distribution. The estimates shown in the left-hand-side, center, and right-hand-side Q-Q plots are based on sample sizes of 8000,
40,000, and 800,000 loci, respectively.

Figure 4 Q-Q plots of maximum-likelihood estimates of the parameter uc1 obtained from simulated data, against the theoretical quantiles of the
standard normal distribution. The estimates shown in the left-hand-side, center, and right-hand-side Q-Q plots are based on sample sizes of 8000,
40,000, and 800,000 loci, respectively. In the central Q-Q plot, one outlier with a value above 10 is not shown.
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according to the alternative hypothesis ðH1Þ: The number of
degrees of freedom of the limiting distribution is given by the
difference between the dimensions of the two spaces. A list of
sufficient regularity conditions for this result can be found, for
example, in Casella and Berger (2001, p. 516). One of them is
clearly notmet in the present case: in the pairwise comparison
of some of ourmodels, every point ofF0 is a boundary point of
F: In other words, if H0 is true, the vector of true parameters
f* 2 F0;whichever it might be, is on the boundary ofF: This
irregularity is present, for example, when M1 ¼ M2 ¼ 0
according to H0 and M1; M2 2 ½0;NÞ according to H1: The
problem of parameters on the boundary has been the subject
of articles such as Self and Liang (1987) and Kopylev and
Sinha (2011). The limiting distribution of the likelihood-ratio
test statistic under this irregularity has been derived in these
articles, but only for very specific cases. In most of these cases,
the use of the naive x2

r distribution, with r being the number of
additional free parameters according to H1; turns out to be
conservative, because the correct null distribution is amixture
of x2

n distributionswith n# r:Our analysis of the data ofWang
and Hey (2010) involves two likelihood-ratio tests with pa-
rameters on the boundary (ISO vs. IM1, and IM1 vs. IIM1), so
we need to check that the naive x2

r distribution is also conser-
vative in these cases. This was verified in a short simulation
study which we now describe.

We generated 100 data sets from the ISO model, each one
consisting of 40,000 observations, and fitted both the ISO
model ðH0Þ and the IM1 model ðH1Þ to obtain a sample of

100 realizations of the likelihood-ratio test statistic. A Q-Q
plot (Figure 8, left boxplot) shows that the estimated quan-
tiles of the null distribution are smaller than the correspond-
ing theoretical quantiles of the x2 distribution with two
degrees of freedom (the difference between the dimensions
ofF0 andF in this particular case). In other words, the use of
the naive x2 distribution is conservative in this case. Using x2

2
instead of the correct null distribution, at a significance level
of 5%, the null hypothesis (i.e., the ISO model) was falsely
rejected in only 1 out of the 100 simulations performed.

Asimilar simulationwascarriedoutwith respect toanother
pair of nested models: the IM1 model (now as H0), in which
t1 ¼ 0; and the IIM1 model ðH1Þ; in which t1 .0: Again, the
naive x2 distribution (this time with only one degree of free-
dom) was found to be conservative (Figure 8, right boxplot).
And once more, only in 1 out of the 100 simulations per-
formed is the null hypothesis (the IM1model) falsely rejected
at the 5% significance level, if x2

1 is used instead of the correct
null distribution.

To select the model that best fitted the data of Wang and
Hey (2010), we performed the sequence of pairwise compar-
isons shown in Table 2. For any sensible significance level,
this sequence of comparisons leads to the choice of IIM2 as
the best-fitting model. In fact, assuming the naive x2 as the
null distribution, a significance level as low as 1:23 10274 is
enough to reject H0 in each of the three tests. However, since
M̂1 ¼ 0 for this model (see Table 1), a final (backward) com-
parison is in order: one between IIM2 and IIM3 (which

Table 1 Maximum-likelihood estimates and values of the maximized log-likelihood

Model ua u ub uc1 uc2 T1 V M1 M2 logLðfÞ
ISO 4.757 5.628 2.665 — — — 13.705 — — 290,879.14
IM1 3.974 5.641 2.493 — — — 14.965 0.000 0.053 290,276.00
IIM1 3.191 5.581 2.589 — — 6.931 9.928 0.000 0.528 290,069.44
IIM2 3.273 3.357 1.929 6.623 2.647 6.930 9.778 0.000 0.223 289,899.22
IIM3 3.273 3.357 1.929 6.623 2.647 6.930 9.778 — 0.223 289,899.22

Results for the data of Wang and Hey (2010), for the models shown in Figure 7.

Figure 6 Q-Q plots of maximum-likelihood estimates of the parameter M1 obtained from simulated data, against the theoretical quantiles of the
standard normal distribution. The estimates shown in the left-hand-side, center, and right-hand-side Q-Q plots are based on sample sizes of 8000,
40,000, and 800,000 loci, respectively.
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corresponds to fixingM1 at zero in IIM2). The nestedmodel in
this comparison has one parameter less and, as can be seen in
Table 1, has the same likelihood. So, in the end, we should
prefer IIM3 to IIM2.

Confidence intervals for the selected model: The Wald
confidence intervals are straightforward to calculate when-
ever the vector of estimates is neither on the boundary of the
model’s parameter space, nor too close to it. In that case, it is
reasonable to assume that the vector of true parameters does
not lie on the boundary either. As a consequence, the vector of
maximum-likelihood estimators is consistent and its distribu-
tion will approach a multivariate Gaussian distribution as the
sample size grows (see, for example, Pawitan 2001, p. 258).
The confidence intervals can then be calculated using the
inverted Hessian matrix.

In the case of the data ofWang and Hey (2010), the vector
of estimates of the selected model (IIM3) is an interior point
of the parameter space. Assuming that the vector of true
parameters is also away from the boundary, we computed
the Wald 95% confidence intervals shown in Table 3 using

the inverted Hessian. In agreement with our assumption, we
note that none of the confidence intervals include zero.

For large sample sizes, and for true parameter values not
too close to the boundary of the parameter space, the Wald
intervals arebothaccurate andeasy to compute. To checkhow
well the Wald intervals for the IIM3 model fare against the
more accurate (see Pawitan 2001, pp. 47–48), but also com-
putationally more expensive, profile likelihood intervals, we
included these in Table 3. The twomethods yield very similar
confidence intervals for all parameters except ub: The cause
of this discrepancy should lie in the fact that we only had
pairs of D. melanogaster sequences available from a few hun-
dred loci ðub is the size of the D. melanogaster subpopulation
during the migration stage).

Conversion of estimates: The conversion of point estimates
and confidence intervals to more conventional units is based
on the estimates of Powell (1997) of the duration of one
generation ðg ¼ 0:1 yearsÞ and the speciation time between
D. yakuba and the common ancestor of D. simulans and
D. melanogaster (10 MY); see also Wang and Hey (2010)

Figure 8 Q-Q plots of the estimated
quantiles of the likelihood-ratio test sta-
tistic null distribution against the x2 dis-
tribution theoretical quantiles. Left plot:
H0 = ISO model, H1 = IM1 model. Right
plot: H0 = IM1 model, H1 = IIM1

model.

Figure 7 Models fitted to the data of Wang and Hey
(2010): ua ¼ ua; ub ¼ ub; uc1 ¼ uc1; uc2 ¼ uc2;
V ¼ T0 2 T1 ¼ uðt0 2 t1Þ; and T1 ¼ ut1:
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and Lohse et al. (2011). Using these values, we estimated m,
the mutation rate per locus per generation, averaged over all
loci, to be m̂ ¼ 2:313 1027:

In Table 4, Table 5, and Table 6, we show the converted
estimates for the best-fitting model IIM3. The effective pop-
ulation size estimates, in units of diploid individuals, are all
based on estimators of the form Nb ¼ ð1=4m̂Þ3 û: For exam-
ple, the estimate of the ancestral population effective size Na

is given by ð1=4m̂Þ3 ûa: The estimates in years of the time
since the onset of speciation and of the time since the end of
gene flow are given by t̂0 ¼ ðg=2m̂Þ3 ðTb 1 þ Vb Þ and
t̂1 ¼ ðg=2m̂Þ3Tb 1; respectively. With respect to gene flow,
we use q̂1 ¼ m̂3 ðMb 2b̂=ûÞ as the estimator of the fraction of
subpopulation 1 that migrates to subpopulation 2 in each
generation, forward in time; and ŝ1 ¼ ðMb 2b̂=2Þ as the estima-
tor of the number of migrant sequences from subpopulation
1 to subpopulation 2 in each generation, also forward in time.

If g and m̂ are treated as constants, then each of the esti-
mators just given can be expressed as a constant times a
product—or a ratio—of the estimators of nonconverted pa-
rameters. For example, we have that

q̂1 ¼ m̂3
M̂b 2b̂
û

¼ constant3
M̂b 2b̂
û

;

and

Nb a ¼ ûa
4m̂

¼ constant3 ûa:

Suppose the IIM3 model is reparameterized in terms of

f ¼ ðua u ub uc1 uc2 T1 T1 þ V M2b=uÞT ;

and f̂ denotes the maximum-likelihood estimator of f: Then
the estimator f̂c of the vector of converted parameters

fc ¼ ðNa N Nb Nc1 Nc2 t1 t0 q1ÞT ;

can bewritten as f̂c ¼ Wf̂;whereW is a diagonalmatrix. The
random vector f̂ is a maximum-likelihood estimator (of a
reparameterized model). Hence, for a large enough sample
size, its distribution is approximately multivariate Gaussian,
with some covariance matrix ∑; and the distribution of f̂c is
approximately multivariate Gaussian with covariance matrix
W∑WT: To calculate theWald confidence intervals of Table 4,
Table 5, and Table 6, we used the inverse of the observed
Fisher information as an estimate of ∑: An estimate ofW∑WT

followed trivially.

Profile likelihood confidence intervals were also computed
for the parameterization f ¼ ðua   ; . . . ;  M2b=uÞT : Then, if û
ðor l̂Þ is the vector of estimated upper (or lower) bounds
for the parameters in f; Wû ðor Wl̂Þ will be the vector of
estimated upper (or lower) bounds for the converted param-
eters. This follows from the likelihood-ratio invariance—see,
for example, Pawitan (2001, pp. 47–48). Confidence inter-
vals for the converted migration parameter s1 (rather than q1
in the procedure above) were obtained analogously, using a
slightly different reparameterization of the IIM3 model.

Discussion

Notes on our method and results

We have described a fast method to fit the IIM model to large
data sets of pairwise differences at a large number of in-
dependent loci. This method relies essentially on the eigen-
decomposition of the generator matrix of the process during
the migration stage of the model: for each set of parameter
values, the computation of the likelihood involves this de-
composition. Nevertheless, the whole process of estimation
takes nomore than a couple ofminutes for a data set of tens of
thousands of loci such as that ofWang andHey (2010), and it
does not require high-performance computing resources.
The implementation of the simpler IIM model of Wilkinson-
Herbots (2012), with R code provided in Wilkinson-Herbots
(2015), is even faster than the more general method pre-
sented here, since it makes use of a fully analytical expression
for the likelihood (avoiding the need for eigen-decomposi-
tion of the generatormatrix); but it relies on two assumptions
which we have dropped here, and which are typically unre-
alistic for real species: the symmetry of migration rates and
the equality of subpopulation sizes during the gene flow
period.

Due to the number of parameters, it is not feasible to assess
the performance of our method systematically over every
region of the parameter space. However, our experience with
simulated data sets suggests that there are two cases in which
the variances of some estimators become inflated, in partic-
ular the variances of the estimators associated with the gene
flow period ðMb 1; Mb 2; û; ûb; and Vb Þ: One of such cases arises

Table 3 Point estimates and confidence intervals under the model
IIM3

Parameter Estimate

95% confidence intervals

Wald Profile likelihood

ua 3.273 (3.101, 3.445) (3.100, 3.444)
u 3.357 (3.139, 3.575) (3.097, 3.578)
ub 1.929 (0.079, 3.779) (0.672, 5.010)
uc1 6.623 (6.407, 6.839) (6.415, 6.843)
uc2 2.647 (2.304, 2.990) (2.331, 3.021)
T1 6.930 (6.540, 7.320) (6.542, 7.319)
V 9.778 (9.457, 10.099) (9.456, 10.098)
M2 0.223 (0.190, 0.256) (0.186, 0.259)

Results refer to the data of Wang and Hey (2010).

Table 2 Forward selection of the best model

H0 H1 22log lðSÞ P-value

ISO IM1 603.14 1.147E2262
IM1 IIM1 413.12 7.673E292
IIM1 IIM2 340.44 1.187E274

Results refer to the data of Wang and Hey (2010).
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whenever V is very small or T1 is very large, making it very
unlikely that the genealogy of a pair of sequences under the
IIMmodel is affected by events that occurred during the gene
flow period. The second case arises when the values of the
scaled migration rates are greater than one, so that the two
subpopulations during the period of gene flow resemble a
single panmictic population. In either of these cases, the very
process of model fitting can become unstable, that is, the
algorithm of maximization of the likelihood may have diffi-
culty converging.

Problems can also arise if the number of loci is insufficient.
The simulation study in the Simulated data section suggests
that convergence to sensible parameter estimates is still pos-
sible for a sample size of 8000 loci. However, when we fitted
the full IIM model to a simulated sample of 4000 loci (results
not shown), outliers started to emerge. It should also be
noted that for sample sizes of just a few thousand loci, the
distribution of migration rate estimates is still far from Gauss-
ian (Figure 6). In such cases, computation of confidence in-
tervals should be based on bootstrap methods or on the
likelihood (profile likelihood confidence intervals) rather
than on the Hessian (Wald confidence intervals). How many
loci are needed to obtain good estimates and confidence in-
tervals will also depend on the region of the parameter space
concerned.

It is not the goal of this article to draw conclusions re-
garding the evolutionary history of Drosophila species. We
used the data ofWang andHey (2010)with the sole objective
of demonstrating that our method can be applied efficiently
and accurately to real data. In Table 7, we list both our esti-
mates and those of Wang and Hey (2010) for a six-parameter
isolation-with-migration model (the IM1 model—see Figure
7). The same table contains the estimates for our best-fitting
IIM model. Our parameter estimates for the IM model agree
well with those of Wang and Hey (2010). The reason that
they do notmatch exactly lies in the fact that we have omitted
the “screening procedure” described in Wang and Hey

(2010) and have therefore not excluded some of the most
divergent sequences in the data set. It should also be borne
inmind that ourmodel of mutation is the infinite-sites model,
whereas Wang and Hey (2010) have worked with the Jukes–
Cantor model. Furthermore, our choice of sequence pairs was
somewhat different: Wang and Hey (2010) randomly se-
lected a pair of sequences at each locus, whereas we followed
the procedure described in the Maximum-likelihood estima-
tion section.

There are some otable differences between the estimates
for both IMmodels and those for the IIMmodel: under the IIM
model, the process of speciation is estimated to have started
earlier (3.6 MYA instead of 3.0 or 3.2 MYA), to have reached
complete isolation before the present time (1.5 MYA), and to
have a higher rate of gene flow (0.064 sequences per gener-
ation instead of 0.013 or 0.012 sequences) during a shorter
period of time (2.1MY of gene flow instead of 3.0 or 3.2 MY).
As might be expected, the estimates of each descendant
population size (D. simulans and D. melanogaster) in the IM
models lie in between the estimates of the corresponding
current population size and its size during the gene flow
period in the IIM model.

The method we used assumes that relative mutation rates
are known (see The likelihood of a multilocus data set). In
reality, we must deal with estimates of these rates, and this
introduces additional uncertainty which is not reflected in
the standard errors and confidence intervals obtained. In
principle, this uncertainty can be reduced by increasing the
number of ingroup and outgroup sequences used to compute
the average number of pairwise differences at each locus in
Equation 14. Ideally, estimates of the relative mutation rates
should be based on outgroup species only (Wang and Hey
2010) to avoid any dependence between the estimates of
relative mutation rates and the observations on ingroup pair-
wise differences, but this was not possible here since the
Wang and Hey (2010) data included exactly one outgroup
sequence for each locus.

Table 5 Divergence time estimates under the model IIM3

Event Time since occurrence

95% confidence intervals

Wald Profile likelihood

Onset of speciation ðt0Þ 3.624 (3.559, 3.689) (3.561, 3.691)
Complete isolation ðt1Þ 1.503 (1.419, 1.588) (1.419, 1.587)

Divergence time estimates for the data of Wang and Hey (2010), given in millions of years ago. Values shown are the converted estimates of t0 and t1 (see Figure 1).

Table 4 Effective population size estimates under the model IIM3

Population Population size

95% confidence intervals

Wald Profile likelihood

Ancestral population ðNaÞ 3.549 (3.362, 3.736) (3.362, 3.735)
D. simulans, migration stage (N) 3.640 (3.404, 3.877) (3.359, 3.880)
D. melanogaster, migration stage ðNbÞ 2.092 (0.085, 4.099) (0.729, 5.433)
D. simulans, isolation stage ðNc1Þ 7.182 (6.949, 7.415) (6.957, 7.421)
D. melanogaster, isolation stage ðNc2Þ 2.871 (2.498, 3.243) (2.528, 3.276)

Effective population size estimates for the data of Wang and Hey (2010). Values are in millions of diploid individuals.
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Violation of assumptions

Some assumptions of the IIMmodel in this article, such as the
infinite-sites assumption and the assumption of free recom-
bination between loci and no recombination within loci, may
not be sensible for some real data sets. The appropriateness of
other assumptions, for example those regarding the constant
size of populations or the constant rate of gene flow, will
depend on the actual evolutionary history of the species or
populations involved.While a systematic, in-depth robustness
analysis of ourmethod (similar to, for example, the robustness
studies by Becquet and Przeworski 2009 and Strasburg and
Rieseberg 2010 for commonly used IM methods) is beyond
the scope of this article, we will in this section informally
examine the impact of possible violations of some of the main
assumptions made.

Misspecification of the demographic model: To explore the
potential effect of misspecification of the demographic model
on inference accuracy, we first simulated 20 data sets of
40,000 loci each fromasomewhatmore complexevolutionary
scenario, depicted in the left-hand side diagram of Figure 9,
where subpopulation sizes gradually increase and gene flow
gradually declines. The precise parameter values assumed for
the true model were chosen arbitrarily and are shown in the
left-hand side diagram; in accordance with the reparamete-
rization used in Simulated data, divergence times are mea-
sured on a mutational scale by twice the expected number of
mutations per sequence (as an average over all loci), popu-
lation sizes are represented by scaled mutation rates, and
rates of gene flow by scaled migration rates. We then applied
our method to fit isolation, IM, and IIMmodels to each of the
simulated data sets and selected the best-fitting model by

means of likelihood-ratio tests—for each of the 20 data sets
generated this was found to be the full IIM model. The aver-
age point estimates obtained for each parameter are shown
on the right-hand-side diagram of Figure 9. In each diagram,
the widths of the boxes are proportional to the population
sizes and the heights are proportional to the durations of the
time periods concerned. It is readily seen that the IIM model
reflects the dynamics of the truemodel quite well. Population
sizes, migration rates, and splitting times are all estimated at
intermediate values.

We also repeated the simulation and estimation procedure
for an evolutionary scenario involving a period of secondary
gene flow, depicted in the left-hand side diagram of Figure 10.
Again, for each of the 20 simulated data sets, the full IIM
model provides the best fit among the models considered
(isolation, IM, and IIM). Comparing the two diagrams in
Figure 10 (where the IIM parameter values in the right-
hand-side diagram are again the averages of the estimates
obtained for the 20 simulated data sets), we see that the IIM
model obtained provides a reasonable approximation to the
true model, though of course our method did not detect the
initial period of isolation as this feature was not included in
the set of models fitted. The estimates of the time since the
onset of speciation and the time since complete isolation are,
on average, close to the true values in this case. The average
estimates of the migration rate and population size parame-
ters are again at intermediate values, compared to the range
of true values over time.

Intralocus recombination: In common with other methods
mentioned in this article (for example, Wang and Hey 2010;
Lohse et al. 2011), our method assumes that there is no

Table 7 Comparison of converted estimates obtained with IM and IIM models

IMwh IM1 IIM3

Time since onset of speciation 3.040 3.240 3.624
Time since isolation — — 1.503
Size of ancestral population 3.060 4.310 3.549
Current size of D. simulans population 5.990 6.120 7.182
Current size of D. melanogaster population 2.440 2.700 2.871
Size of D. simulans population during IIM gene flow period — — 3.640
Size of D. melanogaster population during IIM gene flow period — — 2.092
Migration rate (D. simulans / D. melanogaster) 0.013 0.012 0.064
Migration rate (D. melanogaster/ D. simulans) 0.000 0.000 —

Times are given in millions of years; population sizes are given in millions of individuals; the migration rates stated represent the number of sequences that migrate per
generation, forward in time. The model IMwh is the IM model fitted by Wang and Hey (2010).

Table 6 Converted migration rates under the model IIM3

Migration parameter Point estimate

95% confidence intervals

Wald Profile likelihood

Migration rate ðq1Þ 8.8E209 (1.1E-10, 1.8E208) (3.2E209, 2.4E208)
Number of migrant sequences ðs1Þ 0.064 (0.001, 0.127) (0.023, 0.172)

Converted migration rates for the data of Wang and Hey (2010). Values shown refer to forward-in-time parameters: q1 is the fraction of subpopulation 1 (D. simulans) that
migrates to subpopulation 2 (D. melanogaster) in each generation, during the period of gene flow; s1 is the number of sequences migrating from subpopulation 1 to
subpopulation 2 in each generation, during the period of gene flow.
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recombination within loci and free recombination between
loci. The first of these two assumptions is the most important
one, without which our method would not be valid. Recom-
bination within loci mixes up the genealogies of DNA se-
quences on which our method relies, making pairs of
sequences more equidistant: intralocus recombination does
not affect the mean number of segregating sites in a pair of
sequences but the variance decreases with increasing recom-
bination (Griffiths 1981; Hudson 1983; Schierup and Hein
2000), resulting in data sets which contain more intermedi-
ate values and fewer extreme values. This can be expected to
lead to overestimation of the current population sizes and
underestimation of the ancestral population size, while the
effect on estimates of the other parameters is intuitively
somewhat less obvious. The impact of intralocus recombina-
tion on the variance of the number of pairwise differences,
and hence on the accuracy of ourmethod, may be expected to
be less severe in cases of recombination rate heterogeneity
within loci (see figure 1 in Hudson 1983, for the extreme case
of recombination hotspots separating completely linked
regions).

A simulation study by Strasburg and Rieseberg (2010)
found that even relatively low levels of intralocus recombi-
nation can cause substantial bias in estimates of the IMmodel
parameters obtained using the program IMa (Hey and Nielsen
2007), with highest posterior density intervals failing to
contain the true parameter values far more often than would
be expected by chance. In IM simulations allowing a minimal
but realistic amount of intralocus recombination, Lohse et al.
(2016) found that the bias in their parameter estimates was
small. Although our method and model are different from
those of Hey and Nielsen (2007) and Lohse et al. (2016),

the effect of recombination on the underlying genealogies
remains the same, and therefore similar biases will occur if
the assumption of no intralocus recombination is violated.

For the Drosophila data considered in this article, Wang
and Hey (2010) assessed the impact of potential intralocus
recombination on their estimates of the parameters of an IM
model by comparison with the estimates obtained from the
same sequences but halved in length (i.e., approximately
halving the expected number of intralocus recombination
events). Their estimates of the ancestral population size
and the migration rate from the half-length data were
�30% larger than those from the full-length data, while
the differences for the other parameter estimates were small.
In the same spirit, we repeated our previous analysis of the
Drosophila data but now using the trimmed version of the
Wang subset prepared by Lohse et al. (2011), in which
the average locus length was reduced by approximately a
factor of 3; the Hutter subset (�1% of the total number of
loci) was retained in its entirety as we could not afford to
further reduce this already very small data set of D. mela-
nogaster pairs. Applying the estimation and model selection
procedures described in Drosophila DNA sequence data to this
trimmed version of the data, the likelihood-ratio test of the
models IIM1 vs. IIM2 was no longer significant, i.e., there was
no longer significant evidence of an increase in population
size at time T1; and the best-fitting model was a unidirec-
tional version of IIM1 (i.e., with M1 ¼ 0Þ:

Table 8 shows the estimates obtained from the trimmed
data; the estimates obtained earlier in this article from the
full data are also listed again for comparison. In line with our
expectations regarding the potential effect of intralocus re-
combination, it is seen that the full data gave a larger

Figure 10 Violation of demographic assump-
tions. Left-hand-side diagram: true model.
Right-hand-side diagram: best-fitting IIM model.
Divergence times are measured by twice the
expected number of mutations per sequence,
population sizes are represented by scaled mu-
tation rates, and rates of gene flow by scaled
migration rates.

Figure 9 Violation of demographic assump-
tions. Left-hand-side diagram: true model.
Right-hand-side diagram: best-fitting IIM model.
Divergence times are measured by twice the
expected number of mutations per sequence,
population sizes are represented by scaled mu-
tation rates, and rates of gene flow by scaled
migration rates.
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estimate of the current population size of D. simulans and a
smaller estimate of the ancestral population size; the esti-
mated size of D. simulans during the gene flow stage was also
smaller than that obtained from the trimmed data. The esti-
mated time since the onset of speciation is nearly identical for
the two data sets, but the full data placed the end of gene flow
substantially further back into the past (1.5 MYA compared
to 0.93 MYA) and estimated a somewhat higher number of
migrant sequences per generation (0.064 compared to
0.051) during a shorter period of gene flow (2.12 MY com-
pared to 2.68 MY). This suggests that, in addition to the
impact on population size estimates already discussed, intra-
locus recombination may lead to an overestimate of the time
since the end of gene flow in an IIM model and (possibly as a
consequence) an overestimate of the migration rate. Never-
theless, for both versions of the Drosophila data, the likeli-
hood-ratio tests of nonzero migration rate and nonzero time
since the end of gene flow were significant.

The above considerations imply that, when preparing data
for use with our method (or any other method relying on the
assumption of no intralocus recombination), loci should be
chosen carefully to try to keep the amount of intralocus
recombination negligible, and some caution may be needed
in the interpretation of results. For data sets showing signs of
recombination within loci, it may be possible to reduce its
effect by trimming or breaking up such loci to form shorter,
apparently nonrecombining segments of DNA sequence (Hey
and Nielsen 2004; Strasburg and Rieseberg 2010). An exten-
sion of our method to account for recombination within loci
would be of interest but is challenging. An extension to a
finite-sites model for use with shorter fragments of DNA se-
quence would also be of interest—such an extension is rela-
tively straightforward but is yet to be implemented in our
method (but see Wang and Hey 2010 and Andersen et al.
2014 for the IM model).

Linkage disequilibrium: If the assumption of free recombi-
nation between loci does not hold, then loci are not indepen-
dent, in which case the likelihood in Equation 13 is in fact a

compositemarginal likelihood (also called the “independence
likelihood” in Chandler and Bate 2007) rather than an ordi-
nary full likelihood (see Varin 2008 for an overview of com-
posite marginal likelihoodmethods; see also the discussion of
Lohse et al. 2016). Statistical theory indicates that in that
case, the maximum composite likelihood estimator (MCLE)
is still consistent (Cox and Reid 2004; Wiuf 2006, with
someminormodifications to account for our slightly different
assumptions; Varin 2008), provided the relative mutation
rates at the different loci are bounded. Thus, if linkage be-
tween loci cannot be ignored, the MCLE of the parameters of
the IIM model obtained with our method will still be approx-
imately unbiased if the number of loci is sufficiently large,
and if all our other assumptions hold (including the assump-
tion of no recombination within loci). However, if linkage
between loci is not negligible, then standard errors and
confidence intervals computed using the observed Fisher
information (as was done in the Results section) will un-
derestimate the true uncertainty about the parameter esti-
mates obtained (Baird 2015); instead, standard errors and
confidence intervals should be based on an estimate of the
Godambe information (Godambe 1960). For a data set made
up of a single string of correlated loci, or a small number of
such strings, obtaining an accurate estimate of the Godambe
information presents some difficulties (see Varin 2008 and
Varin et al. 2011 for a discussion and some possible strate-
gies). A much simpler situation arises if the data consist of a
sufficiently large number of “clusters” of loci, where loci
within clusters are correlated but where different clusters
can be considered independent. This may be the case, for
example, if different clusters of loci are chosen from different
chromosomes, or are separated by recombination hotspots or
by a large enough distance along the genome. For such data,
an empirical estimate of the Godambe information can easily
be computed as described in Chandler and Bate (2007) or
Varin (2008).

To try to quantify the effect of linkage on the standard
errors of the IIM parameter estimates, we conducted the
following analysis of a suitable subset of the Wang and Hey

Table 8 Converted estimates for full sequences and trimmed sequences

Trimmed Full

IIM*
1 IIM3 IIM*

3

Time since onset of speciation 3.614 3.634 3.624
Time since isolation 0.934 0.997 1.503
Size of ancestral population 4.264 4.237 3.549
Current size of D. simulans population — 6.024 7.182
Current size of D. melanogaster population — 2.984 2.871
Size of D. simulans population during gene flow — 5.956 3.640
Size of D. melanogaster population during gene flow — 1.891 2.092
Size of D. simulans population 5.998 — —

Size of D. melanogaster population 2.795 — —

Migration rate (D. simulans / D. melanogaster) 0.051 0.038 0.064
Migration rate (D. melanogaster / D. simulans) 0.000 0.000 0.000

Converted estimates for the data of Wang and Hey (2010). Times are given in millions of years; population sizes are given in millions of individuals; the migration rates stated
represent the number of sequences that migrate per generation, forward in time. The best-fitting model for each data set is marked with an *.
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(2010) data. We partitioned the 30,247 loci of the Wang
subset into blocks of 100 consecutive loci and discarded every
other block, so that 151 blocks were retained of 100 loci each.
Since the individual loci are�500 bp in length and separated
by at least 2 kb, this leaves a distance of at least 0.25 Mb
between different blocks, and we can reasonably assume that
any effect of linkage between blocks of loci this far apart is
negligible compared to that within blocks. In the Hutter sub-
set, the distance between consecutive loci is on average
�50 kb, and we retained these 378 loci to enable estimation
of the D. melanogaster population size parameters. To exam-
ine the effect of linkage, we analyzed this reduced data set in
two ways to compare the results: (i) assuming that loci are
independent; and (ii) accounting for any linkage between
loci within blocks, i.e., accounting for the bulk of the linkage
in the data. In case (i), the model selection procedure de-
scribed inModel selectionwas carried out on the reduced data
set. As was the case for the full data, the model IIM3 also
provided the best fit by far for the reduced data set. The
P-values computed as part of the model selection procedure
were all ,10242 and are shown in Table 9. The parameter
estimates for the best-fitting model, IIM3, are shown in Table
10 and are very close to the estimates obtained from the full
Wang and Hey (2010) data (see Table 3). Standard errors of
the parameter estimates, based on the Fisher information
(computed using the inverted Hessian matrix as described
in Confidence intervals for the selected model), are also shown
in Table 10 for the reduced data set. As expected, these stan-
dard errors are larger than those for the full data set by a factor
of approximately

ffiffiffi
2

p
; except those of the D. melanogaster pop-

ulation size parameters, which are largely unchanged. In case
(ii), to account for any linkage within blocks of loci, both the
model selection procedure and the computation of standard
errors were performed using theoretical results for composite
marginal likelihoods. The hypothesis tests in the model selec-
tion procedure were carried out using result 3.5 and approx-
imation 3.6 of Jesus and Chandler (2011), by which the null
distribution of the composite likelihood-ratio test statistic is
approximated by a scaled and shifted x2 distribution (see also
the comments regarding the distribution of the independence
likelihood-ratio test statistic in Chandler and Bate (2007),
pp.170–171). The P-values obtained in this way for the tests
in the model selection procedure are shown in Table 9. As

expected, these P-values are not as small as those obtained
when ignoring linkage, and in fact they differ by many orders
of magnitude. Nevertheless, these P-values are all still smaller
than 10220; and the model IIM3 still gives by far the best fit for
the reducedWang andHey (2010) data (note however that, to
the best of our knowledge, it has not been established in the
literature whether the approximate null distribution used for
the composite likelihood-ratio test statistic is still conservative
in the case of tests involving parameters on the boundary,
although this would seem plausible). Standard errors of the
parameter estimates of the IIM3 model were computed by
obtaining an empirical estimate of the inverse of the Godambe
information matrix using the method for clustered data de-
scribed in Chandler and Bate (2007): the covariance matrix
of the score vector (the vector of partial derivatives of the log-
likelihood) was estimated by

Vb ¼
X
j
UjU

9
j ;

where the vectorUj is the score of the jth block of loci, evaluated
at the MCLE, and the sum is over all blocks; an estimate of the
inverse of the Godambe information matrix (also referred to as
the “robust” variance estimator) was then computed as

Gb21 ¼ Hb21
VbHb21

;

where H is the Hessian matrix. The resulting standard errors
are shown in the right-hand column of Table 10. It is seen
that, on average, the standard errors based on the Fisher
information account for �80% of the uncertainty given by
the robust standard errors, though this percentage is differ-
ent for different parameters. The strongest impact is on
the standard error of uc1 (the “current size” parameter of
D. simulans), for which the standard error ignoring linkage is
only 59% of that which does account for linkage between loci
within blocks—one would indeed expect the impact of link-
age to be strongest on the standard errors of parameters re-
lating to more recent events, as a shorter time allows less
opportunity for recombination between loci (no such effect
is seen on the standard error of uc2 as we continued to treat

Table 9 P-values for (composite) likelihood-ratio tests in model
selection

H0 H1

P-values

x2 null distribution(i) Robust null distribution(ii)

ISO IM1 2.60 E2129 1.39 E2110
IM1 IIM1 8.40 E257 2.11 E221
IIM1 IIM2 1.62 E243 7.86 E228

Results for the reduced version of the data of Wang and Hey (2010).
(i) The usual x2 distribution with the appropriate number of degrees of freedom was
used as the null distribution.

(ii) The null distribution used is a scaled and shifted x2 distribution (Jesus and Chan-
dler 2011, equation 3.6).

Table 10 Point estimates and estimated standard errors under the
model IIM3

Parameter Estimate

Standard errors

Fisher(i) Godambe(ii)

ua 3.217 0.130 0.146
u 3.259 0.155 0.168
ub 1.934 0.998 1.251
uc1 6.833 0.161 0.271
uc2 2.643 0.174 0.182
T1 7.118 0.273 0.435
V 9.826 0.228 0.286
M2 0.250 0.026 0.035

Results for the reduced version of the data of Wang and Hey (2010). “Fisher” and
“Godambe” standard errors are based on the observed Fisher and on the estimated
Godambe information matrices, respectively.
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the Hutter subset as independent loci). To compute standard
errors of the parameter estimates obtained from the full
Wang and Hey (2010) data, it may be possible to obtain an
estimate of the covariance matrix of the score vector, and
hence of the Godambe information matrix, by using the
method of “window subsampling” (Heagerty and Lele 1998)
whereby the data are divided into pseudo-independent subre-
gions, but this would require further investigation. An alterna-
tive method to account for linkage disequilibrium is by means
of a parametric bootstrap (for example, Lohse et al. 2016), but
this is computationally intensive and the results will inevitably
depend on the recombination rate assumed, and on any other
assumptions made such as homogeneity of the recombination
rate along the genome.

The robust standard errors in the right-hand column of
Table 10were derived by accounting for linkage while assum-
ing that all our other assumptions hold. If the latter is not the
case, then the individual factors in Equation 13 may be mis-
specified so that their product no longer defines a composite
marginal likelihood. Instead, the derivative of its logarithm
can be regarded as an “estimating function” and the corre-
sponding statistical theory applied. In that case, our robust
calculations of standard errors and P-values in (ii) above still
apply (Jesus and Chandler 2011, Section 3), so that the re-
sults in the right-hand columns of Table 9 and Table 10 are
still valid. Thus the differences between the left- and right-
hand columns of standard errors and P-values in Table 9 and
Table 10 should be interpreted as upper bounds on the im-
pact of linkage, since these differences may in part be due
to other forms of model misspecification, including model
misspecification from any of the potential sources discussed
above: inaccurate estimates of the relative mutation rates,
misspecification of the mutation model, misspecification of
the demographic model, and intralocus recombination.
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Appendix A: Proof of Equation 8:

This proof has three parts. Part (i) proves the result under two assumptions: (a)Qmig has three strictly negative eigenvalues and
one zero eigenvalue, all of them real; and (b) Qmig is diagonalizable. Part (ii) proves assumption (a). Part (iii) proves
assumption (b). To simplify the notation, we denote Qmig by Q throughout the proof.

Part (i)

Consider the continuous-time Markov chain defined by the matrix Q: Let PijðtÞ; the ði; jÞ entry of the matrix PðtÞ; be the
probability that the process is in state j at time t into the past, given that the process starts in state i. PðtÞ can be calculated
by solving the following initial value problem:

P9ðtÞ ¼ PðtÞQ;
Pð0Þ ¼ I4;

where I4 is the four-by-four identity matrix. Under the assumptions that Q is diagonalizable and that its eigenvalues are real,
the solution to this initial value problem is given by:

PðtÞ ¼ Pð0ÞeQt

¼ V21eBtV;

where B denotes the diagonal matrix containing the real eigenvalues bj; j 2 f1; 2; 3; 4g; of Q; and V is the matrix of left
eigenvectors ofQ: Note that Pi4ðtÞ is the probability that the process has reached coalescence by time t, if it started in state i. In
other words, it is the CDF of TðiÞ

mig:

Pi4ðtÞ ¼ FðiÞmigðtÞ ¼ v21
i: eBtv:4;

where v21
i: is the ith row vector of V21; and v:4 the fourth column vector of V: Differentiating, we get the PDF:

f ðiÞmigðtÞ ¼ v21
i: BeBtv:4

¼
X4
j¼1

V21
ij Vj4bje

bjt:

If we denote the eigenvalue equal to zero byb4; and the remaining eigenvalues are strictly negative, this PDF can bewritten as a
linear combination of exponential densities:

f ðiÞmigðtÞ ¼ 2
X3
j¼1

V21
ij Vj4lje2ljt; (A1)

where lj ¼ jbjj for j 2 f1; 2; 3g:
Part (ii)

As Q is given by Equation 3, its characteristic polynomial, PQðbÞ; is of the form b3PQðrÞ ðbÞ; where QðrÞ is the three-by-three
upper-left submatrix of Q; that is:

QðrÞ ¼
242ð1þM1Þ M1 0

M2=2 2ðM1 þM2Þ=2 M1=2
0 M2 2ð1=bþM2Þ

35:
Thus the eigenvalues ofQ are the solutions to b3PQðrÞ ðbÞ ¼ 0: Consequently, one of them is zero ðb4; sayÞ and the remaining
three eigenvalues are also eigenvalues of QðrÞ:

Now consider the similarity transformation
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S ¼ DQðrÞD21 ¼

2ð1þM1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

2

r
0ffiffiffiffiffiffiffiffiffiffiffiffiffi

M1M2

2

r
2ðM1 þM2Þ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

2

r

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

2

r
2ð1=bþM2Þ

26666666664

37777777775
;

where D ¼

ffiffiffiffiffiffiffiffiffi
M2

2M1

r
0 0

0 1 0

0 0
ffiffiffiffiffiffiffiffiffi
M1

2M2

r
26666664

37777775:

Because S is a symmetric matrix, its eigenvalues are real. Therefore, all the eigenvalues of QðrÞ are real (a similarity trans-
formation does not change the eigenvalues). S is also a negative definite matrix, since its first, second, and third upper-left
determinants are respectively negative, positive, and negative. Hence its eigenvalues are all strictly negative, and so are the
eigenvalues of QðrÞ: Hence Q has one zero eigenvalue ðb4Þ and three real, strictly negative eigenvalues ðb1; b2 and b3Þ:
Part (iii)

Being a symmetric matrix, S has three independent eigenvectors. A similarity transformation preserves the number of in-
dependent eigenvectors, so QðrÞ has three independent eigenvectors as well. We denote by VðrÞ the matrix whose rows are the
left eigenvectors of QðrÞ:

By definition, any left eigenvector vj: ofQ satisfies the system of equations xðQ2 IbjÞ ¼ 0;where x ¼ ½x1   x2   x3   x4�. The first
three linear equations of this system are identical to xðrÞ½QðrÞ 2 Ibj� ¼ 0; for j 2 f1; 2; 3g and xðrÞ ¼ ½x1   x2   x3�;which is solved by
xðrÞ ¼ vðrÞj: : So this implies that, for bj 2 fb1;b2;b3g; any row vector x in ℝ4 that has vðrÞj: as its first three elements will solve the
first three equations of the system, whatever the value of x4: If x4 ¼

h
VðrÞ
j1 þ 1

bV
ðrÞ
j3

i.
bj; that vector will be an eigenvector of Q;

because it also solves the fourth equation of the system:

"
�������� vðrÞj: ��������

VðrÞ
j1 þ 1

b
VðrÞ
j3

bj

#
2ð1þM1Þ2bj M1 0 1

M2

2
2
ðM1 þM2Þ

2
2bj

M1

2
0

0 M2 2

 
1
b
þM2

!
2bj

1
b

0 0 0 2bj

26666666666664

37777777777775
¼ ½ 0 0 0 0 �;

for bj 2 fb1;b2;b3g. For the case of bj ¼ b4 ¼ 0; a row eigenvector is ½0  0  0  1�: Collecting these row eigenvectors in a single
matrix, we get V: So,

V ¼

����������� vðrÞ1: �����������

h
VðrÞ
11 þ 1

b
VðrÞ
13

i
b1

����������� vðrÞ2: �����������

h
VðrÞ
21 þ 1

b
VðrÞ
23

i
b2

����������� vðrÞ3: �����������

h
VðrÞ
31 þ 1

b
VðrÞ
33

i
b3

0 0 0 1

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

:
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If the matrix V can be shown to be invertible, then Q is diagonalizable. This will be the case if the system xV ¼ 0 can only be
solved by x ¼ ½0  0  0  0�. Now since the three-by-three upper-left submatrix of V; VðrÞ; is full-ranked, x1 ¼ x2 ¼ x3 ¼ 0 is a
necessary condition for xV ¼ 0: But then x4 ¼ 0; from the last equation of the system. Thus we have shown that Q is di-
agonalizable. h

Appendix B: Complementary Results for the Distribution of the Time Until Coalescence Under Unidirectional
Gene Flow, and in the Absence of Gene Flow

Migration from Subpopulation 1 to Subpopulation 2 Backward in Time (M1 > 0, M2 = 0)

Using the derivation procedure described in Distribution of the time until coalescence under unidirectional gene flow, and in the
absence of gene flow, we find that:

f ð1ÞmigðtÞ ¼
"

b2M2
1

ðbM12 2Þðb2 1þ bM1Þ

#
1
b
e2

1
b t þ

"
4M1

ð22 bM1Þð2þM1Þ

#
M1

2
e2

M1
2 t

þ
"

1
ð1þM1Þ þ

M2
1

ð2þM1Þðb2 1þ bM1Þð1þM1Þ

#
ð1þM1Þe2ð1þM1Þt

f ð2ÞmigðtÞ ¼
1
b
e2ð1=bÞt

f ð3ÞmigðtÞ ¼
 

bM1

bM1 2 2

!
1
b
e2

1
b t þ

 
2

22 bM1

!
M1

2
e2

M1
2 t:

As a result, the PDF of the coalescence time of a pair of sequences under the IIMmodel, f ðiÞT ðtÞ; is again given by Equations 9 and
10, now with

l ¼
"
1
b

M1

2
1þM1

#

and

A ¼

b2M2
1

ðbM12 2Þðb2 1þ bM1Þ
4M1

ð22 bM1Þð2þM1Þ
1

1þM1
þ M2

1
ð2þM1Þðb2 1þ bM1Þð1þM1Þ

1 0 0
bM1

bM12 2
2

22 bM1
0

26666664

37777775:

Distribution of the Time Until Coalescence Under an IIM Model with M1 = M2 = 0

In this case, the IIMmodel reduces to a complete isolationmodelwhere both descendant populationsmay change size at time t1
into the past. The distribution of the absorption time TðiÞ

mig corresponding toQmig will now be either exponential, if both sampled
sequences are from the same subpopulation (i.e., for i 2 f1; 2gÞ; or coalescence will not be possible at all until the ancestral
population is reached, if we take a sequence from each subpopulation (i.e., if i= 3). It follows that the PDF of the coalescence
time of a pair of sequences in the IIM model is given by Equations 9 and 10 with

l ¼ ½ 1 ð1=bÞ 0 �

and

A ¼
241 0 0
0 1 0
0 0 1

35:
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