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Detecting Clinically Meaningful Shape Clusters
in Medical Image Data: Metrics Analysis for
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Abstract—Objective: Today’s growing medical image
databases call for novel processing tools to structure the
bulk of data and extract clinically relevant information.
Unsupervised hierarchical clustering may reveal clusters
within anatomical shape data of patient populations as
required for modern precision medicine strategies. Few
studies have applied hierarchical clustering techniques to
three-dimensional patient shape data and results depend
heavily on the chosen clustering distance metrics and link-
age functions. In this study, we sought to assess clustering
classification performance of various distance/linkage
combinations and of different types of input data to obtain
clinically meaningful shape clusters. Methods: We present
a processing pipeline combining automatic segmentation,
statistical shape modeling, and agglomerative hierarchical
clustering to automatically subdivide a set of 60 aortic
arch anatomical models into healthy controls, two groups
affected by congenital heart disease, and their respective
subgroups as defined by clinical diagnosis. Results were
compared with traditional morphometrics and principal
component analysis of shape features. Results: Our
pipeline achieved automatic division of input shape data
according to primary clinical diagnosis with high F-score
(0.902 ± 0.042) and Matthews correlation coefficient (0.851
± 0.064) using the correlation/weighted distance/linkage
combination. Meaningful subgroups within the three patient
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groups were obtained and benchmark scores for automatic
segmentation and classification performance are reported.
Conclusion: Clustering results vary depending on the
distance/linkage combination used to divide the data. Yet,
clinically relevant shape clusters and subgroups could
be found with high specificity and low misclassification
rates. Significance: Detecting disease-specific clusters
within medical image data could improve image-based
risk assessment, treatment planning, and medical device
development in complex disease.

Index Terms—Aortic arch, automatic segmentation, car-
diovascular magnetic resonance imaging, clinical decision
support, congenital heart disease, hierarchical clustering,
statistical shape analysis.

I. INTRODUCTION

MODERN medical imaging techniques such as computed
tomography (CT) and magnetic resonance (MR) imag-

ing provide detailed and accurate anatomical and functional
information of inner body structures and organs, making them
widely used tools for diagnosis and treatment planning. Con-
sequently, medical image databases are growing and valuable
patient data are accumulating, calling for novel approaches to
process and extract clinically relevant information not only
on a case-by-case basis, but also considering entire patient
populations [1]–[3].

Many computational image processing pathways focus on
segmentation of body structures [4], [5] or apply classification
algorithms to automatically distinguish between healthy and
disease [6]–[8]. Yet, to date few studies have looked at tools that
can be applied after those two crucial steps, computational tools
that can help understand a disease once anatomical shape infor-
mation is given and once a diagnosis has been made. Automated
clustering techniques from the field of data mining have been
widely used in genomics, taxonomy and chemoinformatics to
structure large amounts of data into subgroups, thereby revealing
previously unknown, yet relevant patterns within a given pop-
ulation [9], [10]. We believe that such an approach may prove
beneficial as well for the analysis of complex three-dimensional
(3D) anatomical models from medical image data in order to
close the gap between mere data and useful knowledge, as
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desired in current Precision Medicine or “Precision Imaging”
approaches [3]. Clinical image assessment of inner body struc-
tures usually reveals a patient’s dominant pathology, but it often
remains unclear how individual image data relate to other pa-
tients with the same disease or primary diagnosis. Grouping
patients according to anatomical similarity and taking into ac-
count clinical history and other functional or outcome parame-
ters may ultimately allow refined, cluster-adapted treatment and
follow-up strategies and could assist in risk-stratification when
scanning a new patient with similar diagnosis.

Hierarchical clustering techniques seem to be an attractive
way to discover anatomical subgroups from medical image
data as they are inherently unsupervised, thus do not require
any prior information about the study population and, unlike
K-means clustering, do not require specifying an expected num-
ber of subgroups [11]–[13]. Furthermore, clustering results can
be graphically summarised in a dendrogram that depicts in a
tree-like diagram how similar subjects are grouped together,
while dissimilar subjects are placed on different branches of
the tree. However, evaluation of subject similarity or dissimi-
larity and clustering results heavily depends on the choice of
both similarity or distance metric (with low inter-subject dis-
tance relating to higher similarity) and linkage function deter-
mining how subjects are linked together to form a subgroup
[12], [13]. Depending on the chosen distance/linkage combina-
tion, clustering results may vary substantially-potentially ren-
dering meaningless results [14], [15]. While previous studies
have analysed clustering techniques based on generic shapes or
two-dimensional (2D) shape data [16], few have assessed hi-
erarchical clustering performance using actual patient data in
a realistic setting, i.e. using three-dimensional (3D) anatom-
ical models of healthy and pathological shapes derived from
medical images [17], [18]. In general, medical image hierar-
chical clustering performance data including validation against
known and clinically relevant clusters are sparse. In this study,
we aimed to investigate whether and how hierarchical cluster-
ing can be used to automatically divide a bulk of unlabelled
clinically acquired cardiovascular magnetic resonance (CMR)
image data into clusters and subgroups that could be of clinical
relevance.

Specifically, we sought to analyse clustering classification
performance of various distance/linkage combinations applied
to a population of 60 aortic arch anatomical models, automat-
ically segmented from CMR data, composed of three equally-
sized subgroups of healthy aortic arches, arches post aortic
coarctation repair (COA) [19] and arches post arterial switch
operation (ASO) [20]. COA and ASO patients suffer from con-
genital heart disease (CHD), which manifests itself in abnor-
malities of cardiovascular structures (here, the aorta, known to
present shape patterns abnormal from healthy individuals [19],
[21], [22]). Anatomy plays a crucial role in both diagnosis and
therapy of CHD, as shape abnormalities often lead to functional
impairment, requiring intervention. COA and ASO image data
provide an excellent platform to test unsupervised clustering
algorithms, as newly found shape clusters or subgroups within
those diseases may ultimately impact on novel diagnosis and
treatment strategies.

To assure “meaningfulness” (here, clinical relevance) of unsu-
pervised clustering results, we externally validated [14], [15] our
results against clinical expert opinion, traditional morphomet-
ric parameters and 3D shape analysis via principal component
analysis (PCA). We aimed to find the distance metric/linkage
function combination that achieved highest classification perfor-
mance, i.e. that was able to automatically divide the bulk CMR
input data into the three clinically meaningful clusters of CTRL,
COA and ASO arch shapes with low misclassification rates.

Furthermore, we hypothesised that such clinically mean-
ingful clustering on a macrolevel yields meaningful shape
subgroups (i.e. “clusters within clusters”) on lower-level hi-
erarchies of the clustering tree as well, which may al-
low the detection of novel disease patterns in future
studies.

II. METHODS

The study outline is as follows: all aortic arch shape mod-
els were automatically segmented from CMR data and were
parameterised within one common mathematical framework
using a non-parametric statistical shape modelling (SSM) ap-
proach based on non-rigid registration of a computed template
shape [23], [24]. Based on this shape data, we applied principal
component analysis (PCA) for more detailed assessment of 3D
shape features prior to cluster analysis. Hierarchical clustering
was then performed on both the full, unprocessed shape data
and the reduced PCA dataset to determine the input and the
distance/linkage combination yielding clustering closest to the
clinical expert diagnosis with high classification performance.
Lastly, the distance/linkage setting yielding the most meaning-
ful division of the data (with highest F-score and Matthews
Correlation Coefficient) was analysed in more detail.

A. Patient Population

A total of 60 patients, who underwent routine CMR exam-
ination (whole heart 3D balanced, steady-state free precession
acquisition; 1.5T Avanto MR scanner, Siemens Medical Solu-
tions, Erlangen, Germany) at Great Ormond Street Hospital for
Children (GOSH, London, UK) were retrospectively included
in the study. The cohort was divided into three subgroups ac-
cording to their clinical primary diagnosis: 20 healthy subjects
whose aortic arch shapes were reported as normal at cardiac
assessment (control group CTRL, age 15.2 ± 2.03 years, 3 fe-
male), 20 patients who had undergone surgical aortic arch re-
construction for treatment of coarctation of the aorta (COA,
23.1 ± 7.35 years, 4 female) and 20 patients who had their
aorta pushed back posteriorly in the Lecompte [20] manoeu-
vre for arterial switch operation (ASO, 14.4 ± 2.48 years, 4
female). Ethical approval was obtained by the Great Ormond
Street Institute of Child Health/GOSH Research Ethics Com-
mittee and all patients or legal parent or guardian gave informed
consent for research use of the image data.

B. Segmentation and Registration

The aorta including the left ventricle (LV) was segmented
automatically using a multi-atlas propagation segmentation
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approach that applies a locally normalised cross correlation
(LNCC) based ranking combined with a consensus based
region-of-interest selection, which has been successfully applied
to whole heart [25] and right ventricle segmentation from CMR
data [4]. For each group, a leave-one-out strategy was followed,
where 19 manually labelled atlases of the respective group were
used to segment one unseen subject, and dice similarity coef-
ficients (DSC) were computed to quantify automatic segmen-
tation accuracy following DSC = 2AB/(A + B), where A is
the obtained segmentation and B the corresponding ground truth.
Automatic segmentation results were visually inspected and, if
necessary, manually edited (i.e. cleaned up and improved) using
ITKSnap [26].

Segmentation labels were exported as 3D computational sur-
face meshes in the Visualization Toolkit (VTK) format [27] and
visualised in ParaView [28]. All models were cut consistently
below the aortic root and at the level of the diaphragm using The
Vascular Modeling Toolkit (VMTK, [29]) cutting tools, whilst
coronary arteries and head and neck vessels were cut off as close
as possible to the arch. All surface meshes were then rigidly reg-
istered to one healthy CTRL subject using an Iterative Closest
Point (ICP) algorithm [30] prior to template computation (i.e.
3D population anatomical mean shape, see Section II-C). In
order to remove bias due to misalignment of input shapes, a
Generalised Procrustes Analysis (GPA) was adopted, by com-
puting an initial template, realigning the input shapes to the new
template via ICP registration and recomputing the template until
convergence, as described in [31].

C. Template and Deformation Matrix Computation

The 60 aligned arch surface meshes constituted the input for
the template computation using the openly available Deformet-
rica code framework (www.deformetrica.org) [32]. The frame-
work computes the 3D template shape of an input shape pop-
ulation, without assuming any point-to-point correspondence
between input meshes. This is achieved by modelling shapes
as mathematical currents (surrogate representations of shapes),
which characterise a shape as a distribution of shape features
rather than its actual point coordinates in space [23], [24]. Tem-
plate and resulting template-dependent shape parameterisations
were computed following protocols detailed in [31]. Surface
meshes were transferred into a vector space of currents W, gen-
erated by a Gaussian kernel. The standard deviation of the kernel
λW allows control of the currents resolution and was set to 5 mm.
The template and its transformations ϕi registering template to
each subject shape were computed simultaneously using the
large deformation diffeomorphic metric mapping (LDDMM)
framework [33]. The transformation functions ϕi were defined
within another Gaussian kernel vector space V with standard
deviation λV , set to 20 mm, controlling the transformation stiff-
ness. All 3D shape features present in the population were thus
encoded by subject-specific transformations of the template ϕi ,
which are parameterised by a unique set of deformation vec-
tors βi for each patient shape. Setting λW to 5 mm and λV to
20 mm, resulted in a set of 300 βi per patient. With each βi

having an x, y and z entry, a final deformation matrix DF ull of

size N xn with N = 60 included subjects and n = 900 de-
formation momenta comprised all 3D shape information of the
input population and was used for further analysis via PCA and
hierarchical clustering.

D. Morphometric Analysis and Principal
Component Analysis

To investigate whether arch shape characteristics related to
size and shape were sufficiently different between the three
groups (i.e. whether the three patient groups translate into three
shape groups), traditional morphometric analysis was carried
out in 2D and in 3D, without controlling for size difference as
size itself is a descriptor of pathological paediatric patient arch
shape as well. In terms of size, aortic arch model volume V, sur-
face to volume ratio SV ol and arch centreline length CLlength

were derived automatically using VMTK and Matlab (The
MathWorks, Natick, MA). As shape parameters, we considered
arch centreline tortuosity CLtort [34], ascending to descending
aortic arch diameter ratio Dasc,desc and arch width T, manually
measured on the image slices as described in [19], [31].

Further, we performed PCA on the covariance matrix of the
combined deformation vectors βi [35] to extract PCA shape
modes, each describing a certain amount of 3D population shape
variability as a deformation of the template shape. Each subject
deformation ϕi was projected onto each PCA shape mode to
obtain the low-dimensional shape vector {fi,k}, k ε [1,m] [35]
for each shape mode k and subject i, whose entries parameterise
the subject-specific PCA loadings. The {fi,k} were compared
between the three groups CTRL, COA and ASO, and the {fi,k}
of the first two PCA shape modes were plotted against each other
to visualise potential grouping within the input shape data. The
first m = 19 shape modes, explaining 90% of the total shape
variability (determined by the proportion of sorted eigenvalues)
were selected [36] and the respective {fi,k} combined consti-
tuted the reduced PCA shape loading matrix DP C A of size
N × m, which described 3D population shape features in terms
of the lower-dimensional PCA loadings.

E. Hierarchical Clustering

The shape matrices DF ull and DP C A constituted the input
for the agglomerative hierarchical clustering algorithm (Mat-
lab). Based on a pre-defined distance (i.e. similarity) metric,
clusters are formed by grouping subjects with similar features
together, while subjects with distinctly different features are
placed in other clusters. This unsupervised approach unveils
“naturally occurring” subgroups within the data, without de-
pending on prior user input [12], [16]. Here, features of interest
were 3D aortic arch shape features, parameterised by the en-
tries of DF ull and DP C A . The algorithm can be described as
follows [37], [38]:

1) Compute distances between every pair of subjects within
the input dataset to obtain a metric of pairwise subject
similarity (treating each subject as its own cluster).

2) Form binary cluster from two closest (most similar) sub-
jects (using distance metric) or clusters (using linkage
function).
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3) Recompute distances between newly formed cluster and
remaining subjects or clusters.

4) Return to Step 2 until all subjects are included in one
large cluster, formed by a tree-like multi-level network
of subclusters (dendrogram). At the lowest level, each
subject forms its own cluster.

5) Cut off dendrogram branches at a specified level of the
hierarchy to assign subjects below each cut to a specific
cluster, generating partitions of the data.

To compute pairwise distances between the 60 patient shapes
parameterised by deformation row vectors of DF ull or PCA
shape vectors of DP C A , the following commonly used distance
(similarity) metrics dist between the vector pair xs and xt were
computed (with D being of size N xn, with N (1-by-n) row
vectors xi, i ∈ [1, N ]; for DF ull with n ∈ [1, . . . , 900] and
for DP C A with n ∈ [1, . . . , 19]) [38]:

distEuclidean =

√
√
√
√

n∑

j=1

|xsj − xtj |2 ∧= ‖xsj − xtj‖2 (1)

distStandardisedEuclidean =

√
√
√
√

n∑

j=1

|xsj − xtj |2
s2

j

(2)

with sj being the standard deviation of the xs and xt over the
sample set.

distC ityblock =
n∑

j=1

|xsj − xtj | ∧= ‖xsj − xtj‖1 (3)

distC hebychev = maxj {|xsj − xtj |} ∧= ‖xsj − xtj‖∞ (4)

distC osine = 1 − xsx
′
t

√

(xsx′
s)(xtx′

t)
∧= 1 − xs · xt

‖xs‖ ‖xt‖ (5)

distC orrelation = 1

− (xs − x̄s)(xt − x̄t)′
√

(xs − x̄s)(xs − x̄s)′
√

(xt − x̄t)(xt − x̄t)′
(6)

with x̄s = 1
n

∑n
j=1 xsj and x̄t = 1

n

∑n
j=1 xtj

distSpearman = 1

− (rs − r̄s)(rt − r̄t)′
√

(rs − r̄s)(rs − r̄s)′
√

(rt − r̄t)(rt − r̄t)′
(7)

where r̄s = 1
n

∑

j rsj = (n+1)
2 and r̄t = 1

n

∑

j rtj = (n+1)
2 ; rs

and rt are the coordinate-wise rank vectors of xs and xt .
After defining a distance metric between pairs of subject

shapes, a linkage function then uses the generated distance data
to join groups of subjects together into binary clusters and link
those to higher level larger clusters, until all subjects are linked
together. The linkage function thus defines the similarity or dis-
tance between two groups of subjects and is used to generate
the dendrogram. The order in which subjects are clustered to-
gether is determined by the type of linkage method. For each
distance metric, the following commonly used linkage methods
were applied to generate a dendrogram. For subjects or clusters
s and t joined into cluster s ∪ t, the new distance between this

cluster and another subject or cluster k is generally defined by
the Lance-Williams dissimilarity update formula link(s ∪ t, k)
(8), which defines different types of linkage methods, depend-
ing on the choice of the parameters αs , αt , β and γ as follows
[10]:

link(s ∪ t, k) = αsdist(s, k) + αtdist(t, k)

+βdist(s, t) + γ |dist(s, k) − dist(t, k)| (8)

link(s ∪ t, k)Average : αs = ns

ns +nt
, αt = nt

nt +ns
,

β = 0, γ = 0
(9)

link(s ∪ t, k)C entroid : αs = ns

ns +nt
, αt = nt

nt +ns
,

β = − ns nt

(ns +nt )
2 , γ = 0

(10)

link(s ∪ t, k)C omplete : αs =
1
2
, αt =

1
2
, β = 0, γ =

1
2
(11)

link(s ∪ t, k)M edian : αs =
1
2
, αt =

1
2
, β = −1

4
, γ = 0

(12)

link(s ∪ t, k)Single : αs =
1
2
, αt =

1
2
, β = 0, γ = −1

2
(13)

link(s ∪ t, k)Ward : αs = ns +nk

ns +nt +nk
, αt = nt +nk

ns +nt +nk
,

β = − nk

ns +nt +nk
, γ = 0

(14)

link(s ∪ t, k)W eighted : αs =
1
2
, αt =

1
2
, β = 0, γ = 0

(15)

Note that dist can be any of the distance metrics defined in
(1)–(7); ns , nk , nt is the number of subjects in cluster s, k, t,
respectively. Centroid, Median and Ward linkage methods are
appropriate for Euclidean distances only [38]. Cutting the den-
drogram horizontally at a particular height or level partitions
the data into shape subgroups [12]. As we first aimed to as-
sess whether the clustering algorithm was able to distinguish
between CTRL, COA and ASO groups, dendrograms were cut
automatically at a level that yielded three large shape clusters.

F. Clustering Classification Performance Measures

Based on the majority of group members associated with one
cluster, each cluster was automatically labelled either CTRL
(Class1), COA (Class2) or ASO (Class3) and numbers of as-
signed subjects from each of the three classes were recorded
in a confusion matrix to assess clustering classification perfor-
mance. All correctly assigned subjects for each class are shown
on the diagonal of the matrix. For each of the three classes
Classj j ∈ [1], [3], the total number of true positives (TPj ,
e.g. in case of the CTRL class, the actual CTRLs that were
correctly classified as CTRL), false positives (FPj , e.g. COA
and/or ASO that were incorrectly classified as CTRL), false
negatives (FNj , e.g. CTRLs that were incorrectly classified as
COA and/or ASO) and true negatives (TNj , e.g. all remaining
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subjects, correctly classified as non-CTRL) were derived from
the confusion matrices.

With these values, overall classification performance was
computed using macroaveraging (denoted with subscript M)
[39] over L = 3 classes of the following performance mea-
sures:

RecallM =

∑L
j=1

T Pj

T Pj +F Nj

L
(16)

SpecifictyM =

∑L
j=1

T Nj

F Pj +T Nj

L
(17)

PrecisionM =

∑L
j=1

T Pj

T Pj +F Pj

L
(18)

AccuracyM =

∑L
j=1

T Pj +T Nj

T Pj +F Nj +F Pj +T Nj

L
(19)

To minimise chance findings and bias associated with those
traditional measures, we also computed (macroaveraged) In-
formedness, which relates to the probability that there has been
an informed classification as opposed to mere guessing, and
Markedness, defined as [40]:

InformednessM =

∑L
j=1

T Pj

T Pj +F Nj
+ T Nj

F Pj +T Nj
− 1

L
(20)

MarkednessM =

∑L
j=1

T Pj

T Pj +F Pj
+ T Nj

T Nj +F Nj
− 1

L
(21)

To provide a summary of the above measures, the macroav-
eraged F − scoreM (weighted harmonic mean of Recall and
Precision) and Matthew’s Correlation Coefficient (MCCM )
(geometric mean of Informedness and Markedness [41]) were
computed as follows:

F − scoreM =
2PrecisionM RecallM

PrecisionM + RecallM
(22)

MCCM =
∑L

j=1
T Pj T Nj −F Pj F Nj√

(T Pj +F Pj )(T Pj +F Nj )(T Nj +F Pj )(T Nj +F Nj )

L
(23)

F − scoreM and MCCM scores were used to evaluate over-
all classification performance of the various distance metric
and linkage combinations. Note that F-score values range from
0 for worst to 1 for best classification performance, whereas
MCC ranges from –1 for total disagreement over 0 for random
guessing to +1 for perfect prediction of classes [41]. In the
following, the qualitative term “best” refers to highest possible
classification performance in terms of both F − scoreM and
MCCM score being close to the value 1.

G. Validation of Clustering Results

Clustering results were evaluated using 10-fold cross vali-
dation (CV), leaving out N/10 randomly selected subjects, and
recomputing template, DF ull and DP C A , until each subject had
been left out once. Classification performance measures were
calculated for each of the 10 CV runs, looping through all 49

distance metric/linkage combinations for the two different in-
put matrices DF ull and DP C A , respectively. All clustering runs
were carried out on a 32 GB workstation using one 2.3 GHz
core. The distance/linkage combination with the best classifi-
cation performance based on mean F − scoreM and MCCM

was chosen for further analyses of the full data matrix, compris-
ing all N = 60 subjects. Results of this final clustering were
visualised as a dendrogram and compared to PCA results.

H. Statistical Analysis

For all analysed size, shape and PCA shape vector entries,
mean and 95% confidence intervals (95CIs) based on the patient
cohorts are reported. For classification performance measures,
mean and 95CIs are reported based on the CV runs.

To compare distributional differences between the three pa-
tient groups CTRL, COA and ASO, independent analysis of
variance (ANOVA) was performed. Prior to ANOVA, homo-
geneity of variance was assessed using Levene’s test. In case
homogeneity of variance was violated, Welch’s test was per-
formed. When ANOVA showed significance, post hoc tests were
carried out for pairwise group comparisons and Bonferroni ad-
justed to control for Type I error rates. Statistical significance
was assumed at level p < 0.05. All statistical tests were car-
ried out using R v3.3.1 (R Foundation for Statistical Computing,
Vienna, Austria).

III. RESULTS

A. Segmentation

Average segmentation runtime was approximately 2 hours
per patient (parallel processing on a 24 core, 2.3 GHz, 32 GB
RAM workstation). Average Dice scores (±95CI) for the au-
tomatically computed segmentation labels compared to their
respective ground truths were 0.917 ± 0.026 for the CTRL,
0.944 ± 0.012 for the COA and 0.913 ± 0.033 for the ASO
group. Final automatic segmentation labels required a maximum
of 10 minutes manual clean-up.

B. Comparison of Traditional Shape Parameters

In terms of size, significant distributional differences in V
(Fig. 1(a)) were found between the COA and CTRL group
(p = 2e − 07), and the COA and ASO group (p = 7e − 06).
SV ol distributions (Fig. 1(b)) differed significantly between the
COA and CTRL group (p = 1e − 06), and the COA and ASO
group (p = 3e − 03). Distributional differences in CLlength

(Fig. 1(c)) were found between the COA and CTRL group
(p = 5e − 05) and the COA and ASO group (p = 1e − 06).
Overall, COA aortic arches were significantly larger and more
compact, whereas arch models from the CTRL and ASO group
were of similar size. Following this analysis, we would expect
the clustering algorithm to confuse CTRL and ASO shapes,
while separating out well the COA group, if it mainly took into
account size differences between input shapes.

With regard to measured shape parameters, significant dif-
ferences between all three groups were found for CLtort

following post hoc analyses (p = 2e − 07 for COA vs
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Fig. 1. Boxplots of size (a)–(c) and shape (d)–(f) morphometric pa-
rameters describing differences in aortic arch shape between the three
patient groups CTRL, COA and ASO. The thick line within the box rep-
resents the median value, box height represents the interquartile range
and whiskers extend to the maximum and minimum value, respectively.
∗ denotes statistical significance at level p < .05; ∗∗ at level p < .01.

CTRL, p = 1e − 14 for COA vs ASO and p = 1e − 02 for
CTRL vs ASO, Fig. 1(d)). Similarly, Dasc,desc distributions
(p = 1e − 05 for COA vs CTRL, p = 7e − 10 for COA vs
ASO and p = 4e − 02 for CTRL vs ASO, Fig. 1(e)) and T
distributions differed significantly (p = 6e − 08 for COA vs
CTRL, p = 2e − 16 for COA vs ASO and p = 3e − 09 for
CTRL vs ASO, Fig. 1(f)) between all three groups, with COA
arches showing generally more tortuous and wider arch shapes
with higher ascending to descending aortic diameter ratios than
the other two groups and ASO arches being the least wide, least
tortuous with the lowest ascending to descending arch diameter
ratios.

C. Principal Component Analysis of 3D Shape Features

The first three shape modes are visualised in Fig. 2. PCA
shape mode 1 accounted for 35.4% of shape variability. It de-
scribed shape change from an overall small and short, ASO-
like arch shape with narrow arch width towards a large, COA-
like arch shape with high arch width, dilated root and as-
cending aorta, and more tortuous descending aorta continua-
tion (Fig. 2(a)). In terms of {fi,1} shape vector entry dis-
tributions, COA arches differed significantly from the CTRL
group (p = 4e − 08) and from the ASO group (p = 3e − 12).
CTRL and ASO shape vector entry distributions did not differ
significantly (p = 0.050).

PCA shape mode 2 described shape variability associated
with more rounded and wide arches compared to more “gothic”
[19] arch shapes with similar arch height but smaller arch width.
It accounted for 12.2% of the total shape variability (Fig. 2(b)).
The {fi,2} entry distribution for the ASO group differed signifi-
cantly from the CTRL group (p = 2e − 08) and from the COA
group (p = 1e − 06), while there was no significant difference
between the CTRL and COA groups (p = 0.930)

PCA shape mode 3 accounted for 7.4% of shape variability.
It varied from arch shapes with lower arch height and slightly
dilated root to arches with higher arch height but similar arch

width and few diameter changes along the arch (Fig. 2(c)). For
this mode, the {fi,3} distribution of the CTRL group was signif-
icantly different from the COA group (p = 2e − 02) and from
the ASO group (p = 3e − 03) but no significant difference was
found between the COA and ASO group (p = 0.999)

Following the analysis of traditional shape parameters and the
first three PCA shape modes, we concluded that all three selected
patient groups were sufficiently different from each other, thus
forming three distinct shape groups to be found by the clustering
algorithm. Furthermore, plotting the {fi,1} and {fi,2} for PCA
shape modes 1 and 2 against each other revealed a good split
between the three groups in PCA 3D shape space (Fig. 2(d)),
justifying the assumption of three large shape clusters within
our cohort of 60 patients.

D. Determining Best performing Input and
Distance/Linkage Combination

Macroaveraged classification performance measures F −
soreM and MCCM for various distance/linkage combinations
and the input datasets DF ull,C V and DP C A,C V are shown in
Fig. 3. Note that only the linkage option which achieved highest
F − scoreM and MCCM score is shown for each distance met-
ric. Best performing linkages were the same for DF ull,C V and
DP C A,C V , except in the cases of Cosine and Chebychev dis-
tance metrics, where DP C A,C V achieved higher scores using
the Average linkage instead of Weighted linkage function.

In a one-to-one comparison, clustering using DF ull,C V

yielded better classification performance both in terms of F −
scoreM and MCCM than achieved with DP C A,C V . Only the
Chebychev and Cityblock distance metrics performed better for
DP C A,C V , yet scoring on average below 0.7 for F − scoreM

and below 0.6 for MCCM . The worst performance was found
for the Standardised Euclidean distance, even yielding negative
(i.e. highly confused) results in terms of MCCM .

On average, the best performing distance metrics (average
F − scoreM above 0.7 and average MCCM above 0.5) were
the Spearman, Correlation and Cosine metrics in combina-
tion with the Weighted linkage and the Euclidean distance
in combination with the Ward linkage. However, particularly
MCCM scores revealed weaknesses such as large 95CIs for
the Cosine metric, making it the most unreliable distance met-
ric. Instead, Spearman/Weighted, Correlation/Weighted and Eu-
clidean/Ward combinations performed consistently well, with
the Correlation/Weighted combination achieving on average the
best classification performance with F − scoreM = 0.902 ±
0.042 and MCCM = 0.851 ± 0.064 for DF ull,C V . There-
fore, the Correlation/Weighted distance/linkage combination
applied to the full dataset DF ull,C V was found to yield the
best overall shape clustering results with respect to the three
patient groups and was chosen for further analysis.

E. Analysis of Best Performing Distance/Linkage
Combination

Looking at individual classification performance metrics,
the Correlation/Weighted distance/linkage combination per-
formed consistently well, with average InformednessM,
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Fig. 2. Results from principal component analysis (PCA) of the deformation shape data DFull . Graphs show boxplots of subject-specific shape
vector entries associated with the first three PCA shape modes accounting for 35.4% (mode 1), 12.2% (mode 2) and 7.4% (mode 3) of total shape
variability (a)–(c). For PCA shape mode 1, high shape vector entries were associated with the COA group and with COA-like 3D aortic arch shape
features, visualised as a deformation of the computed template shape from −2 to +2 standard deviations (SD) below the graph (a). PCA shape
mode 2 related to shape features associated with the ASO group, showing a slightly squeezed, gothic-type arch with dilated aortic root compared to
a more rounded arch shape for low shape vector entries (b). PCA shape mode 3 visualised shape changes towards an overall slim aortic arch with
relatively constant arch diameter, associated with high shape vector entries and thus the CTRL group (c). The PCA revealed significant differences
in 3D arch shape features between the three patient groups. The scatterplot of subject-specific PCA shape vector 1 entries vs PCA shape vector 2
entries (d) revealed grouping among aortic arch input shapes in PCA shape space according to the deformation shape data (∗ denotes statistical
significance at level p < 0.05; ∗∗ at level p < 0.01.)

MarkednessM and MCCM scores above 0.8 and
SpecificityM , RecallM , PrecisionM , F − scoreM and
AccuracyM measures around 0.9 (Fig. 4). Highest scores were
achieved for SpecificityM (i.e. proportion of patients correctly
identified as not being a member of one of the three groups) with
0.948 ± 0.023.

Detailed analysis of the derived confusion matrices for
each CV run using the Correlation/Weighted combination and
DF ull,C V revealed that on average 83% of CTRL arch shapes
were correctly assigned to the CTRL group, while 13% were
confused with COA and 4% were confused with ASO arch
shapes (Table I). For the COA group, on average 85% were
correctly assigned and the remaining 15% were confused with
CTRL arch shapes. ASO arch shapes were not confused with
any other shape, thus 100% were placed correctly into one ASO
cluster. Notably, neither were ASO and CTRL shapes confused
with high misclassification rates, nor were COA shapes always
assigned correctly as we would have expected in case the clus-
tering algorithm only took into account aortic arch size rather
than shape (see Section B).

F. Subgroup Analysis – Clusters Within Clusters

Finally, clustering classification performance was assessed
using the Correlation/Weighted distance/linkage combination
and DF ull , including all N = 60 patients. In this case, only
two COA shapes (10%) were confused with CTRL arch shapes,
while 100% of both CTRL and ASO arches were assigned to
one respective cluster (Fig. 5(a)).

In order to reveal more refined shape subgroups within the
three larger clusters, which would add novel information about

previously unknown patterns within the pathological shape clus-
ters, branches were cut at a lower hierarchy level. Tree branches
were cut at a height of 0.72, thus forming a total of 10 sub-
groups with a varying number of members in each larger cluster
(Fig. 5(b)). The CTRL group was divided into 5 smaller sub-
groups, the COA group into three and the ASO into two. In-
terestingly, the two confused COA shapes formed one distinct
cluster within the CTRL group by themselves, marking them as
being different from the other CTRL shapes.

To evaluate whether the 10 subgroups related to meaningful
3D shape groups within the CTRL, COA and ASO clusters,
we produced a scatter plot of the PCA shape space generated
by the {fi,1} and {fi,2} associated with PCA shape modes 1
and 2 and symbol-coded the respective members of the 10 sub-
groups according to their subgroup affiliation (Fig. 6). This plot
revealed that novel and meaningful shape subgroups within the
three larger (known) shape clusters could be found, since arch
shapes that were clustered together by the hierarchical clustering
algorithm were also clustered closer together in terms of their
3D aortic arch shapes as described by the PCA loadings. Those
findings confirmed that our pipeline can be used to detect to date
unknown anatomical subgroups and patterns within pathologi-
cal arch shape populations, which may prove to differ in terms
of clinical outcome in future studies of larger, homogeneous
patient cohorts.

IV. DISCUSSION

Comparing different types of input data for the unsuper-
vised clustering pipeline, our results showed that a preceding
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Fig. 3. Clustering classification performance measures for full input
dataset (DFull,CV , right, green) and reduced PCA shape loading dataset
(DPCA ,CV , left, blue), showing mean and 95CIs of macroaveraged
F − scoreM (a) and MCCM (b) for the respective best distance/linkage
combinations over 10 CV runs. Overall, the DFull,CV input dataset per-
formed better than the reduced PCA dataset and Spearman/Weighted,
Correlation/Weighted and Euclidean/Ward distance/linkage combina-
tions were found to yield good and reliable clustering classification
performance.

Fig. 4. Means and 95CIs over 10 CV runs of all computed clustering
classification performance measures for the distance/linkage combina-
tion Correlation/Weighted, applied to the full 3D shape dataset DFull,CV .
In particular, high Specificity was achieved.

dimensionality reduction via PCA yielded overall lower macro
F − scoreM and MCCM scores than the raw deformation
vector data. PCA thus did not yield improved clustering clas-
sification performance, which is in accordance with previous
studies [42]. Using the full deformation vector data as input,
the distance/linkage combinations Spearman/Weighted, Corre-
lation/Weighted and Euclidean/Ward showed overall good abil-
ity to automatically structure the bulk input data into the three
clinically defined groups as measured by average F − scoresM

above 0.7 and MCCM scores above 0.5, following 10-fold
cross-validation. This is in accordance with early observations
from Lance and Williams [43] stating that the Correlation dis-

TABLE I
NORMALISED CONFUSION MATRIX

Group CTRL, predicted COA, predicted ASO, predicted

CTRL, actual 83 ± 13% 13 ± 13% 4 ± 6%
COA, actual 15 ± 10% 85 ± 10% 0
ASO, actual 0 0 100 ± 0%

Normalised confusion matrix for Correlation/Weighted distance/linkage
combination. Means and 95CIs of percentage of assigned subjects from
the respective groups for 10 CV runs are reported. The group that was most
confused with others was the CTRL group, while ASO patients were always
gathered in one cluster.

tance is suitable for comparing shapes, while the Euclidean
distance is generally compatible with many clustering scenar-
ios, probably due to being invariant under translations of the
origin and under rotations of the pattern space [44]. The Cor-
relation metric may here have resulted in best classification
performance as it predominantly measures interrelationships
between features (rather than absolute values or magnitudes)–
here parameterised by shape deformation vectors of a template
shape defined in a common mathematical framework. In ac-
cordance with this study, Correlation and Euclidean distance
metrics have previously been found appropriate for various hi-
erarchical clustering tasks [15], [43], [45] and so has the Ward
linkage, specifically when clustering anatomical structures [5],
[46], [47]. The Correlation/Weighted combination performed
best with average SpecificityM , RecallM , PrecisionM and
AccuracyM scores around 0.9 and small confidence intervals–
considerably higher than previously reported accuracies [48].
Averaged over all cross-validation runs, 17% of CTRL shapes,
15% of COA shapes and 0% of ASO shapes were misclassified.
Those were lower misclassification rates than reported earlier
for hierarchical clustering by Dalton (21% to 28%) [15], and
Brun (13% to 48%) [14]. Applied to the full dataset of 60 pa-
tients, only two COA arch shapes that showed highly localised
deformation of the transverse aortic arch were confused with
CTRL shapes. This suggests that some subtle 3D arch shape
features may not be taken into account sufficiently when com-
puting inter-subject distances. This could be addressed in future
studies by a weighting of local 3D shape features, depending
on which section of the arch (i.e. which anatomical region) is
subject of interest. As expected though, ASO arches seemed
to constitute a distinctly different shape cluster, allowing for
0% of misclassification, which is a notable performance for an
unsupervised and automated approach.

Furthermore, hierarchical clustering results were compared to
results from PCA statistical shape analysis and found that both
methods compared well in determining shape clusters and sub-
groups based on the deformation data. More importantly, apart
from distinguishing the three clinically known groups (CTRL,
COA, ASO) mostly correctly, the clustering algorithm was able
to cluster together subjects with similar 3D arch shape on lower
levels of the clustering tree as well. This allowed for detection
of previously unknown “clusters within the cluster”, i.e. novel
anatomical patterns within the pathological COA and ASO clus-
ters. While we refrained from analyzing those subgroups further
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Fig. 5. Dendrogram showing shape clustering on full dataset of all patients with the Correlation/Weighted setting. The height on the Y-axis indicates
the distance between subjects, computed by the linkage function. The dendrogram was automatically cut such that three large clusters emerged
(a). Depending on the majority of subjects assigned to one cluster, the cluster was labelled accordingly, either CTRL, COA or ASO and confusion
matrices were computed. Horizontal numbers on the X-axis represent patient identifiers: CTRL (1-20); COA (21–40) and ASO (41–60). Using the
full dataset, only two COA subjects (subjects 27 and 31, marked) were misclassified as CTRL. In a second step, the dendrogram was cut at a lower
level in order to reveal subgroups within the three main clusters (b). Ten subgroups were obtained as indicated. The subgroup-specific symbols are
used for visualisation of subgroup affiliation in Fig. 6.

Fig. 6. Scatterplot of 3D shape space described by subject-specific
PCA shape vector entries. Individual patients are symbol-coded accord-
ing to subgroups obtained from cutting the dendrogram at lower levels
of the hierarchy (Fig. 5(b)), revealing that patients with similar 3D aortic
arch shape are grouped together by both the PCA analysis and the clus-
tering algorithm. The two COA subjects misclassified as CTRL (subjects
27 and 31) are marked in orange.

due to a limited subgroup sample size, such subgroups may be
discovered in future studies of larger patient cohorts via the pro-
posed pipeline and may generate novel hypotheses of clinical
relevance.

Following these results, we foresee potential application of
hierarchical clustering algorithms for medical image analysis
in four main areas: research, clinical, technical and commer-

cial applications. In research, such approaches could help bet-
ter understand diseases by providing a means to derive novel
(anatomical, shape) biomarkers and detect yet-to-be-discovered
disease patterns. This, in turn, could ultimately assist clinicians
in decision-making and risk stratification, particularly in com-
plex or rare diseases. Large, cloud-based image databases–in
combination with immediate online clustering following im-
age acquisition–could allow comparison of a newly scanned
patient to individuals with the same clinical history or dis-
ease in order to detect “outliers” or similarities [49]. On the
technical side, hierarchical clustering could be used for shape-
retrieval systems and found clusters could be used to compute
subtemplates or subatlases (i.e. representatives of a subgroup),
which may improve atlas-based image segmentation of highly
varying anatomy [7]. Following the overall good classification
results for our unsupervised pipeline, we further assume that
trained, supervised approaches would perform even better in
case classification of shapes is desired. Finally, regarding com-
mercial applications, subgroup-based subtemplate anatomical
models could allow for more cost-effective “few-sizes-fit-all”
rather than patient-specific approaches for device design and
development, which may be particularly appealing in complex
structural disease.

For such broad application of hierarchical clustering
algorithms to become reality, large medical image databases
are required, which leads to one of the limitations of our study–
the relatively small sample size. Nevertheless, we believe this
study constitutes a first step showcasing that clinically mean-
ingful clustering of medical image data can be achieved once
clustering parameters are set correctly. Future studies should fo-
cus on including more patients, different types of anatomy and
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on automating the pipeline further. Here, we aimed to automate
data processing as much as possible. Yet, steps such as isolat-
ing the structure of interest after segmentation (here the aortic
arch) were performed using manual cutting tools. This is another
limitation, which may be addressed by providing segmentation
atlases specifically adapted to the structure of interest. Further,
some automatic segmentation results had to be edited manually
due to insufficient input image quality or artefacts. With so-
phisticated automatic segmentation algorithms currently being
on the rise [50], we foresee drastic improvement in this area
in the near future. In this regard, this study reports one of the
largest datasets of automatically segmented pathological struc-
tures affected by congenital heart disease and the reported Dice
Similarity Coefficients could be used as reference values for
further algorithm development.

V. CONCLUSION

In this study, we present and evaluate a medical image pro-
cessing pipeline combining automatic segmentation, statistical
shape modelling and unsupervised hierarchical clustering of
3D anatomical models in a cohort of healthy and pathologi-
cal aortic arches post-surgical repair. By applying a specific
set of distance metric and linkage function, clustering classifi-
cation results yielded clinically meaningful shape clusters and
subgroups–automatically derived without any prior information.
To the best of our knowledge, this is the first study evaluating
3D hierarchical shape clustering performance on realistic, clin-
ically acquired cardiovascular image data. The reported clus-
tering classification performance and automatic segmentation
scores could be used as benchmark values for future algorithm
implementation and improvement.

Apart from yielding a clinically meaningful division of the
data according to known clinical diagnosis, our analysis re-
vealed novel subgroups within the known clusters, which offers
the potential of providing additional information and insight
into yet-to-be unveiled similarities and patterns within a dis-
ease, once an initial diagnosis has been made. Therefore, our
analytical platform can be an adjunct in moving away from a
case-by-case image-based diagnosis towards assessing a patient
in the context of a patient population as an integral component
of current Precision Medicine or “Precision Imaging” [3] strate-
gies. Such a clinical decision support system may pave the way
for moving from mere data towards information and knowl-
edge, which could ultimately impact on improved diagnosis,
risk stratification and treatment strategies.
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