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Highlights 

1. The mechanics of a saturated silty loess were examined by means of triaxial and 

oedometer tests. 

  2. Comparisons between intact and reconstituted samples demonstrated a strong 

effect of structure. 

3. The effects of structure are similar to those in clayey loess though they have 

different properties. 
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Abstract 

The results from an intensive experimental investigation on a loess that was retrieved 

from a typical silty loess zone in the north-western Chinese Loess Plateau are presented 

and interpreted. Triaxial and oedometer tests were performed on intact and reconstituted 

samples in a saturated condition. The soil behavior was found to be strongly affected 

by structure. The compression paths of the intact samples crossed the intrinsic 

compression line of the reconstituted soil and reached well-defined gross yield points, 

after which the compression paths converged towards the intrinsic compression lines. 

Two critical state lines were defined for the intact and reconstituted soils in the 

volumetric plane as a result of a robust element of natural structure. Comparisons were 

made with a structured clayey loess retrieved from the south-eastern Loess Plateau. It 

was found that the effects of structure on the behavior of the two loess soils are similar 

though they are very different in natural properties. This indicates that their natural 

structures might have experienced similar forming processes, perhaps related to their 

common origin. Catastrophic flowslides commonly occur in the study area, and the 

patterns of behavior observed in the laboratory tests may create some new insights into 

mechanisms of landslide initiation and subsequent movement as discussed in the study.   

 

Keywords: Loess; Structure/Fabric; Laboratory Tests; Landslides  
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1. Introduction 

Earth slopes and high vertical cliffs in loess are frequently observed to be stable for 

long periods in NW China. Under low moisture contents, the structure and suction 

provide loess with sufficient shear strength to resist slope failure (Gao, 1988; Lin & 

Wang, 1988), but these slopes may suddenly collapse once wetted or saturated (Delage 

et al., 2005; Derbyshire et al., 2001; Dijkstra et al., 2001). The behavior of loess has 

been extensively investigated (Derbyshire, et al., 1994; Wen & Yan, 2013; Rogers et al., 

1994; Muñoz-Castelblanco et al., 2011; Jiang et al., 2012; Jiang et al., 2014. The effects 

of natural structure are likely to play an important role in the landslide processes and 

Xu and Coop (2016) investigated the influence of structure on the behavior of a 

saturated clayey loess. However, the loess soils from different areas are usually different 

in physical-chemical composition and in the micro-characteristics of structure (Liu, 

1985; Lin & Wang, 1988; Wen & Yan, 2013). However, these studies have generally 

not highlighted the roles of structure in the mechanics of the soils through detailed 

comparison of intact and reconstituted behavior and how that changes with location. A 

comparison of the influences of structure on behavior between different types of loess 

is therefore necessary.   

 

There is also an urgent need for a combined study of the behavior of intact and disturbed 

loess for engineering practice. For example, the tops of silty loess-covered hills in the 

Lanzhou area are being removed to fill in valleys to create flatter land on which to build 

(Li et al., 2014). The mechanics of the intact and disturbed silty loess are extremely 
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important for these projects. In research on flowslides the effects of structure on soil 

behavior in landslides needs to be identified and clarified. For example, is the critical 

state line location and shape in the volumetric plane the same for the intact and 

remolded silty loess? This is an important question because liquefaction has been 

usually taken as a critical mechanism for catastrophic flowslides in loess (Zhang et al., 

2009; Xu et al., 2011; Xu et al., 2012; Zhang et al., 2013), and for other soils 

liquefaction can be related to the state in the volumetric plane relative to the critical 

state line (e.g. Carrera et al., 2011). Many laboratory testing programs in landslide 

studies were designed to test solely intact loess samples (Zhang et al., 2009; Xu et al., 

2011; Xu et al., 2012; Zhou et al., 2014; Wang et al., 2015). Hence, the differences and 

links between the behavior of intact and remolded loess are still unclear. 

 

The intent of the research presented here is to explore the mechanics of a silty loess in 

the Lanzhou area, NW China. The samples were retrieved from a loess platform where 

flowslides widely occur. A series of triaxial and oedometer tests on intact and 

reconstituted samples were performed. All tests were performed on saturated loess, 

after taking into account that these landslides commonly initiate in saturated layers. The 

test results were first interpreted in the context of the macro-mechanical behavior of the 

soil and then a systematic comparison with the clayey loess from the south-eastern 

Chinese Loess Plateau, tested by Xu & Coop (2016) has been made. While Xu and 

Coop examined the influence of different depths at one location for the clayey loess, 

this paper therefore focusses on the differences in the behavior of the loess with two 
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different gradings at different locations. Comparing only two soils, the study of the 

influence of grading is of course not exhaustive, but is sufficient to highlight its main 

effects along with similarities of the effects of structure for each soil. The liquefaction 

potential of the silty loess and its implications for flowslides are also discussed.   

 

2. Study area, materials and procedures 

The samples used in this study were retrieved from the undisturbed backscarp of a 

flowslide in Heifangtai, about 42 km west of Lanzhou city, Gansu Province (Fig. 2). 

Long-term irrigation on the ground surface for farming has significantly raised the 

groundwater table (Xu et al., 2014). Dozens of loess flowslides have occurred in the 

eastern and northern margins (Fig. 2). Efforts were made to take the deeper soils where 

liquefaction might most probably occur. The bottom loess soils of the platform have 

been saturated due to irrigation (Fig. 2a), which would complicate retrieval and so 

partially saturated intact samples from about 30m depth were taken for the study. A 

block sampling method was adopted clearing at least 1m of superficial loess prior to 

excavation. The blocks were carefully trimmed by hand and sealed using layers of 

cling-film (plastic wrap) and wax.  

 

The in-situ dry density of the silty loess is 1.46-1.48g/cm3 with a void ratio of 0.83-

0.85. Figure 3 shows the particle size distributions of the silty loess tested. The amount 

of silt (0.002-0.075μm) in the soil is up to about 90% and the clay fraction (<0.002μm) 

is up to 10%. A comparison with the ″clayey loess″ tested by Xu & Coop (2016) reveals 
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that the clay content in the silty soil is less than clayey loess that has up to about 20%. 

Mineralogical analysis showed that the predominant mineral is quartz, with smaller 

amounts of albite and calcite and significant quantities of clay minerals. Compared with 

samples of the clayey loess from two depths in Jingyang, Shannxi Province, the 

contents for this silty loess of quartz, albite, potassium feldspar, and dolomite are a little 

greater but slightly smaller for montmorillonite, illite and calcite (Table 1). Overall the 

clay mineral contents are larger than are apparent in the particle size distributions and 

the differences between the two soils are less than might be expected from their 

traditional names.  

 

Figure 4 shows typical micro-structures of the intact specimens from SEM observations 

on broken horizontal and vertical surfaces. It appears that the silty particles in the loess 

have a platy shape and these are more visible as flat surfaces in the horizontal plane 

than the vertical. The finer particles in the soil tend to be clustered into aggregates with 

different sizes as shown in the higher magnification images of Fig.4c. Larger voids 

occur between the skeleton silty particles and aggregates, while smaller internal pores 

can be seen in some aggregates. Cement bonding between particles was local in nature 

and not pervasive throughout the samples. The bonding was composed of salts, as has 

been widely reported in China (e. g. Zhang et al., 2013). These salts are washed out 

from the loess platform and can be observed as white materials in Figs.2a, b and c.  

 

The dimensions of the triaxial samples were 38mm diameter and 76mm length. The 

oedometer samples were 50mm diameter and 20mm height. The reconstituted samples 
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for both triaxial and oedometer tests were made from the trimmings of the intact 

samples and were created by the moist tamping method. The well graded nature of the 

samples precluded the use of many sample preparation methods because of problems 

of segregation. Efforts were made in the reconstituted sample preparation to avoid any 

macro-voids remaining, while using the undercompaction method of Ladd (1978).  

 

The triaxial samples were flushed first and then were saturated under back pressure 

until B values of at least 95% were achieved. For some loose reconstituted specimens, 

the initial volume adopted was measured by dismantling the triaxial cell chamber after 

saturation, using an equivalent negative pore pressure to fix the specimen while new 

dimensions were taken. This also highlighted the volume change arising from any 

collapse on saturation. In the consolidation stage, the triaxial samples were all 

isotropically compressed in small steps to a variety of stress levels. Once the 

consolidation was finished, they were then sheared in compression either undrained or 

drained. The undrained tests aimed at understanding how the undrained behavior 

changed with stress level and specific volume, particularly with regard to static 

liquefaction. Since the undrained tests generally gave compressive behavior, drained 

tests were also performed to extend the stress range at critical state. No attempt was 

made to make direct comparisons between intact and reconstituted behavior at the same 

stress level and specific volume, since achieving exactly the same initial conditions is 

impossible in many cases because the intact soil can exist at states not achievable for 

the reconstituted. Instead, a more fundamental approach was adopted of conducting 
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numerous tests over an extended stress range and making these comparisons through 

proper normalization for volume.  

 

Tables 2 and 3 give details of all the tests. The accuracy of the initial specific volumes, 

v (=1+e) was ensured by using two methods of calculation, the first method measuring 

the initial dimensions and weights of the samples and the second the water contents at 

the ends of the tests together with the volumetric strains measured during testing. An 

average value of v is reported in Tables 1 and 2. Most of the tests are within an accuracy 

of less than ±0.01, when comparing the methods. Any tests for which the differences 

between the two values were more than 0.04 were discarded, corresponding to an 

accuracy of ±0.02.  

 

3. Results and interpretation  

3.1 Compression Behavior  

Figure 5 presents the one-dimensional and isotropic compression results for intact and 

reconstituted loess samples. It was found that the compression curves for reconstituted 

samples of this loess had still not quite converged at the ends of the tests at vertical 

stresses of up to 7MPa (Fig.5a). This indicates that the silty loess has a slight tendency 

to transitional behavior at these stress levels (Altuhafi et al., 2010; Shipton & Coop, 

2012). Nevertheless, a one-dimensional ICL has been identified from the looser samples. 

The ICL of a clayey loess was also illustrated in this figure. The silty loess is higher and 

somewhat flatter than that for the more plastic clayey loess, as expected. Figure 5b 
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shows the isotropic compression data, which are for lower stress levels and so for the 

reconstituted samples the compression curves are strongly dependent on the initial 

density as they have not been loaded far enough to reach the isotropic ICL, which is 

consistent with the oedometer results. The oedometer test data of intact loess samples 

have been plotted on Fig.5b using a K0 value estimated from 1-sinϕ'. An estimated 

isotropic ICL is shown on Fig.5b that is parallel to the 1D ICL on Fig.5a.  

 

The intact samples have very high initial specific volumes and as shown in Figs.5a and 

b, the intact compression paths clearly reach states outside the ICLs. The gross yield 

points can be identified as the points where the stress–volume behavior changes 

significantly, after which the paths tend to converge with the ICLs. The term ″gross 

yield″ is adopted as used in the sensitivity framework of Cotecchia & Chandler (2000). 

Prior to yield, the intact loess is relatively incompressible compared to the reconstituted 

soil, while after yield it becomes more compressible. It is interesting that the isotropic 

and one-dimensional data are practically coincident for the intact soil, and this does 

indicate the good consistency between the oedometer and triaxial tests. The 

compression data highlight that even for a saturated silty loess the effects of structure 

can be very significant, as observed in SEM images in Fig.4. 

 

Burland (1990) proposed normalizing the compression data of intact clay samples 

relative to the gradient and intercept of the reconstituted soil in order to highlight the 

effects of structure, defining the void index, Iv:  
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𝐼𝑣 =
𝑒−𝑒100

∗

𝑒100
∗ −𝑒1000

∗      (Eq.1)  

 

where e*100 and e*1000 are the void ratios on the 1D ICL at 100 and 1000kPa. Xu & 

Coop (2016) adopted this technique also for the clayey loess and Fig.6a shows the 

normalized data for the silty loess, where it again works well, although the curvature of 

the 1D ICL from Fig.5a is slightly smaller for both loess soils than for the sedimentary 

clays analyzed by Burland. The data for the intact samples resemble those of Feda et al. 

(1993) for a European loess. It is remarkable that the effects of structure in the silty and 

clayey loess that are taken from sites around 500km apart are similar, with gross yield 

states similar distances outside the 1D ICL being reached and similar rates of 

destructuration after yield. This is perhaps an indication that the structures of the two 

soils are similar as a result of their common origin and similar geological histories, the 

key difference between them being simply the grading which, for a wind deposited 

material, varies with distance from the source area. The SEM images for the clayey 

loess had also revealed a qualitatively similar structure with aggregates of platy shaped 

particles and localized bonding. 

 

As shown in Fig.6a the gross yield points for the intact loess soils are quite close to the 

estimated past maximum total stresses. The sampling depth was above the natural 

perched water table (Xu et al., 2014), but the effects of past in-situ suction cannot be 

significant in the soil or the yield stresses would have been increased above the applied 

total stress under the influence of that suction. The gross yield points and possible in-
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situ maximum stresses both plot close to the Sedimentation Compression Line (SCL) 

defined for the in-situ states of normally consolidated clays (Burland, 1990). This is an 

indication that the soils should only have a sedimentation structure, as suggested by 

Cotecchia & Chandler (2000), so that the formation of the structure would have been 

coincident with rather than subsequent to burial. If the soils had had a post-

sedimentation structure created after burial, then the gross yield points would plot 

outside the SCL. The silty loess sample yields a little further from the line than the 

clayey loess soils, but this could be simply due to some natural variability in the two 

soils. 

 

Taking into account that Burland’s void index is only defined in terms of vertical stress 

for one-dimensional compression, a new parameter  𝑣𝑛 , was defined by Coop & 

Cotecchia (1995) in terms of invariants:  

 

𝑣𝑛 = exp (
ln(𝑣)−𝑁∗)

𝜆∗ )    (Eq.2)  

 

where the normal compression line of the reconstituted soil is defined, as suggested by 

Butterfield (1979): 

 

ln 𝑣 = 𝑁∗ − 𝜆∗ln 𝑝′     (Eq.3)  

 

Figure 6b shows the normalized volumetric compression data using 𝑣𝑛, for the intact 

and reconstituted loess samples. Although the equations are defined in natural logs, 
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log10 scales are shown for convenience. This method of normalization uses the isotropic 

normal compression line of the reconstituted soil rather than the one-dimensional as the 

reference condition and so the isotropic ICL plots on the figure as straight with a 

gradient of -1. The isotropic ICL could not be identified clearly for this silty loess, 

without high pressure testing, so its location has been assumed to be parallel with the 

1D ICL and lying slightly above it, using the same small spacing between the two ICLs 

as was identified for the clayey loess by Xu & Coop (2016). As shown in Fig.5b the 

chosen isotropic ICL seems to coincide with the isotropic compression paths very well. 

The isotropic and 1D data for the intact samples are shown for the silty loess and also 

for the two depths of clayey loess for comparison. Again, the data show very consistent 

effects of structure despite the very different natures of the soils.   

 

3.2 Shearing Behavior 

Stress-strain response 

Figure 7 presents typical results of the undrained tests on intact and reconstituted 

samples. As highlighted above, direct comparisons between intact and reconstituted 

samples at the same stress and volume states are difficult because the intact soil can 

exist at states that are impossible for the reconstituted. Nevertheless, some general 

comparisons can be made. To reach critical states, most of the tests were stopped at 

axial strains of at least 30% at which point they had generally reached constant stress 

and volume states, although there are some small continued changes for some samples. 

The initial states of most of the triaxial tests on reconstituted samples are below the 
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oedometer ICL, because it was very difficult to construct triaxial samples of higher 

initial specific volumes. Three tests at higher confining stresses of more than 500kPa 

are on or near the isotropic ICL (Fig.5b). The initial states prior to shearing for the intact 

samples are all above the isotropic ICL.  

 

The deviator stresses and the changes of pore pressures are both normalized by the 

initial effective confining pressure, p'0. It can be seen that intact loess reaches peak 

strengths at axial strains less than 2% with a sharp initial increase in pore water pressure, 

followed a marked strain softening, which might be defined as flow liquefaction 

behavior, although true liquefaction, which some authors define as reaching zero p' (e.g. 

Carrera et al., 2011) does not occur. Nevertheless, very low p' values are reached and 

to ensure the accuracy of the data, they have been corrected for membrane restraint 

using the method suggested by Bishop & Henkel (1957) and La Rochelle et al. (1988) 

which was applied to the measured deviatoric stress for a barrelling type of deformation. 

The response of the intact loess to monotonic loading is highly dependent on the 

confining pressure. The normalized deviator stress at peak decreases rapidly with 

increasing confining pressure, while the normalized pore pressure increases. The 

isotopic confining pressure at yielding is about 200kPa for the intact loess (Fig.5b), so 

that tests UU_02_300kPa and UU_04_400kPa reach their peaks more quickly and 

strain soften less dramatically than UU_03_50kPa and UU_01_100kPa. The behavior 

of the reconstituted samples is simply related to their initial density, the denser ones 

being dilative and the looser contractive, but they are all much less brittle than the intact 
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samples.  

 

The differences between the intact and reconstituted samples can be also found in the 

shearing stress paths (Fig.8). The loose reconstituted samples at higher stresses 

RU_04_600kPa and RU_05_550kPa, have a strongly contractive behavior, like the 

intact, but with a less dramatic strain softening, before developing dilative “tails” to the 

stress paths at large strains. They show a typical temporary instability behavior as found 

in silty sands (e.g. Yamamuro & Lade, 1998), with ″quasi-steady states″ or phase-

transformation points. However, the stress paths do not show the same tendency for 

flow liquefaction as the intact samples, that reach very low values of p' at the ends of 

the tests. For the denser reconstituted samples, the mode of behavior becomes a 

completely dilative and stable one, for example test RU_02_620kPa which has an initial 

specific volume of 1.60. The reconstituted loess has a quite conventional behavior in 

undrained shearing similar to many other soils, such as loose crushable soils (e.g. 

Hyodo et al., 1998), silts (e.g. Boulanger & Idriss, 2006) or sands (e.g. Vaid & 

Sivathayalan, 2000).  

 

Figure 9 presents typical results of drained tests on reconstituted and intact samples. 

The intact loess shows a greater contractive behavior than the reconstituted. This is 

consistent with Figs.7 and 8, again indicating the effects of natural structure as observed 

in Fig.4. The intact and reconstituted samples are generally strain hardening up to the 

critical state, except for one denser reconstituted sample (RD_02_200kPa), which has 
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a gentle peak corresponding to a slightly dilative behavior at large strains. The behavior 

of the intact soil is distinctly stiffer initially than the reconstituted, again with clear 

gross yield points similar to those seen in compression at which points the stress-strain 

behavior softens significantly. At larger strains, the normalized deviator stresses for the 

reconstituted samples are higher than for the intact samples though the intact loess 

continues to strain harden after gross yield, reaching similar values at the ends of the 

tests. The effects of structure are also highlighted in Fig.9c in terms of the stress ratio, 

q/p' plotted against the volumetric strain.  

 

In Fig.10 the stress-strain data of all the tests on intact and reconstituted samples are 

represented by the stress ratio, q/p', but using he current value of p' rather than the initial 

value p'0. Again, the intact samples can be seen to be stiffer for similar loading 

conditions, despite generally having higher initial specific volumes, but they all tend 

towards a final ratio M of 1.38, most tests being within about ±0.05 of this value, which 

corresponds to a critical state angle of shearing resistance, ϕ'
cs of 34.1°. This is slightly 

higher than the clayey loess from 20m depth, which gave M and ϕ'
cs of 1.35 and 33.4° 

(Xu & Coop, 2016), as expected for the coarser grading, and significantly higher than 

the 50m clayey loess that gave 1.25 and 31.1 °.  

 

Stress-dilatancy behavior 

The stress-dilatancy relationships for the drained tests on the reconstituted and intact 

loess are given in Figs.11a and b, respectively. In the absence of elastic shear and bulk 
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moduli, the total volumetric strains and shear strains, calculated as εs = εv-εa/3, were 

adopted for the calculation of the soil stress-dilatancy relationships. The gradients have 

been taken by regression over short sections of the εs : εv graph. Some scatter in the data 

at low stress ratios is mainly because the rate of dilation is calculated as the ratio of two 

small increments of strain.  

 

The data for the intact samples have been compared with the reconstituted samples. 

This reveals a significant influence of the natural structure. At small strains the paths of 

intact loess initially reach higher stress ratios than the equivalent reconstituted soil, but 

then tend towards the same critical state M at large strains. Tests on overconsolidated 

samples and a dense sample for the reconstituted loess were also performed. These 

define the same relationship at larger strains, but with much greater dilation and higher 

peak states, especially for the dense sample. The relationships for the clayey loess, also 

illustrated in the Fig. 11 are very close to that of the silty loess, but with different M 

values.   

 

Critical states  

Figure 12(a) shows the critical states in deviator stress against effective mean stress 

space for all the tests, drained and undrained, on intact and reconstituted samples. Note 

that the end of test states have been assumed to be critical states. These again confirm 

the same value of M=1.38 at critical state. Figure 12(b) shows the shearing paths in v-

p' space. For consistency with the 𝑣𝑛 graph the shearing paths are shown using lnv and 
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lnp' axes. The paths followed by the intact samples are more strongly compressive than 

reconstituted samples, with greater volume changes for the drained tests and larger pore 

pressure increases for the undrained at the same stress levels, and this can be seen to 

result from the effects of structure causing the intact samples to start from states much 

further to the right and above the critical state line than the reconstituted. It is also clear 

that the intact samples have a critical state line that lies higher than that of the 

reconstituted samples even though they exhibit this strongly compressive behavior. 

 

Two horizontal samples (UU06†_300kPa and UD08†_510kPa) for intact loess and also 

several overconsolidated samples for intact and reconstituted loess were tested in this 

study. As shown in Fig.12, neither the sample orientation nor overconsolidation were 

found to cause any significant influence on the critical states. Only one very dense 

sample sheared at 50kPa fails to reach a state close to the defined critical state line and 

this may be due to strain localization. It is probable that two dense reconstituted samples 

with end of test states at around 1000kPa have not quite reached critical states, as they 

plot below the straight chosen line, and it is unlikely that the line would become steeper 

as p' increases.  

 

It is interesting to note that the CSLs in lnv-lnp' space seem to start to curve towards 

horizontal asymptotes at low stress levels as are expected from coarser grained soils 

(e.g. Verdugu & Ishihara, 1996), whether or not a logarithmic v axis is used. Curved 

CSLs for loess have not generally been reported in literature, for which straight CSLs 



19 
 

are usually adopted (e.g. Xu et al., 2011; Zhou et al., 2014; Wang et al., 2014). The 

spacing between the two CSLs in terms of specific volume is around 0.045, which 

represents a volumetric strain of about 2.5% for the initial specific volumes of the 

samples. The CSLs for the clayey loess (Xu & Coop, 2016) are also illustrated in this 

figure; both depths gave similar lines in the volumetric plane. For more plastic soils 

CSLs are typically straighter to lower stress levels, but the lack of test data at lower 

confining stresses for the clayey loess means that this cannot be confirmed, but at 

stresses over about 30kPa both were straight. Although the gradients are very different, 

the spacings between the pairs of CSLs are more similar.  

 

The normalized specific volume 𝑣𝑛 proposed by Coop & Cotecchia (1995) can also 

highlight the effects of structure for a soil in shearing, which the Iv plot cannot. Figure 

13 presents CSLs for both reconstituted and intact samples (CSLr and CSLi) for both 

the silty loess and clayey loess in the ln𝑣𝑛: lnp' plane and in the normalized plane they 

are parallel to the ICL until the curvature of the CSLs starts at lower stress levels. The 

CSLi at high stress levels for both soils plot approximately on the isotropic ICL, but 

this is merely coincidence. Their CSLr are also at similar distances below the isotropic 

ICLs. It is therefore surprising that despite the large differences in the locations (Fig. 

1), gradings and gradients of the CSLs for the loess soils at different sites on the Chinese 

Loess Plateau, when normalized the behavior is remarkably similar, but this is 

consistent with the similarity also for the normalized compression behavior (Fig. 6). 

These similarities indicate that the soils have a similar predominantly similar 
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sedimentation structures, as defined by Cotecchia & Chandler (2000), so that the 

formation of the structure should have been coincident with rather than subsequent to 

burial, and since they are likely to have experienced similar geological histories the 

magnitude of the effects of structure is similar.  

 

The two different CSLs for the intact and reconstituted samples indicates that the strains 

needed to reach a constant fabric could be very large indeed (e.g. Nougier-Lehon et al., 

2005). This has been seen for other soils so that the CSL of the intact soil as defined in 

triaxial testing need not correspond with that of the reconstituted (Cotecchia & Chandler, 

2000; Baudet & Stallebrass, 2004). Figure 14 shows SEM images of the intact and 

reconstituted soils after triaxial shearing (UD_05_150kPa and RD_07_150kPa). The 

intact sample (Figs.14a & b) has a denser fabric than before shearing (Fig.4) as a result 

of the strong volumetric compression it has experienced. There is still the evident 

preferential orientation of the particles in the horizontal plane and areas of the 

amorphous coating, possibly cementing, could still be found. The intact soil still has 

some larger pores between skeleton particles and aggregates could be still observed. In 

contrast, in the reconstituted soil it is not easy to find large pores. The particles are 

stacked in a disorderly manner, indicating a denser fabric (Figs.14c & d). Figures 14e 

and f are higher magnification images showing in greater detail the fabric for sheared 

intact and reconstituted samples. The reconstituted and intact samples were both 

sheared drained at 150kPa and the denser fabric of the reconstituted soil explains the 

lower specific volumes at critical state (Fig.12b) and so the lower location of the CSL 
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of the reconstituted soil than the intact in the volumetric plane. It would be unlikely that 

further monotonic shearing at this magnitude of strains would change this.  

 

Normalized boundary surfaces  

The stress paths of the intact and reconstituted loess samples have been normalized for 

volume by an equivalent pressure taken on the CSL, p'cs, defined as:  

 

𝑝CS
′ = exp (

𝛤∗−𝑙𝑛𝑉

𝜆∗ )   (Eq.4)  

 

where λ* and Γ* are the gradient of the CSL and its intercept at intercept at 1 kPa in the 

lnv : lnp' plane. Hence, the straight segments of the CSLs as shown in Fig.12b were 

used here to calculate the equivalent pressure, neglecting the curvature at low stress 

levels. Because of the slightly different M values for the two soils, the values of q/p'cs 

have been further divided by M for ease of comparison. 

 

Figure 15a shows a clear reconstituted or intrinsic state boundary surface (SBSr), 

defined by normalizing the paths of the reconstituted samples. When identifying the 

state boundary surfaces, to reduce the scatter of the normalized paths arising from small 

inaccuracies in specific volume, the final specific volumes for some tests have been 

slightly adjusted to lie on the chosen CSL. However, for test RU_06_16kPa the specific 

volume of the sample was not adjusted because it reaches its critical state on the curved 

part of the CSLr and so on this plot its normalized shearing path ends to the left of the 

reconstituted CSLr. The shape of the intrinsic surface is more similar to those of sands 
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(e.g. Coop & Lee, 1993) than those of clays (e.g. Hosseini-Kamal et al., 2014), as the 

CSLr lies to the left of the apex of the boundary surface, although the spacing ratio of 

about 2.3 is less than those typically found for sands.  

 

Figure 15b shows the intact state boundary surface (SBSi), defined by normalizing the 

stress paths of the tests on intact samples with respect to the CSLi. The straight segment 

of the CSLi in the lnv : lnp' plane has again been used for the normalization. The SBSi 

is compared with the reconstituted SBSr normalized with respect to the CSLr. The size 

of the SBSi is considerably larger than the SBSr, resulting from the effects of structure. 

Once isotropic compression prior to shearing takes the initial state past the gross yield, 

the normalized stress paths tend to collapse back towards the SBSr, behavior that is 

again similar to the clayey loess (Xu & Coop, 2016), cemented sands (e.g. Cuccovillo 

& Coop, 1999) or structured clays (Cotecchia & Chandler, 2000). Figure 16c compares 

the two boundary surfaces when they are both normalized with respect to the intrinsic 

critical state line. The size of the SBSi for intact loess becomes much larger than the 

SBSr for the reconstituted samples, an effect of the separation of the two surfaces in 

volumetric space.  

 

A considerable difference between the undrained and drained tests on intact samples 

can be found in the normalized space. Compared with undrained loading, the 

normalized drained tests for low to medium stress levels reach large stress ratios before 

a gross yield at which the stress path changes direction abruptly and drops rapidly back 
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towards the critical state, while the undrained paths are more gently curved throughout. 

This is again similar to clayey loess (Xu & Coop, 2016). The differences between 

horizontal and vertical intact samples are also clear in the normalized stress paths. At 

lower stress levels the path at 300kPa for the vertical sample reaches larger stress ratios 

more quickly than that on the horizontal. This is an indication of significantly 

anisotropic behavior in the intact loess. The separation of the normalized stress paths 

between the vertical and horizontal samples becomes smaller as the initial confining 

stress level increases and the anisotropic behavior observed at 510kPa is much weaker 

than at 300kPa, perhaps because this is beyond the yielding point in compression (Fig.5).  

 

The SBSs for the intact and reconstituted clayey loess are also illustrated in Fig.15 (Xu 

& Coop, 2016) for comparison with the silty loess. The intrinsic behavior demonstrated 

by the normalized paths for the reconstituted samples (Fig.15a) is very similar, even 

though the ICLs and CSLr are very different (Fig.5a and Fig.12b). For the intact samples, 

the SBSi normalized with respect to the CSLi for the two soils has similar shapes at 

larger strains once the shearing paths have passed the apex of the boundary surface. But 

prior to this the SBSi for the clayey loess has a highly anisotropic shape, and a much 

sharper reversal at the apex. In Fig.16c the sizes of the SBSi for the intact soils are also 

larger for the clayey loess than the silty, indicating a greater effect of structure, in 

contrast to what was seen in compression.  
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4. Discussion  

Critical state soil mechanics is commonly used as a framework for the interpretation of 

soil behavior. Conventionally the critical state line is unique for different soil states, 

intact or reconstituted and so the existence of two different lines raises new problems 

in the strength evaluation for the silty loess. For example, the soil states involved at 

particular engineering sites should be identified before using this method so that the 

correct line is used. For first time slope stability problems in the intact loess, the CSLi 

should be adopted, while the CSLr might be more appropriate for problems encountered 

in loess disturbed to the point of remolding by previous slope failure processes, and for 

engineering applications where the soil is remolded or reconstituted, such as filled 

slopes. An error in selecting the correct CSL would cause the soil strength to be under- 

or overestimated significantly, for example in soil liquefaction potential.  

 

Dozens of catastrophic flowslides have been triggered by the long-term agricultural 

irrigation in the study area (Fig. 2). Liquefaction has been taken as the initiating 

mechanism (Wang et al., 1992; Zhang et al., 2013; Zhou et al., 2014). While Xu et al. 

(2012) studied the role of static liquefaction in initiation, that of liquefaction during the 

movement has not so far been clarified. Since in v-p' space the critical state line for the 

intact loess is significantly higher than the intrinsic CSL, it is probable that even after 

an initial static liquefaction further remolding during the movement would cause a 

greater breakdown of the structure than is achievable in triaxial compression, causing 

the CSLi to migrate to the CSLr, increasing further the pore pressures, giving additional 



25 
 

liquefaction potential and softening instability. This could contribute to the overall 

landslide movement, characterized by high-speeds and long run-outs. Similar 

migrations of CSLs through vigorous remolding in landsliding have been seen in the 

structurally complex clays of Italy (e.g. Fearon & Coop, 2000, 2002). To explore further 

the influences of effects of structure on liquefaction-induced landslide processes, 

numerical analysis would be invaluable. However, these would require a constitutive 

model that accounted for the curvature of the CSLs in the volumetric plane as well as 

the effects of structure, along with the migration of the CSL to lower volumes due to 

destructuration at extremely large strains, and no such model yet exists.  

5. Conclusions 

An experimental study has been conducted on intact and reconstituted silty loess by 

means of oedometer and triaxial tests. The behaviors in compression and shearing were 

affected significantly by natural structure even in a saturated state. The intact samples 

reached well-defined gross yield points outside the intrinsic compression line of the 

reconstituted soil and defined an intact boundary surface that was significantly larger 

than that of the reconstituted soil. The data indicate that the intact structure also affects 

the stress-strain and stress-dilatancy relationships and even results in two different 

critical state lines in the volumetric plane for the intact and reconstituted soil, both of 

which curve towards horizontal asymptotes at lower stresses, increasing the tendency 

to static liquefaction. The existence of two critical state lines indicates that some more 

stable elements of fabric in the intact loess could not be removed by the strain levels 
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imposed by triaxial testing. The data for the silty loess have been compared with those 

previously published for a clayey loess (Xu & Coop, 2016). It was found that the two 

loess soils have very similar effects of structure even though they are different in 

intrinsic behavior, as a result of their different gradings and mineraolgies, perhaps a 

result of a common origin of their structures. The mechanics of the soils allows some 

significant insight into the understanding of landslide phenomena occurring in the study 

area. 
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Table 1 

X-ray diffraction analyses of the materials 

 

Sample 

Quartz 

(%) 

Albite 

(%) 

Potassium

feldspar 

(%) 

Calcite 

(%) 

Dolomi

-te 

(%) 

Hornb 

-lende 

(%) 

Clay Minerials 

Montmor 

Illonite 
(%) 

Illite 
(%) 

Kaolin 

-ite 
(%) 

Chlorite 
(%) 

Clayey 

loess_20m 
35.1 14.9 0.9 16.5 2.3 1.1 4.4 15.5 3.2 6.1 

Clayey 

loess_50m 
32.3 10.2 1.0 19.0 2.1 0.0 7.4 17.7 3.5 6.7 

Silty 

loess_tested 
37.3 14.5 3.5 14.9 4.9 0.7 3.3 13.4 2.7 4.8 
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Table 2 

Details of the oedometer tests 

 

Test 

number 

Sample style Method of sample 

preparation 

Water 

content 

Initial 

specific 

volume v0 

σ′
vmax 

(MPa) 

O1 Undisturbed — — 1.849 7.167 

O2 Reconstituted Slurry — 2.001 7.167 

O3 Reconstituted Wet compaction 10% 2.120 7.167 

O4 Reconstituted Wet compaction 10% 1.695 7.167 

O5 Reconstituted Wet compaction 10% 1.558 7.167 

O6 Reconstituted Wet compaction 10% 1.537 7.167 

O7 Reconstituted Wet compaction 10% 1.503 7.167 
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Table 3  

Details of the triaxial tests 

Test 

name 

Specific 

volume 

after 

saturation 

Confining 

effective 

stress 

(kPa) 

Specific 

volume 

after 

consolidation 

                      Ends of test                         

Deviator 

stress qcs 

(kPa) 

Mean 

effective 

stress p′cs 

(kPa) 

Specific 

volume vf 

UD_01 1.839 100 1.821 220.5  171.4  1.707 

UD_02 1.841 200 1.795 471.1  355.1  1.644 

UD_03 1.859 400 1.751 963.7  717.9  1.584 

UD_04 1.845 500 1.724 1447.1  998.0  1.550 

UD_05 
(OCR=4) 

 

1.831 

 

150 1.729 

 

331.5 260.5 1.668 

UD_06 
(OCR=24) 

 

1.847 

 

25 1.750 61.3  45.2  1.776 

UD_07 1.853 510 1.729 1289.0 937.8 1.575 

UD_08† 1.849 510 1.728 1326.2 952.0 1.575 

UU_01 1.851 100 1.824 46.0  32.4  1.824 

UU_02 1.852 300 1.773 64.4  48.5  1.773 

UU_03 1.848 50 1.830 34.5  24.5  1.830 

UU_04 1.850 400 1.760 95.4  68.6  1.760 

UU_05 1.851 16 1.847 19.6 14.3 1.847 

UU_06† 1.840 300 1.780 71.5 52.9 1.780 

RD_01 1.735  700 1.604  1696.0  1241.6  1.512  

RD_02 1.639  200 1.606  496.0  367.0  1.591  

RD_03 1.778  200 1.692  480.0  357.0  1.603  

RD_04 1.853  400 1.807  101.0  72.9  1.719  

RD_05 1.546  50 1.535  154.0  101.0  1.599  

RD_06 1.883  100 1.753  247.0  179.1  1.655  

RD_07 
(OCR=4) 1.801 

 

150 1.626 351.0 266.0 1.597 

RD_08 1.568  530 1.526  1345.9  975.6  1.507  

RD_09 1.873 13 1.872 41.0 29.1 1.779 

RU_01 1.743  50 1.726  52.0  32.7  1.726  

RU_02 1.604  620 1.545  879.0  625.7  1.545  

RU_03 1.535  425 1.497  1446.0  1068.0  1.497  

RU_04 1.847  600 1.634  340.0  251.0  1.634  

RU_05 1.836  550 1.622  324.0  233.0  1.622  

RU_06 1.854 16 1.840 7.0 5.1 1.840 

Note: R**** reconstituted, U**** undisturbed, *D*** drained, *U*** undrained, † Horizontal 

samples, OCR overconsolidation ratio 
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Fig.1. Sample location of Heifangtai on the Chinese Loess Plateau 
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Fig.2. Site description and landslides 
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Fig.3. Particle size distributions of the loess samples 

 

 

  



40 
 

 

(a) Horizontal plane 

 

 

(b) Vertical plane 
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(c) Higher magnification image showing pores between aggregates  

 

Fig.4. SEM images of the intact micro-structure of the loess (a) horizontal plane; (b) vertical plane; 

(c) higher magnification image showing pores between aggregates 
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(a) 

 

 

(b) 

 

Fig.5. Compression curves of reconstituted and intact samples: (a) oedometer tests; (b) isotropic 

compression curves from triaxial tests 
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(a) 

 

 

(b) 

 

Fig. 6. Normalized compression data for natural and reconstituted loess (a) using void 

index, Iv; (b) normalized specific volume, vn 
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(a) 

 

 

(b) 

 

Fig.7. Typical results of undrained triaxial tests (a) normalized deviator stress-axial strain curves, 

(b) normalized pore pressure responses (R*** reconstituted, U*** undisturbed, *D** drained, *U** 

undrained) 
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(a) 

   

(b) 

 

 

Fig.8. Stress paths of undrained triaxial tests (a) entire range of stresses; (b) enlargement for stresses 

less than 400kPa 

  

RU_01_50kPa 
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(a)  

 

 

(b)  
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(c)   

Fig.9. Typical results of drained triaxial test (a) volume changes-axial strain curves; (b) deviator 

stress-axial strain curves; (c) stress ratio-volume strain curves  
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Fig.10. Development of stress ratio for reconstituted and undisturbed specimens  
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(a) 

 

(b) 

 

 

Fig.11. Stress-dilatancy data for the drained tests on (a) reconstituted specimens; (b) undisturbed 

specimens  
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(a)  

 

     

 

(b)  

 

Fig.12. Critical states line in (a) q-p' space (b) the volumetric plane  
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Fig. 13. Critical states line in the normalized volumetric plane 
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(a) Horizontal plane for sheared intact loess 

 

(b) Vertical surface for sheared intact loess 
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(c) Horiziontal plane for sheared reconstituted loess 

 

(d) Vertical plane for sheared reconstituted loess 
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(e) Higher magnification image showing fabric for sheared intact loess 

 

(f) Higher magnification image showing fabric for sheared reconstituted loess 
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Fig.14. SEM images of samples after shearing (a) intact sample (No. UD_05) horizontal surface; (b) 

intact sample (No. UD_05) vertical surface; (c) reconstituted sample (No. RD_07) horizontal 

surface; (d) reconstituted sample (No. RD_07) vertical surface; (e) higher magnification image for 

intact sample (No. UD_05) horizontal surface; (f) higher magnification image for reconstituted 

sample (No. RD_07) horizontal surface 
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(a) 

 

(b) 
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(c) 

 

Fig.15. Normalized stress-paths of intact and reconstituted loess (a) Stress-paths of reconstituted 

samples normalized by p'cs using the intrinsic CSL; (b) Stress-paths of intact samples normalized by 

p'cs using intact CSL; (c) Stress-paths of intact samples normalized by p'cs using intrinsic CSL  

Note: †Horizontal sample 

 

 

 


