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Summary 

Flooding is a destructive phenomenon that can risk human life, damage homes and have huge 
economic impacts. To plan and implement effective mitigation strategies, it is necessary to predict 
when and where flooding will occur. Based on a combination of rain gauge and river discharge 
measurement taken from the River Don catchment, UK this study proposes a Support Vector Machine 
(SVM) based approach to predicting river. The purpose of this work is to show the potential of the 
SVM method for predicting future flood events.   
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1. Introduction 

Flooding is a destructive phenomenon that can risk human life, damage homes and destroy 
infrastructure. Furthermore, floods often lead to significant economic losses for the public and 
governments. The consequences of widespread flooding across Northern England during December 
2015 had been estimated to have a total economic cost of nearly £6 billion (Dathan, 2015). In the UK, 
the main cause of fluvial flooding is intense rainfall causing river flow to exceed capacity. To ensure 
public safety and implement mitigation strategies in a timely and effective manner, we are interested 
in predicting when and where floods will occur.  
 
Hydrological models are used to identify areas at risk of flooding, predict the magnitude of floods and 
determine what measures of anthropogenic protection may be needed in the future (Lundin, et al. 
2015). Generally, predictive hydrological models can be classified into two groups: data-driven and 
physically based models (Jajarmizadeh et al., 2015). Data-driven models only rely on the input data 
and using mathematical or statistical function to link with the output, such as the artificial intelligence 
techniques application including Artificial Neural Network and Support Vector Machine (Leavesley 
et al., 2002). The second group are theoretical models, which aim to represent our understanding of 
the physical environment based on physical rules, processes and interactions (e.g. Moore et al., 1998). 
These models are often highly complex and contain large uncertainties. The focus of this paper will 
be flood forecasting using a data mining approach, specifically Support Vector Machines (SVM), 
which have been shown to be effective tools for a range of hydrological modelling applications across 
a number of continents (Suliman et al., 2013).    
 
The data-mining approach to hydrological modelling typically relates a number of expletory 
variables, such as precipitation, historic river discharge or upstream flow, to a variable of interest such 
as peak flow downstream or stage height, based on measured observations. This can then be used to 
predict future river discharge.  

 



2. Methodology 

2.1 Support Vector Machines  (SVM) 

 
SVMs are a machine learning technique, developed based on statistical learning theory (Vapnik, 
1998). In this study, regression is the main applying approach of SVM. The basic idea of support 
vector regression (SVR) is to map a linear regression. Regression is motivated to seek and optimize 
the certain bounds between the true value and regressed value, the errors situated within these bounds 
are ignored by the loss function. This type of function is often called an epsilon intensive loss 
function. Figure 1 displays an example of one-dimensional non-linear regression function with 
epsilon (ε) intensive loss function.  

 

Figure 1: Nonlinear Support Vector Regression ε-insensitive loss function derived from (Deka, 2014) 

 
In SVR, the original input data sets X are converted from the input space to a high dimensional space, 
and produce the linear or nonlinear regression model between a series of input variables and the 
dependent variables in this feature space. Using mathematical function, the linear model (in high 

dimension space) is f (x, w) give by  
 

𝑦 = 𝑓 (𝑥, 𝑤) =  ∑ 𝑤𝑗𝑔𝑗(𝑥) + 𝑏

𝑚

𝑗=1

=  𝑤 × 𝜙(𝑥) + 𝑏 
 
(1) 

 
 
Where gj(x), j = 1, … m, denotes a set of nonlinear transformations. However, w (vector of 

coefficients) and b (constant ‘bias’ term) are the regression function parameters and ϕ is the kernel 
function. The quality of regression estimation is measured by the loss function L (y, f (x, w)) called 
epsilon insensitive loss function proposed by Vapnik (1998): 



 
 

|𝜉|𝜀 = |𝑦 − 𝑓(𝑥)|𝜀 = {
0                           𝑖𝑓 |𝑦 − 𝑓(𝑥) ≤ 𝜀
|𝑦 − 𝑓(𝑥)| − 𝜀              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
 
(2) 

 
 

Here (non-negative) slack variables ξi ,ξi
′ , i = 1, … n are introduced. These measure the deviation of 

training samples outside epsilon-insensitive zone. Two slack variables specify upper and lower 

constraints on the outputs of the error tolerance (ε). The minimization function of slack variables is 
formulated as following: 
 

𝑀𝑖𝑛      
1

2
||𝑤||

2
+ 𝐶 ∑(𝜉𝑖 + 𝜉𝑖

′)

𝑛

𝑖=1
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(3) 

 
Where ||w||² controls the model complexity (which is to be minimised); C is the cost coefficient 
(positive constant) which determines the degree of penalized loss when a training error occurs.  
 
 

2.2 Study Area and Data Description 

In this study, the River Don is chosen as the study river, because of the occurrence a severe flooding 
event in recent decades. This river is located in the Sheffield city of South Yorkshire region in the 
midland of the United Kingdom. The Don catchment covers an area of 1256.2 km2, and close to the 
east of Peak District (Figure 2). 



Figure 2:  Boundary of Don Catchment and the location of the rainfall gauges stations 

 
Data used in this study is rainfall data and river flow data. The River Don flow is measured by full 
range ultrasonic, and the observation station of flow is situated close to the outflow of the catchment. 
The data was downloaded from National River Flow Archive (NRFA). The rainfall data are derived 
from four rain gauges stations situated across the catchment shown in Figure 2. Rainfall data are 
obtained from Met Office. Among all the gauges inside Don Catchment, only these four contain the 
sufficiently complete historical rainfall data. The period used for the study spanned 30 years from 
January 1985 to June 2015. The relationship between rainfall and runoff are often intertwined and 
complicated, and it is obvious that flow data at given time involves some information of the past 
rainfall record, because change of flow data generally are the results of past rainfall events (Seifi & 
Riahi-Madvar, 2012). Therefore, rainfall and flow in three days are generally used as the variables for 
the flow prediction in the future week (Jajarmizadeh et al., 2015). An example of the dataset is shown 
in Table 1. 
 

Table 1: An Example Of The Interpreted Rainfall And Flow Data 

Month Day Year R525 

(mm) 

R2766 

(mm) 

R2964 

(mm) 

R2893 

(mm) 

Flow 

(m3/s) 

1 1 1985 0 0 0 2.85 13.2 

 
The objective of this study is to predict river flow discharge (Q) over a week time period. To do this, 
we train a total of 7 models for each day being predicted using a total of 15 predictor variables. These 
variables are rainfall measurement at each gauge measured at t-1, t-2 and t-3 as well as previous flow 
data measured at t-1, t-2 and t-3 (these are values measured one, two and three days before the first 



prediction is made). Of a total of 10826 records of river flow and associated rainfall measurements, 
8600 were used to train the SVM models and 2226 were used to validate model predictions. The 
accuracy of predictions is assessed using RMSE and residual analysis.  
 
 

3. Results 

3.1 Correlation analysis  

The rainfall data of each station and river flow have significant correlations for the prediction of flow. 
Figure 3 shows the relationship of rainfall at time t-1 from four different stations with river flow at 
time t, (R525 refers to rainfall data at gauge no. 525). The values above the dotted line imply the 
variables have significant relationship. Because this study aimed to predict the river flow at given 
time using previous rainfall data, we are primarily interested in the negative lags. It is evident that the 
rainfall of all the gauges stations at time t-1 have the highest relationship around 0.6 with river flow at 
time t. As the lead-time increased, the correlation of rainfall and river flow decreases. Lead-time is the 
time interval between the stimulation and the response, which in this study means the time interval 
between the input and output. For instance, the lead-time of R525t-1 and the flow at time t (Qt) is 1. In 
this study, the largest lead-time is nine (e.g. Qt-3 to Qt+6) 

 

Figure 3:  Correlation results of different rain gauges and river flow over various time lags 

 
In addition, the autocorrelation of river flow is shown in Figure 4. This shows that the correlation 
between Qt-1 and Qt, is higher than between Qt and any of the rainfall gauges. In summary, all rain 
gauges in the catchment, as well as previous flow measurements can be feasibly used to predict the 
seven days river flow. However, as the lead-time increased, the relationship of input variables and 
output decreased, which implies that the accuracy of regression model may decrease also decrease. 
Gamma testing suggested that at short lead times, previous river flow is a more significant predictor 
of future flow, while rainfall becomes more important at larger lead times.  

 



 

Figure 4: Autocorrelation of the Don River flow 

 

3.1 SVM predictions 

The RMSE results for Qt, Qt+1 and Qt+6 are shown in Table 2. Based on the validation results, it is clear 
that shorter lead times are more accurately predicted than longer lead times. However, there is 
relatively little difference in RMSE between Qt+1 and Qt+6  

 

Table 2: RMSE of the calibration model and validation model from seven different outputs 

Prediction Target Calibration (Training) Validation (Testing) 

Qt 0.326 0.450 

Qt+1 0.634 0.779 

Qt+6 0.817 0.928 

 

Predictions of flow for Qt and Qt+6 are shown in Figure 5. This confirms that Qt is predicted more 
accurately than river flows with larger lead times. The major difference is that at Q t+6 the high peak 
flows (i.e. those likely to cause a flood) are not well predicted.   



 

Figure 5: The river flow predictions of Qt and Qt+6 

4. Conclusion 
 
SVMs have been shown to be highly accurate predictors of both river flow change and peak flow over 
short lead times (up to 48 hours). This method could provide short-notice warnings that flooding was 
imminent. This compares favorably with similar studies that focus on single day lead times (Behzad, 
et a;., 2009; Sivapragasam & Liong, 2004) or lead times of several hours (Yu et al, 2006). Beyond 48 
hours, predictions of peak flow are not sufficiently accurate to determine flood occurrence, however, 
the long term predictive accuracy of the method may be improved with the inclusion of additional 
explanatory variable such as soil moisture and water table data. The drawback of this approach is that 
it is not possible to establish confidence intervals around predictions. The quality of prediction can 
only be assessed through validation using data.  
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