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1 Introduction 

1.1 Thesis objectives:  

Within the past decade, significant genetic underpinnings of devastating 

neurological disorders including Parkinson’s disease (PD), Alzheimer’s disease (AD) and 

Amyotrophic Lateral Sclerosis (ALS) have all been illuminated through advanced 

genomic technologies. Such discoveries have been facilitated by genome wide 

association (GWA) studies and next generation sequencing (NGS) investigations in order 

to identify common variants and rare variants, respectively, which contribute to disease 

risk. This thesis aims to extend these analyses to an understudied disease, multiple system 

atrophy (MSA), and to investigate the genetic basis of an apparent cluster of PD cases in 

Greece. Thus, I plan to accomplish three main goals in my thesis:  

First, I would like to determine if common variants are associated with MSA risk 

through heritability analysis and if so, can these be identified through imputation of 

GWA study data using greater than 900 sporadic MSA cases. While common variants 

harboring an association with MSA may be either protective or deleterious, any 

significant findings will yield insight into the pathogenesis of disease.  

Secondly, I would to identify candidate variants and gene-based variability that 

are associated with MSA using next generation sequencing in approximately 415 

samples, about half of which are pathologically confirmed. Ideally, these will be putative 

causal variants that will shed light on the molecular mechanisms of disease and potential 

for therapeutic design in the future. However, it is feasible that such rare variants may 

modulate risk for MSA development. Because MSA is a rare disease systematic 
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investigation of the genetic basis of this disease has been challenging; the cohorts studied 

are small and thus lack power. Hence, the goal of this work is to produce rational 

evidence based candidate genes and variants for validation and replication by the MSA 

research community. This will be a cardinal step towards our understanding of the 

genetic basis of this severely debilitating and fatal neurodegenerative disorder. 

Thirdly, I would like to further explore the genetic architecture of Parkinson’s 

disease among a large Greek kindred that we believe has maintained a high degree of 

genetic isolation for the last several centuries. While we have identified several risk 

factors and causal variants associated with Parkinson’s disease, heritability estimates 

suggest that other genetic variants remain to be found. By utilizing some of the most 

advanced technological approaches in genetics, I hope to elucidate a missing piece of the 

puzzle in the etiology and molecular underpinnings of this devastating disease.  
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1.2 Why pursue genetics in disease?  

 To pursue the study of genetics, one is usually motivated by an interest in 

anthropological, scientific or medical questions. While the study of human anthropology 

has been critical towards discovering our ancestral origins as species, the drive to 

understand human physiology and pathophysiology, on both a molecular and gross level, 

is believed to be a critical milestone in the progress of modern medicine toward etiologic 

based therapies.  

 It is believed that through genetics, we can understand the molecular basis of 

disease, and that this understanding will afford the opportunity to develop and test 

etiologic based therapies. As we continue to unravel both risk factors and causes of 

disease through genetic analyses, we make significant strides in diagnosis and treatment, 

with the goal of seeking more preventative avenues in future medicine. As no individual 

is immune to the effects and implications of genetics, the scientific pursuit of genetics is 

essential for the continued prosperity of human health and vitality. 

 Throughout my journey as a PhD student, I have developed a profound 

appreciation for the current state of the field of genetics. This not only entails the 

remarkable progress in recent history but the passion and drive that is so inspiring from 

the scientific community. While we must remember that the number of failures will 

greatly outweigh our successes, the journey will be valuable both personally and for the 

greater scientific community, as we learn which areas to draw our attention towards or 

away from. Finally, following countless efforts of failure, we must believe they will make 

future success in our genetic studies that much more gratifying for scientific and medical 

communities alike.  
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1.3 Advances in genomic technologies: unraveling the genetic basis of 

disease 

The salience of human genetics for the human condition has reached new heights 

and heralds the redefinition of clinical nosology.  The intellectual ambition of preeminent 

scientists to collaborate in order to harness technological advances have led to three 

fundamental paradigms explaining the genetic etiology of human disease as depicted in 

Figure 11. 

 

Figure 1: The genetic basis of disease.  

Graphical depiction of common, low-frequency and rare variants and their corresponding effect size on 

association with disease. The top left corner includes very rare variants with large effect sizes, such as 

SNCA duplication or triplication or LRRK2 p.G2019S in PD. An example of low-frequency variants with 

intermediate effects in PD would be heterozygous alleles in GBA that increase PD risk more than 5-fold. 

Common variants in common disease ascertained by GWA studies would be any of the replicated and 

validated PD GWA “hits,” such as variants in STK39 or HLA-DQB1. A classic example of a high-effect 

common variant influencing common disease would be APOE in Alzheimer’s Disease. Finally, rare 

variants with small effects that are difficult to detect are largely unknown in the etiology of many 

complexes diseases.  

 

 

Reproduced from (Manolio et al., 2009).1   
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1.3.1 Monogenic diseases 

Perhaps the simplest category of genetic influence in disease is that of monogenic 

disorders, or “Mendelian inheritance”. This centers on disease causing genetic variability 

that is always, or highly likely to be, causal (highly or fully-penetrant diseases). These 

diseases may be inherited in an autosomal dominant, autosomal recessive or X-linked 

fashion (Figure 2).  

 

 

Figure 2: Types of Mendelian inherited disorders.  

Pedigrees depicting each mode of inheritance. Autosomal dominant diseases affect each successive 

generation while those of autosomal recessive can “skip” generations. X-linked diseases are carried by 

females in a heterozygous state and are described as having a carrier status; however, as males only have a 

single X-chromosome, variants are hemizygous, typically with a fully penetrant phenotype.   

Reproduced from http://resources.ama.uk.com/glowm_www/graphics/figures/v3/1150/001f.jpg 

 

Pathological mutations, in the form of protein coding variants, copy number 

variations (CNVs), copy neutral variations (translocations or inversions) and expanded 

repetitive sequences, have been shown to cause monogenic disorders 2,3. While such 

mutations are generally rare, there has been a great deal of success in identifying this 
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form of genetic influence in disease; further, such mutations have served as the basis for 

the majority of investigation into the molecular mechanisms that represent the disease 

process. 

1.3.1.1 Linkage analysis and positional cloning 

Prior to the GWA and Whole Exome Sequencing (WES) eras, linkage studies and 

autozygosity mapping represented the core of genetic analyses. To obtain the first genetic 

map, restriction fragment length polymorphisms (RFLP) were utilized as landmarks, 

followed by highly polymorphic microsatellites, typically amounting to 200-400 total 

genetic markers scattered throughout the genome that were used for mapping traits.4 For 

highly penetrant Mendelian diseases, this approach proved extremely valuable, centering 

on the observation of which genetic markers co-segregated with disease among affected 

and unaffected family members, thus indicating the genetic region most likely to contain 

the underlying genetic mutation. Notably, the scientific beauty of genomic linkage 

studies is elegant:  a truly unbiased approach, which can be applied to autosomal 

dominant, recessive or X-linked modes of inheritance. 

Linkage studies made enormous gains upon the completion of the Human 

Genome Project, commencing in 1990 and ultimately sequencing the human genome in 

its entirety, at least in draft form, in 20015. Prior to this even in the early 1990’s, linkage 

successes were apparent. For example, the X-linked hypophosphatemic rickets gene, 

HYP, was first identified through a series of multi-locus mapping constructs.  

Linkage studies in the 1990’s facilitated the concept of homozygosity mapping, in 

which small consanguineous families are studied to genetically map recessively inherited 



 24 

disease haplotypes shared by affected individuals but absent in unaffected family 

members 6,7.  

This method was relatively rapid, because the underlying idea is simple. In 

consanguineous families with disease, the mutation is likely to be homozygous, and 

therefore will be surrounded by homozygous genotypes. If the consanguinity is quite 

recent, then the disease associated genomic region is large, because there have not been 

many meioses, and therefore little opportunity for the region to break down. By analyzing 

markers throughout the genome, investigators could identify homozygous regions, often 

defined as “runs of homozygosity”, characterizing the term autozygosity mapping 8. 

Using the same concept as homozygosity mapping, specific haplotypes across the 

genome may reside only in affected individuals within consanguineous families, allowing 

one to identify multiple deleterious regions that may contribute to a single polygenic 

disorder. For instance, data generated from an autozygosity mapping study among highly 

inbred families manifesting schizophrenia reported that the odds of schizophrenia 

increase by ∼17% for every 1% increase in inbreeding 8. Likewise, this can also be 

measured with a LOD score to compare the likelihood of obtaining the test data if the two 

loci are linked to the likelihood of observing the same data simply by chance alone 6,9.   

The use of traditional linkage panels using a few hundred microsatellite markers 

was usually followed by a positional cloning project, as once the region of linkage was 

identified the investigator then had to identify the genes in that region, and determine if 

any of those genes contained a disease segregating mutation. Both linkage and the 

subsequent positional cloning experiments were costly, extremely time consuming, and 

laborious. Furthermore, extensive family pedigrees are required for informative linkage 
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analysis, which can be difficult to obtain with regard to both physical sample acquisition 

and accurate history of relatedness and disease.  It is perhaps testament to the perceived 

importance of understanding genetic mutations that cause disease, that so many of these 

projects were undertaken and completed. There were a number of advances that increased 

the speed and efficiency of these projects; the first was the human genome project, which 

meant that an investigator would know (largely) what genes and exons were within their 

region of interest – thus following linkage they did not have to discover the genes, only 

the mutations via resequencing, most typically with Sanger based sequencing. Secondly, 

highly accurate, highly parallel single nucleotide polymorphism genotyping facilitated 

the rapid execution of linkage analysis. 

1.3.1.2 Next generation sequencing in monogenic diseases 

While the function of a large proportion of the human genome remains elusive at 

present, our knowledge of the central dogma, from DNA transcription to mRNA, and 

mRNA translation to protein, is largely scientifically sound. Thus, it is logical that we 

would pursue the variation and functional role of the 1-2% of the human genome 

containing all coding regions in the form of exons. While this seemingly small proportion 

consists of approximately 180,000 exons and 27,000 genes, the coding regions are the hot 

spots of disease causing mutations, as approximately 85% of human monogenic diseases 

exhibit a causal or associative relationship with missense mutations 10,11. 

The first WES experiment was performed by Hodges et. al in 2007, demonstrating 

the ability to capture between 55-85% of targeted exonic regions 12. This provided a 

significant advance over linkage analysis, which could only demonstrate very large 

genomic regions co-segregating with disease 7,13 (Figure 1.4). Since then, WES has 
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proven to be an incredibly powerful approach for not only Mendelian diseases, but 

additionally for complex diseases particularly in families that are too small for traditional 

linkage analysis. In consanguineous families harboring runs of homozygosity 

undetectable via linkage analysis, WES serves as a novel tool to identify these regions, 

requiring as few as 5 reads of average base coverage (5X) in affected relatives11.  

Further, WES has revealed novel somatic and de novo mutations linked to certain 

types of cancers as well as early onset PD. 11,14,15 WES can be pursued in families with as 

few as three individuals (two affected, one unaffected) or even single probands from 

different families with rare disorders.16,17  

In addition, WES has also been successfully used to diagnose genetic diseases in 

individuals lacking known genetic mutations corresponding to his/her presenting 

phenotype.11 For instance, WES was first conducted in a single patient who manifested a 

phenotype consistent with a severe renal salt wasting disease, Bartter syndrome. While 

candidate genes and variants were identified, none of them had been associated with any 

known cases of Bartter Syndrome and the patient’s diagnosis remained inconclusive. 

However, upon performing WES of five additional subjects presenting with a similar 

phenotype, all were shown to carry the same rare deleterious homozygous variant as the 

proband, facilitating proper diagnosis and pursuit of recommended treatment.11 Hence, 

while our knowledge of exome data results is quite limited regarding gene function, the 

clinical utility cannot be underestimated. The emerging utility of WES and Whole 

Genome Sequencing (WGS) is evident by the rapid reporting of new genetic insights into 

clinical disease (Figure 3). 
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Figure 3: Approximate number of gene discoveries made by WES and WGS versus conventional 

approaches since 2010.   

There was an increasing use of conventional methodologies since the mid-1980’s until around 2010, 

whereby WES/WGS protocols became more widely utilized and have since significantly predominated 

over the use of conventional methods. The first few years of implementing NGS protocol have resulted in 

an increase in the number of disease gene discoveries.  

(Reproduced from Chong et. al. 2010).18 

 

 To compile such a wealth of information, the exome variant server (EVS) 

database has been formed: http://evs.gs.washington.edu/EVS/. To facilitate the scientific 

community’s understanding of the data, the 1000 genome projects consortium has 

designed a genomic map to specify the location, allele frequency and local haplotype 

structure of roughly 15 million SNPs, one million short indels and 20,000 structural 

variants, most of which were formerly unknown.19 This has proven to be highly valuable 

in terms of experiment cost and design, as it has revealed that each person, on average, 

possesses approximately 250-300 loss of function variants in annotated genes, while 50-

100 variants that were previously associated with genetic disorders have been further 

validated.19 Further, an enormous database depicting all coding variants sequenced in 

~62,000 individuals has been created to help identify the allele frequency and predicted 

http://evs.gs.washington.edu/EVS/
http://www.sciencedirect.com/science/article/pii/S0002929715002451#gr4
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pathogenicity of many variants not included in 1000 genomes (EXAC 

http://exac.broadinstitute.org/). A general approach to using WES is depicted in Figure 4. 

 

 

 

 

Figure 4: Whole exome sequencing analysis schema.  

Whole exome sequencing analysis compares coding variants between cases and controls by using genetic 

variation databases to filter out common variants, ultimately deriving a list of candidate genes.  

Reproduced from (Biesecker 2010).18 

 

 

While there continues to be a need and use for WES, WES does have several 

limitations. Firstly, while many variants are suspected to be located in coding regions, we 

have learned that certain diseases harbor variants located within non-coding introns. For 

example, WES was used to identify unique coding variants as a cause of Kohlschutter-

Tonz Syndrome (KTS), a rare autosomal recessive neurodegenerative disease defined by 

epilepsy, psychomotor regression and amelogensis imperfecta 20,21. While a homozygous 

frameshift deletion and missense mutations in ROGDI were determined to be the cause in 

some affected individuals, coding variants could not explain other cases of disease 

outside a few families.20,21 Unsuccessful WES attempts in other families led investigators 

to pursue WGS, in an effort to seek coverage of regions missed by WES: introns, GC rich 

repeats, long CNVs and long repetitive sequences. Analysis revealed a homozygous 

intronic variant, which eliminates the splice donor site within intron 2, rendering a full 

exonic deletion of exon 2 in ROGDI and thus causing disease.22  
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Likewise, while several mutations in coding variants have shown to cause ALS, 

other forms of alleged Familial ALS (FALS) did not exhibit any known causal variants 

following WES.23 However, deep resequencing revealed a large hexanucleotide repeat 

expansion within the first intron and promoter of C9ORF72 and has been determined to 

be a large risk factor for both ALS and Frontotemporal dementia (FTD).23 Such detection 

challenges have also occurred for regions enriched with GC content, requiring a 

combination of cloning, sanger sequencing and de novo assembly to reveal the 

pathogenic variant in medullary cystic kidney disease type 1 (MCKD1).24 

Finally, as mentioned above, CNV detection can be difficult in WES data. Thus, 

CNVs in Autism were detected by comparative genomic hybridization followed by a 

series of other assays including microsatellite genotyping.25 While this does not suggest 

that WES should not be performed, as it has identified several unique variants associated 

with autism disorder, it should be used in addition to other techniques to seek a more 

comprehensive analysis.26 Hence, one must not assume that negative WES results 

indicate that casual variants are located in non-coding regions, but rather acknowledge 

the possibility that such regions were not captured or covered sufficiently. 

Finally, psuedogenes can also pose issues when reading short sequence reads 

obtained from WES. Interestingly, upon learning of GBA’s role as an intermediate risk 

allele for PD, many were interested in detecting GBA carriers to enhance our 

understanding of PD pathophysiology.7 However, a pseudogene for GBA exists only a 

few kilobases downstream of the target GBA, exhibiting approximately 96% sequence 

homology. Thus, the origin of WES reads at GBA are difficult to discern, as they may 

originate from the pseudogene rather than the intended GBA target gene.7  
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Ideally, WGS will become the standard form of next generation sequencing, given 

the ability of this approach to remedy many of the limitations of WES. The expense of 

WGS, both in execution and data processing/storage, means that WES is still the 

dominant methodology; however, history suggests that the price of WGS will drop 

significantly, and this will shortly be the dominant genetic method.  

1.3.2 Complex diseases 

With this remarkable progress in the field of genetics, we have also learned that 

only a small percentage of human diseases are associated with a classical Mendelian 

inheritance pattern.18 The majority of disease is believed to be driven by a more complex 

interaction of factors, with many disorders believed to be a result of an interaction of 

many genetic variants and environmental factors. These clinical conditions are classified 

as genetically complex disorders/diseases. 

The genetic portion of complex disease is often ascribed to two non-mutually 

exclusive ideas: The Common Disease Common Variant (CDCV) hypothesis, and 

Common Disease Rare Variant (CDRV) hypothesis (also called the Multiple Rare 

Variant (MRV) hypothesis). 

In the former, it is postulated that the genetic basis of common complex diseases 

is a result of a large number of common variants, that each exert relatively small effects 

on disease risk, but that cumulatively confer significant risk.  The risk of these alleles is, 

individually quite small, because otherwise they would likely have been selected out of 

the population over time. Notably, the pressure for selection may be relatively low in 

diseases that occur past reproductive age, or for variants where they may be an earlier 

selective advantage (balancing selection), thus common risk variants of considerable 
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effect do exist (APOE in Alzheimer’s disease and CFH in Age Related Macular 

Degeneration), however these are the exception rather than the rule. Conversely, the 

CDRV hypothesis posits that common diseases may be caused by an accumulation of 

rare variants. Notably, because these variants are by definition rare, they will not have 

been selected out of the population, even if they have a large influence on disease. While 

the CDRV and CDCV hypotheses state opposing mechanistic views, they are not 

mutually exclusive, and it is very likely that both have a role to play in the majority of 

common diseases. 

Finally, to complete the current understanding of variants and graded risk, we 

must consider the outliers, which seem to defy the current trend of an inverse relationship 

between MAF and risk with respect to disease. Perhaps the most classic example of this 

is APOE and AD, in which particular alleles of APOE, acting in a dose-dependent 

manner, have been deemed both common and high risk on all GWA studies of AD.16   

This is particularly interesting, as we would expect deleterious common variants to 

exhibit low reproductive fitness via negative selection over time. However, because AD 

as well as many other neurodegenerative disorders are late-onset diseases, this logic 

becomes invalid, as fitness is not affected until much after child-bearing years.16 The 

degree of risk is manifested in a dose dependent fashion, in which a homozygous 

genotype of the highest risk allele, APOE4, raises one’s likelihood of AD development 

by approximately 8-fold.27 While there is clearly other risk in addition to APOE isoform 

carrier status, it is important to study all associated loci to determine an overall graded 

risk.16  
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The possibility of de novo mutations, in which neither parent harbors the variant, 

also warrants consideration.15 By the same argument presented above in reference to 

APOE, most de novo mutations tend to be highly pathogenic and would ultimately be 

detrimental towards reproductive fitness. However, our current fund of knowledge 

regarding de novo mutations suggests that their influence commences upon conception; 

hence, while some mutations may be embryonically lethal, others may render one’s 

fitness very poor from inception and thus can explain early-onset disorders.15,18  

 In referring back to Manolio et al.’s figure (Figure 1), there are also variants that 

may be very rare and low risk, which would be extremely difficult to detect with current 

technologies, but we must acknowledge the possibility of their presence. While we would 

expect them to play a role in the graded risk equation, their low risk profile and 

challenging detection status hinder their center stage presence in our current analysis of 

the genetic landscape underlying human disease.1 

According to variant frequency and hypothesized degree of risk harbored by the 

gene of interest, one must utilize an appropriate method of gene discovery (Figure 5).  
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Figure 5: Gene discovery methods.  

Methods based on the hypothesized nature of the genetic architecture of the disease under investigation. 

Very rare protein coding, high-risk variants are best detected using either linkage analyses or WES. 

However, WES is likewise able to identify common variants, whereas linkage use is amenable only to 

extremely rare variants (MAF <0.001). GWA studies are able to detect both coding and non-coding 

common variants with varying levels of risk.  

Reproduced from (Singleton, et al., 2010).2 

1.3.2.1 Candidate gene association studies in complex diseases 

When penetrance is incomplete, certain approaches (i.e. linkage analysis) can be 

particularly ineffective, as unaffected family members may possess the genotype but not 

express the corresponding phenotype.  

A candidate gene approach can be implemented when there is prior knowledge of 

gene function and a possible role in disease. A list of putative candidate genes is formed 

by including those that are both functionally relevant and located at plausible genomic 

loci (i.e. signal detection from previous GWA study). Further, using online tools, such as 

KEGG and Ingenuity, which provide graphical pathway maps, or STRING, which reveals 

all known and possible gene interactions, one can generate a substantial candidate gene 

list. As there is extensive overlap in genes causing complex diseases, many of these 
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associated genes often become candidates for diseases in the same family (i.e. SNCA in 

alpha-synucleinopathies: Parkinson’s Disease and Multiple System Atrophy). An 

important caveat, nonetheless, is that candidate gene analyses require a priori hypothesis 

of the genes selected for investigation and a limitation for such efforts is a lack of 

understanding of the underlying biology of disease, of the likely size of effect of risk 

variants, or the location of variants. Given that we often know little about the disease 

process, and that many of the initial candidate gene association studies were small in 

scope and power, it is not surprising that there has been an abundance of false positive 

(type I error) reports in which initially published associations were unable to withstand 

independent replication.7,28 Likewise, underpowered studies may fail to reveal significant 

loci, such as the case for initial studies for PD, which reported conflicting results for both 

MAPT and SNCA, now known to be risk loci. Hence we must also entertain the 

possibility of false negatives (type II error). 

1.3.2.2 Genome wide association studies in complex diseases  

The primary pitfall of candidate gene association studies were that they were 

inherently biased, and generally rather small, perhaps in large part because at the time 

most investigators were looking for effects of the size associated with APOE in AD. The 

answer to identifying common risk variants for disease lay not in focused candidate 

studies, but in an unbiased method (much as linkage is unbiased). Two advances allowed 

progress to be made in this regard; the development of highly parallel and accurate SNP 

genotyping arrays, and the International Haplotype Map Project.  

In 2002, the HapMap 1000 genomes International consortium was established to 

study the common patterns of DNA sequence variation across the human genome. This 
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compilation entailed analysis of sequence variants, their frequencies and respective 

correlations between them among populations from several continents, Europe, Asia and 

Africa (International hap map consortium 2003). While the Human genome project 

focused on sequencing the entire human genome, including the 99.9% of DNA which all 

humans share, the HapMap project targeted the distinct variation among diverse 

population cohorts in the remaining 0.1% 29 This facilitated the process of imputation, 

which uses a reference panel of whole genome sequenced samples to estimate genotypes 

in positions that were not included among the markers in the genotyping assay (Figure 6). 

 

 

Figure 6: A schematic of how imputation works 

 A.) Observed genotypic data from unrelated individuals is incorporated into a HapMap reference panel (B) 

which detects shared chromosomal regions between study samples and those in HapMap reference panel. 

For samples of European ancestry, haplotype stretches are typically >100kb in length. C.) Haplotype 

sharing information is combined with observed genotypes of samples to “fill in” unobserved genotypes in 

study samples.  

Reproduced from (Li et al 2009).30 

 



 36 

These advances drove the new era and concept of GWA studies, which are based 

on the following premise: risk variants may occur within haplotype blocks shared with 

common variants through linkage disequilibrium (LD). A key concept in population 

genetics, LD refers to the association of alleles at distinct loci in a non-random fashion; 

thus, alleles in LD are associated much more often than would be expected by chance 

(linkage equilibrium). Since common variants can be tagged through genotyping marker 

arrays, risk variants in LD should manifest an association, by proxy, with tagged common 

variants and ultimately with the disease trait under investigation.  

While critics suggest a metaphor of a genome wide fishing expedition, 2 the 

overwhelming majority of the genetics community would argue that the results gleaned 

from GWA studies mark a significant advancement from linkage based analyses.1,2 

Specifically, many believe that GWA studies have modified our approach toward 

experimental design while demonstrating higher power than linkage studies to detect 

common variants with mild effects.7,9 By using such an unbiased approach, previous 

knowledge of genomic structure and trait etiology are not considered priori hypotheses, 

which has ultimately yielded key information regarding common disease pathways for 

several disorders.7  

It is evident that understanding population heterogeneity plays a crucial role in the 

ability to successfully implement a GWA study, as varying genotypes among ethnically 

distinct populations could easily be interpreted as false positive associations with the 

disease trait under investigation. Moreover, the HapMap project has also revealed 

extensive levels of intra-population heterogeneity in those populations characterized by a 

history of mass migration and minimal isolation.31,32  
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Notably, the first successful GWA study only assessed 100,000 SNPs in 96 

patients affected with macular degeneration and 50 controls (Klein et al 2005). Despite its 

small size, SNPs in the complement factor H (CFH) gene were deemed highly significant 

and later confirmed with replication.33 Since its earliest success, GWA studies have been 

performed in more than 200 diseases.34 Further, the concept of GWA studies has been 

applied to scrutinize variants which contribute to normal variability in human traits (i.e. 

height).35 The vast amount of data generated from all GWA studies to date are organized 

in the publically accessible online catalogue (http://www.genome.gov/26525384). 

Visscher et al has depicted the number of GWA studies that have been performed since 

2005, illustrating the continuous increase in the cumulative number of SNPs incorporated 

with each additional investigation (Figure 7). 

 

 

Figure 7: Number of GWA studies published per year.  

The cumulative number of SNPs included in GWA studies since 2007 has increased dramatically. The 

corresponding number of SNPs and publications have likewise continued to increase but in a more linear 

fashion. Single nucleotide polymorphisms (SNPs) with p-values <10-8 are illustrated. 

 

 Reproduced from (Visscher, et al., 2012).35 

 

http://www.genome.gov/26525384
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The underlying premise for pursuing GWA studies is based on the CDCV 

paradigm, with the goal of detecting common variants (MAF>5%) that contribute to the 

development of disease.1 By using commercialized SNP chips or arrays that capture the 

majority of common variation throughout the human genome in studies of at least 1000 

cases and controls, a minimum of 300,000 markers has been suggested to obtain 

statistically significant results, although clearly these parameters vary extremely between 

diseases.36 The significance of the CFH gene in the macular degeneration study is a clear 

exception, as the signal intensity was highly detectable despite low power.33 Likewise, 

this unique combination of common frequency with a high graded risk profile also 

applies to APOE detection in AD.27 PD GWA studies, however, are an excellent example 

of the concept of sheer power; using numbers below the ideal sample and SNP marker 

levels, loci which we know are definitive PD risk factors (PARK16) did not reach 

significance. However, by simply increasing sample size and genotype marker frequency, 

lower grade risk variants reached statistical significance in the PD GWA study meta-

analysis, thus overcoming the initial low power issue in smaller studies.37  

Greater than 80% of known associated variants lie outside of coding regions, 

which highlights the importance of surveying both coding and non-coding regions for 

plausible disease-associated variants.1 While this is beneficial towards a more 

comprehensive genome wide analysis, the fact that many of the non-coding regions have 

poorly (if any) defined functional knowledge can be challenging. To remedy this issue, 

the Encyclopedia of DNA Elements (ENCODE) project was developed in 2007 to 

analyze the 1% of functional elements in the genome, which are often non-coding but 

may effect transcriptional activity or regulate splicing.38 
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While GWA studies are targeted for common diseases based on the CDCV 

paradigm, some common diseases harbor variants with such a mild graded risk that the 

sample size required for detection is simply not feasible.2,39 In addition, many complex 

diseases exhibit allelic heterogeneity, whereby distinct disease causing mutations exist 

within a single gene (i.e. LRRK2). While some may be highly penetrant (p.G2019S), 

others may require multiple alleles to co-exist in LD and be inherited as a haplotype 

block to consequently cause disease.40 Thus, while we have discovered several common 

variants for diseases like PD, there are likely others we have yet to identify.  

In addition to increasing sample size, increasing the number of genetic markers 

may also improve the odds of successfully identifying association. A critical step forward 

in this was the development of imputation, which is used to increase the power of GWA 

studies. This is not only beneficial towards enhancing the power of signal detection, it is 

often a key step in order to strengthen fine mapping abilities and mitigate the effects of 

possible synthetic associations.7,16   

Without imputation, power is often insufficient to distinguish signals deriving 

from single markers due to LD between variants that are physically near one another.16 

These may be considered synthetic associations, which refer to the indirect associations 

that can occur between a common variant and at least one or more rare causal variants.41 

Hence, a positive signal derived from a GWA study is frequently not located within the 

functional domain of any gene. Consequently, the most nearby and biologically plausible 

gene is often declared the candidate gene, but this must not be deemed associative until 

independent replication and functional work are performed to confirm its physiological 

role.16 In a Sickle Cell Anemia GWA study among the Yoruba Ibadan Nigerian 
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population, a total of 189 SNPs were deemed significant, encompassing a 2.5Mb region 

on chromosome 11.41 The strongest association signal was 9kb from the closest gene, 

OR51V1, which is not even the causal gene of Sickle Cell Anemia. While OR51V1 is 

very close to the causal gene, HBB, this demonstrates how strong signals can migrate 

across several LD blocks towards distant areas of the genome.41 This concept is 

illustrated in Figure 8: 

  

Figure 8: Direct and indirect nature of associated variants.  

When a typed marker locus and an unobserved causal locus are in the same haplotype block, they can both 

appear to demonstrate a direct association with the disease phenotype, by proxy. However, the typed 

marker locus truly exhibits an indirect association with the disease phenotype due to LD, thus creating a 

synthetic association.  

Reproduced from (Balding et al, 2006).36 

 

If a candidate locus can be identified by a GWA study signal, it is recommended 

to use deep resequencing within a +/- 10Mb region surrounding the locus to determine 

the signal origin.41,42   

While false positives are a valid concern, the probability of false negatives 

becomes increasingly likely with the performance of each additional statistical correction 

test for multiple testing.43 The Bonferroni correction method, which is the most widely 

used and accepted correction method to determine GWA signal significance, is often 

faulted for being overly conservative due to the following: the alpha (α) value denoting 
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the signal significance is divided by the number of independent tests performed, which 

does not account for LD among adjacent SNPs or even genes associated with a known, 

common biological pathway.43 As a result, this increases the type II error rate (false 

negatives) and reduces the specificity for signal detection.43 Furthermore, it is important 

to recognize that many of the rare variants not captured by GWA study arrays are likely 

not included post imputation. While there are notable exceptions, including the detection 

of rare variants in lung cancer after imputation, this is an unlikely scenario.39 Hence, 

when imputation is insufficient to attain desired power or does not yield significant 

signals, it is advised to seek replication through direct genotyping in an independent 

cohort.44   

Secondly, even if sample sizes are adequate, some complex common diseases are 

extremely heterogeneous in nature; hence, it is quite possible that risk variants are 

specific to only certain subtypes of disease. Thus, the translation of this information from 

clinical diagnosis to a classifiable phenotype for research purposes is often hazy at best. 

Consequently, the current clinical utility of GWA study results has been far from 

optimal.45,46   

 

1.1.2.3 Estimating Risk 

Classically, two methods have been used to estimate heritability: twins studies 

and relative risk. Regardless of approach, heritability is defined as the proportion of total 

variance in a population for a specific measurement, obtained at a specific age or time, 

which is attributable to variation in additive genetic or total genetic values.47 

Measurement is obviously quite challenging and always an approximation, as it is 
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dependent upon segregation of alleles affecting the trait in the population, frequency of 

alleles, effect sizes of specific variants and the mechanism of action underlying particular 

genes (i.e. epistasis). However, by comparing the observed and expected concordance of 

particular binary traits among relatives, we can quantify estimates of heritability. The 

closer the genetic relationship between individuals, the less genetic variance is expected, 

allowing one to better characterize the role of non-genetic influences (i.e. environmental, 

epigenetic). However, even in monozygotic twins with a very high concordance rate for a 

particular disease not confounded by shared environments, a high heritability still does 

not reveal information about the genetic architecture of the traits or even how many loci 

contribute to the phenotype of interest.47  

When assessing the likelihood of disease risk in medicine, the relative risk is 

calculated, which is another form of measuring heritability. By comparing the probability 

of an event happening (i.e. development of disease) in distinct individuals or populations, 

we can learn who may be at a higher risk. While increased risk may be attributed to 

environmental or behavioral/lifestyle factors (i.e. smoking), it also may be due to additive 

genetic factors shared by individuals harboring similar risks. In the latter, we can estimate 

heritability from these individual genetic loci to better understand persons at risk. This 

illustrates the calculation of the odds ratio in GWAs studies by determining risk alleles 

and the corresponding odds of developing disease in particular individuals or populations 

based on the presence or absence of specific genetic variants. 

In addition to detecting risk loci, GWA study data have been used to assess 

heritability levels of complex diseases through polygenic additive inheritance via 

Genome Wide Complex Trait Analysis (GCTA).48 This allows ones to compare the 
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genotypes of all common variants (included on the SNP array) between cases and 

controls in a particular disease of interest in an effort to explain phenotypic variance 

attributed to genotypic differences.48 Notably, this has been performed for several 

complex diseases and there is a large discrepancy between the estimated heritability 

derived from GCTA results, which does not account for Single Nucleotide Polymorphism 

(SNP) effect size, with the accumulation of signals detected from the corresponding 

GWA study. While this is initially perplexing, this concept of missing heritability can be 

explained through a variety of reasons. 

Firstly, the inability of GWA to detect rare variants (MAF<5%) (with low or high 

degrees of risk) would explain the low levels of heritability gleaned from GWA identified 

loci on their own.1,16 Additional explanations include but are not limited to the inability 

of genotyping arrays to capture structural variation in samples including copy number 

variants (indels), copy neutral variants (inversions and translocations) and repeat regions, 

as well as epistasis.1 For example, while autoimmune diseases like Crohn’s and Psoriasis 

have demonstrated an association with common CNVs that harbor modest effects, 

neuropsychiatric conditions like Autism and Schizophrenia are associated with rare 

CNVs that exhibit large effects.1 Hence, using a simplified genetic model to estimate 

heritability that fails to account for SNP effect size and LD, as well as environmental 

factors (which remain largely elusive), estimated heritability results must be interpreted 

with great caution. 1,49  

The knowledge of disease variants and their plausible biological function derived 

from linkage analyses and GWA studies continues to grow rapidly. Key theories have 

been confirmed towards our evolving comprehension of genetic disease: non-causal rare 
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variants imparting moderate or high risk obtained through linkage studies in support of 

CDRV, and common variants portraying mild, moderate or even high risk (i.e. AD and 

APOE) derived from GWA studies endorsing CDCV are both necessary but not sufficient 

to paint the full genetic portrait of human disease.1,2 Given that our current heritability 

estimates, which we acknowledge must be interpreted with great caution, challenge our 

current domain of knowledge derived from GWA and linkage studies, the road to 

discovery is only in its infancy. Thus, we have continued to forge ahead into our newest 

and most exciting genomic technology to date: whole exome and whole genome 

sequencing.  

1.3.2.3 Next generation sequencing in complex diseases 

WES has not only helped identify and properly diagnose monogenic diseases, as 

in an atypical case of Wolfram syndrome, as well as Freeman-Sheldon syndrome 50–52, 

but holds promise for discovering both rare and common variants among patients with 

known polygenic disorders. While diseases with classic Mendelian forms of inheritance 

serve as ideal candidates for exome sequencing, one must realize that complex disorders, 

provided that sample sizes are sufficient, are potentially amenable to dissection with 

WES.  

The identification of TREM2 variants as risk factors for Alzheimer’s disease is an 

excellent example of this approach. 44 Investigation of potentially causative genetic loci 

of complex diseases requires acknowledging the concept of variable expressivity. In 

essence, variable expressivity is considered the “rule” rather than “exception”; hence, 

phenotypic variation may result in discordance among genotype-phenotype assessments 

even among highly penetrant mutations.53 Analysis of GWA study results for common 
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diseases suggests that the majority of heritability behind complex traits is unlikely to be 

attributed to common variants with mild effects alone but rather, that a significant 

proportion of the heritability associated with complex diseases is likely to be attributed to 

rare variants, which as discussed above, may also have larger effect sizes.54,55  

While WES can be performed on a variety of studies, the filtering process must be 

tailored accordingly. In the case of trios, in which both parents are unaffected and the 

child is affected, a homozygous recessive or de novo mutation would be expected in the 

child. Upon data generation, one would focus on variants harbored by the child (in 

homozygous form) while each parent is heterozygous. If this does not yield promising 

results, the hunt for a de novo mutation, whereby the child is heterozygous for a novel 

allele and both parents are homozygous wildtype, is an alternative filtering strategy. 

Furthermore, some WES analyses have been able to obtain multiple sets of trios with the 

goal of identifying a rare and novel variant shared by affected children in different 

families. This particular strategy has been very successful in the identification of several 

novel variants causing familial ALS, including Valosin-containing protein (VCP) and 

Matrin 3 (MATR3).56,57  

Other studies involve the analysis of multigenerational families, often with an 

unknown pattern of inheritance. However, based on the presence or absence of disease  

“skipping generations,” or predominance of one sex manifesting disease, one can 

hypothesize possible modes of inheritance and filter accordingly. Using two affected yet 

distantly related individuals within familial pedigrees can greatly decrease the number of 

candidate genes and loci from WES results. Such a strategy has been key in the 
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identification of a rare variant within vacuolar protein sorting 35 (VPS35) as a cause of 

familial PD.58,59   

While obtaining families is ideal for genetic analyses, they are often hard to 

obtain with accurate clinical and relatedness histories. Therefore, many WES analyses 

acquire numerous sporadic cases and perform a case control analysis based on age and 

population matched controls. While this approach has also been successful, such as the 

TREM2 discovery in AD, the potential for heterogeneity between affected samples is 

significantly higher and further complicates genetic analyses in comparison to strictly 

using familial cohorts.60  

In comparison to GWA studies, which measure statistically significant 

associations using an odds ratio (OR), WES filtering for very rare variants is assessed 

through minor allele frequency (MAF). MAF exhibits an inverse linear relationship with 

a required sample size, in which 1/MAF is directly proportional to the sample size. Thus, 

it is evident that substantially large cohorts are the most promising towards finding such 

rare variants.1 However, sample size demonstrates a quadratic relationship, 1/|(OR-1)| 

with the odds ratio, which is necessary for association detections. Therefore, prior 

association studies (measured by OR) have all needed a significantly larger sample size 

than WES (detection measured by MAF) since sample size is much more strongly 

affected by OR than MAF.1 Thus, even when cohort numbers are in the hundreds (vs. 

thousands), WES is an invaluable tool and is therefore more likely to be lucrative than an 

association study with the same sample size.  

While sample acquisition is challenging when studying any rare disease, 

particularly those that require pathological confirmation, the ability to utilize fewer 



 47 

samples within WES (vs. GWA) studies provides increased power and opportunity to 

reveal statistically significant associations through individual variant and gene burden 

analyses. In a classic case control study, WES and WGS allow one to uncover both 

protective and deleterious alleles (and possibly genes) in the pathogenesis of disease.  

Upon identification of putative associated or causal variants, one must validate through 

traditional sequencing methods (i.e. sanger sequencing) and replicate these results in 

independent cohorts.  

As with any new technology, there are some limitations of WES that must be 

addressed: firstly, incomplete current capture efficiency means that the remaining exomic 

regions are not captured nor sequenced. Secondly, given that WES only targets coding 

regions, it cannot detect intronic regions involved in gene regulation or expression. 

Thirdly, given its bias to coding regions only, WES cannot characterize all genomic 

structural variation. 61 Finally, since WES is a research tool in its infancy and likely to be 

clinically unavailable for many years, financial investment towards reagents and 

equipment cannot be overlooked. Notably, however, costs have declined exponentially in 

recent years. 

While attempts to confront some of these issues are simply not feasible due to 

technological constraints (i.e. capture inefficiency and inaccuracy of variant calling), 

other issues, such insufficient sample size, can be addressed. Perhaps the most obvious 

solution to this problem requires international collaboration and data sharing. With the 

ability to exchange petabytes of data through universal drives such as amazon cloud, our 

current progress in the field of genetics and specifically in overcoming certain limitations 

of WES is profound. Thus, in an effort to efficiently and easily share resources, the 
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burden of analysis, and rapidly disseminate results, the formation of an international 

collaborative framework should be the priority of any entity wishing to pursue research 

into the genetic basis of very rare disorders like MSA. 

1.3.3 The future of human disease genetics 

Many genetic variants that underlie disease have been identified for which a 

pathobiological function is unknown; thus it has been argued that time and resources 

would be better spent understanding the biological basis of these factors rather than 

identifying more. A converse opinion is that accumulating additional genetic risk for 

disease provides additional understanding of the disease process as a whole, and thus the 

way to understand the mechanisms of disease is to identify as much of the genetic 

influence for this disease as possible. With this argument in mind, much of the work in 

this thesis centers on attempts to further understand the genetic basis of two devastating 

neurodegenerative diseases PD and MSA. The pursuit of genetic risk and causative loci is 

scientifically tractable via the implementation of next generation methods, including 

GWA and second generation sequencing, provide the ability to obtain valuable data for 

disease investigation and to inform clinical diagnosis.53 

Success in any modern genetic investigation requires extensive scientific 

collaboration, regardless of approach. In particular, diseases such as MSA are rare 

enough that no single group can collect sufficient cases on its own; thus, the field will not 

progress without pooling of clinical resources.  Upon acknowledging these substantial 

challenges discussed above, we would predict that clinical progress of PD and MSA 

(diagnosis, treatment) will be much delayed until we make advances towards our genetic 

understanding of these diseases. 
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1.4 Parkinson’s disease 

Second to AD, PD is the most common neurodegenerative disorder, with an 

approximate prevalence of 50-200 cases for every 100,000 individuals worldwide.62 PD 

demonstrates an age-dependent prevalence in which roughly 1% of the global population 

is affected by 65 years of age, while approximately 4-5% of individuals at 85 years of age 

suffer with PD.63 The average age of onset is variable but is approximately 70 years of 

age. Up to 10% of PD patients develop disease prior to 50 years of age, representing 

those individuals with familial forms of disease.62 PD has been characterized as a 

complex polygenic disorder that is influenced by both genetic and environmental 

factors.62,64 

The use of levodopa remains the universal first line of treatment for PD. While 

levodopa, typically improves a patient’s parkinsonian symptoms, this period is usually 

temporary and increased doses are required to maintain efficacy. Ultimately, even if 

levodopa helps alleviate symptoms, it does not stop or even slow down disease 

progression, making the need for targeted disease modifying therapies in PD a priority.65  

 

1.4.1 Clinical and neuropathological features of Parkinson’s disease 

Classical PD refers to a patient presenting with four key clinical features: 

bradykinesia, resting tremor, muscle rigidity and postural instability.65 While these 

neurological symptoms define typical PD, patients often present with an array of non-

motor disturbances including (but not limited to) sleeping maladies, constipation, 

depression, progressive dementia and orthostatic hypotension.66 Autopsy is required for 

definitive diagnosis of PD, which must reveal PD’s pathognomonic hallmark: Lewy body 
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(LB) inclusions. While there is some heterogeneity depending on the distinct etiology of 

PD, postmortem PD brains typically reveal significant neuronal death in the (SNPC) 

nigra pars compacta with alpha-synuclein filled LB inclusions permeating surviving 

neurons. 65 In addition to the formation of LBs, alpha-synuclein also accumulates in 

neuronal processes, called Lewy neurites (LNs).67 (Figure 9, AB) 

 

 

Figure 9: Microscopic findings in PD.  

Microscopic findings in PD with alpha-synuclein immunohistochemistry. A typical brainstem type Lewy 

body (A) and a pale staining “cortical type” Lewy body (B), Lewy neurites in CA2 sector of hippocampus 

(C), and intraneuritic Lewy bodies in medulla (D).  

 

(Reproduced from Dickson 2012.)67 

 

PD neuropathology also extends outside of the brainstem, often noted in the 

hippocampal and medullary regions (Figure 9) When LBs are identified within cortical 

regions of the brain, such as the amygdala, they are known as cortical LBs.67,68 

Furthermore, pale bodies, which are defined as pale staining neuronal cytoplasmic 

inclusions localized to the brainstem, are another key feature of PD neuropathology.67  
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While reduced pigmentation in both the dopaminergic neurons in the substantia 

nigra and noradrenergic neurons in the locus ceruleus are key features to individuals with 

PD, specific regions of the brain are typically affected with respect to the underlying 

genetic mutation69 (Table 1). 

 

 

Table 1: Neuropathology of monogenic forms of PD.  

Neuropathology is grouped according to mutation.  

(Reproduced from Houlden et al 2012). 69 

 

Prior to involvement of the central nervous system, some have suggested that PD 

initially affects the autonomic neurons within the peripheral nervous system.67,70 In a case 

control study investigating the epicardium, researchers observed a significant reduction in 

cardiac sympathetic denervation in PD cases as compared to controls. Interestingly, using 

alpha-synuclein immunohistochemistry, a correlation was seen between the density of 

protein aggregates and disease duration.71 Further, PD pathology has been observed in the 

enteric nervous system and submandibular glands, suggesting other plausible avenues of 
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synaptic cell transmission between the enteric nervous system and central nervous 

system.72   

While clinical and pathological features of typical PD are critical for proper 

diagnosis, the heterogeneous nature of this disorder cannot be underestimated, as LB 

pathology is neither sufficient nor necessary for clinical diagnosis of PD. It is also 

notable that patients with the same disease causing mutation may present with and 

without LB inclusions. On the contrary, the presence of LB pathology is a common 

feature in several of the atypical parkinsonisms, also known as Parkinson-plus (PP) 

syndromes.  

The clinical diagnosis of such disorders, including MSA, Dementia with Lewy 

Body disease (DLB), Progressive Supranuclear Palsy (PSP), Corticobasal degeneration 

(CBD) and Juvenile-onset Pallidopyramidal syndromes is contingent upon the presence 

of parkinsonian motor dysfunction concomitant with atypical symptoms deemed as PD 

exclusion criteria. These may consist of hallucinations, dysautonomia, ataxia, dystonia, 

early dementia and several others.65 Such atypical parkinsonisms will be discussed in 

greater detail in the MSA genetic etiology review section in the next section of this 

chapter.  

1.4.2 Genetic etiology of monogenic PD 

PD causing mutations have been identified in 15 genes responsible for Mendelian 

forms of PD. While up to 10% of cases of PD are familial, many of these exhibit variable 

penetrance, whereby external factors modify phenotypic presentation.62 While substantial 

evidence suggests PD is a multifactorial disease with variable penetrance, we have 

gleaned key insights from the rare Mendelian exceptions. Prior to the identification of 
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mutations or CNVs in SNCA as disease causal, much of the scientific community was 

skeptical regarding an association between familial and sporadic cases of PD. However, 

the discovery of SNCA mutations and identification of the protein product of SNCA, 

alpha-synuclein, localized within LBs mitigated critics.  

1.4.2.1 Autosomal dominant PD 

1.4.2.1.1 LRRK2 

As the cause of the most common form of familial PD, mutations in Leucine rich 

repeat kinase 2 (LRRK2), account for the majority of all known heritable PD mutations.62 

Initially identified via linkage analysis, LRRK2 carriers are usually affected in their sixth 

decade of life, and manifest clinical features similar to those with sporadic PD, albeit 

slower progression despite increased frequency of tremor and dystonia.62,65,73 Although 

close to 80 LRRK2 gene variants have been identified among diverse global populations, 

a mere seven of these have been unequivocally determined to cause disease.74  

The most common mutation in LRRK2, p.G2019S, is responsible for between 5-

40% of dominantly inherited or sporadic PD, dependent upon the population under 

scrutiny. Interestingly, prevalence of this variant exhibits a distinct south to north 

gradient, in which North African Arab and Jewish populations possess the highest 

frequency, decreasing as one progresses further north across populations of European 

descent.62 Specifically, an extensive case control study reported that p.G2019S 

demonstrates a prevalence of 0.71%, .07% and 30.25% among Caucasian, Asian and 

Arabic PD patients, respectively.75 It is believed that this variant was derived from a 

common founder between 4500-9100 years ago in the Near East and subsequently 

migrated globally with the Ashkenazi Diaspora.76,77 Further, LRRK2 p.G2019S exhibits a 
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pattern of age dependence and incomplete penetrance, rising to approximately 75% at 80 

years of age .62  

Resonating with classic PD neuropathology, LRRK2 mutation carriers typically 

exhibit neuronal loss in the SNPC and LB inclusions among surviving neurons. Notably, 

however, the very first case among the Sagamihara kindred in Japan, identified to harbor 

the p.I2020T mutation, did not exhibit LB pathology.78 However, additional pathological 

features may be present such as concomitant neurofibrillary plaque and tangles, anterior 

horn cell pathology or SNPC neuronal loss in the absence of LB. Moreover, glial 

cytoplasmic inclusions (GCIs), the pathological hallmark of MSA, have also been 

reported in PD patient brains.78–81 Such pleomorphic pathology in the brains of LRRK2 

mutation carriers has been reported within single LRRK2 families.79,82,83  

Interestingly, LRRK2 mutation carriers have been suggested to be at an elevated 

risk of several types of cancers (i.e. malignant melanoma), while individuals harboring 

common variants in LRRK2 demonstrate an association with autoimmune disorders (i.e. 

Irritable Bowel Syndrome, Crohn’s Disease) and leprosy. On the contrary, such 

individuals have also demonstrated a decreased risk of non-skin cancers (i.e. lung cancer, 

prostate cancer), further complicating our understanding of LRRK2’s complex role in 

human physiology.84–88   

LRRK2 codes for a ubiquitous, multi-domain protein.62,89 Numerous studies have 

reported two distinct enzymatic subunits: a kinase domain and a GTPase, interconnected 

by a COR segment, as the site of most pathogenic mutations.62 Mutations with the COR 

segment or enzymatic subunits have revealed LRRK2’s role in neuronal growth, 

cytoskeleton maintenance, vesicle trafficking and chaperone-mediated autophagy.64,91–93  
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1.4.2.1.2 SNCA 

Identified through linkage analysis, SNCA mutations in the form of duplications, 

triplications and point mutations represent the second most common cause of autosomal 

dominant PD.62,93,94 While the prevalence of disease causal SNCA mutations is 

significantly less than those of LRRK2, variation in the SNCA locus is a key risk factor 

for idiopathic PD and vital to unraveling PD pathophysiology.95 Notably the first 

mutation identified in PD was in SNCA and the subsequent identification of the protein 

product as a major component of Lewy Bodies elegantly tied together rare genetic and 

common forms of PD. 

Clinically, patients harboring SNCA mutations display parkinsonian features in 

addition to more atypical symptoms such as myoclonus, severe dysautonomia, dementia, 

and possibly progressive loss of levodopa responsiveness.62 The moderate prevalence of 

dementia suggests that PD-dementia and DLB exist on a clinical-genetic continuum.96 

Further, it has also been observed that the disease onset and co-morbidity of severe 

dementia and psychiatric issues may be associated with the distinct number of SNCA 

copies carried by duplication or triplication carriers. For example, those carrying SNCA 

duplications develop disease around a decade later than those individuals harboring 

SNCA triplications, with the latter characterized by higher levels of severe dementia.69   

The neuropathology of SNCA mutation carriers reveals classic SNPC neuronal 

loss with widespread LB inclusions in both the brainstem and cerebral cortex. Further, 

brains harboring pathological SNCA mutations may also present with temporal lobe 

vacuolation.69,96–98 Given that SNCA encodes the protein alpha-synuclein, which has been 

determined to be a substantial component of LB inclusions, SNCA mutations highlight an 
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indisputable connection with classic PD pathology, suggesting a common mechanism 

behind both familial and sporadic forms of PD.69   

Hence, while SNCA mutations may cause rare and quite severe familial PD, it is 

clear that alpha-synuclein contained within LB is a common feature among all forms of 

PD, including both those with other familial mutations (i.e. LRRK2) and those of 

idiopathic etiology.62,69,99 Given the correlation between SNCA copy number dosage with 

age of onset and severity of symptoms, a dose dependent relationship hypothesis has been 

suggested to occur between levels of alpha synuclein and severity of disease and there is 

some suggestion from GWA studies that synuclein levels are an important influence in 

typical PD.99  

Alpha-synuclein protein forms dense fibrillar aggregates in LB inclusions, the 

pathognomonic hallmark of PD. Both SNCA CNVs and pathogenic point mutations 

enhance alpha-synuclein’s transformation into an aggregated beta pleated sheet from its 

previous monomeric form. While transitioning into its new secondary protein structure, 

alpha-synuclein forms oligomer and fibrillar intermediates which are presumably 

pathogenic to neuronal cells in the SNPC.100,101 Remarkably, in vivo investigations have 

revealed alpha-synuclein’s ability to transmit its pathogenic secondary structure to 

neighboring cells in a prion-like propagation mechanism.102 In addition, alpha-synuclein 

plays a critical role in maintaining the membrane curvature of the presynaptic terminal, 

which serves as an important site for neurotransmitter uptake and release. Thus, 

disruptions in normal alpha-synuclein function can have widespread effects on synaptic 

transmission.103,104 
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1.4.2.1.3 VPS35 

One of the more recent PD genes exhibiting autosomal dominant inheritance, 

vacuolar protein sorting 35 homolog (VPS35), was discovered in 2012 by exome 

sequencing.58,59 With a frequency even lower than SNCA mutation carriers, those 

harboring disease-causing VPS35 mutations were initially estimated to characterize 0.1% 

of the overall PD population.65 Subsequent analyses, however, suggest that the VPS35 

p.D620N variant exists in approximately 1% of all familial PD cases with a widespread 

global distribution.105,106 Analogous to the LRRK2 p.G2019S mutation, VPS35 p.D620N 

is seen among sporadic PD cases and similarly demonstrates variable penetrance.107 

Despite a slightly younger age of onset, the clinical presentation of VPS35 mutation 

carriers resembles individuals with classic late onset, levodopa-responsive PD.65   

Encoding a subunit of the retromer cargo recognition complex, VPS35 serves as a 

key player in endosomal-lysosomal trafficking.65 Specifically, communication between 

sorting nexins, the WASH complex and the retromer complex modulate the ability of 

transmembrane proteins to travel between endosomes, the trans Golgi network and the 

plasma membrane.108 In cellular models overexpressing a pathogenic VPS35 mutation, 

the retromer-WASH interaction destabilizes and hinders normal autophagosome 

formation and removal.109  

 

1.4.2.1.4 ATXN2 and ATXN3 

While mutations in ATXN2 and ATXN3 reside under the umbrella of 

spinocerebellar ataxias (SCA), characterized by decline in balance and coordination, 

patients may present with parkinsonian features.69 Mutations in ATXN2 are attributed to 
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CAG repeat expansions, with levels near the 34 repeat threshold most frequently 

observed in patients displaying parkinsonian phenotypes.69 Likewise, in patients with 

triplet repeat expansions in ATXN3, responsible for Machado Joseph Disease (MJD), 

clinical presentation may consist of parkinsonism in addition to atypical features like 

neuropathy.69,110   

 

1.4.2.1.5 MAPT 

Both splice site and missense mutations in MAPT have been attributed to causing 

Pick’s Disease (FTDP-17), which consists of both Frontotemporal dementia with 

parkinsonism.111 While parkinsonian features have been reported in the early stages of 

disease, neuropathology demonstrates the presence of tau, as opposed to alpha-synuclein, 

localized within neuronal and glial inclusions.111 Though the absence of LB does not 

exclude PD in the differential diagnosis, it suggests pathogenic MAPT mutations are not 

responsible for typical PD and that it is likely that the pathological mechanism underlying 

FTPD-17 is distinct from that in typical PD.  

1.4.2.1.6 DCTN1 

Resonating with deleterious mutations in MAPT, those in Dynactin subunit 1 

(DCTN1) result in predominately tau inclusions infiltrating post-mortem brain tissue.112 

However, patients with mutations in DCTN1, responsible for Perry Syndrome, also 

exhibit rare neuropathological features like TAR DNA binding protein 43 (TDP-43) 

deposition.113 While parkinsonism is a key malady of Perry Syndrome, it is usually 

preceded by severe neuropsychiatric symptoms including depression and significant 

weight loss, and later accompanied by respiratory failure.114  
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1.4.2.1.7 GCH-1 

In 2006 an individual with a pathogenic mutation in GTP cyclohydrolase 1 (GTP-1) was 

reported to exhibit both dystonia and parkinsonism.115 It was hypothesized that this 

patient was presenting with a varied form of dopa-responsive dystonia (DRD) or perhaps 

even suffering from two distinct movement disorders, DRD and early-onset PD.115 

However, given the rarity of this mutation and corresponding phenotype, a definitive 

clinical diagnosis has yet to be determined.  

1.4.2.2 Autosomal recessive PD 

1.4.2.2.1 PARK2 

Initially identified by linkage analysis, pathogenic PARK2/Parkin mutations are 

diverse in nature, consisting of homozygous and compound heterozygous point 

mutations, as well as exonic deletions and duplications.62,65 While most of these have 

been identified in familial cases, some have also been reported in idiopathic PD cases.62 

Interestingly, several individuals developing late onset PD have been shown to harbor 

heterozygous mutations in PARK2. However, as these variants have also been observed 

in healthy controls, their influence on disease development remains unknown.69  

Patients carrying pathogenic PARK2 mutations present with early onset PD, often 

before 45 years of age, with a minority of these (~4%) exhibiting signs before the age of 

20, characterized as juvenile PD.64 While PARK2 mutations usually manifest a strong and 

consistent response to levodopa treatment, motor dysfunction progressively declines in 

patients at a young age.62 Cases with a more advanced age of onset may display more 

atypical features including dystonia and hyperreflexia.116   
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 The pathology of PARK2 brain tissue is unique in the fact that LB are usually 

absent 62; nonetheless, cases have been reported describing neurofibrillary tangles with 

the presence of LB in the substantia nigra and locus coeruleus, along with 

immunopositive alpha-synuclein inclusion bodies localized within the pedunculopontine 

nucleus.117–119  

1.4.2.2.2 PINK1 

Representing only 8.4% of autosomal recessive familial PD cases and 3.7% of 

early onset PD cases including both sporadic and familial forms, PINK1 mutations 

typically affect individuals in the 4th and 5th decades of life.120 Discovered by 

homozygozity mapping among familial kindreds, PINK1, like PARK2, requires two 

mutated copies to cause disease and also exhibits a positive and sustained response to 

levodopa.121 On the contrary, PINK1 mutations may present with several atypical features 

including pyramidal signs, marked dystonia and sleep disturbances.122–124   

Given the rarity of PINK1 mutations, only a number of brains have been available 

for comprehensive post-mortem examination. While autopsy results have been largely 

heterogeneous, some have noted the classic PD features of SNPC neuronal loss and LB 

infiltration in the brainstem, SNPC and Meynert nucleus.69,125 However, to fully elucidate 

PINK1 neuropathological features will require the analysis of several more post-mortem 

brain specimens.  

1.4.2.2.3 DJ-1/PARK7 

Identified by homozygozity mapping and positional cloning, DJ-1 mutations 

characterize roughly 0.8% of familial and 0.4% of sporadic PD cases.120 Typical age of 

onset is younger than those harboring PARK2 or PINK1 mutations, usually in the 2nd or 
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3rd decade of life.69 While patients with DJ-1 mutations are often highly responsive to 

levodopa, they may present with atypical features such as dysarthria and myoclonic 

jerks.126   

1.4.2.2.4 ATP13A2 

Also known as Kufor-Rakeb (KR) syndrome, mutations in ATPase type 13A2 

have been demonstrated to cause a juvenile onset parkinsonism using several genomic 

technologies: linkage analysis, homozygozity mapping and positional cloning.107,127 

Patients suffering from KR syndrome are affected as early as 12-15 years of age, often 

exhibiting rapid disease progression and decline with accompanying pyramidal 

symptoms.69,107 Further, some cases have been noted to possess gross neurological 

deficits in conjunction with global CNS axonal loss.128,129 However, given the few 

number of cases reported, clinical phenotype of KR syndrome has been shown to be 

variable in both disease progression and severity.69,127,128,130 Finally, while 

neuropathological examinations have been limited, there appears to be a correlation 

between cases harboring LB inclusions with decreased ATP13A2 levels, suggesting a 

common mechanism with typical forms of PD.128,131  

ATP13A2 is known to code for a transmembrane protein functioning in 

proteosomal degradation and lysosomal trafficking.62,132 As lysosomal trafficking is 

necessary for normal mitochondrial regulation, including the lysosome-mediated removal 

of autophagosomes as well as acidification and stability of the lysosomal membrane, 

disruption of lysosomal function also inhibits healthy mitochondrial activity.133 

Transgenic models have illustrated that truncating mutations in ATP13A2 led to cell 

preservation of defective ATP13A2 protein and subsequent destruction in the 
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endoplasmic reticulum and proteasome.132 Moreover, such models harboring 

homozygous ATP13A2 loss of function mutations demonstrated the misfolding of alpha-

synuclein and cell toxicity, providing further support for our evolving pathophysiological 

framework.62,132  

1.4.2.2.5 FBXO7 

Similar to patients with ATP13A2 mutations, those presenting with pathogenic 

mutations in F-box only protein 7, FBXO7, demonstrate a child-onset atypical 

parkinsonism accompanied by dystonia, pyramidal signs and equinovarus deformity.62,69 

Patients may present with psychological maladies, blepharospasm and symptoms of 

dyskinesia despite an initial positive response to levodopa.69 Identified via linkage 

analysis, FBXO7 cases are rare and post-mortem examination has been limited.134  

While its primary role is largely unknown, FBXO7 has demonstrated neuronal 

functions, such as synapse formation and cellular proliferation, through its association 

with the ubiquitin proteosome pathway.62   

1.4.2.2.6 PLA2G6 

PLA2G6 mutations discovered through homozygozity mapping have 

demonstrated extraordinary heterogeneity, consisting of both infantile onset forms as well 

as adult onset forms existing under the spectrum of neurodegeneration with iron 

accumulation (NBIA) disorders.135 Characterized as NBIA type 2, PLA2G6 is responsible 

for infantile neuroaxonal dystrophy (INAD), which presents before five years of age, 

coinciding with ataxia, dysarthria, dystonia, rigidity and developmental delays.69 

Categorically, classical INAD presents in patients below two years of age and progresses 

at a slow pace. In contrast, juvenile forms describe individuals affected between 2 and 18 
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years of age while those older than 18 are diagnosed with adult onset NAD or atypical 

NAD.69,128,135,136  

While the clinical phenotype is variable, several cases have been reported with 

spasticity, seizures and optic nerve pallor.69 Interestingly, both INAD and NAD forms 

demonstrate the same neuropathological signature: the presence of LB inclusions among 

all homozygous PLA2G6 carriers, despite the fact that parkinsonism is not observed in all 

patients.131 Furthermore, LB inclusions are surrounded by alpha-synuclein positive 

dystrophic neurites within both the substantia nigra and cortex, alongside neurofibrillary 

tangles displaying tau immune-reactivity.69,128  

Encoding the catalytic enzyme calcium independent phospholipase A2, PLA2G6 

functions in forming free fatty acids, which regulate apoptosis and inflammation. 137,138  

1.4.2.2.7 PANK2 

Known as NBIA type I, mutations in pantothenate kinase 2 (PANK2) typically 

present within the first or second decade of life, notably with rapid disease progression, 

including the inability to ambulate a couple of years later and fatality shortly thereafter.139 

Patients have been reported to demonstrate a variety of gait disturbances, including 

clumsiness and imbalance, as well as hand tremor dysarthria and cognitive dysfunction.69 

While such features denote typical symptoms of patients with PANK2 mutations, others 

have exhibited supranuclear vertical gaze palsy and facial hypomania.69 Moreover, 

atypical phenotypic forms of PANK2 mutation may also display extrapyramidal features 

but often maintain ambulatory function. In both typical and atypical PANK2 mutations, 

levodopa responsiveness is usually positive but declines within a 1-2 year period.139  
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Brains harboring PANK2 mutations reveal a classic “eye-of-the-tiger” sign, 

consisting of hypointensive regions of iron deposition in peripheral locations of the 

globus pallidus, surrounding regions of hyperintensity, presumably due to gliosis, in the 

central globus pallidus.140 Post-mortem brain tissue characterized by PANK2 mutations 

lack both LB inclusions and alpha-synuclein positive dystrophic neurites, a marked 

distinct from autopsy results of PLA2G6 mutation carriers.141 While neurofibrillary 

tangles of tau immunoreactivity may be present, there is no pathognomonic hallmark for 

PANK2 neuropathology.141   

1.4.2.2.8 Other rare recessive forms of PD 

Several other case reports have suggested new genes that may be involved in 

recessive forms of atypical PD. This includes both DNAJC6 and SYNJ1, both of which 

were recently identified through WES and homozygosity mapping.142–144 Interestingly, an 

X-linked recessive gene, ATP6AP2, has been declared a candidate of atypical PD upon 

discovery via WES and linkage analysis.145 While part of the spastic paraplegia family, 

SPG11 harbors mutations that have demonstrated features of atypical PD.128,135,146,147 A 

unifying theme among SPG11, PLA2G6 and FBXO7 is that they have all demonstrated 

brain iron accumulation and supranuclear gaze palsy, despite only PLA2G6 characterized 

as a disease of iron accumulation.107 Lastly, parkinsonism has been reported in the 

clinical phenotype of patients with mutations in fatty acid 2-hydroxylase (FA2H) and 

alpha chain of type XVIII collagen (COL18A2), though the pathophysiological etiology 

resulting in PD is unknown.135,148,149 
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1.4.3 Molecular mechanisms of PD gene mutations 

Given the large number of PD genes that have been identified in the last two 

decades, significant effort has been placed in the characterization of gene function 

through cell and transgenic work. As detailed above a few common molecular processes 

have been suggested as critical in PD pathophysiology: Endosomal protein sorting and 

recycling, lysosome mediated autophagy, synaptic transmission, and mitochondrial 

quality control.65 To unravel the molecular mechanisms driving these cellular functions, 

the study of individual genes and their interactions in a pathway-based analysis has been 

insightful. 

A goal in much of this work has been to unite the proteins encoded by PD-linked 

genes into a common pathway. Perhaps the most success has been had in this regard 

within the autosomal recessive genes. The proteins encoded by PINK1, PARK2 and DJ-1, 

share a common cellular mechanism: mitochondrial quality control and regulation.131 

Broadly, this includes mitogenesis, mitophagy, mitochondrial homeostasis and 

transport.62   

In healthy mitochondria, PINK1 protein resides on the inner mitochondrial 

membrane, normally undergoing cleavage and traveling to the cytoplasm.150  However, 

this process is disrupted upon reduction of the membrane potential, causing PINK1 to 

bind to the outer mitochondrial membrane.  

During depolarization, Parkin, an E3 ubiquitin ligase, is recruited to the 

membrane and consequently phosphorylated by PINK1. The latter step results in several 

effects: inhibition of mitofusion via the ubiquitination of mitofusion, dysregulation of 

mitochondrial trafficking via ubiquitination of the Miro/Milton complex, and finally the 
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loss of a key mitophagy signal through Voltage dependent anion channel 1 (VDAC1) 

ubiquitination.151–158 These series of events result in extensive accumulation of damaged, 

bio-energetically comprised mitochondria and ultimately mitochondrial 

dysfunction.154,157,159   

In addition to these functions, Parkin has demonstrated a role in maintaining 

mitochondrial biogenesis through an alternative pathway via interaction with 

PARIS/PGC1α.160 Likewise, PINK1 also portrays an additional role in mitochondrial 

homeostasis through regulation of calcium levels.161 Lastly, while the role of Daisuke-

Junko-1 (DJ-1) continues to be unraveled, it functions as a powerful antioxidant which 

migrates across the mitochondrial membrane, possessing a presumably neuroprotective 

function.162 Thus, pathogenic mutations in these three genes all result in dysfunctional 

mitochondria.  

 

1.4.4 Integrating critical molecular processes regulated by PD proteins 

While researchers continue to elucidate the specific molecular processes 

underlying PD causing disease genes, Trinh et. al illustrates the integration of these 

puzzle pieces. Among the first of these core processes includes synaptic transmission, 

encompassing both endocytosis and exocytosis, in conjunction with endosomal receptor 

sorting and recycling.64   

As portrayed in Figure 10, SNCA (1) facilitates exocytosis and also maintains a 

role in the process of endocytosis in the presynaptic gluatamatergic nerve terminals 

within the cortex and thalamus. Located at the postsynaptic dopaminergic terminals, 

LRRK2 (2) controls the phosphorylation of endophilian A while regulating the release of 
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clathrin-coated endocytotic vesicles. Further, acting in the presynaptic glutamatergic and 

medium spiny neurons, LRRK2 is responsible for phosphorylation of MAPT (9), 

stabilization of microtubules, polarity and branching of neurons, as well as chaperone-

assisted autophagy. Upon phosphorylation, MAPT mediates axonal cargo trafficking and 

delivery. The third known gene responsible for autosomal dominant PD, VPS35 (3), 

assists in regulation of early endosome cargo identification and the membrane 

recruitment process; subsequently, this creates a clathrin-independent carrier in medium 

spiny neurons. Moreover, VPS35 regulates the recycling that occurs between endosomes 

and either the Golgi apparatus or plasma membrane in the cell body of dopaminergic 

neurons of the substantia nigra.  Lastly, vesicle movement between the mitochondria and 

peroxisomes is under surveillance by VPS35.64   

GBA (4), which will be discussed in greater detail in the upcoming risk genes 

section , also resides in the dopaminergic neuron of the substantia nigra and utilizes the 

retromer for receptor recycling. As a lysosomal acid hydrolase, GBA plays a fundamental 

role in the next key process in PD pathogenesis: lysosome-mediated autophagy. 

Likewise, ATP13A2 (8) is closely associated as well.  

The unifying mitochondrial quality control pathway, mediated via Parkin (5), 

PINK1 (6), and DJ-1 (7), is illustrated in the dopaminergic neuron of the substantia nigra. 

Specifically, while Parkin aids in ubiquitination and proteasomal processes, PINK1 joins 

Parkin to assist in mitochondrial stability. These two proteins, in concert with DJ-1, are 

essential for healthy mitochondrial biogenesis and the initiation of autophagy.64  
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Figure 10: Putative molecular mechanisms underlying PD 

Genes harboring variants responsible for monogenic forms of PD or associated with variants that elevate 

PD risk are labeled numerically. Each gene interacts with different aspects of the presynaptic dopaminergic 

axon, presynaptic glutamatergic axon, and/or medium spiny neurons to carry-out key cellular functions 

utilizing neurotransmitters, organelles, and transport associated molecules (i.e. endosomes).  

 

 (Reproduced from Trinh et. al. 2013).64  

 

Functional analysis of known PD genes associated with early onset familial forms 

and late onset (familial or sporadic) forms have revealed an interesting dichotomy of 

molecular mechanisms: while dysfunction of synaptic transmission and vesicular 

recycling are strongly related to late-onset PD pathophysiology, early forms are 

associated with mitochondrial dysfunction and lysosomal degradation.65  

Using a pathways-based approach, which investigates protein networks among 

PD associated genes, protein-protein interactions can be identified and incorporated into 

our framework of PD etiology. Notably, cells expressing knockout GBA mutations 
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associated with PD have demonstrated enhanced SNCA accumulation.163,164 Specifically, 

the accumulation of glucocerebrosidase substrate glucosyl ceramide has been suggested 

to stabilize alpha-synuclein fibril formation within lysosomes.165 Similarly, SNCA 

overexpression causes a decrease in GBA activity, suggesting that a SNCA “priming 

effect” may be a prerequisite for the pathogenicity of GBA.131,165 Once this vicious cycle 

is established, the notion of a possible “biodirectional feedback loop,” in which 

accumulated alpha-synuclein fibrils continuously inhibit normal GBA trafficking to the 

lysosome, may persist indefinitely.107,165 While hypothetical, this feedback mechanism 

has been suggested to account for the accelerated speed at which cortical synuclein 

pathology develops in heterozygous GBA mutation carriers.107   

Further investigation of mitochondrial dysfunction has been pursued via analysis 

of mitochondrial function among post mortem brain tissue in PD patients. One study 

found that the substantia nigra of PD brains demonstrated mitochondrial complex I 

inhibition.131,166 Maternally inherited homoplasmic mutations in mitochondrial DNA, 

which are regulated exogenously by nuclear DNA and endogenously by mitochondrial 

DNA (mtDNA), have been found to be elevated among pathologically examined PD 

brains. Further, there may be an association between risk for sporadic PD and 

mitochondrial haplotype.167,168  

1.4.5 Risk loci in PD 

The number of genes and loci demonstrating statistical significance on GWA 

studies continues to expand, particularly upon subsequent meta-analyses deriving greater 

statistical power.169 We have learned that several of the PD disease genes that have been 
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deemed causal actually harbor many common variants (MAF >5%) that enhance one’s 

risk toward developing PD.  

Prior to the advent of genome wide association methodologies the principal tool 

to test association was the candidate gene association test. Typically this involved testing 

variability in a gene of functional relevance for association with disease. This included, 

most obviously, genes that had been previously shown to contain disease-causing 

mutations. While by and large the low resolution and poor power of these studies meant 

that the results were generally unreliable, there are two notable exceptions in the context 

of PD. 

SNCA mutations were linked to PD in 1997 and over subsequent years a large 

number of manuscripts were published that tested for association between common 

variants at this gene and risk for typical PD. The majority of these studies centered on the 

SNCA REP1 variant, which is approximately 10kb 5’ to the transcription start site of 

SNCA. The results of these experiments were quite mixed, however, in 2006 a meta-

analysis established clear association between this variant and risk for disease. Notably 

this work required 2692 cases and 2652 controls.170 In vivo cell work has suggested that 

genetic variation in this region influences gene transcription and possibly gene 

expression, although this functional consequence has been called into question more 

recently 64,170–172. 

As with SNCA, LRRK2 was examined for association with common apparently 

sporadic disease, outside of rare monogenic mutations. Notably, initial candidate 

association based work identified a variant particular to Asian populations, p.G2385R, 
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which roughly doubles one’s risk of developing PD, being carried by ~3% of the general 

population and ~6% of the PD population 173,174. 

While these two early examples of genetic association in PD resulted from 

originally unbiased linkages of these genes to monogenic forms of PD, the third example 

of successful association was a result of astute clinical observation. Initially, clinicians 

noticed that several patients with Gaucher’s Disease demonstrated a parkinsonian 

phenotype. Further clinical observation revealed that first and second-degree relatives of 

individuals with Gaucher’s disease manifested an increased incidence of PD.175,176  

Since bi-allelic variants of GBA causes Gaucher’s disease, a lysosomal storage 

disorder characterized by glucosylceramide accumulation, variants in GBA were 

scrutinized for an association with PD.176 Notably, a meta analysis conducted by 

Sidransky et al. revealed that heterozygous GBA mutations of this very same variant are 

the largest genetic risk factor for developing PD, enhancing one’s risk approximately 

five-fold.7,176  

While there is vast population heterogeneity, it is estimated that this variant 

occurs in approximately 1% of the global population.62 Moreover, variation in this GBA 

allele also adheres to concept of variable penetrance in an age-dependent fashion and has 

been shown to be a significant risk factor for DLB with and without AD pathology, 

suggesting a possible shared mechanism underlying cerebral LB inclusions.62,177  

1.4.5.1 Risk loci identified by GWA 

In 2005, the very first GWA study on PD was performed using 195 cases from the 

United Kingdom and genotyping 5546 microsatellite markers in these samples. 

Replication of original findings within an independent cohort failed to reveal any 
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significant associations for cases of apparently sporadic PD, while a single marker, 

D1S2886, manifested an association with familial PD.178 Just a year later, Fung et al 

performed genome-wide genotyping on 267 cases and 270 controls, using more than 

408,000 genotypic markers and made this data publically accessible to the scientific 

community.179  

Several subsequent PD GWA studies have been performed within the last decade, 

with a trend of increasing sample size, microsatellite markers, and overall statistical 

power. Many of these studies continued to reveal new loci while also confirming those 

previously identified.37,180 Furthermore, larger and more homogenous sample cohorts 

have facilitated the identification of PD associated variants within distinct ethnic 

cohorts.181,182   

In 2014, Nalls et al performed the largest GWA meta analysis to date, genotyping 

almost 8 million SNPs in an impressive 13,808 PD cases and 95,282 controls. A total of 

28 loci were deemed statistically significant, 6 of which had been identified in prior PD 

GWA studies.169 Many of these loci have demonstrated an association with both familial 

and apparently sporadic forms of PD (Table 2).  
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Table 2: Results of PD GWA study 

Discovery and replication stages.  

(Reproduced from Nalls et al. 2014). 169 

 

 Despite the fact that PD is member of the alpha-synucleinopathy family, the 

MAPT H1 haplotype, spanning 1.5M, is significantly more common in PD cases than 

controls among Caucasian populations.183,184 Further, the snp rs242557 in the H1c region 

manifests a strong association with PSP, CBD and Parkinson-Dementia complex in 
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Guam.185–187 This is noteworthy as the former two are tauopathies and previously thought 

to have a distinctive pathological signature from PD.188   

Other genes associated with several lysosomal storage disorders, including HEXA, 

MCOLN1 and SMPD1, causing Tay-Sachs, mucolipidosis type IV and Niemann-Pick 

disease, respectively, have been tested for an association with PD based on GBA findings. 

While the former two genes failed to reveal a significant association with PD risk, a 

variant in SMPD1 (p.L302P) was demonstrated to increase the risk of PD by a factor of 

nine in an Ashkenazi Jewish PD patient cohort.62,189  

In addition to LRRK2, SNCA, MAPT, GBA and SMPD1, several other genes have 

exceeded statistical significant on large-scale GWA studies. The largest PD GWA meta-

analysis to date, which combined SNP data from 15 different European GWA studies, 

revealed an impressive 28 variants among 24 loci manifesting an association with PD.169 

While many of these risk loci do not exhibit large effect sizes, risk variant pooling 

demonstrated a three-fold increase in PD risk among carriers residing in the highest risk 

quintile.65,169   

Among the GWA hits, some of these genes play key roles in the immune system. 

Bone marrow stromal cell antigen 1 (BST1), for instance, is involved in neutrophil 

adhesion and migration.64 The HLA-DRA and HLA-DRB loci, which code for MHC class 

II cell surface molecules, are involved in inflammation and autoimmune disease.107,190,191  

Others have been suggested to function in some of the key integrated molecular 

processes underlying PD. For example, RAB7L1, located in the PARK16 locus, interacts 

with both LRRK2 and VPS35, with a possible role in endosomal-lysosomal trafficking.192 

GAK, located within the GAK-DGKQA locus, is expressed by DNAJC6, playing a role in 
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clathrin-mediated endocytosis. Familial PD GWA results identified DGKQ and 

phosphatidylinositial kinase (PIK3CD) as significant hits, both of which are critical in 

regulating membrane curvature and signal transmission.193,194  

Finally, the function of other significant GWA hits is a subject of ongoing 

investigation. Mutations in GCH1, as discussed previously, can cause DRD in childhood. 

Interestingly, individuals carrying mutations in GCH1 have a seven-fold increased risk of 

developing adult forms of idiopathic PD.65,195  

1.4.6 Interpretation of GWA findings and PD etiology 

GWA studies have demonstrated to be a very powerful tool for not only 

identifying new genes and loci associated with PD risk but additionally confirming 

known disease-causing genes. Studying monozygotic and dizygotic twins revealed 

concordance values ranging from 11-15.5% and 4-11%, respectively, which are vastly 

distinct from fully penetrant Mendelian diseases.69,196 Further, a PD heritability analysis 

based on common genetic variants in GWA studies was also quite insightful, as we 

learned that approximately 27% of PD is heritable through common genetic variation.49 

Given that the heritability estimate is based on common variation alone, it does not 

account for many of the rare variants known to cause familial forms of PD. For instance, 

several of the GBA locus mutations, 17 of which are considered rare, are not included in 

the genotyping array.49 Notably, the total variance accounted for by GWA study SNPs in 

PD is estimated to be 6-7%, highlighting the importance of looking for rare PD 

associated variants beyond the scope of those genotyped.49,197  

While furthering our understanding of genes associated with both familial and 

sporadic forms of PD is integral for establishing functional pathways and molecular 
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mechanisms of disease, this suggests that PD genetic etiology lies on a continuum, 

ranging from a classical Mendelian inheritance of rare variants to graded levels of risk 

from common variants in those same genes. Such multifactorial inheritance patterns 

among several genes (SNCA, LRRK2) suggest the plausible nature of epitasis, whereby 

such genes may interact to contribute in both sporadic and familial forms of PD.2,7,198  

From the results of these studies, we can draw two important conclusions: First, 

while we know that PD is a complex polygenic disorder, there are still more genetic 

variants that have yet to be discovered. Second, while genetics clearly plays a pivotal role 

in PD risk and development, it does not explain the comprehensive PD landscape. Hence, 

we must also consider the full scope of scientifically quantifiable causes, including both 

epigenetic and environmental factors. 

1.4.7 Making progress in PD 

As we consider our current ability to diagnose, intervene and manage PD, from 

the prodromal phase to the late stages of disease, substantial work must be done. First, as 

we continue to acquire more information on genetic heterogeneity and mutation 

frequency of PD associated genes, we must continue to inform the international PD 

community to further our understanding of PD pathophysiology. This is feasible through 

a large-scale PD database, which would acquire evidence for putative causal genes 

through identification of individuals carrying mutations in heterogeneous cohorts.65 An 

important caveat of this is that it remains strictly within the scientific community, for the 

clinical utility of genetic risk profiling information is hazy at best. Hence, when the FDA 

suspended the 23and me screening service of common disease variants, among them PD 

genes, this was in an effort to prevent the infiltration of genetic information lacking 



 77 

corresponding genetic counseling or viable therapeutic options into the public sector 

(23andme).131,199  

As it has been estimated that PD is roughly 27% heritable based on common 

variants in GWA studies, there are many risk genes that have yet to be identified.49 While 

some of these are likely low risk alleles, requiring substantially large sample sizes for 

adequate power and detection, others may be harboring intermediate risk levels like GBA. 

Finally, the excess homozygosity among early onset PD cases lacking disease causal 

mutations in known PD associated genes suggests there are more autosomal recessive PD 

genes.107,200   

1.5 Multiple system atrophy 

MSA is a rare progressive neurodegenerative disease with an estimated incidence 

of 3-4 per every 100,000 individuals among adults 50-99 years of age, and is clinically 

defined by a triad of cerebellar ataxia, parkinsonism and autonomic dysfunction in 

conjunction with pyramidal signs. 201–203 From an average age of onset of 57, to 

mortality, MSA typically progresses over 7-9 years and affects both sexes equally.202,204 

However, with our limited understanding of the genetics and biomarkers of MSA, 

definite diagnosis can only be verified pathologically.202 In addition to an estimated false 

positive clinical diagnostic rate of approximately 14%, MSA’s clinical presentation is 

often not realized until later stages of disease progression, with very limited clinical 

ability to intervene.205,206 For definitive diagnosis, one must validate the presence of 

MSA’s unique histological hallmark: alpha-synuclein-positive glial cytoplasmic 

inclusions (GCIs).207  
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Among Caucasian populations, it has been suggested that specific polymorphisms 

of the SNCA gene have been associated with an elevated risk of MSA.208 As an 

etiologically and clinically complex disorder, MSA has been split into subtypes based on 

predominant clinical features.207 A handful of studies have described significant 

population-specific variation among MSA patients regarding predominance of one 

subtype over another. This notion further supports a role of genetic etiology associated 

with specific risk factors in the development of MSA pathogenesis.209,210 While in vitro, 

in vivo and transgenic studies continue to elucidate molecular mechanisms driving MSA 

etiology and pathology, the genetic underpinnings of this disease still requires extensive 

investigation.  We describe here the state of the field in MSA, and urge that it is essential 

to apply state-of-the-art genetic approaches to MSA.201 Ultimately, understanding the 

molecular pathogenesis of this disease is our best opportunity to design and test etiologic 

based interventions.  

1.5.1 Clinical and neuropathological features of MSA 

Despite that an autopsy is necessary for a diagnosis of MSA, clinical diagnosis is 

often sought at the time of initial presentation.202 Essentially, this is based upon a 

thorough clinical evaluation, revealing motor dysfunction (either parkinsonism or 

cerebellar), and/or autonomic dysfunction (excluding erectile dysfunction). It is 

hypothesized that subclinical neuropathological alterations may occur years before 

patients become clinically symptomatic.202  

As a member of the alpha-synucleinopathy family, defined by well-demarcated 

alpha-synuclein-immunoreactive inclusions and aggregation, MSA’s clinical presentation 

delineates several overlapping features with other members including PD and dementia 
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with Lewy bodies (DLB).201 In a very small study consisting of 33 MSA patients and 80 

controls, an increased frequency of neurological symptoms among first-degree relatives 

was reported.211,212 Further, 5 individuals among a cohort of 38 pathologically confirmed 

MSA samples were shown to have at least one first or second-degree relative with 

parkinsonism.212,213 Nonetheless, given these extremely low cohort numbers lacking 

requisite statistical power, a positive family history of PD has not been demonstrated to 

be a significant risk factor for the development of MSA, an observation that is perhaps 

confounded by the difficulty of clinically diagnosing MSA.  

While MSA predominately consists of GCIs containing alpha-synuclein 

aggregates, it is important to note that other protein aggregates, including 

hyperphosphorylated tau, can also be found. 53 Interestingly, MSA also delineates 

extensive clinical overlap with members of the tauopathy family, including progressive 

supranuclear palsy (PSP) and corticobasal degeneration (CBD).214 In a similar fashion to 

MSA with fellow alpha-synucleinopathies like PD, pathologically confirmed cases of 

MSA, PSP and CBD, all of which are considered “atypical parkinsonisms,” often present 

with phenotypes distinct from their “classical ones”; hence, MSA can present with a 

spectrum of clinical phenotypes (i.e. vertical gaze palsy), usually associated with 

tauopathies.214,215 To address this uncertainty, studies have scrutinized cases of atypical 

parkinsonisms to establish well-defined criteria to increase diagnostic accuracy in a 

clinical context.214,215  

In addition to clinical features of alpha-synucleinopathies and tauopathies, MSA 

phenotypes can also resonate with subtypes of spinocerebellar ataxias (SCAs) and other 

familial ataxias.216,217 While the majority of SCAs are alpha-synuclein negative upon 
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immunohistochemical staining, a few subtypes, such as SCA3, can exhibit glial alpha-

synuclein-positive inclusions.216,217 Notably, some cases of SCA3 can manifest features 

that are highly characteristic of MSA, including but not limited to: levodopa-responsive 

parkinsonism, pyramidal tract dysfunction and even some dysautonomia. Furthermore, 

substantial clinical overlap may exist between MSA and other genetic forms of SCA, 

including SCA2, SCA6, SCA8, and SCA17. In a cohort of 302 clinically diagnosed MSA 

patients, 7.3% were found to be SCA positive, of which more than half were SCA17 

carriers 217–224. When MSA is in the differential diagnosis, it is recommended to perform 

genetic testing for the spinocerebellar ataxias in such patients to essentially rule out a 

familial ataxia.224,225  

Based on pathological studies of regions predominately affected and their 

corresponding phenotypes, MSA has been subdivided into two distinct subtypes: MSA-

Cerebellar (C), MSA-parkinsonism (P), with the prevalence varying in a population-

specific manner.201,225 Despite this clearly defined classification system of MSA, current 

treatment options for patients with either subtype are far from ideal: while there is no 

therapy to delay the progression of disease, levodopa is considered the primary treatment 

for symptoms, which exhibits a “modest and non-sustained effect.”226,227 Despite that 

approximately 30% of MSA patients manifest an initial response to levodopa therapy, the 

response does not persist yet patients often find it challenging to wean themselves off of 

this drug.228  

While MSA is considered an oligodendrogliopathy with the pathological hallmark 

of widespread alpha-synuclein-immunoreactive GCIs (Papp-Lantos inclusions), MSA 

patients exhibit marked neurodegenerative changes in the striatonigral and/or 
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olivopontocerebellar structures of the brain.207 There is a vast degree of variation in the 

degeneration, depicted by a broad spectrum of myelin pallor, gliosis and neuronal loss; 

nonetheless, such features are classic neuropathological manifestations of all MSA 

subtypes.201 When differentiating MSA from CBD and PSP, gross differences in size and 

pallor of affected regions can provide valuable information.201 Moreover, several case 

reports have documented the coexistence of tau and alpha-synuclein inclusion bodies 

within autopsies of a single individual, suggesting a common pathological mechanism, 

potentially through disruption of cytoskeletons and dislocation and aggregation of various 

proteins.202,229  

It has been suggested that specific MSA clinical subtypes, duration of disease, and 

disease severity are all associated with the quantitative distribution and density of GCIs 

in MSA cases.201 While GCIs represent the pathological signature of MSA, the abnormal 

accumulation of alpha-synuclein has also been identified within neuronal cytoplasmic 

inclusions (NCIs), neuronal nuclei inclusions (NNIs), and within neurites of a minority of 

MSA affected brains. While these findings have not been the primary focus of MSA in 

previous molecular research, the potential role of NCIs, NNIs and neurites in the 

pathological process of MSA has warranted further investigation.201,230  

Within the last year, Cykowski et al embarked on an extensive neuropathological 

investigation of MSA post-mortem brains and revealed that widespread neuronal 

inclusions were seen in most patients, in both disease-associated regions (i.e. substantia 

nigra), and several other non-disease associated regions (i.e. hypothalamus). Further, a 

hierarchal region specific susceptibility pattern was observed from neuronal inclusions. 

While this was unrelated to clinical phenotype, the severity of pathology was disease 
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duration dependent. Moreover, interregional correlations between pathological neuronal 

and glial lesion burden were observed, hinting at possible overlapping disease 

mechanisms in distinct brain regions and the significance of NCIs and NNIs in MSA 

histopathology. 231  

A recent study investigated the immunohistochemistry underlying Minimal 

change MSA (MC-MSA), in which MC-MSA is defined as a subtype of MSA 

manifesting neuronal loss primarily in the substantia nigra and locus coeruleus. 232 Ling 

et al identified a greater proportion of NCIs in the disease-associated regions (substantia 

nigra, caudate) of MC-MSA individuals than in MSA controls. As neuronal changes were 

demonstrated to be disease duration dependent by Cykowski and colleagues, this suggests 

that NCIs may be involved early in the disease process. Collectively these findings 

suggest that alpha-synuclein associated oligodendroglial pathology (i.e. GCIs) could 

result or possibly occur in parallel with neuronal dysfunction (i.e. NCIs) capable of 

causing clinical symptoms prior to neuron loss. 231 

Corresponding with the clinically defined subtypes of MSA, gross pathological 

depictions of cerebellar and parkinsonian subtypes parallel those same regions or systems 

predominantly affected by MSA pathology.201 In cases of MSA-C, the 

olivopontocerebellar pathway is the central focus, grossly portraying a decreased 

cerebellar size, greatly reduced pons size, blurring of the inferior olive and extensive 

pallor of white matter within the cerebellum.201 MSA-P, in contrast, targets the 

striatonigral pathway. This leads to pallor of the substantia nigra and locus coeruleus, 

extensive darkening and atrophy of the putamen, yet grossly normal brainstem and 

cerebellar regions.201  
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1.5.2 Understanding MSA etiology 

As with many diseases, a sensible route to unraveling MSA is to try to identify 

and understand the events that increase risk for MSA, and in doing so provide tools with 

which to model and study the pathogenic process. As with similar diseases, there are two 

broad areas of risk factor investigation: those of environmental and genetic origin. 

Relatives of MSA patients have had significantly more clinical symptoms than 

did controls; this, along with other work has been used as evidence to suggest a genetic or 

shared lifestyle etiology component for MSA. It is also noteworthy that the frequency of 

MSA subtypes varies considerably among distinct ethnic groups: in the British 

population, MSA-P accounts for an estimated 34% of MSA cases, with MSA-C 

attributing only 17% and the remaining 49% considered a hybrid of equally severe 

cerebellar and parkinsonism pathology. On the other hand, MSA-P in the Japanese 

population is much rarer (17%), while MSA-C is the predominant single subtype, 

accounting for 40% of all MSA cases, and 42% representing the remaining hybrids. 233 

Again, while this cannot be attributed to a genetic, environmental, or lifestyle influence, 

such variation suggests that there are likely discrete factors that influence this disease. 

1.5.3 Preliminary association studies 

A preliminary investigation of MSA and occupational risk factors suggested that 

MSA patients had significantly more exposures to a variety of hazardous substances 

including: plastic monomers and additives, organic solvents, pesticides and metal dusts 

and fumes.211 Resonating with PD, occupational farming has been suggested to be a risk 

factor for MSA, while a history of smoking is associated with a decreased risk for both 

PD and MSA.212,234 The role of cholesterol in MSA has also been studied, perhaps in part 
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because cholesterol has been suggested to interact with alpha-synuclein in vitro, 

potentially altering its conformation and degree of aggregation. 235 One investigation 

looked at the association between the risk of MSA and serum cholesterol levels, revealing 

that decreased levels of high density lipoprotein cholesterol (HDL-C) and total 

cholesterol may be associated with an increased risk of developing MSA, but not duration 

or severity of disease.236 

The notion that many disorders are complex diseases embodies the hypothesis 

that diseases can occur as a result of a complex interaction of genetic, environmental, and 

lifestyle factors. This concept has been a widely accepted belief that has been applied to 

many other late onset neurodegenerative diseases. Evidence suggests in diseases such as 

AD and PD multiple genetic risk factors exist that individually exert small and moderate 

effects. Though unknown, it is likely that MSA will possess a similar etiologic 

architecture to these disorders; hence, we should not be looking for either an 

environmental or genetic cause, but rather accept that the two may coexist as contributors 

to MSA pathogenesis. 

Unfortunately, the relative rarity of MSA and challenge in executing prospective 

epidemiological studies means that investigation of a potential role for environmental or 

lifestyle factors in this disease is relatively sparse, and to date no equivocal risk factor has 

been identified. Further, the environment is an intrinsically difficult entity to study. Upon 

taking into consideration that different exposures are likely to have unique effects 

depending on dosage, duration, and timing of exposure, the environment is truly infinite. 

Conversely, while the genome is certainly large and complex, genetics as a field is adept 

at using modern methods to elucidate the genetic basis of complex diseases. Therefore, as 
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relatively minimal information has been revealed within the context of MSA etiology, we 

propose to address the possible underlying role of genetics.  

1.5.4 The genetics of MSA 

1.5.4.1 Mendelian inheritance 

While reports of possible familial cases of MSA are extremely rare, they have the 

potential to be very valuable, as unraveling the genetic causes of rare familial forms of 

disease has provided key insight into several common neurodegenerative diseases like 

PD. A small number of family based studies reveal kindreds with what appears to be 

MSA, inherited in an apparent autosomal dominant or recessive inheritance manner.204,237 

While these families are likely to facilitate our understanding of the genetic basis of 

MSA, to date family-based gene discovery efforts have been few, and thus far not 

entirely successful in MSA.  

 

With a history of a few genetic studies performed, MSA is currently classified as 

a sporadic disease; while a few familial studies have argued for an underlying genetic 

component of MSA, none have been pathologically confirmed among multiple family 

members.204,237 In a German family, probable MSA has been reported in a mother and 

daughter, suggested to be inherited in an autosomal dominant fashion. Despite their 

similar clinical presentations, the age of onset was greater than 20 years apart (68 for 

mother, 46 for daughter). While known SCA mutations were not identified in either 

individual, investigators proposed a possible anticipation effect of an unidentified 

trinucleotide repeat disorder to explain probable MSA phenotypes.204  
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In a multiplex Japanese family consisting of 4 nuclear families, one with a 

confirmed consanguineous marriage, definitive MSA was reported in one individual 

while 5 members were diagnosed with probable MSA and 2 with possible MSA.  Given 

the rare estimated prevalence (3-4 per 100,000 among adults 50-99 years of age) of MSA 

among the general population, the probability of occurrence in two siblings (1 definite 

MSA, 1 probable MSA) within the same family, by chance, is approximately 6 x 10-5, 

making this highly improbable (although not impossible) to occur by chance. Moreover, 

studies have demonstrated that in the relatives of MSA patients, there is an elevated 

prevalence of other neurodegenerative diseases.238 Resonating with the former German 

study, all hereditary ataxias were excluded and none of the family members harbored any 

mutations in SNCA. While a pattern of autosomal recessive inheritance was proposed, the 

inability to definitively diagnose more than one affected individual with MSA within 

each family suggests that preliminary evidence of an underlying genetic etiology cannot 

be confirmed.237  

1.5.4.2 COQ2 mutations 

Perhaps the most progress has been made in this regard with the relatively recent 

publication by Tsuji et. al, which suggested that rare variants of COQ2, the gene 

encoding coenzyme Q2 4-hydroxybenzoate polyprenyltransferase, play a role in both 

familial and sporadic MSA. Interestingly, members of a consanguineous Japanese family 

with MSA-P were reported to be homozygous for COQ2 variants, p.M78V and 

p.V343A.239 The latter variant, p.V343A, which is a common variant within the Japanese 

population, manifested a significant association with sporadic MSA cases in comparison 

to controls.239 Finally, a yeast complementation assay was performed to demonstrate that 
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p.V343A variants, in addition to other unique variants in COQ2, are correlated with 

dysfunction of COQ2. 239 As an antioxidant that prevents free radical damage and 

mitochondrial oxidative stress, COQ2 is an intriguing candidate gene to investigate, as it 

directly parallels our current conceptualization of neuropathology: neuroinflammation 

induced neurotoxicity and resulting neurodegeneration.239  

In response to this interesting work, several other groups have attempted 

independent replication, all with very limited success. Primarily, other factions have 

clarified that Tsuji et. al used the shortest isoform encoding the smallest protein of 

COQ2, which consequently affects the location of the specified homozygous mutations 

and does not cover a common nonsense variant at the initial sequence of the first 

exon.94,240,241 Upon sequencing COQ2 in a large Korean cohort, the p.V343A mutation, 

now designated by its location in the largest isoform, p.V393A, did not portray any 

association with MSA cases. 242 Furthermore, the study of a large European cohort of 

clinically diagnosed MSA patients by candidate variant investigation found this same 

mutation in one case and one control, thus rejecting a potential association between this 

homozygous variant (p.V393A) and MSA.243 Finally, Schottlaender et. al used gene 

sequencing to analyze the most extensive cohort of European pathologically confirmed 

MSA cases, who found unique COQ2 variants with a higher frequency in controls than 

cases, and the absence of p.V393A in both cases and controls. 244 In response, Tsuji et. al 

have acknowledged these more recent findings and emphasize a more cautious approach 

to interpretation of their original results.239 Within the two years, it has been hypothesized 

that variants in COQ2, which can inhibit normal gene function of coenzyme Q10, may 

prevent oligodendrocyte’s ability to maintain lipid-laden myelin sheath, resulting in 
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increased oligodendrocyte apoptosis and an elevated risk of MSA.245 While this is 

certainly interesting work, independent replication is necessary to firmly establish any 

etiological link of COQ2 and MSA. 

 

1.5.4.3 Genes encoding proteins involved in oxidative stress 

It has been suggested that several genes that play a role in oxidative stress, 

inflammation and mitochondrial dysfunction may exhibit rare variants that increase 

genetic susceptibility towards the development of MSA.225 In particular, studies have 

revealed positive associations between cytokine gene polymorphisms and MSA genetic 

vulnerability.68 As cytokines are central players in immunity and inflammation, such 

findings are consistent with MSA as a neuroinflammatory process. One study 

investigated eight distinct candidate genes involved in oxidative stress. The data 

suggested that SLC1A4, SQSTM1, and EIF4EBP1 harbored a significant association with 

MSA, though follow-up investigations are necessary for validation.246 In addition to 

cytokines, many chemokines and inflammatory markers are produced upon microglial 

activation, inducing a neuroinflammatory response.247 In particular, variants found in IL-

1a, IL-1B, IL-8 and ICAM-1 genes have all demonstrated an association with MSA.248–251 

Likewise, a polymorphic region within the tumor necrosis factor (TNF) gene, as well as a 

variant within alpha-1-antichymotrypsin gene, also delineated an association with 

MSA.252,253 Once again, because these findings have not yet been convincingly 

replicated, they should be interpreted with caution. 
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1.5.4.4 PRNP 

Interestingly, Shibao et. al reported a case with a patient presenting with both 

MSA and Creutzfeldt-Jakob disease (CJD). While these two diseases overlap with regard 

to certain histopathological features, including the atypical abundance of alpha-synuclein 

proteins within the central nervous system, they had not previously been known to co-

exist in a single individual. 240,254 Normal prion protein demonstrates resistance to 

oxidative stress, but becomes increasingly vulnerable upon conversion to the infectious, 

pathological isoform. Given the shared histopathology of MSA and prion disease, Shibao 

et. al hypothesized that the abnormal prion protein may enhance sensitivity towards 

oxidative stress and consequently contribute to MSA pathogenesis.254 While 

homozygosity of the p.M129V allele of prion protein (encoded by PRNP) is a known risk 

factor for CJD, the patient did not harbor any mutations in PRNP, but the proband was 

homozygous MM for the p.M129V allele. To determine if an association indeed exists 

between MSA and the p.M129V genotype, a case-control study was performed. Results 

revealed no significant difference in the genotype frequencies between MSA cases and 

controls, but an elevated prevalence of homozygosity (MM or VV) and younger onset of 

disease in MSA cases in comparison to PD cases.254 While this is promising, the absence 

of abnormal prion proteins within GCIs of pathologically confirmed MSA cases is not 

trivial, casting doubt on the previous association.241 Therefore, in order to further 

elucidate the inflammatory etiology underlying MSA pathophysiology and a potential 

association with CJD, additional studies to seek out (new and confirm previous) 

inflammatory marker associations are essential. 225 
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1.5.4.5 SNCA 

The remarkable discoveries of gene mutations in SNCA encoding alpha-synuclein 

have provided key insight into the genetic architecture, pathology, and etiopathogenesis 

of the most common synucleinopathy, PD.89,94,97 While Lewy bodies are the hallmark 

neuropathological findings in PD, they can be identified in approximately 10% of MSA 

cases. Likewise, mutation(s) of genes classically linked to PD, such as a p.G51D SNCA 

mutation, can also lead to MSA pathology. For example, a recent study of a British 

patient with autosomal dominant young-onset PD possessing a p.G51D SNCA mutation 

revealed strikingly similar neuropathological and cellular features to a typical MSA 

case.208 Although this patient was deemed levodopa responsive, the autopsy exhibited a 

very high prevalence of GCI-like pathology within the cerebellar white matter, pontine 

base, and white matter underlying the motor cortex.208 Further, this case demonstrated 

positive immunoreactivity for alphaB-crystallin, a GCI-marker; hence, this provides 

additional evidence for a common pathogenic mechanism behind MSA and PD.208 In 

addition to missense (point) mutations, whole gene duplications and triplications of 

SNCA can cause a progressive synucleinopathy through gene dosage elevated expression. 

Specifically, the SNCA gene has been shown to be duplicated or even triplicated in forms 

of early onset PD, manifesting a Mendelian form of inheritance.94 Upon studying the 

neuropathology of affected family members harboring a SNCA triplication, the presence 

of GCIs suggests plausible MSA histopathology.94 Despite finding GCI-like inclusions in 

a few cases of PD due to a SNCA triplication, studies performing SNCA sequencing, gene 

dosage effects, haplotype tagging and microsatellite analysis of MSA have been 

unsuccessful in disclosing any disease causing mutations.97,255–258 Furthermore, studies 
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scrutinizing gene expression have failed to detect any changes in transcription of SNCA 

among confirmed MSA cases.233,259–261  

Although no coding mutations in SNCA have been identified, a focused 

genotyping study of MSA revealed a significant association between particular SNPs 

within the SNCA locus and an increased risk of MSA among Caucasians.206 Follow-up 

studies initially confirmed these SNP associations, with the most significant located in 

the MSA-C subtype.74,262 Residing in the SNCA locus, two identified SNPs (rs3822066 

and rs11931074), are presumed to be confined within a single haplotype block.262 This 

block, extending from intron 4 to the 3’ untranslated region (UTR) of the SNCA gene, is 

believed to be in strong LD with the SNCA gene.225 Furthermore, these results have been 

found in a different cohort of pathologically confirmed MSA cases, garnering further 

support of an association between MSA and this particular SNCA locus.74 Intriguingly, 

PD has demonstrated a significant association for this very same haplotype block.37,263 

While this suggests a shared genetic etiology behind PD and MSA, investigations of an 

association between MSA cases and the risk variants located within this haplotype block 

have been elusive; indeed, Yun et al. observed an identical allelic frequency of Caucasian 

risk variants between MSA cases and controls among the Korean population. 225,264 Such 

studies emphasize the necessity for independent replication across diverse populations, as 

the inter-population heterogeneity adds an additional layer of complexity to objectively 

interpret the results of several association studies.  In a similar fashion, intra-population 

heterogeneity has also been shown to be an important consideration: two SNPs in SNCA, 

rs2736990 and rs356220, which have demonstrated to be risk alleles for PD in a Chinese 

population, failed to manifest any association with either MSA or amyotrophic lateral 
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sclerosis (ALS) in that same Chinese population. 265 Hence, by performing association 

studies among several potentially related yet clinically distinct neurodegenerative 

disorders within a single genetically homogenous population, intra-population 

heterogeneity may provide insight into the degree of overlap of pathological mechanisms 

underlying such disorders. Thus, while SNCA loci association studies remain intriguing, 

replication among and within distinct ethnic groups, in conjunction with whole-genome 

analysis, will be required to confirm or reject these alleged associations. 

1.5.4.6 Other PD linked genes 

In addition to SNCA, several studies have investigated the frequency of other 

known PD risk genes and variants among MSA cases. A SNP (rs1572931) within a RAS 

oncogene family-like-1 (RAB7L1) promoter region has been demonstrated to be 

protective in certain populations (Ashkenazi Jews, Chinese) against PD while there has 

been no association detected, in either MAF or genotype frequency, with MSA for either 

population. 266  

Several studies have also scrutinized MAPT, encoding the protein tau, for 

variability that may impart risk for MSA. These studies have been inconsistent in their 

conclusions, with some reporting an association between the H1 haplotype of the MAPT 

locus with both MSA and PD,37,267 and others reporting an absence of significant 

associations between MSA and MAPT sub-haplotype variants, confounding our current 

picture.206,256  

Encoding glucocerebrocidase, GBA can harbor mutations that cause the autosomal 

recessive lysosomal storage disorder Gaucher’s disease. Carrying a single GBA mutation, 

while not sufficient to cause Gaucher’s disease, is a significant risk factor for PD, 
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increasing the risk for this disease approximately 5 fold and the risk for DLB at a similar 

amount. 176 While MSA and GBA-PD portray several overlapping clinical features, 

screening for the PD associated GBA mutation among MSA patients has yet to uncover 

an association thus far. 268,269 

 Mutations in Leucine-rich kinase 2 gene (LRRK2), encoding dardarin, have been 

shown to account for about 3-10% of cases of familial PD and 1-8% of sporadic PD 

cases.89 Further, histopathological reports of brains expressing the LRRK2 mutation also 

observed overlapping features of MSA neuropathology.89 While initial association studies 

between LRRK2 mutations and MSA have all been negative, 270,271 recent collaborative 

investigations described a significant association between pathologically confirmed MSA 

cases and LRRK2 variants with a protective effect. 272  

As the most prevalent cause of autosomal-recessive early onset PD, mutations in 

Parkin and PTEN-induced putative kinase 1 (PINK1) have been investigated among a 

pathologically confirmed MSA cohort.273,274 Results reported the absence of pathogenic 

homozygous mutations in all MSA cases; while some harbored heterozygous variants, 

this was not considered a statistically significant association.274  

Several other genes, including alcohol-dehydrogenase genes, ADH1C and ADH7, 

as well as ubiquitin C-terminal hydrolase-1, UCHL-1, have been suggested to 

demonstrate an association with PD.275–277 After scrutinizing these genes in MSA cohorts, 

findings have yet to reveal an association for ADH7 and UCHL-1 in MSA patients.278,279 

Notably the association at these two genes with PD still remains questionable.  

Pathogenic expansion of the hexanucleotide repeat within C9ORF72 is the most 

common genetic cause of both ALS and frontotemporal dementia (FTD).23 Interestingly, 



 94 

a case study has recently revealed the coexistence of ALS and MSA in a single 

family.23,280 While pathological evaluation awaits confirmation of a definite MSA 

diagnosis, the patient presented a hot cross bun sign on brain MRI. Further, she exhibited 

ataxia, parkinsonism, autonomic dysfunction and rapid progression, which are all 

consistent with her diagnosis of possible MSA, while genetic testing of the 

spinocerebellar ataxias (SCA) was negative.  However, Schottlaender et. al and Scholz et. 

al were both unable to find this mutation among their respective MSA cohorts, suggesting 

that an association between C9ORF72 and MSA cannot be validated until MSA is 

pathologically proven.281–283  Thus, such a case provides insight into a potentially 

overlapping genetic etiology between MSA and ALS, despite their unique classical 

presentation of symptoms. 

1.5.4.7 Copy number changes 

CNVs are structural variants within the human genome which strictly encompass 

deletion or multiplication of genomic segments that may or may not contain genes.1 

However, copy neutral rearrangements are also part of the CNV family, where a 

particular segment of genomic DNA is not lost or copied, but rather present in a different 

position, or orientation within the genome. 1 

As mentioned above, copy number mutation at the SNCA locus is already linked 

to MSA through the presence of GCI pathology in carriers.94 In part because of 

technologies that now make discovery and typing of CNVs feasible, there has been 

heightened interest in the role such structural genomic alterations may play in the disease 

process. 1 Surprisingly, given that assessment of CNVs remains quite challenging and 

specialized, MSA has been studied in this regard, although it should be noted the studies 
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performed thus far are modest in size. 284,285 One investigation performed whole-genome 

CNV analysis in a 32-person Japanese MSA cohort, as well as a set of monozygotic twins 

discordant for MSA clinical diagnosis. 284 Analysis described copy number loss of the Src 

homology 2 domain containing transforming protein 2 (SHC2) among the single twin 

with MSA, as well as 20 of the other MSA patients, while not found in 

controls.284285284283284276 As CNVs are known to induce genomic instability and can 

contribute to unequal crossing over or end-joining events during meiosis, the results 

suggest that this CNV-rich subtelomeric site may be vulnerable to insertion, deletion or 

duplication events. 286 Furthermore, CNVs in genes are known to have several potentially 

deleterious effects, including modified expression in a cis or trans fashion, and the 

formation of unstable mRNA and protein products, possibly responsible for 

pathophysiology.287 Since Shc proteins play a role in neuronal cell development, acting as 

molecular switches for proliferation and differentiation, the potential for pathophysiology 

is not unlikely.284 

 Given the discordance among monozygotic twins certain environmental factors 

may be critical for turning on and off genes, thereby modulating genetic expression and 

possibly inducing MSA pathophysiology.288 Ferguson et. al was unable to find CNVs in 

the SHC2 gene among a non-Japanese MSA cohort in a follow-up study. 285 Thus, while 

SHC2 CNV analysis requires independent replication in a larger Japanese cohort and 

among diverse populations, the results from Sasaki et. al are promising.  

While progress is being made towards elucidating the genetic basis of this 

disease, more needs to be done. This is particularly challenging in a disease such as 

MSA, not only because funding is limited, but also because this is a rare disease, and 
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many of the state-of-the-art methods require large numbers to yield sufficient statistical 

power. Nonetheless, the existing opportunities for the genetic dissection of complex 

disease are markedly better than a decade ago, and it is essential that we attempt to push 

genetic progress in MSA.201  

1.5.5 Proposed mechanisms of MSA pathogenesis 

Although little is known about the genetic etiology of MSA there has been some 

work focused on understanding the molecular pathogenesis of this disease. 

Predominantly, this has been derivative work ongoing in PD rather than based on unique 

molecular aspects of MSA.202 

1.5.5.1 Role of Neurotoxicity and Oxidative Stress 

Given that microglial activation is associated with neuronal loss, the initiation of 

extensive microglial over-activation in olivopontocerebellar and striatonigral regions of 

the brain in MSA is intriguing.202,289 One study observed microglial transition into a state 

of over-activation upon exposure to environmental toxins and endogenous proteins.290 

This microglial excitability, specifically triggered by pattern recognition receptor 

transduction mechanisms, initiates a release of reactive oxygen species (ROS), well-

known culprits of inducing neurotoxic states.290   

  Investigators induced alpha-synuclein overexpression (with a PLP promoter) in 

conjunction with exposure to toxin 3-Nitropropionic acid (3-NP) in a transgenic mouse 

model. Histopathological analysis revealed GCI-like inclusions with a substantial loss of 

neurons in regions primarily targeted by MSA pathology: olivopontocerebellar and 

striatonigral systems.289 Phenotypically, there was a depreciation of motor and cerebellar 

function. Interestingly, elevated levels of inducible nitric oxide synthase (iNOS), which 
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plays a role in immunity and free radical propagation, was reported in the SNPC.289 

Further, a direct correlation was observed between increased iNOS levels with both the 

disappearance of striatonigral dopaminergic neurons and a rise in microglial activation, 

particularly in the SNPC.289 

These findings provide key insights into our understanding of MSA pathogenesis. 

Principally, they suggest an increased susceptibility of this region to oxidative stress, 

which may serve as an impetus for neuroinflammation.289 Based upon this notion, anti-

neuroinflammatory agents have been tested in transgenic mice.  Despite its anti-

neuroinflammatory properties being somewhat elusive, long-term minocycline treatment 

was administered in the transgenic mice. Consequently, microglial activation was 

inhibited in the SNPC, protecting dopaminergic neurons in this area.289 While the 

mechanism of action is unknown, potentially neuroprotective agents warrant further 

investigation, as it appears that oligodendroglial overexpression of alpha-synuclein in 

GCIs and oxidative stressors are definite culprits in this devastating neurodegenerative 

disease.  

As a constituent of the lipid component of the cell membrane, Docosahexaenoic 

acid (DHA) can increase cell sensitivity to oxidative stress.291 When elevated levels of 

DHA are present within the cell membrane, heat shock protein expression increases, 

which is known to rise under conditions of oxidative stress. 291 Regarding MSA 

pathology, oligodendroglial cells with heightened DHA levels, expressing alpha-

synuclein, are increasingly sensitive to oxidative stress. Moreover, this rise in oxidative 

stress sensitivity actually makes alpha-synuclein more insoluble, forming fibrillary 

inclusion bodies like those in MSA.292 Such aggregate formation is simultaneously 
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enhanced through a rise in phosphorylation of alpha-synuclein at serine-129, which 

resonates with classic MSA pathology.292 

 Further investigations of oxidative stress have studied myeloperoxidase, a crucial 

enzyme that plays a role in phagocytosis associated cell production of ROS.293 Since it 

exists in both human and mouse brains, and myeloperoxidase–containing macrophages 

and microglia have been reported in the CNS among other neurodegenerative diseases 

including PD, myeloperoxidase manipulation serves as a useful enzymatic tool to 

elucidate the role of neuroinflammation and oxidative stress in MSA.293 Numerous 

experiments have observed that neuroinflammation is a “prominent pathological finding” 

in MSA, which is a clear facilitator of oxidative stress.247,293. While the current 

mechanism inducing neuroinflammation in MSA is uncertain, it is hypothesized that 

potentially rare variants of genes associated with inflammation may enhance 

susceptibility to such neuroinflammation.247,293 Primarily, it has previously been 

demonstrated that myeloperoxidase is involved in the neuroinflammation and 

neurotoxicity of MPTP induced PD, suggesting a potentially neuroprotective role of 

myeloperoxidase inhibition. In a transgenic mouse model, inhibition of myeloperoxidase 

has several profound effects. Primarily, it has the ability to protect neurons vulnerable to 

oxidative stress in the SNPC, cerebellar cortex, striatum, pontine nuclei and inferior 

olives.293 Secondly, reverberating with the results of minocycline administration, 

myeloperoxidase inhibition decreases the amount of microglial activation, though notably 

does not influence astrogliosis.293 Thirdly, it results in a reduction of intracellularly 

located alpha-synuclein aggregates, suggesting a potential therapeutic role of mitigating 

inflammation and oxidative stress. This decrease of alpha-synuclein aggregates occurs in 
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a dose-dependent manner, with higher doses of a myeloperoxidase inhibitor 

corresponding to larger declines in alpha-synuclein positive GCIs and elevated neuronal 

survival in the SNPC and striatum.293 From a phenotypic perspective, the reduction of 

motor dysfunction suggests a “partial reversal of oligodendroglial alpha-synuclein 

nitration and aggregation.” 293 

A thorough analysis of MSA literature illustrates that many groups have garnered 

evidence to hypothetically explain the accumulation of neurotoxic alpha-synuclein 

aggregates in GCIs: alpha-synuclein is derived from neurons but spreads to 

oligodendroglia. In 2012, Kisos et al revealed that in the presence of elevated alpha-

synuclein levels, either in the form of soluble oligomers or intracellular alpha-synuclein 

inclusions in neurons, neuronal secretion is enhanced within rat brains.294 Specifically, it 

was demonstrated that rat oligodendroglial cells in vitro internalized alpha-synuclein 

from neuronal secretions in a time, concentration and clathrin-dependent fashion.294  

Furthermore, Rockenstein and colleagues designed transgenic mice models to 

study heterozygous progeny. Among the parental mice, one expressed alpha-synuclein 

under an oligodendroglial-specific myelin-basic promoter and the other parental mouse 

expressed alpha-synuclein under a neuronal platelet derived growth factor promoter. 

Studying the compound transgenic mice progeny demonstrated a “robust redistribution” 

of alpha-synuclein.295,296 While the exact mechanism of action is unknown, Rockenstein 

and colleagues hypothesized that a direct “translocation” through the extracellular space 

occurred via cell-cell interactions, moving alpha-synuclein from neurons to neighboring 

oligodendrocytes.295  
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Collectively, these data suggest a predilection for alpha-synuclein accumulation in 

oligodendroglia relative to the neurons in regions of the brain susceptible to MSA, 

resonating with classic pathophysiological changes seen in the disease.295,296 Further, in 

2014, Reyes et al demonstrated that oligodendrocytes can successfully uptake 

recombinant alpha-synuclein and internalize it in vivo in mouse cortices.297 Thus, while 

evidence for this mechanism is substantial, recent findings may suggest that several 

mechanisms occur in tandem.   

Regarding the transmission of alpha-synuclein in MSA, Asi et al demonstrated in 

2014 that alpha-synuclein mRNA is expressed in oligodendrocytes among MSA post-

mortem brain tissue. 137,138 While we know alpha-synuclein is transcribed and translated 

in neurons, the possibility of glial cells transcribing alpha-synuclein is intriguing, as it 

suggests that some of the alpha-synuclein aggregates in oligodendrocytes may indeed 

originate from those cells, or may even be transmitted to neurons to form NNIs and NCIs. 

Taken together, the newly recognized significance of neuronal pathology in MSA (i.e. 

NCIs) and proof of alpha-synuclein seeding and propagation mechanisms represent 

important milestones in unraveling MSA pathophysiology and have since been 

incorporated into our evolving framework of neuroinflammation and neurotoxcity.  

1.5.5.2 Role of ubiquitin-proteasome system 

Along with the mechanisms of neuroinflammation and neurotoxicity, the role of 

protein turnover through the ubiquitin-proteasome system (UPS) and its association with 

MSA pathophysiology has garnered interest within recent years. Prior studies of alpha-

synucleinopathies like PD have illuminated the role of UPS dysfunction.139 The failure of 
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the UPS in the substantia nigra correlates with the presence of Lewy bodies seen in 

PD.139  

Degradation of alpha-synuclein occurs by either one of two cellular mechanisms: 

autophagy or proteasomal machinery.140 The former entails a lysosomal pathway forming 

autophagosomes, which utilize autophagosomal protein markers, LC3 and a ubiquitin 

binding protein, p62, to induce entry of polyubiquitinated proteins, targeted for cellular 

destruction, inside the autophagosomes.140 The study of pathways used for 

oligodendroglial acquisition of alpha-synuclein accumulations in seven MSA cases have 

detected LC3-positive vesicles demonstrating an association with the alpha-synuclein 

aggregates located within GCIs. Given that LC3 is an autophagy lysosomal pathway 

protein marker, this indicates a potential upregulation of this pathway in MSA 

pathophysiology.140 Notably, it was specified that only a subset of the GCIs were LC3 

positive, suggesting that increased activity of the autophagy pathway occurs after alpha-

synuclein aggregations have already formed. 140 Further, there is evidence of “genuine 

cross-talk” between the autophagy and UPS pathways, which may indicate a 

simultaneous downregulation of the proteasomal pathway in MSA pathogenesis.140–142 

While a mechanism for such communication is under scrutiny, studies have revealed that 

a reduction in UPS pathway activity leads to elevated stress of the endoplasmic reticulum 

due to an accumulation of aggregated ubiquitinated proteins. Consequently, this unfolded 

protein response (UPR) forms a pathway between the endoplasmic reticulum and cell 

nucleus whereby transcriptional upregulation for genes that activate the autophagy 

lysosomal pathway. 141 Thus, while several neurodegenerative disorders have been 

associated with a decrease in UPS pathway activity, this may induce a corresponding rise 
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in the autophagy pathway.140,143 With a potentially interdependent system between 

autophagy and proteasomal pathways, it is believed that while compensatory changes can 

be made in an effort to maintain a necessary protein degradation balance, perturbations in 

either system can have pronounced adverse effects.140,143 

 In addition to testing the role of UPS dysfunction and MSA pathogenesis in vitro, 

transgenic mouse models have been designed to enhance our understanding. By using 

transgenic mice expressing human alpha-synuclein, one investigation confirmed that the 

UPS is the primary degradation pathway for alpha-synuclein under normal conditions in 

vivo.142 However, an abundance of alpha-synuclein within human alpha-synuclein 

transgenic mice due to a dysfunctional UPS induced activation of the autophagy 

lysosomal pathway, presumably as a compensatory mechanism. 142 Further, a well-

established pattern of this altered pathway regulation sequence occurred with a greater 

frequency in aged mice.  As a mechanism that fits in an age associated disorder, this may 

suggest that increased age, in conjunction with an elevated alpha-synuclein burden, is a 

risk factor for increased proteasomal pathway dysfunction.142 With consistently increased 

alpha-synuclein levels, the UPS pathway may be disrupted; Despite the autophagy 

pathway’s compensatory efforts to upregulate protein degradative functions, a vicious 

cycle ensues, culminating in vast accumulation of alpha-synuclein in GCIs and 

oligodendroglial cell death.144  

 Further studies in transgenic mice have explored the phenotypic modifications 

associated with UPS dysfunction. Mice expressing human oligodendroglial alpha-

synuclein experienced proteasomal pathway inhibition via induction of systemic 

proteasome inhibition (PSI).144 Specifically, PSI activation resulted in motor dysfunction, 
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which was directly correlated with neurodegeneration in the striatonigral and 

olivopontocerebellar systems of these transgenic mice. In contrast, mice expressing 

human oligodendroglial alpha-synuclein but lacking PSI induction manifested an absence 

of motor deficits and neuronal loss in corresponding regions.144 Furthermore, systemic 

application of PSI in transgenic mice resulted in selective neurodegeneration of 

striatonigral and olivopontocerebellar systems, while all surrounding areas were 

unaffected, resonating with human MSA’s affected regions.144   

It is evident that PSI treatment in the transgenic mice induced aggregation of 

human alpha-synuclein located within oligodendroglia, as manifested by GCIs. This may 

have resulted in myelin degeneration, axonal swelling, and mitochondrial enlargement, a 

clear sign of mitochondrial stress. Identical to MSA neuropathological findings, such 

transformations suggest that UPS dysfunction plays a central role in the mechanism of 

MSA pathogenesis.144  

1.5.6 The dynamic behind key players: neurotoxicity, oxidative stress and the UPS 

To connect several key findings regarding the molecular mechanisms of MSA 

pathogenesis, it is useful to study the relationship between the UPS and autophagy 

pathways with oxidative stress. Recent investigation of the ubiquitin homologue, SUMO- 

1, has identified it within “discrete subdomains” of alpha-synuclein inclusion bodies of 

MSA brain tissue.300 Interestingly, in the brain tissue of MSA and PSP cases, a co-

localization was reported between a lysosomal subset and SUMO-1. As 

neurodegenerative diseases both exhibiting cytoplasmic inclusion bodies of alpha-

synuclein and tau, respectively, these findings may indicate an association between 

protein aggregation and SUMO-1 via the lysosomal autophagy pathway.300 As prior 
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investigations have strongly suggested a downregulation of UPS and an upregulation of 

the autophagy lysosomal pathway in MSA pathogenesis, SUMO-1 could play a key role 

in the pathophysiology.300 

1.5.7 Drug Therapies and targets in MSA 

As MSA and PD are both members of the alpha-synucleinopathy family, it has 

been suggested that drug discovery for both neurodegenerative diseases should target 

their overlapping pathophysiology. 301 Specifically, while the MSA-P subtype has been 

described to exhibit several shared clinical features with PD, it has been deemed more 

rapidly progressive and fatal.301 Given the report of a British individual harboring a 

SNCA p.G51D mutation with pathologically confirmed GCIs and LBs, a shared 

mechanism of disease is indeed plausible.208   

Using functional imaging with both florodopa and b-CIT single photon emission 

computerized tomography (SPECT), investigators have been able to track the annual loss 

of signal among brains lesions in vivo in both MSA-P and PD cases. Notably, the 

estimated annual loss of brain signal in PD has been suggested to be 5-10%, while the 

MSA-P progression rates have been reported to be much higher.301,302 Further, using 

MRI, the regional atrophy exhibited in patients with MSA-P has been approximated at a 

1-2.5% annual decrease, while only 0.3-0.8% for PD, respectively.301–305 Moreover, using 

positron emission tomography and amyloid ligand benzoxazole, it has been reported that 

GCIs in MSA patients can be visualized in vivo, making this an excellent potential drug 

target.306  

Given MSA-P’s ability to reveal pathological progression in an accelerated and 

quantitative fashion as compared to PD, it has been suggested that taking advantage of 
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these properties will facilitate a more expedient and steadfast approach to understanding 

alpha-synuclein pathology.301 Described as a “MSA proof of concept trial,” the benefits 

extend beyond both time and cost-efficiency, further reasoning that given the lack of 

symptomatic treatment for MSA-P, several short-term MSA clinical trials could run in 

parallel, not confounded by the use of any symptom modifying therapies (i.e. carbidopa-

levodopa in PD).  

By focusing drug therapy efforts for alpha-synucleinopathies on MSA-P patients, 

the importance of obtaining accurate diagnoses becomes critical. While the current 

consensus criteria for possible MSA has been reported to show an estimated 95% positive 

predictive value between the initial clinic visit and post-mortem MSA diagnosis, the need 

for a plasma or CSF biomarker is crucial to achieve the greater sensitivity and 

specificity.301 In recent months, Mitsui et al. have reported significant differences in 

plasma CoQ10 levels between MSA patients and controls after adjusting for age, sex and 

COQ2 genotype.307 Other studies have also compared plasma CoQ10 levels in PD 

patients. While a significant difference in CoQ10 plasma levels between MSA and PD 

patients has yet to be reported in such studies, larger samples are likely required to obtain 

statistical significance.308 Finally, recent CSF studies have compared levels of 

neurofilament light chain and microRNAs between MSA patients, PD patients and 

controls to determine if either has the potential to serve as a biomarker.309,310 Preliminary 

studies have demonstrated statistically significant results for both molecular entities, 

suggesting yet another avenue to pursue regarding MSA diagnostic accuracy.309,310  
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1.5.8 A comparison of PD and MSA 

While progress is being made towards finding an extremely sensitive and specific 

biomarker to differentiate PD and MSA, some of the pathogenic, pathologic and clinical 

features are notably distinct (Figure 11).  

 

 

Figure 11: Shared and distinguishing pathogenic, pathologic and clinical features of MSA-P and PD. 

 Regions highlighted in red reflect those unique to MSA-P. Regions highlighted in blue reflect those unique 

to PD. Regions highlighted in purple reflect those shared by both MSA-P and PD.  

(Reproduced by Krismer 2014 et al.)  

 While the pathogenic and pathologic features continue to be explored through 

several types of functional imaging, the clinical presentations have several differences 

that facilitate diagnosis in the prodromal stages of disease. For example, while certain 

autonomic features are common to both neurodegenerative diseases, specific autonomic 

symptoms, such as dysphagia, is particularly unique to MSA. Likewise, a very specific 



 107 

sensorineural phenotype, hyposmia, is specific to PD.301 While one cannot exclude either 

of these diseases in the differential diagnosis secondary to the presence or absence of 

specific clinical phenotypes, using well-defined clinical information as a guide to seeking 

future testing (i.e. biomarker, imaging) may play an instrumental role in our evolving 

understanding of both diagnosis and treatment of MSA and PD.  

1.5.9 How to move forward 

Understanding the disease process is a crucial milestone in the development of 

etiologic therapies; however, as is illustrated above, so much uncertainty remains 

regarding the molecular underpinnings of MSA. We believe that a priority in elucidating 

this disease lies in defining and identifying the genetic architecture. This would not only 

provide a window into the etiology but will likely be critical for biomarker development 

and in the early identification of pre-symptomatic patients. To discern the specific types 

of variants that may be involved, it is important to consider two distinct but not mutually 

exclusive paradigms: CDCV and CDRV hypotheses.15 In a complex disease it is 

reasonable to suggest that there is a synergistic effect among common and rare variants 

that all contribute to disease risk and development. This theory, described as Pleomorphic 

risk locus (PRL) hypothesis, accounts for the underlying complexity behind polygenic 

disorders that can present with extensive phenotypic variability and severity.15 While 

GWA studies are ideal for the pursuit of common variants and risk association, NGS via 

WES is promising for rare variants, as there have been many successful novel variant 

discoveries among complex neurodegenerative diseases in recent history. 21,113 

Furthermore, the former SNCA example in PD illustrates the notion that both common 

and rare variants present on the same loci can contribute to varying degrees of risk. 15 In 
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essence, these contributing loci can be called ‘modifiers’ to disease risk, unlike the 

classic Mendelian monogenic inheritance patterns. 9 Applying the theory of PRL to MSA, 

we hope to discover the association of common variants following imputation of GWA 

study data. However, if we find any of significance, this is likely only to comprise a small 

fraction of MSA risk. Thus, WES followed by targeted resequencing will play a key role 

in unraveling and validating novel rare variants that influence one’s risk of developing 

MSA.  

Familial studies, SNP and gene association studies have highlighted the role of 

genetics in MSA from an etiological perspective. Given that MSA is largely unresponsive 

to levodopa and current treatment is primarily oriented to symptomatic relief, the 

significance of unraveling the genetics and etiology of MSA is paramount, as there is an 

urgent need to move toward etiologic based therapies. With very limited insight of 

genetic mutations or alterations in gene dosage as a cause of MSA, the hunt for novel risk 

genes, which may be in the form of common variants or rare variants, is the logical nexus 

for MSA research.26 Prior investigations have studied the role of potential environmental 

risk factors, with some reporting that MSA patients have been exposed to environmental 

insults more than controls.60 While intriguing, the feasibility of pursuing further study in 

this domain is challenging; specifically, identification and quantification of the numerous 

possible toxicant exposures that may contribute to MSA pathogenesis is challenging.60 

Conversely, pursuing genetic risk and causative loci is scientifically tractable. 

Implementation of next generation methods, including genome wide association (GWA) 

and second generation sequencing, provide the ability to obtain valuable data and inform 

clinical diagnosis.22 
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Success in any modern genetic investigation of MSA will require extensive 

scientific collaboration, regardless of approach. MSA is rare enough that no single group 

can collect sufficient cases on its own; thus, the field will not progress without pooling of 

clinical resources. In an effort to efficiently and easily share resources, the burden of 

analysis, and rapidly disseminate results, the formation of an international collaborative 

framework should be the priority of any entity wishing to pursue research into the genetic 

basis of MSA. Upon acknowledging these substantial challenges, we would predict that 

clinical progress of MSA (diagnosis, treatment) will be much delayed until we make 

advances towards our genetic understanding of this disease. 
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2 Estimating the heritable component of MSA 

 Statement of contribution: Genotyping was performed by the Genomic 

Technologies Group of the Laboratory of Neurogenetics. The first phase of the GWA 

study was performed by Anna Sailer in collaboration with the Statistical Genetics Group 

of the Laboratory of Neurogenetics. I performed data quality control, genotype 

imputation analysis, and the subsequent execution of the heritability analysis using 

GCTA with T.R Price from the Statistical Genetics Group. I also contributed to the final 

draft of the first MSA GWA study, currently under review in Neurology. 

 

2.1 Introduction 

 Within the last decade, there has been a substantial increase in the number of 

GWA studies investigating many traits, including disease.311 These case-control studies 

are pursued with a primary goal of determining which variants associate with a particular 

phenotype. This approach is favorable towards the identification of common genetic risk 

factors for disease phenotypes in a specific population. Previous investigation of several 

neurodegenerative diseases demonstrates the power of GWA studies and its ability to 

identify key risk loci.169,187,312–314 Despite the fact that several loci have been discovered 

in complex diseases such as PD, one must recognize that the identified loci only explain a 

relatively small proportion of the total heritable component of disease. While the known 

GWA loci only account for 3-12% of the burden of PD, current conservative estimates of 

the heritable component of this disease are ~30%. It is evident that increasing our 

understanding of the known and unknown heritable components of disease can be highly 
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informative in the research community, particularly for ascertaining the value of 

searching for additional genetic risk and corresponding genomic locations. 

Using 1,030 MSA samples, a recent GWA study for MSA risk loci assessed more 

than 5 million SNPs tagged to common genetic variants (Sailer et al, under review 2016). 

After quality control measures, the results included 918 MSA cases and 3884 controls but 

failed to detect any genome-wide significant associations between tagged SNPs and MSA 

risk. This finding suggests that MSA etiology cannot be easily explained by common 

SNPs with moderate or large effects, though one must acknowledge the limited sample 

size and power in this study. In PD, for instance, GWA studies required more than 1400 

samples to identify significant associations.37 Hence, as we recognize the possibility that 

we may be underpowered, this result does not preclude the role of common variability in 

MSA. Thus, variants conferring marginal effects, typical of those observed for GWA in 

complex disease, may impose risk towards the development of MSA. The opportunity to 

look beyond the identification of individual risk loci, toward an estimate of the role and 

extent of common variability in risk for MSA is achievable using this genotyping data 

set. 

To estimate the total heritability of MSA from common genetic variants (MAF > 

0.01), we utilized an approach using Genome-wide complex trait analysis (GCTA).48 By 

defining heritability as the phenotypic variation attributable to total genetic variation in 

all assessed loci, we could estimate the total genetic variation by creating a genetic 

relatedness matrix (GRM) in GCTA. In essence, the GRM estimates overall genetic 

differences in each subject; hence, if cases are more genetically similar to one another 

than they are to controls, we can quantify this higher relative similarity and use it to 
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estimate the total heritability of the disease phenotype. Notably, substantially large 

sample sizes in unrelated populations are required for requisite statistical power when 

using GCTA. This ultimately allows one to measure the overall polygenic additive 

inheritance by incorporating putative causal variants that are in complete linkage 

disequilibrium (LD) with common SNPs but have minimal effect size.203 Given that 

GCTA often incorporates imputed data from genotyping microarrays, it typically only 

assesses the effect of putative causal variants in LD with all common SNPs on the 

genotyping platform.48,315 With a principal goal of guiding future genetic research in 

MSA, we estimated the total heritability of MSA with GCTA. 

2.2 Materials and methods 

2.2.1 Subjects 

A total of 1030 MSA DNA samples were obtained from 4 geographic regions: 

United Kingdom, United States, Southern Europe and Northern Europe. Southern 

European nations consisted of Italy, Spain and Portugal; Northern European nations 

comprised Germany, Austria, Denmark and the Netherlands. Among this cohort, 699 

MSA samples received clinical diagnoses from movement disorders specialists and 331 

MSA samples were pathologically confirmed by neuropathologists. A total of 3884 

neurologically normal controls were obtained from the following 4 nations: United 

Kingdom (n = 936 samples), Germany (n = 944 samples), United States (n = 794 

samples), and Italy (n = 1,190 samples). Since samples were derived from different 

geographic regions across Europe and the United States, we matched cases with regional 

controls. Thus, UK MSA cases were matched with UK controls; Northern European 
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MSA cases from Germany, Netherlands, Austria, and Denmark were matched with 

German controls; Southern European cases from Italy, Spain and Portugal were matched 

with Italian controls; American MSA cases were matched with American controls. All 

samples included in this study were of self-reported European descent. Written informed 

consent was obtained by all subjects.  

2.2.2 Pre-imputation base calling quality control 

All variants with <95% call rate across all samples as well as individuals with 

<95% total variant call rates were excluded from analysis. Using identity by descent 

(IBD) analysis in PLINK v1.90, we identified and discarded all samples who were more 

closely related than 0.125 (first cousins).316 If individuals were 6 or more standard 

deviations from the average homozygosity of the sample population they were also 

eliminated. Finally, we excluded all variants that significantly deviated from Hardy-

Weinberg-equilibrium (HWE) (p < 10-5) in addition to those with a minor allele 

frequency (MAF) of <0.01. Though checking for deviations in the population is the main 

purpose of HWE, it is also serves as a subsequent filter to exclude genotype assays with 

suboptimal performance.317 Utilizing 50-SNP windows with a variance inflation factor 

(VIF) of 0.5, we pruned the remaining SNPs for LD in PLINK.  Since large genetic 

differences between case and control populations could be misinterpreted as a genetic 

variation associated with disease, we eliminated individuals whose principal component 

value was more than 9 standard deviations from the average of either of the top two 

principal components of 1K Genomes European Ancestry (Figure 12). Using only our 

cases, controls and linkage-pruned SNPs that passed quality control (QC) filters, we 

proceeded with imputation.  
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Figure 12: Principal components of MSA samples.  

Population stratification using the top two principal components from genotyped SNPs demonstrates that 

MSA cases and controls cluster uniformly with respect to their geographic origin.  

 

(Reproduced from Federoff and Price et al 2015).318  

 

2.2.3 Imputation 

The process of imputation infers sample genotype data from a reference haplotype 

database. Autosomal genotypes were imputed using the November 2012 release of the 

1K Genomes haplotype reference by matching the genotypes to common haplotypes.  

 

Next, we used a program called Markov-Chain based haplotyper (MaCH) to 

estimate subject haplotypes. This allowed us to perform the imputation and assess 

imputation accuracy and quality by removing SNPs with an R-squared (correlation 

between expected and observed genotype)  < 0.30 and MAF < 0.01.  
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Using minimac on default settings to impute the haplotypes, 11,138,628 variants 

passed this imputation thresholding.319  

With our newly updated and imputed dataset, we replicated the GWA study from 

Sailer et al (under review 2016) using mach2dat to assess association in MaCH output, 

adhering to logistic regression under an additive model and using the top 20 population 

principal components as covariates.30  

2.2.4 Genome-wide complex trait analysis 

In order to estimate the variance in phenotype explained by variance in genotype, 

GCTA uses a REstricted Maximum Likelihood (REML) model. After adjusting for 

population substructure using the top 20 European Ancestry population principal 

components, we incorporated GCTA’s REML model to estimate the phenotypic variance 

of MSA. Given the rarity of MSA, this heritability estimate was adjusted for actual 

population prevalence of MSA (estimated at 0.000046).320,321 In the first analysis, we first 

ran GCTA using all samples in a pooled analysis. Subsequently we then divided MSA 

cases into several sample subsets based on geographic region of origin and whether cases 

had received pathology-confirmed or clinical diagnoses. Further, we tested each of these 

groups against controls to estimate total heritability of MSA both preceding and 

following imputation. Using a random effect models, we ran a meta-analysis of these 

subgroups to obtain heterogeneity assessments between the cohorts.  

 

2.2.5 Bayesian estimate of PD-derived heritability 

Using false diagnostic rates reported by Osaki et. al 2009, we attempted to 

estimate the rates of clinical misdiagnoses in our MSA cohort.322 Incorporating a 6-25% 
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false positive rate in MSA diagnoses, with 70% of false positives (type I error) as 

Parkinson’s cases, and heritability priors of 0.31 for PD and 0.1 for all other disorders 

(i.e. PSP, DLB, CBD), we calculated an expected degree of heritability to due 

misdiagnosis with the following formula: 

Clinical cases (Clin) * false positive rate (FPR) = Misdiagnosed cases (M) 

0.7M = PD cases (P) 

0.3M= Other misdiagnoses (O) 

O+P = M = Clin*FPR 

(0.31*P + 0.1*O)/Total cases = MSA Heritability due to misdiagnosis (Hm ) 

Hm = (0.31(0.7M) + 0.1(0.3M)) / Total 

0.247M = Hm 

total  

 

Which simplifies to: 

Hm  = 0.247 (FPR*Clin)/Total  

 

 

 

2.3 Results 

2.3.1 Quality Control 

Following initial QC filters of genotyped data and the linkage-pruned SNP data 

sets, we were able to perform all PCA and IBD analyses. As illustrated in Figure 12, MSA 

cases and their respective geographic cohort controls cluster uniformly in a principal 

component analysis of genotypes. This suggests an insignificant amount of population 

heterogeneity within each regional cohort. Those passing initial quality control filters 

included 907 MSA cases, 3,877 controls, and a total of 107,447 SNPs (Table 3).  
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Table 3: Summary statistics of samples included in GCTA analysis.  

Summary statistics of all samples included within GCTA following stringent quality control analysis. 

Component numbers of control subjects do not sum to total due to incomplete annotation (i.e. unknown 

region of origin). Cases not explicitly labeled as pathologically confirmed were assumed to have only a 

clinical diagnosis.  

 

(Reproduced from Federoff and Price et al 2015).318 

 

Next, we performed imputation using 1k Genomes reference haplotypes to 

ultimately increase statistical power and incorporate several more variants for assessment 

of total heritability.  

2.3.2 Post-imputation GWA 

Using a significance value (p < 5 x 10-8), no variants were deemed statistically 

significant (Figure 13).  
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Figure 13: Manhattan plot of post-imputation MSA GWA study.  

P values are log transformed (y-axis) and plotted against chromosomal position (x-axis). The dotted line 

indicates threshold of potentially interesting SNPs. After Bonferonni correction, none of these SNPs were 

statistically significant.  

 

(Reproduced from Sailer et al. 2016). 323 

 

2.3.3 Post-imputation candidate gene analysis 

 Given our suspicion that MSA heritability estimate results may be driven, at least 

in part, by misdiagnosed PD cases, we replicated the GWAS performed by Sailer et al 

(under review 2016) with our updated imputation dataset and explored windows ±20 

kilobases around PD GWA study loci derived from Nalls et al 2014 and from the closest 

genes associated with mRNA expression differences.169,324 Despite using an extremely 

liberal significance cutoff of p < 0.05, no variants included in this search manifested an 

association with MSA disease phenotype. However, given our limited sample size, we 

acknowledge the likelihood of insufficient power to detect such variants. The most 
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significant variants (labeled by rs number) included in these windows are listed in Table 

4. 

 

Table 4: Results of 20kb windows between PD initiation and termination of PD GWA hits.  

We viewed windows ±20 kilobases around PD GWA study loci derived from Nalls et al 2014 and from the 

closest genes associated with mRNA expression differences.169,324 None of the variants within this region 

demonstrated an association with MSA disease phenotype even upon using a liberal significance cutoff of p 

< 0.05. This table includes the most significant variants (labeled by rs number) in these windows. 

OR= odds ratio. STD ERR = standard error. WALD = Wald test. CHISQ = chi-squared test.  

2.3.4 Heritability analysis 

First we used our pooled samples to estimate heritability with GCTA, then 

divided analyses by population cohort and whether subjects were diagnosed upon autopsy 

or clinically (Table 5, Table 6, Table 7, Figure 14). Following our heritability estimates 

of each of these subgroups, we also ran a meta-analysis under a random effects model of 

all population cohorts in each diagnostic subset: all cases, pathologically-confirmed 

cases, and cases identified exclusively through clinical diagnosis. 
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In the pooled MSA sample cohort, we estimated heritability to be about 4.37% in 

imputed data (95% CI 2.09-6.65%) (Table 5). Looking at specific geographic cohorts, 

there was a substantial range of estimated heritability, from 0.26% in United Kingdom 

cases to 9.18% in Southern European cases. While the overwhelming majority of 

Northern and Southern European samples were identified by clinical means alone, the 

United Kingdom and United States cohorts were comprised primarily of pathologically-

confirmed cases. 

Given the high misdiagnosis rate of many parkinsonian disorders, with MSA 

perhaps being the most renown, pathologically-confirmed cases are significantly more 

reliable than those cases only receiving clinical diagnoses. Thus, with the intention of 

minimizing heritability stemming from genetic underpinnings of other neurodegenerative 

diseases (i.e. PD, PSP, DLB), we performed a separate analysis to estimate the 

heritability of pathologically-confirmed cases alone (Table 7).  

The results of the pooled pathologically-confirmed samples demonstrated an 

estimated heritability of nearly zero in genotyped data. Intriguingly, however, this 

estimate rose to around 5.8% (95% CI 0-11.99%) in the imputed data set, suggesting that 

the imputed genotypes significantly contribute to the heritability of MSA (Table 7). 

Samples receiving only clinical diagnoses manifested a slightly a higher heritability 

estimate (6.17%) than both the pooled estimate of all cases as well as the pathologically-

confirmed cases in the imputed datasets. However, an important caveat to this: both the 

pathologically-confirmed and clinically diagnosed subgroup heritability estimates are 

characterized by a fairly large standard error, limiting conclusions that can be drawn 

(Figure 14, Table 6, Table 7). Moreover, high inter-sample heterogeneity in both the 
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clinical and pathologically-confirmed subsets (30.2% and 78.6% respectively-I^2) was 

revealed in our meta-analyses. Ultimately, this may suggest that our geographic 

subpopulations have some inter-population genetic differences that cannot be explained 

by random variation alone.  

 

 

Figure 14: Heritability by cohort in diagnostic subgroups 

The size of the center point of these graphs is scaled to the sample size of each subgroup. Some of our 

cohorts have very high standard errors to due to low numbers of cases vs. controls. Pooled = combined 

results of four geographic subgroups. Meta = Meta-analysis of subgroups under random effects model. 

Pooled and subgroup cohorts are represented by black squares. Meta-analysis groups are represented by 

open white diamonds.  

 

(Reproduced from Federoff and Price et al. 2015). 318 
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Table 5: Heritability estimate by cohort and subgroup.  

Highlighted text represents the estimated % heritability of imputed genotypes among all pooled cases 

(4.37%), and the corresponding confidence interval, 2.09-6.65%. I^2 = heterogeneity statistic.  

 

(Reproduced from Federoff and Price et al. 2015).318 
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Table 6: Clinical cohorts 

The estimated % heritability of imputed genotypes among all clinically confirmed cases is 6.17% with a 

confidence interval of 3.02-9.33%. 

Reproduced from (Federoff and Price et al. 2015).318 
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Table 7: Pathologically confirmed cohorts.  

Highlighted text represents the estimated % heritability of imputed genotypes among all pathologically 

confirmed cases, 5.80%. The confidence interval, 0-11.99%, is not highlighted due to the limited sample 

size and very high standard error of the pathologically confirmed cohort. Abbreviations: R.E. = Random 

Effects model.  

(Reproduced from Federoff and Price et al. 2015).318 
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In order to assess which chromosomes contributed most to MSA heritability, we 

estimated the heritability from each chromosome. In general, individual chromosomal 

contributions could not be said to contribute more than 0% at 95% confidence, tending to 

account for less than 1% of total heritability. While chromosome 15 passed multiple-test 

corrections (p < 0.05/22 = 0.00227) in our clinical-only subgroup, with an estimated 

heritability of 0.25-1.70%, it failed to pass the significance threshold in our 

pathologically-confirmed only subgroup or our ‘all-cases’ subgroup. In contrast, 

chromosome 10 contributed significantly to heritability in our ‘all cases’ subgroup (0.43-

1.05%) but neither in the clinical-only nor pathologically-confirmed only subgroups. 

Overall, the subgroups including clinical cases revealed higher heritability estimates than 

those in pathologically-confirmed cases alone for both chromosomes 10 and 15 (Table 8, 

Figure 15).  
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Table 8: Heritability estimates by chromosome.  

Highlighted values represent imputed chromosomes that were statistically significant only upon the 

inclusion of clinically diagnosed cases.  
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Figure 15: Chromosomal heritability estimates by diagnostic subgroup.  

Heritability estimates of each chromosome are represented by black diamonds. Confidence intervals are 

illustrated by vertical boundaries. 

 

 

2.3.5 Bayesian estimate of PD-derived heritability 

 Individuals with diseases such as PSP, PD, and CBD frequently receive a 

diagnosis of MSA due to the heterogeneous clinical presentation and often irregular 

disease progression of MSA.205,322,325,326 As our previous findings illustrate that 

pathologically confirmed MSA cases have lower estimates of heritability than clinically 

diagnosed cases, we estimated how much heritability could be expected due to a subset of 

our clinically diagnosed cases receiving a misdiagnosis of MSA. Our model is based on 

the following assumptions: 

1) Based on the 95% confidence interval of the most recent clinical diagnosis 

positive predictive values from Osaki et al. 2009, MSA false positives comprise 

approximately 6-25% of our clinical cases.322 We decided to use this measure 
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rather than first clinical diagnosis under the assumption that our cases had had 

several follow-up appointments in order to obtain a thorough clinical history 

including genotypic data. We assumed that all patients diagnosed post-mortem are 

true positives. 

2) Due to the much higher prevalence of PD compared to other atypical parkinsonian 

diseases (i.e. PSP, CBD) whose clinical phenotype could be mistaken for MSA, 

we assumed that PD will comprise the overwhelming majority of these false 

positives. In this instance, we estimated that approximately 70% of misdiagnosed 

cases would be true PD cases. 

3) While the heritability of late-onset PD is estimated to be least 31%, we designated 

a conservatively low heritability estimate of 10% to false positives with diseases 

other than PD (i.e. CBD, PSP, DLB).49  

4) By assuming the contributions to MSA heritability are additive, we can sum 

heritability stemming from misdiagnosis of different diseases without considering 

pleiotropy, which occurs when a single gene influences two or more allegedly 

disparate phenotypic traits.  

 

 Given these assumptions, we calculated the heritability estimate due to 

misdiagnosis (Hm) with the following formula (see methods for more in-depth 

derivation):  

 Hm = Clin/Total * 0.247 * FPR  

Where Hm is the part of the heritability estimate driven by misdiagnosis of other 

diseases (PD, PSP, CBD, DLB), Clin is the number of clinical cases, FPR is the false 
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positive rate, and Total is the sum of clinical and path-confirmed cases. Substituting the 

case statistics for our MSA cohort:  

Hm =  (616 clinical / 907 total)*0.247*FPR = 0.1677*FPR 

 

 Using the false positive rate of 6-25% derived from Osaki et al 2009322, we calculated 

our expected heritability due to misdiagnosis as 1.00-4.19%.  

 

2.4 Discussion 

The CDCV hypothesis, which serves as an impetus to pursue GWA studies, 

suggests that genetic risk of common diseases are derived, at least partially, from allelic 

variants with a minor allele frequency (MAF) >1%.327,328 Though this approach is geared 

towards elucidating common variants in diseases characterized by a high prevalence such 

as diabetes mellitus, it can be a useful tactic for studying rare diseases by revealing genes 

associated with biological and etiological processes. Alternatively, the MRV hypothesis 

argues that rare variants are liable for the genetic etiology of common, complex 

diseases.16 Although former hypotheses suggested a clear dichotomy between CDCV and 

MRV paradigms, a more profound understanding of genetic architecture now suggests 

that they occur in tandem, acknowledging the heterogeneous etiology of complex 

diseases. While we recognize that very rare variants with high penetrance may contribute 

to the risk of developing MSA, assessing the synergistic effect of common variants 

associated with MSA will be crucial towards solving the polygenic inheritance puzzle of 

MSA. By gleaning insight from the latter, we believe this will inform the field both in 

understanding which genetic approaches are most likely to yield results, and roughly the 
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amount of genetic influence we can anticipate.10 As the very first study estimating overall 

MSA heritability, we aimed to provide a first piece of this puzzle and spark further 

research to elucidate the genetic risk factors of MSA.  

Previous studies using GCTA to estimate heritability of complex 

neurodegenerative diseases have yielded intriguing results: heritability estimates derived 

by simultaneously measuring all tagged SNPs have revealed values of 27% and 21% for 

PD and ALS, respectively (Figure 16).49,329   

 

  

 

Figure 16: Disease-specific heritability estimates.  

Heritability estimates are represented by each color, and the shape corresponds to the sample size within 

that population. Confidence intervals of the summary heritability estimates are demonstrated by horizontal 

lines associated with each cohort square.  

(Reproduced from Federoff and Price et al. 2015, Keller et al. 2012, Keller et al. 2014).49,318,329 

 

Furthermore, heritability estimates from GCTA are usually much higher than 

those estimated from variance in GWA-significant loci alone, as the PD GWA study 

estimated a heritability of a mere 3%, while ALS was at 12%.49,329 However, using 

https://paperpile.com/c/NSa0rZ/6KU5+Awmk
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GCTA, heritability estimates approach those reported from twin studies.330,331 The 

identification of this missing heritability, which can be explained by the inability of 

GWA study hits to account for the full genetic variance of the underlying phenotype, 

suggests genetic discoveries yet to be made for diseases like PD and ALS. Moreover, 

these unidentified genetic variants can be uncovered without possible confounding 

factors of twin studies, such as shared environment or similar treatment of twins. As 

GCTA has the ability to combine the small effects of variants not passing significance 

thresholds in GWA studies, ultimately by analyzing SNPs in a simultaneous fashion, a 

much more comprehensive yet unbiased assessment of heritability of a particular 

phenotype is scientifically tractable. 

Since MSA demonstrates several overlapping clinical features with both PD and 

ALS, with an estimated 14% of MSA cases misdiagnosed as other neurodegenerative 

diseases,331 it would be reasonable to hypothesize that MSA may reveal a similar 

heritability estimate using GCTA. Nonetheless, even after using imputed genotypes, 

MSA heritability estimates are markedly lower than those for PD or ALS: the mean post-

imputation MSA heritability was demonstrated to be  <10% in all subgroups, with the 

95% confidence interval in most subgroups overlapping 0% (Figure 14). Significantly 

higher estimates of heritability are illustrated in cohorts in which pathologically-

confirmed cases comprise a very small proportion of the total population (Northern and 

Southern European) in comparison to geographic cohorts in which such cases constitute 

the majority (United States and United Kingdom) (Table 6, Table 7). As the gold-

standard for MSA cases due to the known problem of MSA misdiagnosis, pathologically-

confirmed samples comprise only a third of our already limited sample size (291 
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Pathologically-Confirmed / 907 Total). As a result, our attempts to estimate heritability in 

pathologically-confirmed cases suffer from very high standard errors given this lower 

sample size and limited statistical power. We acknowledge that our study sample size in 

conjunction with both the number and distribution of GWA study panel markers limit the 

lower boundary of variant frequency detected using GCTA. Further, we recognize this 

would improve by acquiring a greater sample size. It is evident that the limited sample 

sizes of some cohorts lead to unreasonable heritability estimates after GCTA adjusts for 

the very low disease prevalence. Ideally, GCTA necessitates large sample sizes of at least 

several hundred cases to provide reliable estimates. Since part of our analyses utilized 

very small case cohorts, with some including  <100 individuals, heritability calculations 

derived from these cohorts yielded highly unreliable estimates (i.e. 19 cases in United 

States clinical cohort, 14 cases in Southern European pathologically-confirmed). This is 

portrayed by the extensive heterogeneity of our cohort meta-analyses.  

While many of our samples were from distinct geographic populations, it was 

important to consider how much weight to put on heritability from each region. While 

multidimensional scaling eliminated population outliers in our quality control analyses, 

there is obviously still some genetic heterogeneity between distinct regional cohorts. 

Notably, studies in PD have demonstrated GWAs between-quintile odds ratios of a 

similar magnitude between distinct Caucasian geographic cohorts, suggesting that PD 

risk profiles of one European location can apply to others within the population 

stratification boundaries.332–334 While such studies have only focused on PD, the absence 

of studies in MSA precludes us from knowing if this same trend applies. However, given 

the very low prevalence of MSA and high rate of misdiagnosis, the ability to perform 
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such studies has not been attainable. Thus, as MSA shares pathologic, pathogenic and 

clinical features with PD, we analyzed our data by applying this same concept, assuming 

that risk profiles for MSA are likely of similar magnitudes between our 4 geographic 

cohorts. While we performed individual regional level analyses for both clinically and 

pathologically confirmed subgroups, our confidence intervals are significantly higher and 

our statistical power is exceptionally lower than when using our full cohort, making those 

results much more challenging to interpret. 

Chromosomal level heritability estimates demonstrated that the overwhelming 

majority of chromosomes contribute to almost negligible heritability (<1%) towards 

MSA, which is not surprising given the overall very low heritability estimates (Table 8, 

Figure 15). Despite the fact that some chromosomes passed significance cutoffs 

regarding their genetic contribution to MSA, these findings failed to replicate uniformly 

across clinically and pathologically diagnosed subdivisions. For example, although 

chromosome 1 appears to carry a substantial proportion of the heritability in pooled 

pathologically-confirmed cases, this difference does not pass significance thresholds after 

multiple testing corrections (p < 0.05/22).  

Looking at the clinical-only subgroup, chromosome 15 appears to contribute to 

MSA heritability; however, a trending relationship does not even exist in the 

pathologically-confirmed subgroup (Table 8, Figure 15). Thus, it is evident that 

chromosome 15 exhibits a weaker association with the disease after the clinically and 

pathologically diagnosed cases are pooled together.  Given our limited power, it is 

challenging to say whether this difference is due to biological etiology in pathologically-

confirmed and clinical-only subgroups or simply by chance, but this result supports the 
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notion that some of our estimated MSA heritability may be attributed to clinical 

misdiagnosis.   

Our initial findings may suggest that MSA lacks a substantial common variant 

heritable component; nonetheless, this is not necessarily indicative of the absence of 

genetic risk genes and/or variants. There are several factors that can explain the low 

heritability estimates generated in our study. Primarily, the SNPs incorporated within 

standard GWA studies are limited to the common variants tagged by microarray-based 

genotyping methods. If putative causal variants associated with MSA are extremely rare 

(i.e. MAF<1%) and consequently not tagged by genotyping platforms, they will be 

missed. Moreover, if a very rare variant only exists within a single case among the full 

cohort, it will not be recognized as a shared genotypic variant among cases and thus 

would not contribute to overall estimation of MSA heritability, as the similarity between 

cases in the GRM will not increase. Thus, factors associated with more rare variant 

detection implicitly highlight the essential role of sample size in this type of analysis.  

Further on this notion, we are lacking the ability to detect rare variants that could explain 

MSA etiology within an affected family, as our cohort consists of all idiopathic MSA 

cases which cannot be further scrutinized via segregation and linkage analyses. Though 

the issue of sample size cannot be altered, the other challenge of variant detection is 

somewhat ameliorated by imputation; therefore, this case-control study suggests that only 

modest genotypic variation in common SNPs exists between MSA cases and controls, as 

imputation incorporates reference haplotypes, suggesting that rarer genetic variants will 

remain undetected. 
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Secondly, we must consider the possibility of incomplete LD; hence, even if causal 

variants are included within haplotype stretches of SNPs in the array, they may be in 

incomplete LD with the SNPs that have been genotyped.335 It is important to recognize 

that this is not mutually exclusive with the former, since causal variants in incomplete LD 

may likewise exhibit a MAF<1%, further exacerbating these effects.  

Thirdly, it is challenging to impute rare variants from array-based genotypes, as 

genotype platforms are typically defined by common variants and imputation relies on 

LD. Along with the exclusion of potential novel rare variants, it is also critical to 

acknowledge that GCTA analysis does not account for non-additive genetic factors (i.e. 

epistasis) and possible environmental effects. In essence, this implies that the heritability 

estimate calculated by GCTA defines a lower limit of MSA heritability that would likely 

increase if such factors could be integrated accordingly.  

Lastly, the distinctions in diagnostic status (clinically vs. pathologically-

confirmed) require further scrutiny. While the Southern and Northern European cohorts 

consisted of the highest number of clinically diagnosed MSA cases and very few 

pathological cases, the United States and United Kingdom together comprised 82% of all 

pathologically-confirmed cases. Intriguingly, these geographic subset differences 

resonate with estimated heritability levels: the United States and United Kingdom cohorts 

demonstrate lower heritability estimates, ranging between 0 and 3%, while the Northern 

and Southern European cohort estimates are much significantly higher, ranging between 

0 and 17.48% (Figure 14, Table 5) Given the 6-25% clinical misdiagnosis rate of MSA, 

this is particularly noteworthy, suggesting that a substantial proportion of those cases 

diagnosed as MSA are indeed PD cases, as late-onset PD exhibits a higher heritability 
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estimate of about 31%.49,322 Taken into consideration, it is quite plausible that 

misdiagnosed cases within our clinical subpopulation (in all geographic cohorts, but 

particularly those consisting of predominately clinical cases) are inflating the heritability 

estimate of MSA.  

Upon reflecting back on our calculated Bayesian estimate of heritability due to 

misdiagnosed MSA, ranging between 1.00-4.19%, there is substantial overlap with our 

GCTA estimate, ranging between 2.09-6.65% (Table 5). As we derived our calculations 

based upon a comprehensive literature overview of misdiagnosis rates, the overlap of 

these estimates suggest that all MSA heritability estimated in this study could in principle 

be explained exclusively through heritability stemming from contamination of the MSA 

cohort with non-MSA diseases.  

Such a result highlights the multitude of challenges in attempting to discover 

genetic risk factors for MSA: first, as the prevalence of MSA is incredibly low, estimated 

at approximately 0.000046, sample size is rather limited, and many cases that are 

clinically diagnosed are likely misdiagnosed, adding noise to any genetic variation that 

may underlie MSA etiology.320,321 While an obvious approach to improve the relevance 

and validity of MSA genetic analyses would be to include only pathologically-confirmed 

cases, any such attempts would necessarily be underpowered due to the rarity of the 

disease. Despite the fact that our dataset represents the most comprehensive collection of 

MSA genotypes ever assembled, our cohort numbers under 1000 cases lacks adequate 

statistical power necessary to detect uncommon variants and/or those with mild effects. It 

is thus in the scientific community’s best interest that we seek international collaboration 

to generate large, high-confidence (i.e. pathologically-confirmed), high-quality datasets. 
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Moreover, given our findings and acknowledged limitations of this methodology, the use 

of NGS technology in pursuit of MSA genetic etiology could prove extremely valuable, 

as exon-centric variation may reveal novel rare variants that have been missed by 

standard genotyping methods used in this investigation. 
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3 Identifying candidate genes and variants for MSA using 

exome sequencing 

 

Statement of Contributions: Collection of the MSA samples was performed by Dr. Lucia 

Schottlaender and Dr. Henry Houlden. Dr. Schottlaender and I worked together on the 

exome sequencing of the MSA samples. She spent time at the Laboratory of 

Neurogenetics, NIH to prepare and run 200 pathologically confirmed samples using the 

Illumina Tru Seq protocol. I prepared and ran 212 clinically confirmed MSA samples 

using the Illumina Nextera protocol. The details of both protocols will be discussed in the 

methods section of this chapter. I performed quality control and data analysis, under the 

supervision of the Statistical Genetics Group and the Computational Biology Core of the 

Laboratory of Neurogenetics.  

 

3.1 Introduction 

In our pursuit of unraveling the genetic etiology of MSA, we recognize the 

possibility of both common and rare variants affecting the risk for disease based on the 

CDCV and MRV hypotheses. In the first chapter, we investigated the role of common 

variants associated with disease to estimate MSA heritability defined by common 

variation alone. Had our MSA heritability estimates mirrored those of other 

neurodegenerative diseases like PD and ALS, we would have investigated particular loci 

to identify such variants or genes. However, as the MSA heritability estimate based on 

common variation is between 4-5%, we believe common variation does not play a 
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substantial role in risk or association with disease. While we acknowledge several 

limitations inherent in genotyping technology and GCTA analysis, suggesting that we 

interpret our results with caution, the data indicates that the MRV hypothesis may be 

more applicable to a very rare disease like MSA.  

In an effort to identify rare variants associated with disease, a logical nexus is to 

pursue WES. Within the last several of years, second generation sequencing, and in 

particular WES has revolutionized the world of genetics. The exome consists of roughly 

180,000 exons within approximately 27,000 genes and represents all protein-coding 

variants in the genome. While the exomic region physically comprises a mere 1-2% of 

the genome, approximately 85% of human monogenic diseases are caused or associated 

with missense mutations. 9 As WES yields coverage in the majority of exons within the 

coding region of the genome, we can identify novel nucleotide variants in the form of 

missense, nonsense, frameshift, and indel mutations and assess their association with 

disease through individual variant and gene burden analyses. In the context of MSA, a 

substantial proportion of these samples should be pathologically confirmed, given the 

estimated 14% clinical misdiagnosis rate, which could significantly confound results.322  

Because MSA is a rare disease and because clinical diagnosis is imprecise it is 

difficult to ascertain a sample size of well-characterized MSA patients of a similar 

magnitude to that used in other neurodegenerative diseases such as PD or AD. Clearly 

then, any MSA cohort in current existence is unlikely to be of sufficient depth to provide 

compelling and replicated genome wide associated variants. However, as has been seen 

with PD, production of early hypothesis generating datasets spurs investigation and, with 

public release of results, catalyzes independent replication. With this in mind we chose to 
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pursue WES in a cohort of clinically and pathologically diagnosed MSA samples, with 

the express intent of generating a list of candidate associations for this disorder. 

3.2 Materials and methods 

3.2.1 Subjects 

The MSA cohort consists of apparently sporadic cases with no family history information on 

relatives with PD or other neurodegenerative disorders. A total of 411 MSA samples were obtained for 

WES with the majority of individuals from the United Kingdom, France or the United States. The 

remaining samples were all of other European descent, including samples from Germany, Spain, and the 

Netherlands. Among these, 212 samples were pathologically confirmed and the remaining 199 received 

clinical diagnoses of MSA (Table 9). The percentage of MSA cohort samples from each country is 

illustrated in Figure 17. 

MSA Sample country of 

origin 

Number of samples 

from country 

% Pathologically 

confirmed 

% Clinically 

diagnosed only 

United States 52 100% - 

United Kingdom 180 124/180=69% 56/180 = 31% 

France 140 - 100% 

Germany 19 100% - 

Spain 13 100% - 

Netherlands 2 100% - 

Unknown European country 5 100% - 

 

Table 9: Descriptive statistics of MSA WES cohort 

Information about the country of origin and clinical or pathological diagnostic status was obtained for 

almost every sample. 
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Figure 17: Origin of MSA cohort samples 

Visual graphic of table 9.  

 

Gender information was available for 337 individuals, consisting of 177 males 

and 160 females, and was unavailable for the remaining 74 patients.  Records of age of 

onset of disease were available for 396 patients, while only 139 samples had disease 

duration information reported. Samples were collected from several locations within each 

geographic region, as illustrated in Table 10. While the disparate provenance of these 

samples is not necessarily ideal for a genetic analysis, the rarity of this disorder requires 

international collaboration in order to gather a sufficient number of samples. 

 

 

 

 

Percentage of MSA cohort samples by 
country

United States

United Kingdom

France

Germany

Spain

Netherlands
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Country of origin University and/or Hospital Number of Samples 

from location 
United States Center for Neurodegenerative Disease 

Research, University of Pennsylvania 

25 

United States University of Miami Brain Bank 10 

United States Emory University Brain Bank 2 

United States Harvard University Brain Bank 2 

United States Johns Hopkins University-Juan Troncosco 

laboratory 

13 

United Kingdom Queen Square Brain Bank (QSBB), 

University College London  

10 

United Kingdom The Manchester Brain Bank, University of 

Manchester 

2 

United Kingdom Newcastle Brain Tissue Resource, 

Newcastle University 

6 

United Kingdom Institute of Psychiatry Brain Bank, King’s 

College London 

5 

United Kingdom UK Parkinson’s disease tissue bank at 

Imperial College London 

3 

United Kingdom Other (unknown) 154 

France Unknown 140 

Germany Neurobiobank München, Institut fur 

Neuropathologie, Ludwig-Maximillians-

Universitat, Munich 

17 

Germany Brain Bank Center Würzburg 2 

Spain Neurological Tissue Bank, University of 

Barcelona, Hospital Clinic, Barcelona 

10 

Spain Other/unknown 3 

Netherlands Netherlands Brain Bank, Netherlands 

Institute for Neuroscience, Amsterdam, 

2 

 

Table 10: Origin of samples by contributing center 

The number of samples obtained from each University and/or Hospital is listed by respective country.  

  

All neurologically normal control samples were obtained from two centers: the 

Alzheimer’s Disease Genetic Consortium (ADGC) and the Cohorts for Heart and Aging 

Research in Genomic Epidemiology (CHARGE) consortia.  The ADGC consortium 

currently contains ~10,000 control samples while CHARGE consists of more than 43,000 
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control samples (https://www.niagads.org/adsp/content/study-design). All controls are of 

European American ancestry with respective gender and age information available.  

3.2.2 Whole exome sequencing 

The process of WES consists of four distinct phases, the first three in the form of 

bench work in the laboratory (Sample Preparation and Sequencing), and the last step 

(Primary Data Processing, Secondary Data Processing) requiring computationally 

intensive work using the command line interface, most often on a Linux based computer 

system (Figure 18). 

 

 

Figure 18: Overview of WES pipeline.  

WES can be subdivided into several stages including: sample preparation and sequencing, primary data 

processing, and secondary data processing.  

 

(Reproduced from Ku et al 2013).336 
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A brief overview of each step in the exome sequencing process and analysis, 

followed by a more in-depth description of the protocol, is detailed below. These apply to 

both the Illumina Truseq and Nextera protocols. It is important to recognize that different 

exome capture kits may vary in the capture efficiency and the specific regions that are 

covered. Notably, while both Truseq and Nextera protocols both cover 45Mb of exonic 

content and have at least 80% on-target-sequencing reads, Nextera is approximately 70% 

faster for library preparation. While the primary goal is to maximize capture of coding 

sequences, there is typically some capture of introns, untranslated regions (UTRs), and 

regions encoding non-coding RNA in both protocols.  

3.2.2.1 DNA library prep & enrichment 

Samples are prepared 96 at a time using the Ilumina enrichment kit. This consists 

of several master-mixed reagents, optimized index adaptors, and quantification methods 

through fluorescent dyes (as opposed to using an agarose gel). Samples are labeled by 

two distinct indices and pooled into batches of 12 at a time. Each pool can then undergo a 

clustering preparation protocol to prepare for the next step, cluster generation.  

3.2.2.2 Cluster generation 

The clustering is performed by an automated device called a Cluster Station (c-

Bot) and takes place on the surface of a flow cell (FC). The FC is an 8-channel sealed 

glass micro fabricated device that uses DNA polymerase for the ‘bridge amplification’ of 

the DNA fragments on its surface, producing multiple DNA copies or clusters.  

Individual libraries may be run singly or in combination with others (pooled libraries). 

Each cluster contains approximately one million copies of the original fragment that is 

sufficient for accurate signal intensity detection during sequencing (Figure 23). 
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3.2.2.3 Parallel sequencing by synthesis 

All four nucleotides with DNA polymerase are added simultaneously to the FC 

channels. This is the premise for a sequencing by synthesis approach (Figure 24). The 

nucleotides carry a base-unique fluorescent label and the 3’-OH group is chemically 

blocked. Thus, each base incorporation is a unique event that is captured by an imaging 

step. The 3’blocking group is then chemically removed, preparing each strand for the 

next base incorporation. This series of steps continues for a specific number of cycles, as 

determined by user-defined instrument settings, which permits discrete read lengths of 

50–100 bases. To create paired-end reads, both strands of DNA undergo identical 

sequencing by synthesis processes as described above, which plays a key role in both the 

precision and accuracy of mapping as well as the identification of small structural 

variants (i.e. indels).  

3.2.2.4 Data analysis 

Data processing can be divided in 3 main steps: 

First, raw read data are transformed into a single, generic representation, mapped 

to their genomic origin and aligned consistently. Next, molecular duplicates are 

eliminated and initial alignments are refined (Figure 18, Primary Data Processing). 

Secondly, the analysis-ready SAM/BAM files permit discovery of all sites with 

statistical evidence for an alternate allele present among the samples (including SNPs and 

small indels). Next, raw variant calls are integrated with technical covariates, known sites 

of variation, genotypes for individuals, linkage disequilibrium (LD), and family and 

population structure. This process enables quality-based scoring of variants as 

polymorphic sites or artifacts (Figure 18, “Secondary Data Processing).  
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Finally, high-quality genotypes are determined for all samples and, after initial 

mapping and duplicate checking, all samples are run through the Genome Analysis 

Toolkit (https://www.broadinstitute.org/gatk/).  

3.2.3 Illumina TruSeq protocol 

3.2.3.1 DNA Library preparation and enrichment 

3.2.3.1.1 Quantification 

Genomic DNA (gDNA) is quantified using the Quibit fluorimetric quantitation 

system, dsDNA BR Assay kit. 1ug is required. The total volume of DNA needed for the 

next step (fragmentation) per sample is 52.5 ul. Based on the results of Quibit 

quantification, some samples are vacuumed to reduce volume (using the SpeedVac 

concentrator) while others require the addition of re-suspension buffer (RSB) to bring the 

total volume up to 52.5 ul. Once each sample reaches this volume with a minimum of 

1ug, it is ready for fragmentation. 

3.2.3.1.2 Fragmentation of gDNA 

Each sample is placed in Covaris tubes and randomly sheared using the Covaris 

E210 water bath sonicator. The conditions of the machine are as follows: Duty Cycle: 

10%, Intensity: 5, Cycles per Burst: 200, Time: 120 s, Mode: Frequency sweeping, Power 

23W, Temperature 5.5°C to 6°C).  

3.2.3.1.3 Quality check using the Bioanalyzer 

To assess the quality of the shearing, 1ul of each fragmented dsDNA sample is 

run on the bioanalyzer using an Agilent DNA 1000 chip. This is important to determine 

both the size and concentration of sheared DNA fragments.  Fragment size is specific to 

https://www.broadinstitute.org/gatk/
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the type of next generation sequencing method that is utilized. In WES, fragment sizes 

are approximately 250bp in length, which is necessary to cover the majority of targeted 

exons (typically 200bp in length).  

 

The protocol for using the Agilent DNA1000 Bioanalyzer is as follows:  

A. Prepare Gel Dye Mix:  

 i. Allow the DNA dye concentrate (blue) and DNA gel matrix (red) to equilibrate to 

room temperature for 30 minutes.  

 ii. Vortex the blue- capped DNA dye concentrate (blue) for 10 seconds and spin down. 

Make sure the DMSO is completely thawed.    

 iii. Pipette 25 ul of the blue capped dye concentrate (blue) into a red- capped DNA gel 

matrix vial (red). Store the dye concentrate at 4 °C in the dark again.    

iv.  Cap the tube, vortex for 10 seconds. Visually inspect proper mixing of gel and dye.    

v.  Transfer the gel-dye mix to the top receptacle of a spin filter.    

vi.  Place the spin filter in a microcentrifuge and spin for 15 minutes at room temperature 

at 2240 g ± 20 % (for Eppendorf microcentrifuge, this corresponds to 6000 rpm).    

vii. Discard the filter according to good laboratory practices. Label the tube and include 

the date of preparation.    

B.  Loading the Gel-Dye Mix 

i. Allow the gel-dye mix to equilibrate to room temperature for 30 minutes before use. 
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Protect the gel-dye mix from light during this time.    

ii. Take a new DNA chip out of its sealed bag and place the chip on the chip priming 

station.    

iii. Pipette 9.0 ul of the gel- dye mix at the bottom of the well marked. 

iv. Set the timer to 60 seconds, make sure that the plunger is positioned at 1 ml and then 

close the chip priming station. The lock of the latch will click when the Priming Station is 

closed correctly.  

v. Press the plunger of the syringe down until it is held by the clip.    

vi. Wait for exactly 60 seconds and then release the plunger with the clip release 

mechanism.    

vii. Visually inspect that the plunger moves back at least to the 0.3 ml mark.    

viii. Wait for 5 seconds, then slowly pull back the plunger to the 1 ml position.    

ix. Open the chip priming station.    

x. Pipette 9.0 ul of the gel- dye mix in each of the wells   marked.    

C.  Loading the Marker 

i. Pipette 5 ul of green- capped DNA marker (green) into the well marked with the ladder 

symbol and into each of the 12 sample wells.  

D. Loading the Ladder and Samples 
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i. Pipette 1 ul of the yellow-capped DNA ladder (yellow) in the well marked with the 

ladder symbol. 

ii. In each of the 12 sample wells pipette 1 ul of sample (used wells) or 1 ul of deionized 

water (unused wells).  

iii. Set the timer to 60 seconds.    

iv. Place the chip horizontally in the adapter of the IKA vortex mixer and make   sure not 

to damage the buldge that fixes the chip during vortexing.    

v. Vortex for 60 seconds at 2400 rpm.    

vi. Refer to the next topic on how to insert the chip in the Agilent 2100 bioanalyzer. 

Make sure that the run is started within 5 minutes.    

___End Agilent DNA 1000 Chip Protocol __ 

Once the chip has been run, one must review the ladder electropherogram to determine 

that there are 13 well-resolved peaks with a flat baseline and correct identification of both 

markers. The electropherograms of each sample must be analyzed individually to 

determine concentration and fragment size. An example of a successful sample run is 

shown below. 
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Figure 19: High quality library sample on the Agilent bioanalyzer.  

Peaks on each end denote markers. The sample is illustrated by the middle peak, with the majority of 

fragments around 250bp in length. The x-axis reflects the number of basepairs and the y-axis denotes the 

fluorescence units as detected by the bioanalyzer.  

 

3.2.3.1.4 Post fragmentation end repair 

Following fragmentation and analysis with the bioanalyzer, each fragment has a 

3’ overhang. These overhangs are transformed into blunt ends using the End Repair Mix 

(ERM) in the Illumina Truseq Kit. This is accomplished by adding a 3’ to 5’ exonuclease, 

which eliminates the 3’ overhang, followed by a DNA polymerase, which fills in the 

remaining 5’ overhang. To prepare each 50 ul sample of fragmented DNA, 10 ul RSB 

and 40ul of ERM are added and the final 100 ul solution is incubated in a thermal cycler 

for 30 minutes at 30°C.  

3.2.3.1.5 Cleaning with AMPure Beads XP 

Following end repair, each sample must be cleaned with paramagnetic Ampure 

beads. This first requires dilution of the beads by combining 125 ul of beads with 35 ul of 

deionized molecular grade free water. The diluted bead mix (160 ul) is then combined 
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with each 100 ul sample, followed by mixing and incubation at room temperature for 15 

minutes.  Following incubation, the 96 deep well plate is placed on a magnetic stand for 

15 minutes to adequately let the paramagnetic beads bind the DNA fragments. Upon 

sufficient binding, 255 ul of supernatant is discarded. Next, while keeping the plate on 

the magnetic stand, two sequential washes are conducted using a solution of 80% ethanol. 

After the second wash, the ethanol is removed and discarded and the samples are 

incubated at room temperature for 15 minutes to sufficiently dry. To re-suspend the 

DNA, each sample is eluted with 17.5 ul of RSB.  

3.2.3.1.6 3’ End Adenylation 

After cleaning and resuspension, a single ‘A’ nucleotide is added to the 3’ ends of 

blunt fragments in order to prevent ligation with complementary strands before the 

upcoming adaptor ligation reaction. The adaptor has a complementary ‘T’ nucleotide on 

the 3’ end which serves as the corresponding overhang for ligation with the fragment. 

Each sample is combined with 12.5 ul A-Tailing mix and 2.5 ul RSB, followed by mixing 

and incubation at 37°C on a thermal cycler for 30 minutes. 

3.2.3.1.7 Adapter Ligation 

Each sample is combined with 2.5 ul DNA Adapter Index, 2.5 ul Ligation mix 

and 2.5 ul RSB in order to add indexing adapters to the ends of DNA fragments. This 

solution is mixed and incubated at 30°C on the thermal cycler for 10 minutes. After 

incubation, ligation is terminated upon the addition of 5 ul Stop Ligation Buffer to each 

ligated sample. Samples are then cleaned using Ampure Beads XP, in the same process as 

described in 3.2.3.1.5. 
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Subsequently, 1 ul of each sample, now a ligated library, is run on the bioanalyzer 

using an Agilent DNA 1000 chip, as discussed in detail in 3.2.3.1.3 above. This is 

necessary to check if the adaptor ligation is successful, as one should visualize DNA 

fragment lengths (x-axis) corresponding to 400-500 bp in size. The y-axis reflects 

fluorescence units (FU), which is proportional to the DNA concentration of each sample.   

3.2.3.1.8 DNA library enrichment 

 The goal of this step is to amplify DNA fragments ligated with adapter molecules 

on each end using PCR. Each sample is mixed with 25 ul PCR Master Mix and 5 ul PCR 

Primer Cocktail and incubated on the thermal cycler according to the following 

conditions: 30 seconds at 98°C, 10 cycles of: 10 seconds at 98°C, 30 seconds at 60°C, 30 

seconds at 72°C, 5 minutes at 72°C, then hold at 4°C. The PCR products are purified 

with Ampure XP Beads (refer to section 3.2.3.1.5 for details of cleaning process).  

 Purification is followed by library quality assessment using both the Agilent DNA 

1000 chip on the Bioanalyzer and the Qubit fluorimetric quantitation system (refer to step 

I for details).  Successful bioanalyzer results should reveal a 5-fold increase in peak 

height (measured by FU), indicative of an increase in DNA concentration and successful 

amplification. 

3.2.3.1.9 Exome Capture 

  During this step, Illumina TruSeq capture probes are used to capture the adapter-

enriched DNA sample libraries prepared in sections 3.2.3.1.1-3.2.3.1.8 above. Using 

quantification values from section 3.2.3.1.7 above. 500ng of each DNA library is mixed 

with 500 ng of 11 other unique DNA libraries to make a single 40 ul pool consisting of 
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12 DNA libraries and containing 6ug of total DNA. Many samples often require further 

concentration to achieve the correct volume and amount of DNA. Thus, they can be 

vacuumed on the SpeedVac concentrator to decrease sample volume without the addition 

of heat. As each library has its own unique indices, the pooling of samples will not hinder 

the parsing out (“de-multiplexing”) of individual sample sequences in the analysis 

process.  

3.2.3.1.10 First Hybridization 

 Following exome capture and pooling, samples are prepared for the first 

hybridization by mixing each 40 ul library pool (consisting of 12 samples) with 10 ul 

Capture Target Oligos and 50 ul Capture Target Buffer 1. This mixture is incubated on a 

thermal cycler according to the following conditions: 10 minutes at 95°C, 1 minutes at 

93°C for 18 cycles, decreasing 2°C per cycle, followed by 16-20 hours at 58°C.  

3.2.3.1.11 First Wash 

 Immediately following the first hybridization, samples undergo the first washing 

process to capture probes bound to target exons using Streptavidin Magnetic beads. In a 

series of three subsequent washes, DNA fragments that are not bound to the magnetic 

beads are discarded. Specifically, this is accomplished by the addition of 250 ul of 

Streptavidin Magnetic beads to each pool of hybridized DNA libraries. This solution is 

thoroughly mixed and then incubated for 30 minutes at room temperature.  

 After incubation, the deep well plate is put on the magnetic stand for 2 minutes, 

allowing the unbound DNA fragments to remain in the supernatant, which is 

subsequently removed and discarded. Next, the deep well plate is removed from the 
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magnetic stand and 200 ul of Wash Solution 1 is added to each pool and mixed 

thoroughly. The plate is then put back on the magnetic stand for incubation at room 

temperature for 2 minutes. Once again, the supernatant is removed and discarded and the 

plate is taken off the magnetic stand. In a similar fashion, Wash solution 2 is added to 

each pool and thoroughly mixed to completely re-suspend the magnetic beads. The plate 

is once again placed on the magnetic stands for 2 minutes to allow the magnetic beads 

bound to the captured DNA to separate from unbound DNA fragments. The supernatant 

is then removed and the plate is taken off of the magnetic stand. Finally, 200ul of Wash 

Solution 3 is added to each pool and mixed thoroughly. This is followed by incubation of 

the plate on the thermal cycler at 42°C for 30 minutes.  Immediately after this step, the 

plate is returned to magnetic stand for 2 minutes, followed by supernatant removal. To 

ensure thorough cleaning, the step using Wash Solution 3 is repeated for a second time.  

Upon completion of the second round of washing using Wash solution 3, the plate 

is placed on the magnetic stand and the supernatant is removed and discarded. Next, a 30 

ul elution pre-mix, consisting of 1.5 ul NaOH and 28.5 ul Elute Target buffer, is added to 

each pool and mixed thoroughly to ensure bead re-suspension. This is followed by 

incubation at room temperature for 5 minutes and then placement on the magnetic stand 

for 2 minutes. 29 ul of supernatant from each pool is transferred to a new plate and 

combined with 5 ul of Elute Target Buffer II to form clean, hybridized pool(s) of 

libraries.  

3.2.3.1.12 Second Hybridization 

 The Second Hybridization is identical to the First Hybridization in (see section 

3.2.3.1.10 for details). The goal is to further enhance the enrichment of targeted exonic 
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regions by mixing the first round of eluted DNA libraries with the capture probes.  

3.2.3.1.13 Second Wash 

 The second wash is identical to the first wash. 

3.2.3.1.14  Library Enrichment 

 Upon completion of the second wash, the hybridized library is enriched using the 

same protocol as section 3.2.3.1.8. The only difference is that the final holding 

temperature on the thermal cycler is 10°C (instead of 4°C).  The amplified pools (each 

containing 12 libraries) are then washed with Ampure Beads XP using the same 

procedure as step 3.2.3.1.5. Finally, 1 ul of each pooled sample is bioanalyzed using an 

Agilent DNA High Sensitivity Chip (as opposed to DNA 1000 chip) to maximize 

concentration and quality accuracy of each pooled set of samples. To ensure a successful 

second hybridization and final enrichment, DNA peaks should range from 50-80 FU 

(Figure 20). 

 

Figure 20: Electropherogram of a successful library.  

Example of successful bioanalyzer electropherogram using an Agilent DNA High Sensitivity chip 

following the final step of Library enrichment in the Illumina Truseq protocol. The x-axis reflects the 

number of basepairs and the y-axis denotes the fluorescence units (FU) as detected by the bioanalyzer. 

Ladders are represented by peaks around 35bp and 10380 bp and the DNA sample is illustrated as the 

middle peak with the largest amount of sample being approximately 475 bp in length and 75 FU.  
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3.2.4 Illumina Nextera rapid capture protocol 

Many of the steps are similar if not identical to the TruSeq protocol. Unique steps 

will be discussed in detail.  

3.2.4.1 DNA Library preparation and enrichment 

3.2.4.1.1 Quantification 

The first step involves DNA library preparation using the Illumina Nextera Rapid 

Capture Enrichment Kit. This requires a minimum of 50ng of genomic DNA, at 

concentration of 5ng/ul. Notably this is a significantly lower amount of DNA required 

than the Illumina TruSeq protocol previously discussed. DNA is quantified with the 

Quibit fluorimetric quantitation system as described in section 3.2.3.1.1. A flow chart of 

the full Nextera library preparation is depicted below in Figure 21. 
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Figure 21: Nextera rapid capture enrichment process.  

A 50ng sample of Genomic DNA is required to perform WES using the Nextera protocol. Core steps of 

sample processing include: tagmentation, hybridization, amplification, capture and clean up. 

 
 (Reproduced from www.illumina.com) 

 

http://www.illumina.com/
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3.2.4.1.2 Tagmentation of gDNA 

Each sample must undergo a tagmentation process to oligonucleotide adapters, 

followed by cleaning with Sample Purification Beads (SPB). The process of tagmentation 

is shown below in Figure 22. This requires a mixture of 10 ul gDNA, 25 ul Tagment 

DNA Buffer and 15 ul Tagment DNA Enzyme I in a 96-well MIDI plate. The plate is 

then placed on a microplate shaker at 1800 rpm for 1 minute, followed by centrifugation 

at 280 xg for 1 minute (NOTE: these (in italics) are considered standard conditions for 

this protocol and will be referred to as such from now on. If conditions are different they 

will be specified). Next, the plate is incubated at 58°C for 10 minutes. 15 ul of Stop 

Tagment Buffer is then added to each sample followed by shaking and centrifuging at the 

standard conditions. Finally, the plate is incubated at room temperature for 4 minutes.  

 

 

Figure 22: Tagmentation followed by first PCR.  

Tagmentation allows for sequencing adapters to be placed on both ends of the genomic DNA, followed by 

subsequent binding of the unique dual indices on each end, thus making each DNA library distinct. This is 

followed by first PCR using Illumina Nextera Rapid Capture Enrichment Kit. 

(Reproduced and modified from Head et al 2014 and Kara et al 2014).333 

3.2.4.1.3 Clean up Tagmented DNA 

This cleaning process will described in detail here and will be referenced in later 

sections, as it is repeated throughout the Nextera protocol. First, 65 ul of magnetic 

cleaning beads (SPB) are added to each sample in a deep well MIDI plate followed by 
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shaking and centrifuging at standard conditions. Next, the plate is put on the magnetic 

stand for 2 minutes (or until the liquid appears clear). All supernatant is then removed 

and discarded and 200 ul of 80% ethanol solution is added to each well without 

disturbing the beads. After waiting 30 seconds, the 80% ethanol is removed and 

discarded. This step is repeated a second time for thorough cleaning and any remaining 

ethanol must be removed without disturbing the beads. The plate is left to dry on the 

magnetic stand for 10 minutes and then removed. 22.5 ul of RSB are added to each 

sample well, followed by shaking at standard conditions for 1 minute. The plate is then 

incubated at room temperature for 2 minutes and then centrifuged for 1 minute at 

standard conditions. The plate is then put back on the magnetic stand for 2 minutes (or 

until liquid appears clear). Finally, 20 ul of clear supernatant is transferred from each well 

to a new standard 96 well plate.  

3.2.4.1.4 First PCR Amplification 

The first PCR amplification process is performed after each sample is tagged with 

two distinct series of indices (Figure 22, “Sample Index”). The PCR mixture requires 5 ul 

Index I primer, 5 ul Index II primer, and 20 ul Nextera Library Amplification Mix (NLM) 

added to each well containing 20 ul of sample. The solution will then undergo shaking 

and centrifugation at standard conditions. Next, the NLM_AMP program is run on the 

thermal cycler according to the following conditions: Choose the pre-heat lid option and 

set to 100°C, 72°C for 3 minutes, 98°C for 30 seconds, 10 cycles of: 98°C for 10 

seconds, 60°C for 30 seconds, 72°C for 30 seconds, 72°C for 5 minutes, hold at 10°C. 
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3.2.4.1.5 First PCR clean up 

The follows the same protocol for sample clean-up in section 3.2.4.1.3 above. The 

only differences are the following: starting sample volume is 50 ul (instead of 65 ul) and 

90 ul SPB are added to each well (instead of 65 ul).  

3.2.4.1.6 Quality check using the Bioanalyzer 

1 ul of each sample is bioanalyzed using the Agilent DNA 1000 chip described in 

the Truseq protocol section 3.2.3.1.3. A successful sample tagmentation will reveal DNA 

fragments ranging from 150-1000bp in size.  

3.2.4.1.7 First Hybridization 

The purpose of this step is to facilitate the binding of each DNA library to 

biotinylated oligos (bates). In preparation for hybridization, each sample must be pooled 

into a library of 12 samples. This requires quantification by the Quibit fluorimetric 

quantitation system to obtain approximately equal amounts (500ng) of each sample to 

make a well-balanced library. The Speedvac concentrator and RSB may be used to obtain 

a volume of 40 ul per sample. This allows for the pooling of samples (in the subsequent 

step) into a single library, and the ability to run 12X the number of samples per lane, 

which is both extremely time and cost effective. Next, 40 ul of each library pool is mixed 

with the following: 50 ul Enrichment Hybridization Buffer, 10 ul Coding Exome Oligos, 

making at total of 100 ul per sample. The plate is placed on the microshaker followed by 

centrifugation under standard conditions. The samples are then ready for the NRC HYB 

program on the thermal cycler under the following conditions: Pre-heat lid to 100°C, 

95°C for 10 minutes, 18 cycles of 1 minute incubations, starting at 94°C, then decreasing 

2°C per cycle, 58°C for >90 minutes but <24hours.  
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3.2.4.1.8 First Capture 

Capturing post-hybridization requires the use of SPB, which are used to separate 

genomic DNA-bait hybrids by binding to the biotinylated probes. With a starting volume 

of 100 ul from the previous step, each library is transferred to a deep well MIDI plate for 

the SBP cleaning process. 250 ul SPB are added to each sample followed by 5 minutes on 

the microplate shaker at a slower speed of 1200 rpm. The plate is then incubated at room 

temperature for 25 minutes followed by centrifugation at standard conditions. The plate is 

then placed on the magnetic stand for 2 minutes or until the liquid appears clear. Next, all 

supernatant is removed and discarded without disturbing the beads. After removal from 

the magnetic stand, 200 ul of Enrichment Wash Solution (EWS) are added to each well, 

followed by 4 minutes on the microplate shaker at standard conditions. The plate is then 

incubated on the thermal cycler at 50°C for 30 minutes. After incubation it is once again 

placed on the magnetic stand, followed by the standard 2-minute waiting period before 

removing and discarding all supernatant. This step (starting with the addition of 200ul 

EWS) is repeated a second time for increased purification of target regions.  

3.2.4.1.9 First Elution 

The following reagents are added to form a pre-mix in preparation for the first 

elution: 28.5 ul Enrichment Elution Buffer 1 (EEB1) and 1.5 ul 2N NaOH, making 30 ul 

in total for each pool. 23 ul of pre-mix is added to each well (pool) followed by 

placement on the microshaker under standard conditions for 2 minutes. This is followed 

by incubation at room temperature for 2 minutes and then centrifugation at standard 

conditions. The plate is returned to the magnetic stand and once the liquid turns clear, 
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21ul supernatant is added to 4 ul Elute Target Buffer 2 (ETB2) followed by microshaking 

and centrifugation under standard conditions. 

3.2.4.1.10 Second Hybridization 

A second hybridization to further amplify the DNA and ensure high specificity of 

the capture regions is required, which occurs between a minimum of 14.5 hours and a 

maximum of 24 hours. The process is analogous to the first hybridization, but does not 

require library pooling as this has already been done. Secondly, since the starting volume 

of each pool is 25 ul after the first elution (and thus for the second hybridization), 15ul 

RSB are added to the final solution to make 100 ul in total. For more details refer to the 

section 3.2.4.1.7.  

3.2.4.1.11 Second Capture 

Once again, samples are thoroughly captured in an identical manner to the process 

following the first hybridization. Please refer to section 3.2.4.1.8 for more details.  

3.2.4.1.12 Capture sample clean up 

 After the second capture, samples must be cleaned before final enrichment. This 

process uses 45 ul SPB and is otherwise the same as the “Clean up” in sections 3.2.4.1.3 

and 3.2.4.1.5. 

3.2.4.1.13 Second PCR Amplification 

Finally, an additional PCR amplification step is performed to maximally enrich 

the library prior to clustering. This requires the addition of 20 ul Nextera Enrichment 

Amplification Mix (NEM) and 5 ul PCR Primer Cocktail to the 25 ul of each pool. The 

plate is placed on/in the microshaker and centrifuge under standard conditions and then 
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placed on the thermal cycler under the NEM AMP10 program: pre-heat lid to 100°C, 

98°C for 30 seconds, 10 or 12 cycles of: 98°C for 10 seconds, 60°C for 30 seconds, 72°C 

for 30 seconds, 72°C for 5 minutes, hold at 10°C. 

3.2.4.1.14 Second PCR clean up 

Samples are cleaned in the same manner as section 3.2.4.1.3 (using 90 ul SPB) 

and then quantified on the bioanalyzer with an Agilent DNA High Sensitivity chip prior 

to the clustering phase.  

3.2.4.2 DNA amplification and clustering on the C-Bot 

In the second step of the WES protocol, each pool, which consists of 12 libraries, 

is run on a single lane within the 8-channels located inside each flow cell. A flow cell is 

sealed glass microfabricated device that allows for cluster generation using an automatic 

cluster generator (C-Bot). The cluster generation process is initiated by the enzyme DNA 

polymerase, which amplifies DNA fragments through bridge formation, ultimately 

producing millions of DNA clusters (Figure 23). Within each distinct cluster, there are 

roughly 1 million copies of the original fragment, which is required for signal 

fluorescence and detection during the high throughout sequencing process on the 

Illumina Hi Seq 2000 (Figure 24). 
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Figure 23: C-Bot clustering showing bridge amplification and DNA cluster formation.  

Each unique strand of cDNA is isothermally extended and amplified by DNA polymerase into several 

hundred million clusters.  

(Reproduced from Illumina: www.illumina.com/documents/products/datasheets/datasheet_cbot.pdf).  

 

  

Figure 24: Flowcell with amplified DNA clusters.  

Each cluster contains consists of approximately 1000 identical copies of the unique template. Flow cells 

facilitate high stability of surface-bound template in conjunction with non-specific binding of fluorescently-

labeled nucleotides, allowing bound DNA to interact with key enzymes for amplification. 

Reproduced from (Whiteford et al, 2009).337 

3.2.4.3 Parallel sequencing by synthesis on the Illumina Hi Seq 2000 

 The third step of WES comprises massive parallel sequencing by synthesis 

on the Illumina Hi Seq 2000. All four nucleotides are fluorescently labeled with a unique 

color corresponding to their respective base and are to be incorporated into the oligo-

primed cluster fragments on the FC. Linearization of the DNA is accomplished through 

the cleavage of a single adaptor followed by denaturation to yield single stranded DNA. 

Next, sequencing primers are added in combination with four reversible terminators, 
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unique to each nucleotide. Upon the addition of a new nucleotide via DNA polymerase, 

each base has a 3’ hydroxyl group (-OH) chemically blocked. This allows for the optic 

lens to capture an image after every fluorescently labeled addition, with each FC lane 

imaged in three distinct 100-tile segments at an approximate cluster density of 30,000 

clusters per tile. Once the image has been captured, the 3’ blocking group on the 

hydroxyl group is chemically removed which allows for incorporation of the subsequent 

base. This process is repeated for approximately 200 cycles in total with read lengths in 

the 50-100 base pair range. This sequencing process takes place on both single strands of 

DNA, creating paired-end reads to facilitate accurate mapping during data analysis. The 

overall run time on the Illumina Hi Seq 2000 consists of approximately 10 days. 

 

 

Figure 25: Parallel sequencing by synthesis on the Illumina Hi Seq 2000.  

 Fluorescently-labeled nucleotides, with a unique color corresponding to their respective base, are added 

one-by-one into the oligo-primed cluster fragment; this enables the optic lens to capture an image after 

every fluorescently-labeled addition.   

(Reproduced from http://tucf-genomics.tufts.edu/home/ordering). 

http://tucf-genomics.tufts.edu/home/ordering


 166 

3.2.5 Raw data analysis 

3.2.5.1 Mapping, alignment and duplicate removal 

In the fourth step of WES, terabytes of data are transferred from the Illumina Hi 

Seq 2000 computer to begin the analysis process. First, raw reads of data in the form of 

fastq files are mapped to their respective genomic origin and appropriately aligned. This 

is a complex demultiplexing process that is accomplished using Illumina’s CASAVA tool 

and Novoalign’s human genome reference (Novocraft technologies).  Since fastq files 

come in pairs in paired-end sequencing, each sample has a forward and reverse sequence 

for each read. The Phredd score, which is a 10 multiplied by the negative logarithm of the 

probability of an incorrect base, is used to estimate the confidence in base calling 

accuracy. Once this is complete, molecular duplicates are excluded and initial alignments 

are modified via Picard tools (http://www.picard.sourceforge.net) (Figure 26). 

 

http://www.picard.sourceforge.net/
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Figure 26: Whole exome sequencing analysis pipeline.  

Raw reads generated from the Hi Seq 2000 undergo a series of steps including alignment, de-duplication, 

local realignment and score recalibration prior to analysis. The next set of steps involves variant calling 

(including raw variants), annotation and classification tailored to the analytical approach specific to the 

study.   

(Reproduced from http://www.ccmb.med.umich.edu/node/1205).  

 

3.2.5.2 Raw variant callings and file conversions  

In the next phase, fastq files are converted to SAM and BAM files, in which the 

latter are a compressed and binary version of the former (Figure 27). These files portray 

human readable mapped sequences with reference sequence coordinates and Phredd 

scores. Furthermore, BAM and SAM files allow one to analyze all sites with variant calls 

(some real, other artifacts) in the form of SNPs and indels. BAM files can also be 

visualized using the computer program, Interactive Genomics Viewer (IGV) to determine 
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the exact number and quality of reads called in favor of the wildtype and alternate alleles.  

An example of this is shown in Figure 28. 

 

 

 

Figure 27: Bioinformatics Pipeline of Raw Variant Callings and File Conversions.  

Samples undergo a series of processing steps after completion of sequencing by parallel synthesis on the Hi 

Seq 2000. Primarily this includes mapping, pairing, and format conversion to create preliminary BAM 

files. BAM files must undergo further manipulation including local realignment around indels, quality 

score recalibration, duplicate removal, and elimination of low quality reads to generate analysis-ready 

BAMs. Subsequently, these files can be viewed on IGV, with a focus on variants determined by the GATK 

generated VCF and statistical analyses attained via SamTools and Picard.  

Reproduced from (http://www.ikmb.uni-kiel.de/research/genetics-bioinformatics/genome-exome-analysis).  
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Figure 28: Read coverage of APP using whole exome sequencing and whole genome sequencing.  

Reads can be visualized as shown in Interactive Genome Viewer using BAM files. The top image 

demonstrates reads obtained from WES, which only covers coding regions. The bottom image depicts both 

intronic and exonic regions of APP generated by WGS. APP = Amyloid Precursor Protein. 

 (Reproduced from Bras et al 2012). 7 

 

3.2.5.3 Incorporation of reference databases 

In a very computationally intensive process, extensive integration merges relevant 

information about known variation sties, LD, family structure, population substructure 

with raw variant calls.  
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3.2.5.4 Assignment of quality scores (Phredd scores) to all variant calls 

Each variant call is associated a Phredd score to denote the level of confidence in 

accuracy. Based on the Phredd Score, the most probable genotype is determined for every 

sample at every site of variation using the Genome Analysis tool Kit (GATK, 

http://www.broadsinstitute.org/gatk/).   

3.2.5.5 Generation of variant call files  (VCF) and (group) gVCFs 

Finally, samples can be subsetted at the user’s discretion to form tab-delimited 

Variant Calling Files (VCF) to be extensively annotated using Annovar 

(http://www.openbioinformatics.org/annovar), VCFtools 

(http://www.vcftools.sourceforge.net/) and PLINK 

(http://pngu.mgh.harvard.edu/~purcell/plink/). VCFs include individual genotypes and 

variant calls for each sample, including both SNPs and indels.  

3.2.5.6 Downstream analysis and filtering of VCFs 

Using Annovar, several annotations can be performed on the VCF to manipulate 

it as desired. This allows exclusion of common variants using frequencies from public 

databases (dbSNP, 1000genomes, ESP6500), filtering based on MAF, and affords the 

ability to predict deleterious variants using web-based available programs (Polyphen2, 

SnpEFF, CADD, MutationTaster). A Table of Public Databases used for filtering analysis 

is listed below (Figure 29).  

http://www.openbioinformatics.org/annovar
http://www.vcftools.sourceforge.net/
http://pngu.mgh.harvard.edu/~purcell/plink/
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Figure 29: Public Reference Databases used as exclusion criteria for WES analysis.  

A combination of population, gene-disease association and predication databases are used for variant 

filtering in ANNOVAR.  

 

3.2.6 Looking for variants in PD risk and causal genes 

 As there are no known risk variants or genes for MSA, we thought it was 

important to look for those associated with alpha-synucleinopathies, most prominently 

PD. Further, given the estimated 14% likelihood of misdiagnosis among clinically 

diagnosed MSA samples, this was a critical step to eliminate any true PD cases from our 

cohort, an important part of the association analysis.322 The genes investigated included 

several categories of PD associated genes: first, all genes harboring causal variants 

attributed to monogenic forms of PD, described in detail in section 1.4.2. Second, we also 

incorporated all PD associated genes that have been deemed controversial, as the results 

supporting their significance consistently fail independent replication in other cohorts.    

3.2.7 Variant and Gene based Approach Filtering Pipelines 

Downstream filtering is tailored to the type of study (sporadic or familial), 

suspected mode of inheritance (autosomal dominant, autosomal recessive, x-linked, 

mitochondrial, de novo) and level of penetrance (complete, incomplete). With MSA 

being a predominantly sporadic disease we initially used less stringent filters. The variant 

Population Databases 

Gene-Disease 
Association Databases

Prediction Databases

• ESP6500
• ExAC
• 1000 Genomes
• dbSNP

• HGMD
• OMIM
• ClinVar

• Polyphen
• MutationTaster
• CADD
• SIFT
• snpEFF
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filtering pipeline used for exome analysis is demonstrated in Figure 30. The first step 

performed was QC analysis to remove samples that did not meet our pre-determined QC 

standards. With several hundred thousand variants remaining, we focused on 4 unique 

analyses to obtain a more manageable number of candidate genes and variants. First we 

looked at PD associated variants in both monogenic forms as well as more controversial 

PD genes. Secondly, we used a variant-based approach to search for very rare shared 

variants present in at least 2.5% of the MSA cohort. Thirdly, we incorporated a gene-

based approach to identify all novel alternate alleles within the same gene in at least 2 

MSA samples. Finally, we performed individual variant and gene burden analyses using 

RAREMETAL, which will be discussed in detail in section 3.2.10. 
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Figure 30: Variant Filtering Pipeline used for MSA whole exome sequencing analysis.  

Four primary analyses were incorporated in this workflow: investigation of PD associated variants, a 

Variant Based Approach, a Gene Based Approach, and RAREMETAL analyses.  

 

3.2.8 Annovar Filtering Process 

Using annovar, we used several commands on terminal to execute each filtering 

step. The first consisted of converting the VCF to an annovar “readable” format (perl 

Pre-QC analysis: 411 MSA 
samples

Post-QC analysis: 374 MSA 
samples with 461,037 

variants

Look for PD associated 
variants including monogenic 
forms and "controversial" PD 

genes

Variant Based Approach: 
Alternate allele must be 
present in >2.5% of MSA 
Cohort: 184,093 variants

Population database filtering 
(1000 genomes, dbsnp, 

ESP6500): 2945 remaining 
variants

Prediction database filtering 
(SNPeff, CADD, Polyphen, 

MutationTaster): 83 variants 
remaining

Interactive genome viewer 
(IGV) confirmation: 18 

variants remaining

Validated by Sanger 
Sequencing: 0 out of  18 

variants

Gene Based Approach: Any 
novel alternate allele within 

the same gene must be 
present in at least 2 samples 

in MSA cohort: ~300,000 
variants remaining

Population database (1000 
genomes, dbsnp, ESP6500) & 
Prediction database filtering 

(SNPeff, Polyphen,:  2849 
remaining variants in 1903 

genes

Prioritize non-synonymous 
and stopgain variants: 398 

variants and 190 genes 
remaining

Interactive genome viewer 
(IGV) confirmation: 64 
variants and 17 genes 

remaining

Validated by Sanger 
Sequencing: 27 variants in 13 

genes: Candidates gene list 
for burden analyses

RAREMETAL Analysis of 
Individual variants and Gene 

burden testing
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convert2annovar.pl). The read-out for this included the number of specific types of 

variants: homozygotes, heterozygotes, SNPs, and Indels; further, among the SNPs it 

specified the precise number of transitions and transversions. Next, we used the –

geneanno command to create two output files: an all variant file and an exonic file for 

preliminary annotation. From the exonic file, we filtered for the most damaging 

mutations using the “awk” program functions and reorganized columns into their 

appropriate location in the VCF. These changes included: stop gain, stop loss, 

nonsynonymous, frameshift and splicing. Upon downloading all of the reference genome 

databases from annovar, including 1000genomes, ESP, dbsnp138, and several prediction 

sites, among others, we applied these filters to obtain preliminary lists of candidate genes. 

To further manipulate our candidate list, we applied MAF filters (i.e. MAF<0.01) to 

remove all variants with a MAF above a defined threshold. Finally, we used awk 

commands to create separate homozygous, heterozygous and compound heterozygous 

files for further analysis and exploration on IGV. 

3.2.9 Sanger sequencing confirmation of variants 

After verifying that a particular variant appears real on IGV, it is important to 

confirm the presence and genotype of this variant through an independent method, most 

often Sanger sequencing. The protocol for Sanger sequencing is as follows: 

Primers must be designed to cover the variant using Primer3 

(http://bioinfo.ut.ee/primer3-0.4.0/) and the University of California Santa Cruz (UCSC) 

genome browser (http://genome.ucsc.edu/) reference sequences. Oligocalc 

(http://biotools.nubic.northwestern.edu/OligoCalc.html) can be used a quality control 

measure to check for hairpin turns or single primer self-dimerization. All primers used for 
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this study are listed in the Appendix section 8.1.2. 

Primers must be then be optimized to the appropriate thermal cycler PCR settings 

once a working solution is made. This often requires some troubleshooting due to 

variation in melting temperatures (Tm), GC content and several other factors.  All 

thermal cycler conditions are listed in the Appendix section 8.1.3 Assessment of a 

specific and efficient PCR amplification is performed by visualization and appropriate 

sizing of the product on an agarose gel containing ethidium bromide.  

 Once primers are optimized, a working solution is made specific to the stock 

concentration received. The initial PCR reaction requires 12 ul FastStart PCR Mastermix 

(Roche, IN, USA), 1 ul Forward primer, 1 ul Reverse primer, and 1 ul gDNA (around 

10ng/ul). This reaction is mixed and centrifuged and placed on the thermal cycler at the 

appropriate settings determined during optimization. This usually takes between 1.5-2.5h, 

depending on the number and duration of cycles, and can followed by a cleanup on the 

Biomek FX robot (Beckman Coulter, CA, USA) in order to remove un incorporated 

dNTPs, primers, salts and DNA polymerase using Ampure magnetic beads (Agencourt 

Bioscience Corporation, MA, USA). 27 ul of paramagnetic beads are added to each 

sample (15ul) followed by thorough mixing and incubation for 5 minutes at room 

temperature, allowing the paramagnetic beads to bind the amplified PCR fragments. The 

plate is then moved to a magnetic Agencourt SPRIplate to separate the beads from the 

solution, followed by the aspiration and discarding of the supernatant solution consisting 

of dNTPs and unbound primers. A series of two washing steps using a 70% ethanol 

solution is performed. Next, the cleaned PCR amplicons are resuspended in 30 ul 

distilled and deionised molecular grade water and transferred into a separate 96 well 
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PCR plate for further sample processing. A figure illustrating the cleaning process is 

shown below in (Figure 31).  

 

Figure 31: Sanger sequencing PCR cleanup using Ampure paramagnetic beads.  

Paramagnetic beads bind the amplified PCR fragments and are separated from the solution containing 

dNTPs and unbound primers upon binding to the magnet.  Two subsequent washes with ethanol followed 

by resuspension in elution buffer creates a clean sample ready for Sanger sequencing.   

Reproduced from (http://www.agencourt.com/products/spri_reagents/ampure/) 

After PCR amplification product purification, the plate is prepared for bi-

directional direct dye-terminator sequencing using the BigDye chemistry (v.3.1, Applied 

Biosystems, CA, USA). The sequencing reaction recipe is the following: 5 ul cleaned 

PCR product, 0.5 ul BigDye (v.3.1), 1 ul of 10nM primer (forward or reverse), 1.875 ul 

Sequencing Buffer (Applied Biosystems), 1.875 ul deionized molecular grade water 

(Mediatech. Inc., VA, USA). The plate is adequately mixed and centrifuged and ready for 

sequencing on the thermal cycler block.  

To remove excess fluorescent dye-terminator and other contaminants, CleanSEQ 

paragmetic beads (Agencourt Bioscience Corporation, MA, USA) are used according to 

the manufacturer’s protocol. This cleaning requires the addition of 10 ul CleanSEQ and 

45 ul 85% ethanol solution to the 10 ul sequencing reaction form above. Thorough 

mixing allows the paramagnetic beads to bind the sequenced amplicons. Next, the plate is 

http://www.agencourt.com/products/spri_reagents/ampure/
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moved to the magnetic Agencourt SPRI Plate for 3 minutes in order to separate the bead-

bound sequencing amplicons from any contaminants. After this incubation, the 

supernatant solution is aspirated and discarded, followed by an additional round of 

washing with 85% ethanol. Lastly, the cleaned sequencing products are eluted from the 

paramagnetic beads in 40ul of distilled and deionized molecular grade water and 

transferred to a clean 96-well semi-skirted reaction plate for further processing. Septa 

sealing is placed on semi-skirted plates with purified sequences and are analyzed on the  

ABI 3730 DNA Analyzer (Applied Biosystems, CA, USA). Electropherograms are 

visualized using Sequencher software (version 4.2 Gene Codes Corporation, MI, USA).  

3.2.10 Individual Variant and Gene Burden Testing 

By analyzing the clean MSA cohort (374 samples) with approximately 4X the 

number of controls, our goal was to obtain sufficient statistical power upon performing 

individual variant and gene burden tests (Figure 32). 

 

Figure 32: Merging clean MSA sample cohort with 1300 control samples to make final VCF 

To create a VCF ready for analysis, 4 group VCFs (1 case, 3 controls) were merged.   

All clean files merged into 
single MSA_Exome_Project 

VCF

4 Group VCFs, ~1:4 ratio 
cases to controls = 94 cases 

and 325 controls per vcf

374 MSA Cases & 1300 
Controls
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The second phase of analysis rested on an association based analysis rather than a 

filtering based approach. Because an association-based approach is extremely sensitive to 

differences in the way in which cases and controls are analyzed we pursued a single 

unified reanalysis approach. This approach, which used exome sequencing data from 374 

MSA cases and 1300 controls, was made possible by the use of GoogleGenomics within 

GoogleCloud. Thus WES data from cases and controls were recalled and aligned together 

on GoogleCloud according to the pipeline shown below (Figure 33). Fundamentally, 

using the cloud allows for recalling and realignment of large-scale WES project data 

based on the latest versions of dbGaP. This enhances the sensitivity of rare variant 

detection, some of which may be missed when only using local alignment tools in the 

LNG. Our approach used BAMs of cases and as well as controls from US and European 

datasets to generate an annotated and pooled VCF on our local drive. This is the VCF 

utilized for WES variant and gene based association pipelines described in sections 3.3.3-

3.3.4. On GoogleCloud, data is stored through a “bucketing” method, followed by 

reprocessing to increase data quality and alignment parameters. This data is then 

transferred back to the local drives and can be analyzed using RAREMETAL to generate 

summary statistics from several gene burden and single variant tests. As this is the 

primary phase of analysis, we consider the results, while valuable and interesting, as 

hypothesis generating or part of a discovery phase. Any significant findings will need to 

be followed-up in a replication phase.  
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Figure 33: Pipeline used for data pooling on googleCloud before running RAREMETAL analyses.  

BAM files from the US and EuroZone data repositories were combined using API to form a single 

annotated pooled VCF cohort. Using RAREMETAL analysis, single variant and gene burden analyses were 

performed on the group VCF file to initiate the discovery phase of hypothesis generating results. API 

=Application Program Interface.  

(Reproduced courtesy of Dr. M Nalls.) 

3.2.10.1 RAREMETAL Analysis: Quality Control  

To check for population stratification between cases and controls, the first two 

PCA covariates were plotted as eigenvectors, which represent the vast majority of ethnic 

variability among all cases and controls. The next step involved the generation of 

Quantile-quantile (QQ) plots, which is an important quality control parameter, as it 

represents a two-dimensional plot of the chi-squared test comparing the observed and 

expected p-values. A chi-squared test is performed for all markers included in the study 

and the p-values are plotted as –log10 (observed p value) along the y-axis. The x-axis 

plots the –log10(expected p value) and any deviation from x=y line suggests one of the 

following: first, if there is population stratification, deviation would be expected along 
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the full length of the x=y line. Second, if there is true association, the line will deviate 

only towards the latter half of the x=y line.36,338 It is important to note that plotting this 

will not allow one to adjust data for population stratification without running a prior PCA 

to determine (and remove) ethnic outliers.  

3.2.10.2 RAREMETAL analysis: gene burden and single variant testing 

This requires use of the command-line and allows one to input a VCF or PED file 

with genotypes and utilize this information to create summary statistics through several 

different tests. It can be applied to familial or sporadic analyses, and generates visual 

plots revealing both quality control statistics (i.e. QQ plot), as well as a Manhattan plot 

with the most significant results. Further, RAREMETAL has the ability to incorporate 

variance-covariance matrices to implement conditional analyses, which can differentiate 

true signals from those derived by nearby variants. The program utilizes 4 different types 

of tests to calculate individual variant and gene burden analyses, each with unique 

characteristics to obtain the most comprehensive and statistically significant set of results.  

At the meta-analysis stage, RAREMETAL allows one to organize variant groups based 

on gene-level statistics, creating unique reports for every gene-level test  

(http://genome.sph.umich.edu/wiki/RAREMETALWORKER). In essence, this illustrates 

the fundamental approach behind RAREMETAL meta-analysis, which is the 

extrapolation of single variant score statistics (calculated using the Cochran-Mantel-

Haenszel method) with known LD relationships into gene-level test statistics with 

corresponding p-values to reflect significance.  

http://genome.sph.umich.edu/wiki/RAREMETALWORKER


 181 

3.2.10.2.1 Single variant analysis: variance component (non-burden) tests 

3.2.10.2.1.1 The SKAT 

The SKAT aggregates associations between variants and phenotype using a kernel 

matrix defined by SNP-SNP interactions. As a non-burden test, the SKAT is more 

powerful when a substantial fraction of variants are non-causal or the effects of 

associated variants are in different directions.339 Further, the SKAT can also apply 

covariates, thus allowing for the incorporation of continuous traits. Notably, the SKAT is 

considered a particularly sensitive test that allows one to detect both protective and risk 

variants associated with disease. A caveat to this, however, is that the SKAT is less 

powerful than a burden test if the majority of rare variants are truly causal and in the 

same direction. Further, variance component tests are generally not the most stable for 

small cohorts with significantly different number of cases and controls.340  

3.2.10.2.2 Weighted Aggregation Test 

3.2.10.2.2.1 The Madsen-Browning (MB) burden test 

As a standard burden test, the Madsen-Browning burden test requires that all rare 

variants are collapsed within a single gene into a single burden variable. Consequently, 

this measures the cumulative effects of rare variants in a gene through regressions 

between burden variable and the gene of interest, adhering to a multivariate normal 

distribution.340 This test is considered a nonparametric weighted sum test (WST) by 

assigning a unique "weight" to every variant site; consequently, these weights are merged 

to determine the overall aggregated burden 

(http://varianttools.sourceforge.net/Association/Weighted). As a burden test, there is an 
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implicit assumption that all rare variants within a particular region influence the 

phenotype in the same direction and with a relatively similar magnitude.340 However, 

when these assumptions regarding causality, directionality and magnitude are not upheld, 

there is a significant loss of power in detection. 

3.2.10.2.3 Adaptive Burden test 

3.2.10.2.3.1 Variant Threshold (VT) test 

The VT test is a unique type of burden test in that it selects the ideal allele 

frequency threshold (via MAF) for all rare variants in a gene to enhance detection of 

genes with the greatest burden. While this is extremely powerful, the same assumptions 

of a classic burden test regarding causality, directionality and magnitude apply; hence, 

when not upheld, there will be a substantial depreciation of power 

(http://genome.sph.umich.edu/wiki/Rvtests).  

3.2.10.2.4 Combined Burden test 

3.2.10.2.4.1 Combined Multivariate and Collapsing (CMC) test 

This test is ideal for investigation rare variants within individual genes to assess 

overall burden of a single gene. All variants within a single gene are considered a test 

unit and collapsed into a binary system, in which a region is coded as “0” when all rare 

variants are wildtype and given a “1” if any rare variant harbors the minor allele.341 The 

next step involves merging of common variants in the same gene with the coded rare 

variants to generate a multivariate model, testing the null hypothesis: the absence of an 

association between the specific gene and disease of interest. By using Fischer’s test to 

http://genome.sph.umich.edu/wiki/Rvtests
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investigate this hypothesis, an exact p-value is generated, making this a favorable burden 

test for evaluating statistical significance of single gene burdens.  

3.3 Results 

3.3.1 Quality control filtering of locally executed analyses 

In the preliminary stages of the variant filtering pipeline using data derived from 

local analyses, we needed to eliminate samples that did not meet quality control 

standards. However, by re-preparing or running additional lanes to obtain increased 

coverage and depth, the final quality attained by MSA samples was very good (Figure 

34). The samples that did not meet the following criteria were eliminated from the cohort: 

>90% 10X depth, >70% 30X depth and a PCR duplicate rate <14%. Further, it was 

important to compare the depth with the 1300 controls used to prevent any bias (Figure 

35).  

 

Figure 34: 10X and 30X depth of 411 MSA exome sequenced samples.  

This reflects the combined results of both Illumina Truseq and Nextera Protocols. 
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Figure 35: Mean depth per individual in MSA samples (top) and 1300 controls (bottom) 

Mean depth per individual averaged around 39X for controls and 30X for MSA samples, respectively.  

 

In the first stage of the filtering pipeline, quality control measures were necessary 

to remove the following: call rate and heterozygosity rate outliers, individuals that were 

related or duplicated, those with missing genders and samples deemed ethnic outliers 

based upon multidimensional scaling (MDS). A MDS plot of all MSA samples is shown 

below. Any ethnic outliers were removed from subsequent analyses (Figure 36).  
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Figure 36: Multidimensional scaling of 411 MSA samples to identify and remove population outliers 

The first two principal components were used for population stratification. A colored key is located in the 

upper right hand corner.  

 

 After eliminating samples using quality control measures, we were able to 

proceed with analyzing the “clean” MSA cohort consisting of 374 samples.  

3.3.2 Looking for variants in PD associated genes 

Among the “clean” case cohort, a total of 11 variants were found in 8 PD 

associated genes, though notably most are not monogenic (Table 11). Among these, only 

a single heterozygous variant was revealed in LRRK2. Despite the dubious appearance of 

the BAM file at this location, we followed this up with Sanger sequencing. Sanger 
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sequencing results revealed this was indeed an artifact. With no other putative PD causal 

variants in the locally processed case/control cohort, we proceeded with our analyses. 

 

 

Table 11: Results of variants among all MSA samples in PD associated genes.  

Total number of cases: 374. Total number of controls: 1324. In the “sanger confirmation” column, variants 

with a “NO” were confirmed to be artifacts. All other variants that were either present in controls or did not 

have damaging predictions were not followed up with sanger sequencing, indicated by an “X”. A variant in 

LRRK2 is highlighted in red as it is the only gene identified to harbor variants causal for monogenic forms 

of familial PD.  

 

Starting with 461,037 variants, we focused on two approaches for analysis: a 

variant based approach and a gene based approach (Figure 30). 

3.3.3 Filtering through a Variant Based Approach 

Our rationale towards using a variant based approach was based the idea that very 

rare and potentially novel variants that are shared by a certain percentage of the full case 

cohort suggests a plausible association. As there are currently no known genes associated 

with MSA etiology, we were completely unbiased regarding our initial candidate gene 

list. By using the criteria that the alternative allele must be present among >2.5% of the 

full MSA case cohort, we were left with 184,093 variants (Figure 30). Next, we filtered 

using population databases including those listed in Figure 29 (1000 genomes, dbsnp, 

ESP6500), bringing us down to only 2945 variants. To further distill our candidate list, 

we used several strong prediction filters, including SnpEff, Polyphen and one of the most 

stringent, CADD, to obtain a list of 83 variants predicted to be very damaging. As this 

number is feasible to work with, all candidate variants were scrutinized on IGV to assess 
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the number of reads, direction of reads, mapping quality, and Phredd score of each 

sample allegedly carrying the variant according to the annotated VCF. Notably, certain 

genes are notorious for false positives, such as variant calls in “SARM” and “HRNR”; to 

remedy this, all cases were visually compared with several control samples previously 

run in the laboratory. After eliminating several candidates due to sample misalignments 

and artifacts, the remaining list consisted of 18 heterozygous variants in 18 genes. 

Unfortunately among the 18 candidates we were unable to confirm these variants via 

Sanger sequencing (Table 12). While the variant calling procedure has worked extremely 

well in family based analyses, the high failure to replicate rate led us to re-examine this 

approach in the context of association analyses. With this in mind the data was 

reanalyzed using a unified calling approach in GoogleGenome, as described later in this 

chapter. 

 

Table 12: Sanger sequencing results using variant-based approach for MSA WES analysis  

The location, corresponding gene, dbSNP ID, mutation effect and sanger sequencing validation status is 

listed for each candidate variant.  
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3.3.4 Filtering through a Gene Based Approach 

As an alternative approach, we decided to be less restrictive than the former 

pipeline by using the following criteria: at least 2 individuals in the MSA cohort must 

carry a novel variant within the same gene. Starting once again from 461,037 variants, we 

applied population databases filters and fewer prediction filters (not including CADD) to 

yield a total of 2849 variants in 1903 genes. As this was still a substantially large list, we 

needed to prioritize by visualizing them in IGV.  

 Notably, the results of the variant-based gene analysis suggested that a 

substantial proportion of WES artifacts are indels and frameshifts; alternatively, WES 

technology is much more suitable for single variant (SNP) detection. Hence, we further 

subdivided our candidate list into the following two categories: non-synonymous, 

stop_gain and stop_loss SNVs, and everything else that was not a SNV (indels, 

frameshifts variants). We designated the former group as our primary focus, consisting of 

398 variants in 190 unique genes, given the greater likelihood of authentic data quality 

from SNVs (vs. indels, frameshifts etc). After a comprehensive search through IGV and 

being particularly rigid in our candidate selection, a total of 64 novel variants in 13 genes 

were promising (Table 13, Figure 37): 
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Figure 37: IGV example of high quality depth and coverage in candidate gene, MAGEL2 

Two of our candidate variants located in MAGEL2 demonstrated excellent depth on IGV reads and were 

later confirmed with sanger sequencing. One of these two variants is illustrated above.   

 

 
# Samples Clin v Path #CHR POS REF ALT GENE NAME ID Unique Effect Sanger 

Confirmation, 

Genotype(s) 

1, Clin chr22 18121566 G A BCL2L13 . nonsynonymous SNV NO,  wt/wt 

1, Clin chr22 18121557 C T BCL2L13 . nonsynonymous SNV YES, wt/mt 

1, Clin chr22 18121587 G T BCL2L13 . nonsynonymous SNV YES, wt/mt 

1, Path chr6 90577545 G A CASP8AP2 . stopgain SNV X 

1, Path chr6 90573769 G A CASP8AP2 . nonsynonymous SNV X 

1, Clin chr6 90573431 T C CASP8AP2 . nonsynonymous SNV YES, wt/mt 

1, Path chr6 90576144 A G CASP8AP2 . nonsynonymous SNV X 

1, Clin chr6 90577775 A G CASP8AP2 . nonsynonymous SNV YES, wt/mt 

1, Clin chr6 90572365 T G CASP8AP2 . nonsynonymous SNV YES, wt/mt 

1, Clin chr11 11373751 G A CSNK2A3 . stopgain SNV YES, wt/mt 

1, Clin chr11 11373910 C A CSNK2A3 . nonsynonymous SNV YES, wt/mt 

1, Path chr3 53346386 C A DCP1A . nonsynonymous SNV X 
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1, Clin chr3 53322243 G A DCP1A . nonsynonymous SNV YES, wt/mt 

1, Path chr3 53326508 T G DCP1A . nonsynonymous SNV X 

1, Clin chr3 53376290 G A DCP1A . nonsynonymous SNV YES, wt/mt 

1, Clin chr3 53381504 G A DCP1A . nonsynonymous SNV NO, wt/wt 

1, Clin chr7 1786631 T G ELFN1 . nonsynonymous SNV YES, wt/mt 

1, Path chr7 1784707 G A ELFN1 . nonsynonymous SNV X 

1, Clin chr7 1785179 G A ELFN1 . nonsynonymous SNV YES, wt/mt 

1, Path chr7 1784309 G T ELFN1 . nonsynonymous SNV X 

2, Clin chr7 150434680 G A GIMAP1-GIMAP5 . nonsynonymous SNV YES, both 

wt/mt 

1, Path chr8 143740272 T G JRK . nonsynonymous SNV X 

1, Clin chr8 143747275 C G JRK . nonsynonymous SNV NO,  wt/wt 

1, Clin chr8 143745974 G T JRK . nonsynonymous SNV NO,  wt/wt 

1, Clin chr15 23892819 C T MAGEL2 . nonsynonymous SNV YES, wt/mt 

1, Path chr15 23892006 C T MAGEL2 . nonsynonymous SNV X 

1, Path chr15 23892216 G C MAGEL2 . nonsynonymous SNV X 

1, Path chr15 23892846 G A MAGEL2 . nonsynonymous SNV X 

1, Path chr15 23889169 C T MAGEL2 . nonsynonymous SNV X 

1, Clin chr15 23889634 C A MAGEL2 . nonsynonymous SNV YES, wt/mt 

1, Path chr15 23891698 C G MAGEL2 . nonsynonymous SNV X 

2, Clin chr1 17721517 G A PADI6 . nonsynonymous SNV NO,  both wt/wt 

1, Clin chr19 1527955 C T PLK5 . nonsynonymous SNV YES, wt/mt 

1, Path chr19 1528059 G A PLK5 . nonsynonymous SNV X 

1, Clin chr19 1528003 G C PLK5 . nonsynonymous SNV YES, wt/mt 

1, Path chr8 145741992 G A RECQL4 . nonsynonymous SNV X 

1, Clin chr8 145741895 C T RECQL4 . nonsynonymous SNV YES, mt/mt 

1, Clin chr8 145739330 C T RECQL4 . nonsynonymous SNV YES, wt/mt 

1, Clin chr8 145740372 C G RECQL4 . nonsynonymous SNV YES, wt/mt 

1, Path chr8 145738448 A G RECQL4 . nonsynonymous SNV X 

1, Clin chr8 145739087 T A RECQL4 . nonsynonymous SNV X 

1, Path chr8 145737667 C G RECQL4 . nonsynonymous SNV X 

1, Path chr1 182442891 C A RGSL1 . stopgain SNV X 

1, Clin chr1 182496832 G C RGSL1 . nonsynonymous SNV YES, wt/mt 

1, Path chr1 182442899 G C RGSL1 . nonsynonymous SNV X 
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1, Clin chr1 182441573 T A RGSL1 . nonsynonymous SNV NO,  wt/wt 

1, Clin chr1 182501804 G C RGSL1 . nonsynonymous SNV YES, wt/mt 

1, Clin chr1 182443527 G T RGSL1 . nonsynonymous SNV YES, wt/mt 

1, Clin chr1 182522662 G C RGSL1 . nonsynonymous SNV YES, wt/mt 

1, Path chr17 19319333 A G RNF112 . nonsynonymous SNV X 

1, Clin chr17 19318158 C A RNF112 . nonsynonymous SNV YES, wt/mt 

1, Path chr17 19319390 G A RNF112 . nonsynonymous SNV X 

1, Path chr17 19314726 C G RNF112 . nonsynonymous SNV X 

1, Path chr19 53958459 A G ZNF761 . nonsynonymous SNV X 

1, Path chr19 53959581 A G ZNF761 . nonsynonymous SNV X 

1, Path chr19 53959131 G A ZNF761 . nonsynonymous SNV X 

1, Clin chr19 53959466 C T ZNF761 . nonsynonymous SNV YES, wt/mt 

1, Clin chr19 53958585 G A ZNF761 . nonsynonymous SNV YES, wt/mt 

1, Clin chr7 6661490 C T ZNF853 . stopgain SNV NO,  wt/wt 

1, Path chr7 6660980 C G ZNF853 . nonsynonymous SNV X 

1, Clin chr7 6662446 C A ZNF853 . nonsynonymous SNV NO,  wt/wt 

1, Clin chr7 6661799 C G ZNF853 . nonsynonymous SNV YES, wt/mt 

1, Clin chr9 115759981 G A ZNF883 . nonsynonymous SNV NO,  wt/wt 

1, Path chr9 115760244 C T ZNF883 . nonsynonymous SNV X 

 

Table 13: Sanger sequencing results based on gene-based approach analysis.  

An “X” represents insufficient sample available for sanger sequencing validation. Genes in bold are those 

that confirmed among all variants tested in that gene.   

 

Of the variant positive samples 36 were available for Sanger confirmation and the 

majority of these novel variants (27) were confirmed (Table 14). Below are two of the 

Sanger sequencing confirmed results of variants in CASP8AP2 and RGSL1. 
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Figure 38: Sanger sequencing results in MSA sample heterozygous for CASP8AP2, p.M668T 

MSA sample “MSA_F_SG111208” was sanger sequenced in several wells to ensure good quality sequence 

was obtained.  

 

 

 

Figure 39: Sanger sequencing results in MSA sample heterozygous for RGSL1, p.G791A  

MSA sample “MSA_120445” was sanger sequenced in several wells to ensure good quality sequence was 

obtained. 
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Upon determining which variants were validated, we assessed the prediction 

filters and excluded 11 variants from our candidate list that were predicted as benign 

and/or polymorphisms (Table 14). We did not, however, exclude any genes, as there were 

several other variants within these genes that we were unable to follow-up due to 

insufficient DNA. We believe that these genes represent strong candidates for containing 

disease-associated variability and these are thus included in the hypothesis generating 

result set. 

 

 

Table 14: All 27 sanger sequencing confirmed variants from WES with Mutation Taster prediction.  

If predictions were unknown, variants remained in our candidate list. 

 

3.3.5 RAREMETAL Individual Variant and Gene Burden Analyses 

3.3.5.1 Quality Control with Googlegenome data in GoogleCloud 

In our second case/control analysis using GoogleCloud, the first two PCA 

covariates (C1, C2) were plotted as eigenvectors to assess population stratification among 

the full cohort (Figure 40). The results demonstrated that all MSA cases cluster uniformly 
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with study controls, indicating common ancestry and the absence of ethnic outliers.  Any 

MSA cases or controls that deviated from this cluster were removed from further 

analyses, leaving us with 335 MSA cases and 1085 controls. 

 
Figure 40: Population stratification of MSA cases and controls  

We performed multidimensional scaling on the MSA Merged cohort consisting of ~1300 controls and  

~400 cases using the first two covariates (C1, C2). 

 

 As a second quality control parameter, QQ plots were obtained for each statistical 

test performed.  Results of single variant tests for a MAF<0.01 are shown below in 

Figure 41. This was a good example of a QQ plot that deviates from the x=y axis along 

the latter half of the graph, indicating little population stratification but the presence of 

highly significant and rare variants. The genomic inflation factor, depicted by lambda 

(λgc), is used as an additional QC measure to ensure an absence of sample duplications, 

unknown familial relationships, population stratification and systematic technical bias 

(http://rstudio-pubs-

static.s3.amazonaws.com/9743_8a5f7ba3aa724d4b8270c621fdf6d06e.html).  With a λ 
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value >1 (GC = 1.208, GC = 1.164, Figure 41, Figure 42, respectively) this suggests 

slight systematic technical bias, as all of the other possibilities were ruled out using 

previous QC PCA and IBD analyses and QQ plots.  

 

 
 
Figure 41: QQ plot of single variant results with a MAF<0.01 

GC =1.208 represents the genomic inflation factor, λ. 

 

 All burden tests (MB, VT, CMC) results for MAF<0.01 revealed similar QQ 

plots, with the CMC QQ plot illustrated below (Figure 42).  Resonating with the single 



 196 

variant test results, the x=y deviation on the right side of the graph indicated the presence 

of significant variants with minimal population stratification. 

 
Figure 42: QQ plot of CMC burden test results with a MAF<0.01 

GC =1.164 represents the genomic inflation factor, λ. 

 

Once we could confirm the results passed quality control filters, we pursued gene 

burden and individual variant analyses. 

3.3.5.2 Gene Burden Results 

There was substantial overlap among the vast majority of significant genes 

between burden results from the three different tests (MB, VT, CMC). All burden tests 

were merged to determine genes with a p-value < 1X10-6 among coding, non-

synonymous variants with MAF<0.01 (Table 15).  A Manhattan plot of the VT gene 
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burden test results including coding, non-synonymous variants with a MAF<0.01 is 

shown below in Figure 43.  

 

Figure 43: Manhattan plot of VT gene burden test results in coding alleles with a MAF<0.01.  

As a burden test, the VT test assumes that all rare variants within a particular region influence the 

phenotype in the same direction and magnitude. Genes that illustrate the greatest significance, indicated by 

–log10(pvalue) on the x-axis (i.e. MANEAL, ARHGAP30, RIBC2), adhere at MAF<1%. 

 

Table 15: The most significant genes with p-values <1X10-6 among all 3 gene burden tests (MB, VT, 

CMC).  

Genes highlighted in red text were investigated for further analysis in the next section. 

 

GENE NUM_VAR AVG_AF MIN_AF MAX_AF EFFECT_SIZE PVALUE 
MANEAL 1 0.00453594 0.00453594 0.00453594 0.779577 2.48E-11 

ARHGAP30 1 0.00418702 0.00418702 0.00418702 0.77903 1.45E-10 

RIBC2 1 0.0038381 0.0038381 0.0038381 0.0481362 8.50E-10 

SLC44A5 2 0.00489169 0.00488486 0.00489853 0.497615 9.76E-10 

IGSF21 15 0.00138551 0.000352113 0.0098661 0.327289 2.13E-09 

KRT18 11 0.00288117 0.000352113 0.00809859 0.171798 2.34E-09 

GLIPR1 1 0.00349406 0.00349406 0.00349406 0.0459683 4.74E-09 

TECTA 1 0.00349406 0.00349406 0.00349406 0.778324 9.79E-09 

MOSC1 1 0.00314685 0.00314685 0.00314685 0.779029 2.74E-08 

BMF 1 0.00314027 0.00314027 0.00314027 0.777387 2.93E-08 

SYMPK 1 0.00314465 0.00314465 0.00314465 0.777075 2.97E-08 

DNAH9 5 0.00593234 0.00314027 0.0094208 0.252219 5.13E-08 

FCER1A 1 0.00314246 0.00314246 0.00314246 0.777935 5.70E-08 

C14orf183 1 0.00279525 0.00279525 0.00279525 0.0409978 1.75E-07 

ZNF519 25 0.00140845 0.000352113 0.00598592 0.195777 2.16E-07 

DRD5 6 0.00187798 0.000352113 0.00739437 0.382788 2.28E-07 

SP140 2 0.0047104 0.00279135 0.00662945 0.0285598 3.00E-07 

LRRK2 2 0.0038381 0.00348918 0.00418702 0.428455 4.05E-07 

OR8D2 12 0.000586854 0.000352113 0.00140845 0.0108746 4.57E-07 

DDR2 13 0.000568855 0.000352113 0.00211268 0.457547 4.89E-07 

COL3A1 24 0.00098326 0.000352113 0.00633803 1.25E+06 5.14E-07 

GANC 20 0.000721831 0.000352113 0.00352113 942612 7.27E-07 

DYRK2 6 0.00111519 0.000352113 0.00422535 0.0156217 8.31E-07 
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3.3.5.2.1 In-depth gene analysis 

As discussed above, the primary aim of this work was to generate a list of 

candidate genes and variants in MSA; and the list above in Table 15 qualifies; however, it 

is worth discussing some of these candidates because the previous involvement in 

neurological disease, and in particular in synucleinopathies, is striking. 

Therefore for several genes, we performed a more focused analysis of protein 

altering coding variants based on their functional relevance to PD. Some genes harboring 

significant burdens carry variants known to cause monogenic forms of familial PD, 

including LRRK2 and PARK2. Other genes have been reported to manifest an association 

with PD, such as EIF4G1 and GIGYF2; these, however, are tentative, as independent 

replication is lacking or controversial. Other genes closely analyzed all demonstrate 

substantial neuronal expression, particularly in the cortex and cerebellum, making these 

good candidates for further exploration of non-synonymous variants and their potential 

role as risk or protective factors.  

3.3.5.2.1.1 Genes associated with monogenic forms of familial PD 

LRRK2 

 

Table 16: Non-synonymous LRRK2 variants identified by gene burden analyses.  

Controls: n = 1085. Cases: n =335. Text highlighted in blue reflects variants with allele counts absent in 

cases but present in control only. Text highlighted in red reflects variants with counts absent in controls but 

present in cases only.  
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 Given the approximate 1:3.25 ratio of cases to controls, respectively, we would 

anticipate the number of both major and minor alleles in controls to be roughly 3.25X 

that of cases. In Table 16, there are two alleles that largely deviate from this expected 

ratio. Highlighted in blue, the minor allele for rs3550733 is present in in 17 controls and 

would be expected to be in approximately 4 cases. While it is absent in all cases, this 

suggests the possibility that this minor allele imparts a protective effect against the 

development of PD.  

Highlighted in red is variant p.G2385R, which is present in 10 MSA cases, two of 

which are homozygous. While this variant has been identified before, it is exclusive to 

Asian populations.173,174,181 As our cases are all of Caucasian ancestry, as determined by 

MDS uniform clustering of covariates C1 and C2, this is a very unique finding (Figure 

40). 

 To verify that these 10 individuals were indeed of Caucasian ancestry, we plotted 

them with a unique coral color to identify their location on the MDS plot (Figure 44). 
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Figure 44: MDS plot of MSA samples with 10 individuals carrying LRRK2 p.G2385R in coral.  

Individuals with LRRK2 p.G2385R mutation are represented by the coral colored triangles on the lower 

right side of the plot. All 10 individuals tightly cluster with those of European ancestry.     

Superpopulations key:  

 AFR, African 

 AMR, Mixed American 

 EAS, East Asian 

 EUR, European 

 SAS, South Asian 

From the MDS plot it is evident that these 10 individuals cluster tightly with those of 

European ancestry, suggesting a novel finding: this variant is present among Caucasian 

populations and not exclusive to Asian populations.  
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 To confirm that this variant was indeed real, we followed-up with Sanger 

sequencing on those 10 individuals. However, this variant could not be validated and 

therefore must be attributed to miscalling. On review of the underlying short read 

sequence there is an imbalance of the variant allele being at a lower coverage than the 

wild type allele, and thus we believe that this is an artifact of the variant calling process.  

PARK2 

 

Table 17: Non-synonymous PARK2 variants identified by gene burden analyses.  

Controls: n = 1085. Cases: n =335 

 

3.3.5.2.1.2 Genes with tentative PD associations 

EIF4GI 

 

Table 18: Non-synonymous EIF4G1 variants identified by gene burden analyses.  

Controls: n = 1085. Cases: n =335 

GIGYF2

 

Table 19: Non-synonymous GIGYF2 variants identified by gene burden analyses.  

Controls: n = 1085. Cases: n =335 
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3.3.5.2.1.3 Functionally interesting genes for further exploration 

As VPS13C has recently been identified to be associated with PD, we decided to 

investigate non-synonymous variants in sister gene, VPS13D.342,343 However, none of the 

variants revealed significant differences in allele frequencies between cases and controls 

(Table 20).  

 

VPS13D 

 

Table 20: Non-synonymous VPS13D variants identified by gene burden analyses.  

Controls: n = 1085. Cases: n =335 

 

For the next two genes, SLC44A5 and GLIPR1, there was a single non-

synonymous variant in each gene that is only present in several pathologically confirmed 

cases (16, 11, respectively) but absent in controls.  We pursued Sanger sequencing with 

both of these variants (highlighted in red below); however, neither were successfully 

validated.  

SLC44A5 

 

Table 21: Non-synonymous SLC44A5 variants identified by gene burden analyses.  

Controls: n = 1085. Cases: n =335. Text highlighted in red reflects variants with counts absent in controls 

but present in cases only. 
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GLIPR1 

 

Table 22: Non-synonymous GLIPR1 variants identified by gene burden analyses.  

Controls: n = 1085. Cases: n =335. Text highlighted in red reflects variants with counts absent in controls 

but present in cases only.  

 

While the non-synonymous variant highlighted below in CASP8AP2 is present in 

controls, the doubled allele frequency in cases (notably from separate geographic cohorts 

(French, UK, USA)), despite 1:3.25 size ratio of total case to control cohort, suggests a 

possible MSA risk allele. Furthermore, the rarity of this allele (MAF=.0012 on the Exac 

database) provides further support as a plausible MSA risk variant.  

CASP8AP2

 

Table 23: Non-synonymous CASP8AP2 variants identified by gene burden analyses.  

Controls: n = 1085. Cases: n =335. Text highlighted in red reflects variants with counts greater in cases 

than controls.  

 

Using Sanger sequencing, we were able to confirm this allele in all 5 of the 5 

individuals tested. Adequate DNA sample was unavailable for the 6th individual.  

3.3.5.3 Single Variant Results 

3.3.5.3.1 Overview of Results  

As RAREMETAL generates large quantities of data using several different tests 

and models, it was helpful to visually categorize this information. All single variant 

results were run through the “Variant Effect Predictor” tool on Ensembl (http://www. 
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ensembl.org). The consequences of are all data and coding data, respectively, are 

illustrated below. 

 

 

 
 

 

 

 

Figure 45: Ensembl Variant Effect Predictor Tool results of individual variant consequences. 

A. Consequences of all individual variants 

B. Consequence of coding variants only 

 
 

Among the coding variants, the largest proportion consisted of non-synonymous 

missense mutations. A Manhattan plot of the most significant single variant hits is shown 

below in Figure 46. This includes both coding and non-coding variants with no MAF cut-

off. 

 

  B 

A 
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Figure 46: Manhattan plot of top hits from single variant analyses in MSA exome cohort.  

This includes all variants (coding, non-coding) with no MAF cut-off. Unlike a burden analysis, a single 

variant analysis does not assume that variants are causal or that other variants within the same gene will 

exhibit the same direction and magnitude of association. Notably, some of the single variants with very 

significant p values, as demonstrated by –log10(pvalue) on the x-axis, are located in genes that have been 

suggested to harbor associations with non-monogenic forms of PD (i.e. VPS13D and EIF4G1, 

respectively).  

 

Using a p-value < 0.05 as a cut-off, a total of 28,771 significant variants were 

generated. As we were interested in coding variants, we filtered the list down to 11,184 

coding variants in 6,886 genes. All genes were run through functional annotation 

clustering in DAVID (https://david.ncifcrf.gov/), and results for genes associated with 

parkinsonism were extracted, yielding 72 genes, some of which harbor variants 

responsible for monogenic forms of PD (LRRK2, PARK2). As we are interested in 

variants that alter protein coding, we focused on non-synonymous variants. Among these 

72 genes there were 103 single variants (non-synonymous, stopgain, stoploss, splice site, 

codon loss/inframe deletion) with p-values < 0.05 (Figure 47, Table 24). Among all non-

synonymous single variants associated with PD, LRRK2 had the most significant p-value: 

2.47x10-6. 
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Figure 47: Filtering results of single variant burden analyses for MSA exome cohort 

Each circle reflects subsequent stages of filtering after applying the appropriate exclusion criteria. 

 

 

CHR POS REF ALT POOLED  

ALT_AF 

EFFECT 

SIZE 

EFFECT_SI

ZE 

_SD 

PVALUE Effect Gene 

12 40757328 G C 0.00316901 0.542968 0.115265 0.00000247 NS LRRK2 

4 9783915 C T 0.00739437 0.35579 0.0910518 0.0000932 NS DRD5 

8 26721808 A G 0.00140845 0.788407 0.206159 0.000131162 NS ADRA1A 

1 161180187 G A 0.0028169 0.542024 0.146842 0.000223193 NSS NDUFS2 

6 31918464 A G 0.00985915 0.250116 0.0735243 0.00066939 NS CFB 

2 207012392 T C 0.0056338 0.351534 0.103818 0.000709007 NSS NDUFS1 

3 49394834 G A 0.319366 -0.0552046 0.0165917 0.000877113 NS GPX1 

11 83673931 G A 0.00105634 0.785639 0.238374 0.000981339 NS DLG2 

15 89873481 A C 0.00105634 0.778453 0.242174 0.00130702 NS POLG 

10 135351264 G A 0.00176056 0.583736 0.185317 0.00163306 NS CYP2E1 

3 133494354 C T 0.0926056 -0.0768987 0.0267417 0.00403246 NS TF 

12 117725949 C T 0.000704225 0.786227 0.291613 0.00701491 NS NOS1 

28,771 significant 
single variants 

(p<0.05)

11,184 coding 
variants in 6,886 

genes

72 in genes 
associated with 
parkinsonism

103 signficant 
protein altering 

variants
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3 49848470 C T 0.000704722 0.790035 0.293143 0.00703775 NS UBA7 

2 25384092 T C 0.00140845 0.549644 0.204416 0.00716982 NS POMC 

2 240960719 C T 0.000704225 0.783499 0.293069 0.00750803 NS NDUFA10 

4 9783969 T C 0.000704225 0.783499 0.293069 0.00750803 NS DRD5 

4 68424646 G A 0.000704722 0.784214 0.293367 0.00751432 NS STAP1 

2 219678877 C T 0.0264085 -0.128627 0.0483048 0.00774912 NS CYP27A1 

8 31498066 G A 0.000704722 0.780301 0.295186 0.0082073 NS NRG1 

16 72108188 C G 0.000704225 0.778972 0.295185 0.00831693 NS HPR 

16 72108192 T G 0.000704225 0.778972 0.295185 0.00831693 NS HPR 

19 39384491 G C 0.000704225 0.778972 0.295185 0.00831693 NS SIRT2 

3 48638440 C T 0.000704225 0.776659 0.296257 0.00875265 NS UQCRC1 

3 49850571 C T 0.000704225 0.776659 0.296257 0.00875265 NS UBA7 

6 75953484 G C 0.000704225 0.776659 0.296257 0.00875265 NS COX7A2 

3 49846412 A C 0.00140845 0.534892 0.204591 0.00893735 NS UBA7 

7 100488638 G T 0.00211715 0.446006 0.172687 0.00980183 NS ACHE 

4 9784658 C A 0.00140845 0.532013 0.208248 0.0106277 SG DRD5 

12 112221070 G C 0.00140845 0.525689 0.206262 0.0108144 NS ALDH2 

10 88719758 T C 0.00140845 0.525839 0.206568 0.0109089 NS SNCG 

2 233655834 T A 0.00140845 0.524278 0.206533 0.011134 NS GIGYF2 

6 170871037 GCA

A 

G 0.25689 0.0432992 0.0172904 0.0122716 CL TBP 

12 9243017 G A 0.0257223 0.119384 0.047943 0.0127699 NS A2M 

10 88722398 A T 0.240493 0.0448042 0.0181079 0.0133502 NS SNCG 

1 196712596 A T 0.0179577 -0.141341 0.058044 0.0148893 NS CFH 

8 27358505 A G 0.102817 -0.0619026 0.0255627 0.0154525 NS EPHX2 

14 55310492 G A 0.197248 -0.0457533 0.0195964 0.0195547 NSS GCH1 

12 40707778 G A 0.00599436 -0.222286 0.10102 0.0277772 NS LRRK2 

6 31778077 T G 0.0302817 0.0987488 0.0455407 0.0301312 NS HSPA1L 

16 2134221 C T 0.00634249 0.189988 0.0886652 0.0321322 NSS TSC2 

19 6702598 A G 0.248239 -0.0378569 0.0177075 0.0325243 NSS C3 

3 49847804 C T 0.00457746 0.247008 0.115749 0.0328424 NS UBA7 

6 161807855 C G 0.16338 0.0433567 0.0208017 0.0371342 NS PARK2 

14 64700045 T C 0.031338 0.0934462 0.0452254 0.0388065 NSS ESR2 

1 218610682 C A 0.00176429 0.379943 0.184587 0.0395582 NSS TGFB2 
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15 101565029 G A 0.00528169 -0.219614 0.107036 0.0401912 NS LRRK1 

21 35281421 T C 0.105986 -0.0511246 0.025055 0.0413014 NS ATP5O 

7 24324879 T C 0.0376761 -0.0822546 0.040744 0.0435068 NS NPY 

6 162206909 G A 0.00176056 0.379482 0.188789 0.0444215 NS PARK2 

5 149456964 T A 0.00105634 0.47195 0.234982 0.0445949 NS CSF1R 

17 31618865 A C 0.000352361 0.802158 0.403377 0.0467449 NS ACCN1 

1 226026406 A G 0.186268 -0.039587 0.0199109 0.0467889 NS EPHX1 

1 16134056 A T 0.000352113 0.799286 0.403375 0.047536 NS UQCRHL 

1 42048868 G A 0.000352113 0.799286 0.403375 0.047536 NS HIVEP3 

1 54610305 A C 0.000352113 0.799286 0.403375 0.047536 NS CDCP2 

1 196709872 C A 0.000352113 0.799286 0.403375 0.047536 NS CFH 

2 25384116 G A 0.000352113 0.799286 0.403375 0.047536 NS  POMC 

2 25384219 C G 0.000352113 0.799286 0.403375 0.047536 NS POMC 

2 207011682 C T 0.000352113 0.799286 0.403375 0.047536 NS NDUFS1 

4 6304142 G A 0.000352113 0.799286 0.403375 0.047536 NS WFS1 

4 100057768 T G 0.000352113 0.799286 0.403375 0.047536 NS ADH4 

4 100201384 C T 0.000352113 0.799286 0.403375 0.047536 NS ADH1A 

4 100205629 G A 0.000352113 0.799286 0.403375 0.047536 NS ADH1A 

5 121739518 G C 0.000352113 0.799286 0.403375 0.047536 NS SNCAIP 

5 140012292 G A 0.000352113 0.799286 0.403375 0.047536 NS CD14 

5 149459791 G A 0.000352113 0.799286 0.403375 0.047536 NS CSF1R 

5 174868811 G A 0.000352113 0.799286 0.403375 0.047536 NS DRD1 

6 11190824 G T 0.000352113 0.799286 0.403375 0.047536 NS NEDD9 

6 75953486 A C 0.000352113 0.799286 0.403375 0.047536 NS COX7A2 

6 88854074 C T 0.000352113 0.799286 0.403375 0.047536 NS CNR1 

6 160106042 G A 0.000352113 0.799286 0.403375 0.047536 NS SOD2 

6 163735853 C A 0.000352113 0.799286 0.403375 0.047536 NSS PACRG 

7 98257841 C T 0.000352113 0.799286 0.403375 0.047536 NS NPTX2 

7 100490982 C T 0.000352113 0.799286 0.403375 0.047536 NS ACHE 

7 140402694 C T 0.000352113 0.799286 0.403375 0.047536 NS NDUFB2 

8 16850601 C T 0.000352113 0.799286 0.403375 0.047536 NS FGF20 

8 18258061 A C 0.000352113 0.799286 0.403375 0.047536 NS NAT2 

8 18258273 G A 0.000352113 0.799286 0.403375 0.047536 NS NAT2 

8 20022397 G C 0.000352113 0.799286 0.403375 0.047536 NS SLC18A1 
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8 32463147 A G 0.000352113 0.799286 0.403375 0.047536 NS NRG1 

8 32617779 T G 0.000352113 0.799286 0.403375 0.047536 NS NRG1 

8 42262388 A C 0.000352113 0.799286 0.403375 0.047536 NS VDAC3 

9 124906576 C T 0.000352113 0.799286 0.403375 0.047536 NS NDUFA8 

10 102289129 T C 0.000352113 0.799286 0.403375 0.047536 NSS NDUFB8 

10 102289200 G A 0.000352113 0.799286 0.403375 0.047536 NS NDUFB8 

11 2189347 C T 0.000352113 0.799286 0.403375 0.047536 NS TH 

11 67803768 A C 0.000352113 0.799286 0.403375 0.047536 NS NDUFS8 

12 4763550 C T 0.000352113 0.799286 0.403375 0.047536 NS NDUFA9 

12 9254254 C T 0.000352113 0.799286 0.403375 0.047536 NS A2M 

12 40713845 G C 0.000352113 0.799286 0.403375 0.047536 NS LRRK2 

12 99064865 G A 0.000352113 0.799286 0.403375 0.047536 ESS APAF1 

14 64749426 C T 0.000352113 0.799286 0.403375 0.047536 NS ESR2 

15 89867387 C T 0.000352113 0.799286 0.403375 0.047536 NS POLG 

16 2132510 C T 0.000352113 0.799286 0.403375 0.047536 NSS TSC2 

16 2134268 G A 0.000352113 0.799286 0.403375 0.047536 NS TSC2 

16 2134547 G A 0.000352113 0.799286 0.403375 0.047536 NS TSC2 

16 72108269 C T 0.000352113 0.799286 0.403375 0.047536 NS HPR 

16 72110713 C A 0.000352113 0.799286 0.403375 0.047536 SG HPR 

19 13397623 C T 0.000352113 0.799286 0.403375 0.047536 NS CACNA1A 

19 14677646 C T 0.000352113 0.799286 0.403375 0.047536 NS NDUFB7 

20 61981303 C T 0.000352113 0.799286 0.403375 0.047536 NS CHRNA4 

22 35783080 C T 0.000352113 0.799286 0.403375 0.047536 NS HMOX1 

11 2190899 C T 0.000352609 0.797836 0.40338 0.0479429 NS TH 

 

Table 24: A list of coding, protein-altering, highly significant single variants with p-values < 0.05 

Chromosomal location, reference and alternate alleles, effect size, p-value, effect type and corresponding 

gene are listed for each candidate variant. Abbreviations: NS = Non-synonymous. NSS = Normal splice 

site. SG = Stop gain. ESS = Essential splice site. CL = Codon loss.  
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3.3.5.3.2 Comparison with MSA GWAS results 

Upon analyzing the gene burden test results and identifying some very significant 

findings, we compared this with the MSA GWA study results to determine any 

overlapping loci.323 Our findings revealed that 7 loci identified by the nearest gene in the 

MSA GWA study data demonstrated significant single variant burdens in our exome 

cohort, two of which alter protein-coding, XDH and CDH4 (Table 25). A full list of the 

most significant loci from the MSA GWA study is listed in Appendix section 8.1.5  

 

 
 
Table 25: Single non-synonymous variants with p-values < 0.004 in top genes from MSA GWA study 

The MAF of the variant in XDH is unknown, while the MAF of the variant in CDH4, 57.20%, is quite 

common.  

 

 

3.3.5.3.3 Comparison with WES results 

After thoroughly reviewing the gene burden and single variant data, we searched 

for genes harboring single non-synonymous significant variants corresponding to those 

identified by the gene-based approach to WES analysis (3.3.4). While we did not identify 

any of the same variants confirmed by Sanger sequencing, we did find several non-

synonymous variants with p-values <0.05 in 4 of our candidate genes: CASP8AP2, 

RECQL4, RNF112, BCL2L13.  
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Table 26: Significant non-synonymous single variants in genes identified by WES filtering pipelines 

Among all 4 genes, the only significant gene that overlapped with our RAREMETAL analysis was 

CASP8AP2.  

 

3.4 Discussion 

According to the PRL hypothesis, a combination of variants, ranging in both 

graded risk and frequency, unify the genetic etiology of complex disease. While the 

technology to investigate this hypothesis and identify variants can be approached from 

several dimensions, the methodology must be tailored according to both the disease under 

investigation and any prior genetic knowledge. It therefore follows that investigation of 

an incredibly rare and understudied disease like MSA with no known genetic etiology 

exemplifies a very challenging task. Further complicating the situation is the significant 

rate of misdiagnosis, which can create extensive bias in the results. However, given the 

rareness of the disease, the ability to acquire a sufficient number of only pathologically 

confirmed samples while obtaining requisite statistical power to detect associations is a 

tremendous obstacle in itself.  

We undertook a series of experiments aimed to generate a list of genes as 

evidence based candidates for association with MSA. The intent of this work was to 

generate a list that could be published and that would allow others to attempt validation 

of these as genuine risk genes/variants. 

The identification of variants through WES MAF filtering represented the first 

practical step towards the dissection of MSA genetic architecture in the context of rare 
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variants. Using the maximum number of samples we could feasibly obtain for MSA, we 

performed extensive MSA WES and analyses using several different approaches. 

Notably, because of the inherent limitations of studying rare variability in this cohort, we 

designed this as a hypothesis generating study – where several analytical approaches 

were used to generate a list of candidate variants and genes that could be published so 

that others could independently replicate these. We feel that this approach is ultimately 

the most efficient method to understand the genetic architecture of disease. 

Following quality control analyses in the locally processed case/control cohort, 

we searched for any PD associated genes that had been identified in familial and sporadic 

studies, at this point of the analysis no mutations in PD-linked genes were identified. 

Next, we moved on to our first analytical approach by identifying shared rare 

variants among the MSA sporadic case cohort. While this is an ideal pipeline when 

analyzing families or relatives affected with disease, as one would expect the same 

mutation to be derived from a common ancestor, this is not always the case for sporadic 

cohort analyses. Further, as do not know the pattern of inheritance, we included all 

heterozygous, homozygous and compound heterozygous alleles in our candidate variant 

lists. 

As this was our first approach towards analysis, we decided it was most logical to 

apply harsh filters and generate a small candidate list, all of which could all be confirmed 

or rejected by Sanger sequencing. If we could not identify a variant, we could expand this 

list and modify our filters to be more inclusive. This seemed more rational than initially 

using lenient filters, which would yield an impractically large list of candidate variants 

that would make analysis even more complicated.  
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 Among all of our candidate variants, several appeared promising regarding 

function (i.e. DNAJC11 is also a member of the gene family including DNAJC6, which 

harbors a homozygous variant known to cause autosomal recessive forms of atypical 

PD). Likewise, a novel variant identified by the VCF in VCP was quite interesting, as 

variants in VCP are known to cause familial forms of ALS. As our criteria required at 

least 2.5% of samples in the MSA cohort to carry the variant, which was approximately 9 

or more individuals, we tested at least 5 different MSA individuals to determine the 

authenticity of each candidate variant. If any pathologically confirmed samples were 

called as heterozygous for the variant, they were prioritized and tested first. Despite 

extensive primer design and sanger sequencing, we failed to confirm these variants. 

Before moving onto a more liberal filtering approach, we acknowledged that 

many of our previous candidates were indels or frameshift mutations, and that there is a 

well documented and very high false positive rate with this form of variation called by 

NGS. It was important to acknowledge the limitations of WES, which has a tendency to 

misalign and incorrectly call variants longer than SNVs. Cognizant of this sequencing 

bias, we decided to focus on novel SNVs in the form of non-synonymous SNPs, stop 

gain, and stop loss variants, as we believed the probability of SNV validity was 

considerably higher.  

 Using our gene based filtering approach, we not only incorporated less stringent 

filters but also defined more lenient criteria for candidacy inclusion, whereby at least 1% 

of all MSA cohort individuals must share any novel variant in the same gene. While >1% 

of the cohort (at least 4 individuals) is small indeed, our focus on solely analyzing novel 

SNVs gave us confidence in this approach.  
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After significantly distilling our list, we pursued Sanger sequencing of all variants 

with sufficient DNA, confirming 75% (27) of the tested 36 variants. As we were 

completely unbiased regarding gene function (if known) and expression in the brain, we 

eliminated variants that confirmed but were predicted as benign polymorphisms from our 

candidate list. However, as some variants did not confirm in a single gene but other 

variants in that gene could not be tested due to insufficient sample DNA, we kept those 

genes in our candidate list for upcoming burden analyses. 

 The next analysis centered on using using the RAREMETAL R-package to 

investigate gene burden and individual variant analyses. To execute this work we used a 

novel workflow developed by LNG within googleCloud. Cloud based analysis is not only 

advantageous regarding the speed of analysis, but the alignment and sensitivity of variant 

detection are remarkably improved from local data processing. Notably we believed that 

the ability to align and call variants in exome data from cases and controls of different 

provenance in parallel was likely to improve the sensitivity of variant detection and 

reduce errors due to batch effects. Notably, we identified a large number of variants that 

were not apparent in our previous analyses on this data set, including several highly 

relevant to neurodegenerative disease. A highly significant gene burden signal at LRRK2 

was unexpected based on the WES locally processed and filtered results. Likewise, 

several other genes that were not previously identified required further scrutiny by 

ascertaining all non-synonymous variants in genes with strong neuronal expression. 

Based on our “in-depth gene analysis,” several non-synonymous variants appeared to 

exist exclusively in cases or were present in a disproportionally higher percentage of 

cases than controls. Sanger sequencing of variants in SLC44A5 and GLIPR1 failed to 
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confirm with sanger sequencing, while the variant rs150022229 in CASP8AP2 was 

validated in all 5 MSA samples tested from different cohorts (French, UK, USA). While 

we can only state that 25% (1 of 4) of our Sanger sequenced variants from genes derived 

exclusively from the Googlegenome pipeline were validated, we acknowledge several 

caveats to this statement: first, our selection bias of variants to pursue, and second, that 

n=4 is not indicative of authenticity among the entire pipeline derived results. As we 

must interpret these preliminary results with caution and recognize inconsistencies in 

Sanger sequencing validation of results, the next most practical step is to perform a 

combined validation replication set. As opposed to individually testing each significant 

and functionally relevant variant, we should seek to combine both validation and 

replication by using an entirely new MSA cohort. While we recognize that sample 

acquisition is a significant obstacle, even a small cohort will shed light on authentic 

associations, paving the groundwork for future genetics and functional work.  

Among all the results, perhaps the most interesting finding was the presence of 

LRRK2 p.G2385R in 10 MSA cases, two of which are homozygous. However, 

disappointingly we were unable to confirm this variant with Sanger sequencing. Although 

the genotypes identified by local and GoogleGenomics pipelines were 99% concordant 

(M. Nalls and R. Gibbs personal communication) there are rare differences. Some of 

these differences are artifactual variant calls that one pipeline may be more prone to call 

and these are often the basis of some of the more extreme association signals; this 

appears to be the case with p.G2385R and once again illustrates the need for 

validation/replication. 
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Based on the results discussed thus far, there are a few genes which should be 

prioritized in the combined validation replication set to unravel MSA genetic architecture 

(Table 27). 

 

Table 27: Most significant and functionally relevant genes identified in hypothesis generating dataset.  

Each gene harbored several significant variants but those with the lowest p-values are listed above.  

 

When comparing the results of samples using local alignment vs. GoogleGenome, 

one of the genes identified in the gene based filtering approach of local WES analysis 

harbored significant variants in the burden analyses. While none of these variants in 

CASP8AP2 had a p-value< 1x10-6, all were below the standard 0.05 cut-off. CASP8AP2, 

also known as FLASH, is known to play a key role in several cellular processes such as 

apoptosis regulation, mRNA processing and influencing gene expression via 

transcriptional regulation. Further, research has suggested that FLASH protein is a 

component of the death-inducing signaling complex that includes the Fas receptor, Fas-

binding adapter FADD, and caspase 8, while maintaining a regulatory role in Fas-

mediated apoptosis (http://www.genecards.org).  Recent work has also revealed a role in 

proteasome-dependent degradation.344 As apoptosis and ubiquitination are important 

processes that oligodendroglia undergo in MSA pathophysiology, the role of CASP8AP2 

as a plausible risk factor in MSA development is intriguing. Our case frequency (6/736) 

of 0.82% vs. our control frequency (3/2229) of 0.13% suggests that independent 

replication of MSA samples harboring a CASP8AP2 gene burden will be required to 
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confirm any association, but these preliminary results set the stage for the replication 

phase (Figure 33). 

In our single variant burden analyses, several significant variants were identified in 

PD associated genes like LRRK2 and PARK2. By running a functional annotation 

analysis on DAVID, there were many single variants harboring significance with a p-

value < 1x10-6, making ideal candidates for further investigation.  

Comparison of the results generated via Googlecloud and RAREMETAL with the 

top loci or genes from the MSA GWA study was informative, as two single non-

synonymous variants in genes identified by GWA data demonstrated significant single 

variant burdens. While the MAF of the allele in CDH4 is extremely common, this 

suggests a possible role in graded risk for MSA. As GWA studies are targeted toward the 

identification of common risk variants, the identification of CDH4 through this 

methodology seems plausible. The second gene, XDH, harbors a novel non-synonymous 

variant with a significant burden in the MSA WES dataset run through the 

Googlegenome pipeline. As this is a novel variant, we would anticipate a very low MAF, 

with possibly damaging effects. Resonating with our previous hypothesis generated 

results from burden analyses, the significant variants identified in CDH4 and XDH should 

be likewise prioritized in future independent replication cohort analyses. 

In addition to shared genes and/or variants between the Googlegenome single variant 

burden data and MSA GWA study results, there was substantial overlap in single variants 

within several genes identified through WES local alignment analyses. While CASP8AP2 

also demonstrated a significant gene burden, single variants in RECQL4, RNF112 and 

BCL2L13 were also statistically significant. RNF112, is an interesting candidate, as it is 
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primarily expressed in the brain and known as the “ring finger” protein, it plays a critical 

role in neuronal and glial cell differentiation.345 Further, while variants in RNF112 are 

known to cause Smith-Magenis syndrome, there is close association with some forms of 

SCAs and ataxias.345 While we acknowledge that our hypothesis generated results are 

preliminary, the functional relevance likewise makes some of these genes attractive 

candidates to pursue.  

While there was clear overlap in some of our candidate genes between local and 

GoogleCloud pipelines, the majority of genes identified by RAREMETAL analyses on 

GoogleGenome were new. Most notably were the multiple variants revealed in LRRK2, 

with p.G2385R being the most striking. However, this is an example of a false positive 

association, being driven by an artifact of the variant calling process, and illustrates the 

need for validation and replication. The ability to perform both alignment and processing 

of data locally and on GoogleGenome was extremely insightful towards our analytical 

interpretation of the results, as we were able to achieve a comprehensive outlook of all 

possible significant variations and associations. The difference in overlap sheds light on 

the variation in data quality and sensitivity between both pipelines. While this is not only 

advantageous by providing the greatest number of results to analyze for a substantial 

hypothesis generating dataset, it will also play a pivotal role in guiding data interpretation 

of future WES projects and the execution of WES association analyses.  

As there are inherent limitations to WES regarding capture rate and coverage, our 

ability to achieve high quality depth and coverage is a testament of these limitations using 

our local pipeline. Thus, as we were afforded the opportunity to incorporate this same 
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dataset on GoogleCloud, we can directly compare the differences and recognize the 

superiority of the latter regarding scope of detection.  

Specifically, RAREMETAL offers some very unique advantages that cannot be 

performed through local alignment. Fundamentally, this entails the reconstruction of gene 

–level statistics from single variant score statistics through the generation of several 

unique reports for each gene-level test. Further, RAREMETAL is able to generate single 

variant and gene burden information in visually aesthetic graphics including QQ and 

Manhattan plots.346 Moreover, the ability to create unique graphs based on desired MAF 

level is also a very effective tool for rare variant analysis in a hypothesis generating 

dataset. Finally, the several types of burden tests incorporated into the RAREMETAL 

analysis package, including the SKAT, MB, VT and CMC allow the user to determine 

which test is the most appropriate for a particular study; hence, as we were uncertain 

about the magnitude and direction of causality of variants within a single gene, we were 

able to generate results of non-burden (SKAT), weighted aggregation (MB), adaptive 

burden (VT), and combined burden (CMC) tests to assess which gene-level statistics 

attained substantial power, as reflected by p-values.  

While the advantages are numerous, perhaps the largest disadvantage to using 

RAREMETAL and Googlegenome was the miscalling of some variants with very 

significant p-values (i.e. LRRK2 p.G2385R). While miscalling is an inherent feature of 

WES, WGS and other state-of-the-art technologies, 3 of the 4 variants of interest that we 

attempted to validate were artifacts. While we cannot draw conclusions on such a small 

sample size under scrutiny, recognizing this limitation is important for future studies 

nonetheless.  That being said, performing the local analysis was a key first step, as we 
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generated a preliminary candidate gene list and even replicated some of these findings 

using the GoogleGenome pipeline. Thus, generation of results from both pipelines has 

allowed us to integrate disparate information into a more cohesive framework for future 

investigations.   

As our goal was to obtain a hypothesis generated dataset, we have made progress in 

the discovery phase by identifying several candidate genes and variants. Ultimately, the 

next steps involve the acquisition of an independent MSA cohort for a combined 

validation replication investigation. If particular variants can be successfully confirmed in 

a subsequent cohort, a resequencing approach covering these genes would be valuable 

towards the identification of rare variants and possible SVs. As the resequencing protocol 

is applicable over diverse genomic regions including both small and large exons, short 

and long contiguous genomic targets, genome targets within repeats and even non-coding 

DNA, the genetic architecture of these genes can be further dissected.  

 As a very rare disease, we recognize the limitations in sample collection and the 

ability to seek pathological confirmation of disease. However, we believe we have 

overcome these limitations to our greatest abilities through acquisition of several hundred 

samples and comprehensive WES analyses using both local and GoogleCloud processing 

pipelines. As we have generated several candidates in this discovery phase, we have 

planted the seeds for future investigation of the genetic architecture of MSA in the 

scientific community.  
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4 Exploring the genetic etiology of PD in the Greek village of 

Rapsani  

 

Statement of Contributions: Neurological examinations were administered by Dr. 

Georgia Xiromerisiou and Dr. Henry Houlden. Clinical history, pedigree information and 

examination results were obtained by Dr. Georgia Xiromerisiou. Samples were received 

at both UCL and the Laboratory of Neurogenetics, NIA, NIH. I performed exome 

sequencing and analysis on all samples. I manipulated, filtered and annotated all files and 

determined several candidate gene lists and analyzed the whole genome genotype and 

whole genome sequencing data. I supervised the assessment of candidate genes and the 

confirmation of segregating variants.  

 

4.1 Introduction 

In recent history, the ease of global migration has facilitated assimilation and 

interbreeding of genetically heterogeneous individuals. Despite this extensive global 

diaspora, a handful of populations have remained fairly isolated. Such populations are 

ideal to study genetically, as the ability to control for normal ethnic variation is much 

more precise and such a population structure may result in the over-representation of a 

particular trait and a reduction in genetic and allelic heterogeneity. We have been 

afforded the privilege to collaborate with a physician in Greece, Dr. Georgia 

Xiromerisiou, who has carefully studied several Rapsani village members (~1500 

individuals total) in the foothills of Mount Olympos, Greece (Figure 48). 
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Figure 48: Rapsani, Greece.  

The village of Rapsani, embodying the symbolic Hellenic spirit and freedom, 

represents a culturally rich population, garnering fame in ancient arts, literature and 

education. Represented by historic landmarks such as the church and watermills, the 

village originated almost a millennium ago from the Byzantine era and flourished in wine 

production and viticulture. Traditionally, the Rapsani villagers have passed down the oral 

tale explaining that the village was created upon unification of four smaller villages in the 
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10th century. Interestingly, the village achieved such extreme isolation due to the 

migratory restrictions during the Turkish reign in Greece from 1455-1821, as Turkish 

individuals were forbidden to inhabit this territory. The only interbreeding that occurred 

during this time is thought to be with other indigenous individuals, proximally located in 

central Greece, seeking refuge in order to escape Turkish control. As historical records 

have not mentioned the occurrence of any natural disasters or other catastrophic events 

that would radically alter the genetic pool, the Rapsani village population has been 

considered to be stable since approximately 300 BC (personal communication G. 

Xiromerisiou). 

As any population isolated for sustained periods of time, the gene pool becomes 

extremely homogenous and the prevalence of individual mutations may be significantly 

higher than any other population (if it even exists elsewhere). Notably, the prevalence of 

PD among industrialized nations is approximately 0.3% among individuals of all ages, 

rising to 1% among those over 60 years of age and up to 4% among individuals over 80 

years of age.63 Among the 1500 registered members of the Rapsani village and 600 

permanent residents, the estimated prevalence of PD in the general population is between 

1-2%; however, as this value has not been reported in the literature, and is rather based 

upon communication with collaborators, we must interpret this with caution. Cognizant 

that this estimate is higher than the global prevalence, similar to the highly inbreed 

Amish community with an estimated prevalence of nearly 1%, this suggests a possible 

genetic etiology of PD among the Rapsani village community (Northwest Parkinson's 

Foundation 2013, personal communication G. Xiromerisiou). After careful inspection, 

the pedigrees suggest that PD within Rapsani appears to be of a familial form, with 
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several nuclear families representing the majority of the burden of disease. With the help 

of Dr. Georgia Xiromerisiou, we have been able to obtain genetic samples from a few 

families within the village to embark on a comprehensive genetic analysis. In an effort to 

identify the genetic lesion(s) underlying PD within Rapsani village members, we have 

pursued whole genome genotyping, WES and WGS followed by extensive data analyses.  

4.2 Materials and methods 

4.2.1 Subjects 

This study focused on 5 families from the Rapsani village. The first 3 (Rapsani I-

III) have multiple family members affected with PD in a single pedigree. The remaining 

2 families (Rapsani IV-V) are small families with 2 affected individuals (with gDNA 

from one member of each family). Recent consanguinity was not initially reported in any 

of these families. To further assist our analyses, we were able to obtain gDNA samples 

from several unaffected family members. One caveat, however, is that many of these 

individuals are relatively young and may develop PD later in life. Keeping this in mind, 

the following families were investigated (Figure 49, Figure 50, Figure 51). 
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Figure 49: Pedigree of Rapsani families I and III.  

‘_/_’ denotes age of ‘onset/current age’ (if known). All members shaded in black are affected with PD and 

those in white are unaffected. ‘R_F_ ’ represent sample identifications. All IDs in red text are affected 

individuals whose gDNA we were able to obtain. ‘UA_DNA’ in blue text are unaffected individuals whose 

gDNA we were able to obtain. ‘UA_DNA of son’ refers to the son of R1F6 who is not located on the 

pedigree, as we were unable to obtain more information about this nuclear family. Those with a diagonal 

slash are deceased.  
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Figure 50: Pedigree of Rapsani family II.  

 

‘_/_’ denotes age of ‘onset/current age’ (if known). All members shaded in red in the top left quadrant are 

affected with PD and those with a white top left quadrant are unaffected.  Other colors denote co-maladies. 

Those with green in the bottom right quadrant reflect individuals with dementia. Individuals with blue in 

the top right quadrant reflect those with motor neuron disease (MND). ‘R_F_ ’ represent sample 

identifications. All IDs in red text are affected individuals whose gDNA we were able to obtain. 

‘UA_DNA’ in blue text are unaffected individuals whose gDNA we were able to obtain. Those with a 

diagonal slash are deceased.  
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Figure 51: Pedigrees of Rapsani families IV and V 

‘_/_’ denotes age of ‘onset/current age’ (if known). All members shaded in black are affected with PD and 

those in white are unaffected. All IDs in red text are affected individuals whose gDNA we were able to 

obtain. Those with a diagonal slash are deceased.  

 

For the majority of affected individuals, a thorough clinical history was obtained 

by neurologists, Dr. Georgia Xiromerisiou and Dr. Henry Houlden. This involved the 

administration of several standard neurological tests with the results shown below in 

Table 28. 

 

Table 28: Clinical Phenotypes of Rapsani families I-III.  

*Sustained Response to Levodopa: R1F15 experienced a sustained response to levodopa for several years 

but recently experiences wearing off periods. R1F9 has impulse control disorder and has had to discontinue 

using any other dopaminergic agonists despite a very positive response.  

**Autonomic dysfunction includes severe constipation and urinary disturbances.   

Clinical info could not be obtained for individuals from Rapsani families IV (RIVF1) and V (RCON8). 
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4.2.2 Genotyping 

All samples were genotyped according to the manufacturer’s instructions on the 

OmniExp-12,v1.0 DNA Analysis BeadChip (Illumina Inc., San Diego, CA). The protocol 

workflow is illustrated in Figure 52. 

 

 

Figure 52: Illumina Infinium Genotyping Workflow. 

Core steps for sample processing include: MSA3 generation, incubation, fragmentation, precipitation and 

resuspension. This is followed by beadchip hybridization, washing, Xstaining and imaging.  

Reproduced by (http://support.illumina.com/array/array_kits/humanomniexpress-12-beadchip-

kit/documentation.html). 

 

Genotyping requires 400 ng of gDNA per sample in a volume of 8 ul. First, each 

sample is denatured in 0.1N NaOH and amplified at 37°C for 20-24 hours. Next, the 

http://support.illumina.com/array/array_kits/humanomniexpress-12-beadchip-kit/documentation.html
http://support.illumina.com/array/array_kits/humanomniexpress-12-beadchip-kit/documentation.html
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denatured DNA is enzymatically sheared at 37 °C for 1 hour to create fragments of 

around 300bp. This is followed by precipitation using 2-propanolol and re-suspending in 

re-suspend amp1 solution (RA1) (Illumina, San Diego, CA, USA). Next, the DNA 

fragments are denatured at 95 °C for 20 minutes, dispensed upon the BeadChips using a 

robot, and hybridised for 16-20 hours at 48 °C.  Following incubation, the BeadChips are 

washed in order to remove redundant DNA fragments. This is followed by automated 

allele‐specific extension and staining reaction using a Tecan Freedom EVO robot 

(www.tecan.com, Männedorf, Switzerland). Next, a second round of washing using PB1 

solution (Illumina), vacuum-drying (1h) and finally imaging of the BeadChips using a 

two‐color confocal laser system in a BeadArray Reader (Illumina). A workflow of the 

overall genotyping process is demonstrated in Figure 53. 

 

 

Figure 53: Overall genotyping workflow 

A. Fragmentation of DNA. B. Hybridization of DNA fragments to Beadchip capture probes. C. 

Allele-specific staining using dNTPs and polymerase. D. Imaging of Beadchips using two‐color 

confocal laser system on the Tecan. Modified version reproduced from (Gunderson et al., 2005) 

and (www.tecan.com). 

 

 

 

http://www.tecan.com/
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Data resulting from array scanning is loaded into Genome studio (Illumina Inc, 

CA). According to default parameters, samples self-cluster for each SNP from the 

Beadchip and are then merged to form a cohort project file. Once self-clustering is 

complete, a final report is generated that is used to form .map and .ped files for input into 

PLINK. 

4.2.3 Quality control 

Stringent QC analyses are necessary to ensure removal of samples and SNPs that 

could bias results. QC and statistical analyses were performed using either Plink (Purcell, 

et. al., 2007), GERMLINE (http://www1.cs.columbia.edu/~gusev/germline/) and R 

(https://www.r-project.org/) in a Linux Ubuntu system. Quality control for each sample 

involved removal of individuals with the following: missing or misreported gender (--

missing gender), <95% call rate (--geno), SNPs with MAF <0.1, SNPs on the X-

chromosome with MAF <0.05, Hardy-Weinberg Equilibrium (HWE) (p < 10-5) standard 

deviations from the mean, and >10% heterozygosity rate. As a standard quality control 

check, we performed a multidimensional scaling (MDS) analysis with PLINK (using the 

--cluster --mds-plot 4 commands) based on the first four principal components to confirm 

uniform European ancestry. 

4.2.4 Identifying runs of homozygosity 

Using the .map, .ped and .fam files generated from the genotyping final reports, 

we had the ability to detect long homozygous segments in the data. This required a series 

of command line instructions, including making a binary bed file (--make-bed), which 

comprises all the alleles for subjects at every SNP site genotyped. A plink.hom file can 

be generated (using the --homozyg) command to create a table of all long homozygous 
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segments in each individual, with the corresponding genomic address and SNP ID. Next, 

a plink.hom.overlap file was generated (using the --homozyg--group command) to obtain 

regions of overlapping and potentially matching segments. This provides information 

about the number of segments in the cohort that match one another and the allelic match 

grouping of each segment, which can be compared with phenotypic status. Finally, to 

obtain all of the individual genotypes of overlapping segments, the --verbose command is 

used, generating an expanded version of plink.hom.overlap file. 

In addition we performed homozygosity analysis outside of the Plink framework 

using homozygosity mapper 

(http://homozygositymapper.org/HomozygosityMapper/index.html). The input 

information can exist in VCF format, based on WES or WGS data, or as a genotyping 

final report. By assigning an affected or unaffected (control) status to each sample, the 

corresponding genotype information may be incorporated into a Manhattan plot, allowing 

comparison of regions of homozygosity along each chromosome. Once the data is 

uploaded, projects can be re-analyzed by the addition or subtraction of certain 

individuals. With the large quantities of data generated by the former three 

methodologies, we were able to assess homozygosity based on the following: common 

variants (obtained by genotyping), rare coding variants in the form of SNPs and short 

indels (obtained by WES), and CNVs and SVs for seven affected samples (obtained by 

WGS). 

4.2.5  Identifying segments identical by descent 

In order to detect shared segments among individuals of common ancestry, we 

used the Identity by Descent (IBD) segmental sharing option on Plink. Using familial 
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samples, this involves a series of steps: first, a plink.genome file is created (using the --

genome command) to ensure a homogenous sample set. Next, the SNP set must be 

pruned in order to remove SNPs in LD, as the segmental sharing analysis requires using 

SNPs in linkage equilibrium. This will create a plink.prune.in file, which can then be 

transformed into .fam and .bim files (using the --make bed command). Once these files 

are generated, shared segments are determined through the --segment command and the 

desired length or number of SNPs included can be specified by additional commands. 

Using GERMLINE, we were able to generate this information by uploading the .ped and 

.map files of the Greek PD Rapsani Cohort. If one can identify long shared segments 

between distantly related affected individuals (i.e. from different Rapsani families), this 

may reflect IBD due to a common ancestry (i.e. founder mutation), as opposed to Identity 

by State (IBS). Hence, by identifying regions that are truly IBD among distantly related 

affected individuals, these regions are likely to harbor disease-associated etiology.  

4.2.6 Whole exome sequencing 

Whole exome sequencing was performed on all 23 samples obtained, including 16 

affected and 7 unaffected individuals. The Illumina Nextera protocol was used which 

requires 50ng of gDNA per sample. The step-by-step details are explained in section 

3.2.4. The entire wet-lab procedure including DNA library preparation and enrichment, 

clustering on the C-bot, and parallel sequencing by synthesis on the Illumina Hi Seq 2000 

is the same. Regarding raw data analysis, the first several steps are also identical, 

including: mapping, alignment and duplicate removal, followed by raw variant callings 

and file conversions, incorporation of reference databases, assignment of quality (Phredd) 

scores to all variant calls, and generation of group VCFs (gVCFs).  
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The next steps involved downstream analysis and filtering of the gVCF. As this is 

a familial segregation analysis (as opposed to an association analysis), we are looking for 

shared variants between individuals. Thus, a gene-based candidate approach would not be 

a practical since our primary hypothesis was that disease is driven by a single shared 

variant among all affected individuals in the same gene. In order to identify such a 

variant, which would be rare a filtering approach was employed. A variant filtering 

pipeline for the Greek PD Rapsani village members is illustrated below (Figure 54). As a 

first step, we wished to exclude causal mutations in known PD-linked genes.  Once this 

was shown to be negative, variants were filtered based on retaining variants with a 

frequency of <1%; filtering was performed against 1000 genomes, dbSNP and ESP6500 

databases. Both heterozygous and homozygous variants were then prioritized based on 

segregation within all affected individuals in Rapsani and within individual nuclear 

families (Figure 29). 
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Figure 54: Whole exome sequencing variant filtering pipeline for Greek Rapsani PD cohort  

After looking for mutations in known PD associated genes, we used population database filtering followed 

by either prediction database filtering or MAF exclusion criteria.   
 

4.2.7 Whole genome sequencing 

Given the limitations of exome sequencing, including capture efficiency among 

others, we decided to pursue WGS for a more comprehensive analysis. In the interests of 

efficiency, we outsourced WGS to the biotechnology company, Macrogen 

(https://www.macrogenusa.com/), using the Illumina TruSeq DNA PCR-free library 

preparation protocol. Seven samples were sent to Macrogen. This consisted of seven 
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cases only: 115,139
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known PD associated 

genes: 9 PD associated 
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in 4 genes: None disease 

causal (HGMD)
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Shared among all affected 
individuals: 26 variants
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MAF <.1%: 200 variants 
remaining,  shared by at 

least 3/2 affected 
individuals in RI,II/RIII: 

51 variants remaining for 
individual family analyses

R1 Family individual 
analysis

R2 Family individual 
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https://www.macrogenusa.com/
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affected individuals among Rapsani families I and II. From Rapsani family I, this 

included: R1F3, R1F6, R1F9 and R1F15. From the Rapsani II family, this included: 

R2F3, R2F4 and R2F7.  

After each sample passed quality control filters and gender checks, the results 

were obtained in the form of fastq, BAM and individual VCFs for each sample. As WGS 

has the ability to capture long structural variants and CNVs, we obtained information 

according to the following workflow used by Macrogen (Figure 55).  

  

Figure 55:  Macrogen whole genome sequencing analytical workflow 

WGS analysis uses analogous raw variant calling and alignment methods to WES but also requires 

additional programs to analyze SVs and CNVs using Manta and Control-FREEC, respectively.  

 

After BAM files are created using Issac Aligner (Raczy et al 2013), specific 

programs are used to identify SNPs, Structural Variants (SV) and CNVs. SNPs and small 

indels, which are detectable in WES in coding regions only, are called using Issac Variant 

Caller (IVC) 
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(www.illumina.com/documents/products/whitepapers/whitepaper_isaac_workflow.pdf) 

during WGS data analysis. SVs are called using Manta, which does not require split reads 

or successful breakpoint assemblies to accurately report a variant 

(https://github.com/StructuralVariants/manta). CNVs are called using a program called 

Control-FREEC, which automatically calculates copy number and allelic content profiles 

and uses this information to predict genomic modifications including gains and loses 

(Boeva et al 2012). Lastly, SNPs are annotated using SnpEff using the following 

annotation pipeline steps: (1) Gene annotation based on hg19 coordinates (2) dbSNP138 

ID mapping  (3) dbSNP142 ID mapping  (4) 1000 Genomes phase I release v3 mapping 

(5) ESP6500 data mapping (http://snpeff.sourceforge.net/SnpEff.html)  

 As we are looking for a single shared variant among the cohort, we merged the 

individual VCFs into a gVCF and followed the variant filtering pipeline illustrated below 

(Figure 56).  

The WGS analyses were divided into several separate analyses according to the 

type of variant information obtained from sequencing. First, we pursued preliminary 

analyses of CNV data by determining all shared CNVs (both lost and gained) by all 7 

affected Rapsani PD members. Secondly, we looked at SVs that were not captured using 

WES due to their size. Likewise, we assessed shared SVs among all affected members 

and further distilled our candidate SV list using population and prediction filters. Thirdly, 

we performed an extensive SNP-Indel analysis using two distinct approaches; the former 

was significantly more stringent, requiring the use of harsh prediction filters that left us 

with very few exonic variant candidates. The latter approach, however, was much more 

http://www.illumina.com/documents/products/whitepapers/whitepaper_isaac_workflow.pdf
https://github.com/StructuralVariants/manta
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lenient, using mild prediction filters in an effort to maintain all possible candidate 

variants.   

 

Figure 56: Whole genome sequencing variant filtering pipeline for Greek Rapsani PD cohort 

WGS investigation was focused on three types of variant analyses: SVs, CNVs and SNP-Indel variants.  

 

4.2.8 C9ORF72 hexanucleotide repeat screening 

To confirm that all Greek Rapsani individuals did not carry the GC rich, intronic 

repeat region in C9ORF72, which is a cause of familial ALS and FTD and which would 

have been difficult to detect using WES, we performed the repeat-primed PCR protocol. 
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This entails a PCR master mix with several reagents and a separate Repeat-Primer master 

mix listed below in Table 29 and Table 30.  

 

 

Table 29: PCR master mix used for C9ORF72 screening in all Greek samples 

 

Table 30: Repeat primer mix used for C9ORF72 screening in all Greek samples 

 The Repeat Primer sequences and thermal cycler conditions for this protocol are 

listed in section 8.1.2.5-8.1.3. After PCR amplification samples (in a 96-well plate) are 

heated to 95°C for 3 minutes and then placed immediately on ice for 5 minutes. The 

samples are then run on the ABI 3730 (Applied Biosystems, CA, USA) and the resulting 

data is analyzed using the GeneMapper program (ThermoFisher scientific: Life 

Technologies, Frederick, MD, USA). PCR amplification requires 3 reagents: 2ul PCR 

product, 0.5ul Liz500 size standard (ABI 3730), and 7.5ul HiDi formamide (ABI 3730). 

A positive control (an individual with a C9ORF72 repeat expansion) was run to ensure 

successful execution of the protocol.  
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4.3 Results 

4.3.1 Ancestral background 

To confirm that all Rapsani Greek individuals are of homogenous European 

descent, we ran a MDS analysis (Figure 57). As all samples from this cohort cluster 

uniformly, we can confirm their European ancestral origins. 

 

Figure 57: Multidimensional Scaling of Greek Rapsani village members.  

All individuals cluster uniformly with those of European descent. Key is located in the bottom right hand 

corner. 
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In addition to multi-dimensional scaling, we also measured the inbreeding 

coefficients (f) of the Rapsani family members to determine the expected likelihood of 

genetic effects due to inbreeding using pedigree relationships.  

 

Table 31: Observed and expected rates of homozygosity and inbreeding coefficients of Rapsani 

villagers.  

The inbreeding coefficient (F) reflects the approximate percentage of homozygous alleles in an individual’s 

genome. The larger the F value, the more biologically related an individual’s parents are and the higher the 

probability of increased homozygosity. FID = Family ID. I = Individual ID. O(HOM) = Observed number 

of homozygotes. E(HOM) = Expected number of homozygotes. N(NM) = Number of non-missing 

genotypes.  

 

4.3.2 Genotyping 

The quality control results of the genotyping data are listed below in Table 32. 

With the exception of sample R1F6, all samples generated high quality data and passed 

standard quality control measures. 

 



 242 

 

Table 32: Quality control of Greek PD Rapsani cohort genotyping. 

Genotyping performed using the Illumina OmniExp-12,v1.0 DNA Analysis BeadChip. Highlighted in red 

R1F6 failed due to the very low call rate (63.8%), while all other individuals had call rates >99% 

 

After removing R1F6 from the genotyping cohort, we looked for any shared 

regions of homozygosity. By assigning respective case and control status to our uploaded 

genotypes, a Manhattan plot of increased regions of homozygosity was generated (Figure 

58). 

 

Figure 58: Greek Rapsani cohort genotyping data viewed in homozygosity mapper 

Chromosomes are depicted numerically on the x-axis and regions of homozygosity are illustrated by peaks 

along the y-axis, with taller peaks reflecting genomic areas of increased homozygosity.  
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Initially the single peak on chromosome 6 appeared promising, suggesting a 

shared region of homozygosity based on common variation. Further analysis of this 

region revealed a distinct peak located on chr6: 31588450 - 31846823 (Figure 59). 

 

 

Figure 59: Greek Rapsani cohort genotyping data viewed in homozygosity mapper.  

Zoomed-in view of distinct peak on chromosome 6. 

A thorough analysis of each peak, including all of the genes and intergenic 

regions, revealed the absence of any significant findings. First and foremost, there were 

no homozygous stretches which were present in cases but absent in controls (or vise 

versa). However, given that some of the controls are relatively young and may develop 

PD later in life, we relaxed the criteria in our analyses and investigated any homozygous 

stretches in these regions, present in all cases and allowing presence of the identical 

region in controls. An example of a run of homozygosity among all samples is 

demonstrated in the image below (Figure 60).   
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Figure 60:  An example of a region of homozygosity along chromosome 6 for all Rapsani individuals. 

The top row represents genotyped SNPs along chromosome 6. The side panel on the left-hand side 

represents all individuals genotyped, in parallel to each colored row. The first 16 rows represent all cases 

and the bottom 7 rows denote all unaffected individuals, with the white horizontal line separating 

case/control cohorts, respectively. Regions in red reflect purely homozygous regions, while those in blue 

represent heterozygous genotypes. Downward diagonal black slashes denote that an individual is 

homozygous for the minor allele.  

 

On chromosome 6, several regions of homozygosity were located within either 

intergenic regions or pseudo-genes and the remaining 25 resided within different domains 

of protein-coding genes. Notably, however, no other regions in the genome demonstrated 

runs of homozygosity. The complete list of 31 genes within this domain was obtained 

using the gene distiller function. Among the 25 genes demonstrating runs of 

homozygosity within protein-coding genes, 6 (highlighted in yellow) appeared to be in 

exonic regions (Table 33). 
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Table 33: Homozygosity mapper gene distiller output of Greek Rapsani cohort. 

Includes only protein-coding genes (25) on chromosome 6 that illustrated distinct runs of homozygozity 

within the chromosome 6 peak. Those highlighted represent regions of homozygosity within coding regions 

of their respective gene.  

 

This region of homozygosity lies on chromosome 6, across the MHC region, 

consequently several genes within this run of homozygosity are highly associated with 

immune functions, including the Major Histocompatibility complex (MHC) III and 

autoimmune disorders like Systemic lupus erythematosus (SLE). This region is known to 

show population specific selection and notably all sampled individuals, including all 

controls, were identically homozygous across this region; thus we felt that this region was 

unlikely to contain the disease-causing variant. However, we investigated this region 

carefully using the available sequence data. 

After scrutinizing all exons of the genes within the homozygous chromosome 6 

region in all individuals, all variants of initial interest appeared to be artifacts and/or to be 

present in a series of control samples run as part of a separate project, thus no variant that 

fit our criteria for likely disease causing was identified (Figure 61). 



 246 

 

Figure 61: Example of artifact of novel SLC44A4 variant based on BAMs 

From the image on the left, all affected individuals who were both whole exome and whole genome 

sequenced appear to be homozygous or heterozygous for a novel variant in SLC44A4. However, as 

UMARY laboratory samples were also used as negative controls, this “call” is clearly an artifact. The 

image on the right reveals the excellent paired end read coverage and high confidence calls in R1F3 based 

on the Phredd score; nonetheless, this represents a technical artifact inherent to both WES and WGS 

technologies.  

 

In addition to analyzing data using homozygosity mapper we also used PLINK to run two 

similar tests: first, aimed at detecting runs of homozygosity and second looking for 

shared segments, irrespective of whether the segments were in homozygous regions or 

not. While the former yields information analogous to that obtained above using 

homozygosity mapper, the latter can identify shared segments of homozygous or 

heterozygous genotypes based on common genotypic variation. By looking at each 

chromosome individually with phased genotypes at -1Mb windows, we were unable to 

identify any shared regions between all individuals (Table 34). 
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Table 34: Results of “Shared Segment analysis” using Plink and GERMLINE.  

Kgp = non-polymorphic CNV markers. * 1 if Individual 1 is homozygous in match; 0 otherwise. **1 if 

Individual 2 is homozygous in match; 0 otherwise 
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4.3.3 Whole exome sequencing  

4.3.3.1 Quality control filtering 

First the quality of exome sequencing data was assessed by looking at key 

parameters, including depth, coverage and PCR duplicate rates. The samples that did not 

meet the following criteria were eliminated: >90% 10X depth, >70% 30X depth and a 

PCR duplicate rate <14% (Figure 62). 

 

Figure 62: Whole exome sequencing 10X and 30X depth of Greek Rapsani village samples. 

All data was obtained using the Illumina Nextera Protocol. Each Rapsani individual is represented by a 

single blue and a single red line on the x-axis. Each line corresponds to the 10x (blue) and 30x (red) depths, 

with coverage values on the y-axis ranging from 0-1, with 1 representing 100% coverage.  

 

Figure 63: Whole exome sequencing: mean depth per individual in 22 Greek Rapsani PD samples 

Mean depth was approximately 33X per individual.  
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4.3.3.2 Examining known PD genes 

According to the variant filtering pipeline in the methods section (Figure 54), the 

first step in data analysis after quality control measures was to identify any variants in 

genes associated with PD. Among all 23 individuals, a total of 110 variants were 

identified in 43 PD associated genes. After a thorough search on Human Molecular 

Genomic Database (HMGD), 9 of these variants (in 4 genes) were considered PD 

associated polymorphisms but none were considered disease causal and thus we were 

unable to explain the disease in this population (Table 35). Notably, this method would 

be insensitive to structural mutations such as those found at the SNCA, PARK2, PINK1, 

or DJ1 loci, however these regions did not show up in the homozygosity or shared 

segment analyses and thus are an unlikely cause of disease in this population. 

 

 

Table 35: All PD-associated polymorphisms identified in 23 members of Greek Rapsani cohort. 

All PD-associated polymorphisms identified in 23 members of Greek Rapsani cohort. HOM = 

homozygous. HET= heterozygous. CNTRLs= controls. Numbers refer to how many individuals carry each 

variant. 

 

4.3.3.3 Population database filtering 

After determining that all known PD mutations were absent among the entire 

Greek Rapsani cohort, we proceeded with variant filtering according to the pipeline 

discussed in the methods section (Figure 54). This entailed extensive population database 
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filtering based on those listed in Figure 29 (1000 genomes, dbsnp, ESP6500). With 4184 

variants remaining, we used two distinct analytic approaches, the former being more 

stringent and the latter significantly more lenient. 

 

4.3.3.3.1 Stringent Filtering Pipeline: 

Subsequent to population database filtering, we performed stringent prediction 

site database filtering, resulting in 414 variants. Among these 414 variants, 26 appeared 

to be shared by all affected individuals according to the gVCF. After visualizing the 

BAMs for all 26 variants in each Greek Rapsani sample on IGV, we excluded 23 variants 

as likely sequence and alignment artifacts and selected 3 variants that appeared promising 

in the following genes: CEP290, KMT2C and CTSF. The variants were located in genes 

exhibiting neuronal expression in the brain according to GeneCards 

(http://www.genecards.org/) and interacted with proteins related to PD or PD-associated 

mechanisms (i.e. autophagy) using STRING and KEGG. Sanger sequencing revealed that 

variants in CEP290 and KMT2C were artifacts and only 3 affected individuals (out of 16) 

were heterozygous for the variant in CTSF. As this filtering process may have been too 

harsh, perhaps removing plausible candidate genes, we moved towards a more lenient 

approach. 

 

4.3.3.3.2 Liberal Filtering Pipeline 

We started again with 4184 variants following population database filtering 

(Figure 54). Next, we filtered by MAF, keeping only variants with a MAF<1%. This 

resulted in 333 variants in total, with 24 homozygous variants and 309 heterozygous 

http://www.genecards.org/
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variants remaining. However, none of these 333 variants were shared by all affected 

individuals. Acknowledging that each family may carry a unique pathological variant, we 

pursued individual family analyses for the three larger Rapsani families (I-IIIFrom the 

333 variants in the previous step, all variants with a MAF >.1% were filtered out, 

resulting in a total of 200 candidate variants. Secondly, as Rapsani families I and II 

consist of 4 and 7 affected members, respectively, we removed all variants that were not 

shared by at least 3 affected members of each family. Since Rapsani family 3 only 

consists of 2 members, we required all variants to be shared by both members.  This 

resulted in 51 variants remaining for individual familial analyses. After visualizing all 51 

variants on IGV, 25 variants were selected for Sanger sequencing based upon BAM 

appearance and at least some neuronal expression in the brain. A list of these variants and 

their validation outcomes are listed below. 

 

 

Table 36: WES sanger sequencing results for individual Rapsani families  

Those highlighted in yellow were frozen as clean PCR plates and put on hold, as we decided that we would 

pursue whole genome sequencing and re-analyze the data.  
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The Sanger sequencing results revealed several artifacts but also confirmed 

multiple variants. While none of the 7 unaffected individuals carry any of these variants, 

not all affected individuals (even within a single family-aside from Rapsani III, which 

only has 2 members) possess validated variants. Thus, we questioned if the coding 

regions were inadequately covered, hindering our ability to identify a novel mutation. 

Further, we also entertained the possibility of SVs or CNVs as a cause of disease, 

resorting to WGS as a logical next step in analysis. 

4.3.4 Whole genome sequencing 

Given the high cost of WGS, we outsourced 7 of the 16 affected samples to 

Macrogen for WGS. This included those from the two larger pedigrees: 4 individuals 

from Rapsani I and 3 individuals from Rapsani II. 

4.3.4.1 Quality Control Filtering 

In line with exome data raw data processing, the depth and coverage were key 

parameters to assess sample quality control. As WGS target values are significantly 

higher than those for WES, the 10X coverage (>98.6) was excellent, while the 30X (>61) 

coverage was slightly lower than ideal, as we usually strive for >70 in WES.  However, 

the overall average depth of 30X was significantly greater than data obtained from WES, 

as expected (Figure 64). 
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Figure 64: Greek Rapsani PD whole genome sequencing quality control results.  

% Coverage reflects the percentage of bases in non-N reference regions with specific depth of coverage or 

greater.  

 

4.3.4.2 Homozygosity Mapper Analyses 

4.3.4.2.1 Structural variant homozygosity results 

Before starting our filtering process with the SV, CNV and SNP-indel VCFs, it 

was important to upload and run the results on homozygosity mapper to identify runs of 

homozygosity in regions not covered by exome or genotyping data. We first looked at the 

SV results, which represented an entirely new data set, as SVs are not covered in WES. 

The results are illustrated below in Figure 65, revealing peaks on chromosomes 1, 2, 14, 

and 21. 
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Figure 65: Greek Rapsani cohort WGS SV data viewed in homozygosity mapper 

Chromosomes are depicted numerically on the x-axis and regions of homozygosity are illustrated by peaks 

along the y-axis, with taller peaks reflecting genomic areas of increased  homozygosity.  

 

 Resonating with our previous analyses of genotyping data in homozygosity 

mapper, each peak was carefully analyzed to identify coding regions of protein-coding 

genes demonstrating runs of homozygosity among all affected members, as we did not 

obtain WGS data for any unaffected individuals. All novel or rare coding variants in runs 

of homozygosity were visualized on IGV; none of the variants, however, appeared real 

and thus we did not pursue validation. 

4.3.4.2.2 SNP indel homozygosity results 

We also performed a homozygosity mapping analysis on the SNP and Indel 

gVCF. While this data includes exome results obtained by WES, it also includes coding 

regions that were not adequately captured (if at all). In addition, we could also identify 

homozygous regions within introns and UTRs. While coding regions are our primary 
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focus, this additional data can be beneficial toward identifying regions of linkage. As 

demonstrated below in Figure 66, 4 chromosomal peaks were visualized on 

chromosomes: 2, 6, 10 and 18.  

 

 

Figure 66: Greek Rapsani cohort WGS SNP indel data viewed in homozygosity mapper 

Chromosomes are depicted numerically on the x-axis and regions of homozygosity are illustrated by peaks 

along the y-axis, with taller peaks reflecting genomic areas of increased  homozygosity. *Note: The peak 

on chromosome 6 is in a different location than the homozygosity mapping results using genotyping data.  

 

 

Each region was carefully evaluated for runs of homozygosity within coding 

regions of protein-coding genes; however, none of these regions could be verified by the 

WGS BAMs on IGV nor did any exhibit perfect segregation among cases alone.  

Furthermore, intronic and UTR regions were scrutinized for linkage and segregation, but 

also did not yield any findings. 

4.3.4.3 Whole genome sequencing variant filtering pipeline analysis 

As the WGS dataset is significantly larger than that obtained from WES, we 

defined specific strategies to analyze the following three data sets: CNVs, SVs and SNP-

Indel VCFs. 
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4.3.4.3.1 Copy number variant data analysis 

As illustrated in Figure 56, the first step of CNV analysis was to determine the 

total number of CNVs among 7 WGS samples, which comprised 854 loses and 1630 

gains. Logically the next step was to identify CNV losses and gains shared by all 7 

affected individuals. This reduced the list of variants to 44 CNV losses and 92 CNV 

gains. As this was still a substantial number to investigate, located within all different 

genomic regions, we looked towards the SV data to identify any chromosomal 

breakpoints.  

4.3.4.3.2 Structural variant data analysis 

Referring back to Figure 56, a total of 22,342 structural variants were obtained 

from WGS data among 7 affected Rapsani individuals. Among these, 650 variants were 

shared between all 7 samples: 96 heterozygous, 357 homozygous and 197 a mixture of 

both. Using strict filtering with population databases and prediction filters, 30 SVs 

remained. After scrutinizing BAMs of all 7 individuals, as well as UMARY controls on 

IGV, we pursued Sanger sequencing for 1 small SV in DACH1. This variant, however, 

failed to confirm.  

4.3.4.3.3 SNP Indel analysis 

Among the 7 affected individuals, we started with almost 8 million variants 

(Figure 56). Using population databases (Figure 29), we filtered out several million 

variants, yielding a total of 790,519 variants. Analogous to SNV analysis with WES 

data, we took two analytical approaches, the former being more stringent and the 

latter significantly more liberal.  
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4.3.4.3.3.1 SNP Indel stringent filtering approach 

As we first wanted to identify a rare mutation shared by all 7 individuals from 2 

Rapsani families, we filtered out all those not carried (in a heterozygous or homozygous 

state) by all samples. As we don’t know the pattern of inheritance, it was important to 

include both types of alleles in our analysis. This left us with 30,779 shared variants. 

Next, using very harsh prediction filters including CADD, we were left with only 91 

variants, 10 of which were located in protein-coding regions. Among these 10 variants, 3 

(1 located in SLAIN1, 2 in HYDIN1) appeared real in IGV, using several UMARY control 

WES BAMs as a standard of comparison. All 3 variants were followed up with sanger 

sequencing and determined to be artifacts. 

4.3.4.3.3.2 SNP-Indel liberal filtering approach 

Cognizant that we only had 10 remaining protein-coding candidates in the 

previous analysis, we utilized mild prediction filters from the 790,519 variants obtained 

subsequent to population database filtering. This entailed the inclusion of all coding 

variants with a MAF<1% (including novel), resulting in coding 2337 variants, 1709 of 

which were non-synonymous. Next, we determined how many of these were shared 

among all 7 affected individuals, in either a heterozygous or homozygous state. However, 

we once again determined that all 7 individuals did not share a single variant among the 

1709 non-synonymous variants, with a maximum only shared by 6 samples. While it was 

plausible that there was insufficient coverage for a sample in a particular region, we 

decided to investigate all non-synonymous variants present in at least 5 of the 7 

individuals. Yielding only 23 variants, all of which were carefully visualized on IGV 

using UMARY samples as negative controls, we followed-up with sanger sequencing on 
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those that appeared real and exhibited at least some neuronal expression in the brain 

(according to GeneCards). A table of the 4 variants pursued with their results is listed 

below in Table 37. While some confirmed in several individuals, none validated in all 7 

affected samples.  

 

Table 37: Sanger sequencing results of variants identified using a WGS liberal filtering approach 

Among the two variants that validated, neither reflects a worthwhile candidate to pursue in individual 

family analyses, given that only one sample out of 7 confirmed for each.  

 

 

 

4.3.5 C9ORF72 screening  

As at least one of the affected individuals in the Rapsani family cohort also 

presented with Motor Neuron disease (MND), we decided to screen for the intronic 

hexanucleotide repeat expansion in C9ORF72, which is a cause of familial ALS and 

FTD. An example of a positive and negative control is shown below in Figure 67.

 

Figure 67: Example of positive and negative control for C9ORF72 hexanucleotide repeat screening. 

Reproduced from (Renton et al 2011). The graphs depict capillary-based sequence traces of the repeat-

primed PCR in an affected and unaffected sample. Orange lines reflect the size markers, and the vertical 

axis denotes the fluorescence intensity. In the affected individual, there is a classic “saw tooth tail” pattern 

that extends beyond the 300 bp marker with a 6 bp periodicity. This pattern is typical for affected 

individuals carrying the GGGGCC repeat expansion.  
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 We analyzed our results in gene mapper with a positive control and all samples 

were confirmed to be negative. 

4.4 Discussion 

Our current understanding of the CDCV and MRV hypotheses suggests that they 

coexist on the spectrum of complex disease etiology, with different variants in the same 

gene manifesting increased disease risk or disease causality. This concept of graded risk 

is challenging to approach from an experimental point of view, as certain techniques are 

more suitable to the discovery of common variants (i.e. genotyping) while others are 

more appropriate for the identification of rare variants (i.e. WES, WGS). Previous studies 

assessing the heritability of PD have been fruitful in regards to our progress in identifying 

both rare and common PD variants. Notably, the heritable component of PD has been 

estimated to be around 30%.49 However, as we can only account for a small percentage of 

this through known PD risk associated variants, this suggests there are significantly more 

PD risk and causal variants that have yet to be identified. In 2014, Kara et. al assessed PD 

risk loci in several Greek populations by genotyping known risk alleles in both cases and 

controls.333 This data revealed that the PD risk genes in Northern European and American 

populations are likewise representative of several Greek populations; thus, it follows that 

the missing heritability underlying PD risk genes in these populations is pertinent to the 

Greek population as well. As only 1.27% of known risk loci were determined to account 

for disease among several Greek cohorts, this suggests that the genetic etiology 

underlying PD in Greek populations remains largely unknown.  

One of the critical issues when pursuing genetic analyses in heterogeneous 

populations is the inability to differentiate between normal inter-population variability 
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with true risk variants. Even within the country of Greece, which has been described as a 

crossroad between Europe, Africa and the Middle East, there is substantial genetic 

heterogeneity due to the ebb and flow of migratory populations for many thousands of 

years.334 Despite the vast genetic pool among individuals in Greece, a few regions have 

maintained a history of extreme isolation, rendering them significantly more genetically 

homogenous. Analogous to the long isolated Finnish populations, which has been 

instrumental in the identification of genes underlying ALS, the Greek Rapsani village, 

located in the foothills of Mount Olympus, where PD appears to cluster in a familial 

fashion, may hold the key to the identification of a novel genetic cause of disease. While 

these populations exist throughout the world, the ability to observe distinct phenotypes 

and obtain pedigrees from these populations is a very challenging task, requiring astute 

observations, record keeping skills, and tenacious drive to embark on a longitudinal 

study. As we have been fortunate to work with neurologist, Dr. Georgia Xiromerisiou, 

who has undertaken this impressive feat for the Rapsani village population, we have 

pursued comprehensive genetic analyses on many of these individuals.  

 While we were not able to obtain any parent and child sample duos, the ability to 

acquire several sets of siblings, first cousins, aunts and uncles was invaluable. As we had 

no information regarding risk and/or causal variants in any known genes, nor a clearly 

identified pattern of inheritance, we used several laboratory methodologies to test both 

CDCV and MRV hypotheses.  

 By generating extensive genotyping typing data in a family pedigree, the goal is 

to identify long regions of IBS that are shared among affected relatives. Using Plink we 

were able to compare observed and expected numbers of homozygosity and inbreeding 
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coefficients within each sample to confirm a lack of consanguinity among family 

members. By comparing the most distantly related affected individuals in the pedigree 

and identifying identical IBS regions, this likely suggests IBD due to common ancestry, 

which may ultimately explain disease etiology.1 Hence, by genotyping all individuals in 

several families, we aimed to identify long IBS regions among affected members in 

different Rapsani families, which would suggest both a locus and plausible cause of 

disease. However, our Plink and GERMLINE analyses to detect runs of homozygosity 

and shared haplotypes were unable to identify such a region. Plausibly, given the 

extended period of isolation of this population, an IBD mutation-containing region could 

be relatively small in size, broken by recombination over generations. Thus it is feasible 

that our minimal region of 1Mb may have been too large. However, because our 

hypothesis was that the underlying cause was a single genetic mutation we pursued 

methodologies that would allow us to detect rare and novel variants in the Rapsani Greek 

village.  

 Using high quality WES data generated in the laboratory, we first wanted to 

confirm the absence of PD causing variants in all affected individuals before proceeding 

with our filtering analysis. Once we confirmed this, we took different approaches to 

analyze the data in attempt to balance the possibility of filtering out critical variants (with 

harsh filtering) while obtaining a candidate gene list that was feasible to analyze (with 

liberal filtering).  Despite using both approaches, we were unable to identify a rare 

variant that was shared by all affected members and absent in unaffected members that 

could be confirmed by Sanger sequencing. While we did confirm some positive results, 

such as a rare variant in AGAP1 present in 4 affected individuals, and another in MYO1C 
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carried by 5 affected individuals, the fact that other affected samples did not carry these 

variants did not fit with our original hypothesis that disease in this isolate was likely to be 

caused by a single mutation.   

 In order to address the possibility that a rare and novel mutation was inadequately 

captured using WES, we pursued WGS. Despite obtaining very high depth and coverage 

of all 7 affected samples sequenced, our individual analyses of CNVs, SVs and SNP-

Indels were unremarkable. One caveat to this is that the CNV data has not been 

investigated at great lengths; however, given the extensive candidate list, investigation of 

each shared CNV loss or gain without knowledge of a specific chromosome or loci is 

impractical at this stage. Nonetheless, as we know that duplications and triplications in 

SNCA are a cause of PD, demonstrating a gene dosage effect, further investigation of the 

CNV results holds promise. Further, as the age of onset of PD is quite variable in 

different generations of the Rapsani families, a gene dosage effect is plausible. While the 

SV results were likewise unremarkable in coding regions, we cannot exclude the 

possibility of an intronic repeat such as C9ORF72, as a cause of disease. Similar to the 

graded effect of gene dosage, a pathological repeat may vary in length in affected 

individuals, adhering to the concept of anticipation. Likewise, this could explain the 

highly variable age of onset and phenotypic severity of disease. Finally, while the SNP-

Indel results revealed some possible candidate genes for individual family analyses, the 

extreme isolation of the village strongly suggests the presence of a single founder 

mutation.  

 As a population under isolation since 300 BC, we hypothesized that given the 

uncharacteristically high prevalence of PD among the Rapsani village, a very rare coding 



 263 

mutation is likely to explain disease in such a genetically homogenous population. From 

our extensive genotyping, WES and WGS analyses, we cannot rule out this possibility 

entirely, but it appears to be unlikely given our results that failed to identify disease 

segregating regions or mutations. We entertained the possibility of both heterozygous and 

homozygous modes of inheritance, and even accounted for a “pseudo-dominant” model 

of inheritance, which occurs when there are heterozygous and homozygous mating 

patterns. While both individuals may be affected, a homozygous individual may manifest 

disease significantly earlier in life or present with greater phenotypic severity. However, 

the coding data likewise did not reveal any variants that suggested this pattern of 

inheritance.  

In viewing the data and analysis performed thus far it is useful to speculate why 

no single disease causing mutation has been identified and what steps can be taken to 

further investigate the underlying cause of disease in this population.  

First, it is possible that the disease investigated here is either not of simple genetic 

origin or of any significant genetic origin. The former might suggest that disease is 

caused by a confluence of low risk variants in affected individuals. While this is a 

possibility, the strong familial nature of this disease would argue against this possibility, 

given the high degree of homogeneity in Rapsani, one might expect a large number of 

apparently sporadic PD cases if there were indeed a large number of low to moderate risk 

variants. It is, however, possible, that the disease noted here is driven by factors outside 

of genetics. While at face value the familiality of disease may argue against this it is 

possible that an environmental risk factor is enriched within certain families in Rapsani; 
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however, with the changing lifestyle associated with modernization of this area, this 

possibility remains difficult to assess prospectively.  

Another key consideration in our analysis is the concept of ascertainment bias; in 

the context of the Rapsani village, we have sampled a very small subset of the estimated 

~1500 population size. While our best source of PD prevalence was obtained via personal 

communication with Dr. Georgia Xiromerisiou, the absence of any literature validating 

these approximations is not trivial. For example, while we can only hypothesize at this 

point, it is possible that the Rapsani population subsides primarily on a Mediterranean 

diet, affording individuals longer lifespans as compared to other Caucasian individuals of 

European descent. Ultimately, an increased prevalence of PD in the Rapsani population 

simply may be attributed to their longevity, as age is the greatest risk factor for the 

development of PD. Hence, our presumption of the strong likelihood that this PD cluster 

is caused by a single gene may be premature, as it is plausible that Rapsani villagers are 

developing sporadic forms of PD given a risk factor of advanced age. Thus, while the 

demographic and epidemiological information obtained about the Rapsani village is 

confined to the limits of our collaboration, we must acknowledge that age-adjusted 

prevalence is necessary to address the issue of ascertainment bias. Moreover, the ability 

to acquire genetic samples of other villagers and determine the cryptic relatedness and 

inbreeding coefficients between each other would be instrumental towards deriving 

accurate Rapsani population allele frequency distributions, further minimizing additional 

sampling bias.347  

An additional possibility is that there is more than one cause of disease in this 

population, i.e. that some cases are a result of a single genetic mutation, and some are 
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sporadic in nature. Based on the segregation and sequencing data generated thus far we 

would posit that this is the most likely scenario. If this is true it represents a particular 

challenge to analysis and, absent an a priori hypothesis of the genetic and non-genetic 

cases, a large list of candidate variants. This is illustrated by the rather large number of 

variants identified when reducing the number of required mutation carriers to 6 of 7 or 5 

of 7 affected family members. A plausible approach to addressing this possibility is to 

screen the genes containing such mutations in additional cohorts of PD cases for which 

there exists extensive sequence data. This is certainly a credible approach that can be 

pursued as such data becomes available.  

As we have acquired such thorough clinical histories a plausible approach to 

variant identification centers on grouping affected individuals based on phenotype and 

looking for disease segregating mutations within each distinct group. As above this 

represents a significant problem by reducing power (and an inverse increase in the 

number of plausible variants). Also, it is worth noting that thus far, even within families 

with a single mutation (for e.g. LRRK2 pG2019S), significant phenotypic variability can 

be observed. 

While it is clear that there will be significant challenges in further analyzing the 

Rapsani PD cases, the added information garnered from identifying novel genetic causes 

of disease makes this a worthy endeavor and based on what we have seen in this village 

the prevalence of PD in the Rapsani village is unlikely to be explained by chance alone.   
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5 Conclusions and future directions 

The study of the genetic architecture underlying monogenic and complex disorders 

has been advanced through application of state-of-the-art genomic technologies. The 

identification of both common and rare variants in several neurodegenerative diseases has 

provided momentum to pursue additional studies and meta-analyses. By understanding 

the coexistence of CDCV and MRV hypotheses, which define the cornerstones of the 

PRL paradigm, our integrated approach to study genetics underlying complex disease 

etiology has been lucrative. This is not only in regard to the discovery of graded risk 

factors associated with disease, but additionally for the identification of genomic 

landscape that does not merit further investigation. Principally, this provides the scientific 

community with a guide of where to direct subsequent analyses, as a map would provide 

geographic and topographic information. Likewise, the results of negative experiments 

and those unable to withstand replication are critical to hinder further investment of time, 

effort, finances and other resources into fruitless endeavors; hence, we learn which 

geographic territories on the map to no longer explore.  

In my thesis, I aimed to use these approaches towards the study of genetics in two 

different neurological disorders. The underlying rationale of the specific genomic 

technologies applied and data analysis strategies were tailored to each study. This 

comprised several factors including: prevalence of disease, previously known genetic 

information about disease, relationship between affected samples (if any), among others. 

By integrating this information with respect to each project, I was able to accomplish my 

chief objectives.   

 



 267 

5.1.1 Chapter 2 overview 

In my second chapter, I focused on estimating the heritability of a rare and 

understudied disease, MSA. This was accomplished by using the previous MSA GWA 

study data obtained in 2011 including >900 samples in total. However, noting that 

pathological confirmation is required for a definitive diagnosis, some of these samples 

were only assessed in a clinical setting. Despite several GWA study hits with a p-value < 

1x10-6, none of these loci were deemed statistically significant at a genome-wide level. 

While unraveling the identity of genetic risk variants in MSA was not feasible using the 

current GWA results, prior investigations in PD and ALS suggested that these data can be 

effectively used to quantify heritability through polygenic additive inheritance 

analyses.49,329 Furthermore, as the ease of obtaining several thousands of MSA samples, 

likely needed to obtain requisite statistical power for a MSA GWA study, is extremely 

challenging, this represented a practical approach that would provide information on 

whether it would be important to use such samples for GWA. By providing a heritability 

estimate of an apparently sporadic disease, we hoped to glean insight on the following: 

first, to determine if MSA is indeed heritable by quantifying this amount. Secondly, if 

substantial heritability was estimated, pursuing further investigation of the particular loci 

harboring common variants that revealed association with disease. These variants, which 

we hypothesized could be either protective or deleterious towards the development of 

MSA, would nonetheless yield insight into the pathogenesis of disease. 

Despite the estimated heritability of common variants underlying other 

neurodegenerative disorders (i.e. PD, ALS) residing between 20-30%, our estimate was 

only in the 2.09-6.65% range after imputation for MSA. Further, given the estimated 
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misdiagnosis rate of MSA of 14%, which we presume is most commonly misdiagnosed 

PD, we used a Bayesian approach to calculate the expected heritability due to 

misdiagnosis, which we measured at a range of 1.00-4.19%. As these ranges substantially 

overlap, we hypothesized that all MSA heritability estimated in this study could in theory 

be attributed exclusively to heritability stemming from samples of a non-MSA origin. 

While we acknowledged several limitations in genomic technologies used to 

quantify our estimate of MSA heritability, our results suggested that common variation is 

unlikely to play a role in genetic etiology of MSA. However, as the genotyping 

technology used was not amenable for rare variant direction, this was the next practical 

area to investigate the genetic architecture of MSA. Hence, we proceeded to MSA exome 

sequencing and analysis in Chapter 3.  

5.1.2 Chapter 3 overview 

We pursued MSA WES with the goal of identifying a list of genes as evidence 

based candidates for association with MSA. By filtering based on MAF, we initiated the 

discovery phase of rare variant identification, as we believed this was the most logical 

step subsequent to our heritability analysis. While maximizing cohort sample size, with at 

least half of our samples receiving a confirmed pathological diagnosis of MSA, we also 

incorporated multiple analytical approaches to generate the most comprehensive list of 

candidate genes and variants for future independent validation and replication in the 

MSA scientific community. 

We performed analyses for alignment and base calling on local software as well 

as on GoogleGenomics. This was not only advantageous by generating an extensive set 

of results from both pipelines, but furthermore the ability to compare and contrast 
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overlapping results between them was valuable regarding both interpretation and 

application to future WES projects. Using local alignment, we generated a list of 13 

candidate genes, all with novel variants confirmed by Sanger sequencing amongst our 

combined clinically diagnosed and pathologically confirmed MSA case cohort. By 

incorporating our data into the Googlegenome pipeline, which demonstrates increased 

sensitivity to detect rare variants and thus generates higher quality data, we could 

compare these findings with our previous list of locally derived candidates.  

In addition to apparent gene burden harbored by LRRK2, several other 

functionally relevant genes revealed significant burdens including SLC44A5, GLIPR1 and 

CASP8AP2. Each of the genes likewise demonstrated several significant single variants, 

many of which were non-synonymous. Among these, those single variants present 

exclusively in our case population (SLC44A5, GLIPR1) failed to validate while those 

carried by a disproportionately higher number of cases than controls (CASP8AP2) were 

confirmed with Sanger sequencing. Resonating with the results of LRRK2 p.G2385R, we 

must be cautious in our interpretation, however, by obtaining results from local and 

Googlegenome pipelines, we have successfully generated a list of candidate genes which 

should be prioritized in a subsequent combined validation replication stage of unraveling 

MSA genetic architecture. This will likely entail both genotyping and resequencing 

approaches. However, by commencing the discovery phase (our chief objective) and 

generating hypothesis generated results, we have laid the foundation towards the 

dissection of MSA genetic etiology.   
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5.1.3 Chapter 4 overview 

In chapter 4, we aimed to unravel the genetic architecture of PD observed in a 

Greek village that has sustained a high degree of genetic isolation for the last several 

centuries. In order to investigate the genetic landscape of the Rapsani families, we used 

several technological and analytical approaches including genotyping, homozygosity 

mapping, WES and WGS. 

In an effort to identify long IBS regions among affected members in different 

Rapsani families, which would suggest both a locus and plausible cause of disease, we 

pursued genotyping of all individuals among the 5 families. Nonetheless, we were 

unsuccessful at detecting any runs of homozygosity and shared haplotypes using Plink 

and GERMLINE analyses. 

Using WES, we were able to exclude all known PD causal variants in all affected 

samples, moving on to a MAF based filtering pipeline. In an effort to balance the 

possibility of filtering out crucial variants (with harsh filtering) while obtaining a 

candidate gene list that was feasible to analyze (with liberal filtering), we incorporated 

several different strategies for data analysis. Despite our versatility in this approach, we 

were unable to identify and validate a rare variant that was shared by all affected 

members and absent in unaffected members. 

As WES coverage, depth and quality is inferior to that of WGS, we pursued the 

latter with 7 affected samples from 2 different Rapsani families. Results of coding data in 

the form of SNPs and SVs were carefully scrutinized but did not yield any notable 

findings. In the CNV data obtained for all sequenced individuals, we could identify 
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several shared CNV losses and gains among all 7 affected individuals. However, without 

any chromosome or locus to serve as a guide, we did not investigate these shared CNVs 

in great detail.  

Finally, homozygosity mapping results of genotyping, WES SNP data and WGS 

SV and SNP-Indel data were all unremarkable. Thus, while a rare coding variant shared 

by all members is unlikely given our extensive analyses, we cannot exclude this 

possibility entirely. Given our absence of interesting findings, we have considered 

plausible explanations including: a disease-causing CNV manifesting a gene dosage 

effect, or a pathological intronic repeat region varying in length, adhering to anticipation. 

Furthermore, we have also acknowledged the possibility of a confluence of low risk 

factors among affected individuals or simply that disease may not be attributed to genetic 

etiology (perhaps through environmental factors); however, given the incidence of PD 

and genetic homogeneity of Rapsani village, these explanations seem improbable. 

Finally, we recognize there may be multiple causes of disease within the village, 

contributing to both familial and sporadic cases. Thus, a next logical step involves sub-

setting affected individuals based on phenotype and searching for disease segregating 

rare variants within each distinct group. 

We acknowledge that there will be significant obstacles in further analyzing the 

Rapsani PD cases; however, given the wealth of clinical information and incidence of PD 

in the village, we believe this venture is well warranted towards the identification of a 

novel genetic PD etiology. As we have already generated and analyzed abundant 

segregation and sequencing data, we have laid the groundwork to elucidate the Greek 

Rapsani village PD enigma. 
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5.1.4 Final thoughts and future directions 

Our extensive genetic analyses for underlying etiology in both MSA and PD have 

been feasible from the collaboration between myself and others at NIH, UCL and several 

other institutions. In order to pursue subsequent studies in both of these domains, it is 

essential that we expand our international collaboration networks to maximize our ability 

to detect novel variants. For such a rare and understudied disease such as MSA, 

increasing collaboration and expanding sample sizes will be instrumental in our ability to 

detect, validate and replicate findings. Our heritability analyses suggest we focus on rare 

variants. 

 With respect to PD in Rapsani, subsequent analyses in the form of CNVs and 

intronic regions will be pursued, as well as more in-depth individual family candidate 

analyses. This too, will require extensive collaboration; as we may identify several more 

candidates, we will need to mine for such variants and genes among an extensive global 

PD database. Given the prevalence of disease and homogeneity of the Rapsani village, 

we must cast our net wide to identify a shared pathological variant between these familial 

cases by assessing all plausible PD variant and gene candidates currently known in the 

scientific community. 

 Most importantly, while the studies discussed in this thesis have guided us to 

explore certain paths, we must maintain an open-mind in our future analyses. In regards 

to MSA, while we believe common variation is unlikely to play a substantial role, and 

will focus on rare and novel variants, we must continue to acknowledge our limitations in 

derivation of such data and not eliminate common variation from our umbrella of 

hypotheses.  
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Finally, regarding the Greek Rapsani village, many factors are highly suggestive 

of a single pathogenic mutation that we were unable to identify thus far. While this is 

overwhelmingly likely, we recognize the role of the PRL hypothesis and must consider 

all graded risk variants in our subsequent analyses.  

 As MSA and PD are severely debilitating and fatal neurodegenerative diseases, 

both of these warrant significant scientific investigation. The fact that current PD 

therapies target genes identified by genetic analyses (i.e. LRRK2) is a direct testament to 

the correlation between genetic discovery with clinical trials and therapies. Thus, as we 

continue on our journey to explore the genetic architecture for both diseases, we must not 

consider failed validation or replication of results as setbacks, but rather as momentum 

and motivation to drive us forward in our understanding of disease etiology.  
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8 Appendix 

8.1.1 Transcripts 

8.1.1.1 MSA local pipeline: WES variant filtering approach  

 

Table 38: PD genes in MSA VCF that did not confirm with Sanger sequencing 

 

Table 39: Variants predicted very damaging in MSA VCF not confirmed with Sanger sequencing 

8.1.1.2 MSA local pipeline: WES gene filtering approach  

 

Table 40: All variants in MSA VCF confirmed with Sanger sequencing 
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Table 41: All variants that did not confirm with Sanger sequencing 

8.1.1.3 MSA Googlegenome pipeline: Gene burden and single variant analyses 

 

 

Table 42: All variants investigated in the “in-depth gene” analysis.  

8.1.1.4 Greek Rapsani PD WES candidates 

 

Table 43: Variants checked with Sanger sequencing in Greek PD cohort from WES data 

 

Table 44: Variants checked with Sanger sequencing in Greek PD individual families from WES data 
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8.1.1.5 Greek Rapsani PD WGS candidates 

 

Table 45: Variants checked with Sanger sequencing in Greek PD cohort from WGS data 

8.1.2 Primer sequences 

8.1.2.1 MSA WES variant filtering approach candidates 

 

Table 46: PD genes in MSA VCF that did not confirm with Sanger sequencing 

 

Table 47: Variants predicted very damaging in MSA VCF not confirmed with Sanger sequencing 
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8.1.2.2 MSA WES gene filtering approach candidates 

 

Table 48: All variants in MSA VCF confirmed with Sanger sequencing 

 

Table 49: All variants that did not confirm with Sanger sequencing 

8.1.2.3 MSA Googlegenome pipeline: Gene burden and single variant analyses 
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8.1.2.4 Greek Rapsani PD WES candidates 

 

Table 50: Variants checked with Sanger sequencing in Greek PD cohort from WES data 

 

Table 51: Variants checked with Sanger sequencing in Greek PD individual families from WES data 

8.1.2.5 Greek Rapsani PD WGS candidates 

 

Table 52: Variants checked with Sanger sequencing in Greek PD cohort from WGS data 
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8.1.3 Cycler programs 

 

 

Table 53: 72 touchdown 56 PCR cycler conditions used for all primers. Total time: 2h, 45min 

 

 

Table 54: Sequencing cycler conditions used for all primers. Total time: 2h, 22min 
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8.1.4 PCR master mixes 

 

Table 55: PCR Mastermixes tested and utilized for all primers 

8.1.5 MSA GWA study results 

 

Chr Position Marker Gene or 

nearest gene 

Location Putative 

function 

P 

value 

OR Allel

es** 

Allele 

freq 

R2 

17 34,359,508 rs78523330 FBXO47 intronic involved in 

protein 

ubiquitination 

and degradation 

1.84E-

07 

0.45 A/G 0.96 0.55 

5 60,088,977 rs7715147 ELOVL7 intronic lipid metabolism 2.87E-

07 

1.47 C/A 0.74 0.68 

6 12,453,679 rs16872704 EDN1 intergenic vasoconstrictor 3.82E-

07 

1.51 A/G 0.84 0.94 

17 41,160,977 rs9303521 CRHR1 

......... 

.............  

 

 

 

 

MAPT* 

intronic 

......... ..........  

 

 

 

 

Intergenic  

G-protein 

coupled 

receptor, 

activation of 

signal 

transduction 

pathways  

microtubule 

binding protein 

6.78E-

07 

0.76 T/G 0.51 0.92 
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Table 56: MSA GWA study results 

*MAPT is not the closest gene in this locus but due to its known role in other neurodegenerative diseases the most likely 

candidate and therefore also listed here. 

** first allele refers to effect allele 

 

(Reproduced by Sailer et al. 2016) 

 

1 4,023,064 rs12044274 LOC728716 intergenic non-coding 

RNA 

3.30E-

06 

1.48 T/A 0.65 0.47 

6 7,161,483 rs1413700 RREB1 intronic zinc finger 

transcription 

factor 

3.43E-

06 

1.39 G/C 0.79 0.92 

2 239,000,140 rs473651 ASB1 intergenic testis 

development 

3.54E-

06 

0.78 C/A 0.62 0.98 

17 42,218,292 rs916888 WNT3 intergenic WNT signaling 

gene, 

embryogenesis 

3.68E-

06 

1.35 T/C 0.75 0.96 

14 47,000,222 rs78274439 MDGA2 intronic possibly 

involved in cell-

cell interactions 

3.73E-

06 

1.73 A/G 0.85 0.46 

20 59,576,381 rs2252187 CDH4 intronic calcium 

dependent cell 

adhesion  

3.97E-

06 

0.74 G/A 0.77 0.81 

10 100,039,469 rs4919206 LOXL4 intergenic biogenesis of 

connective tissue 

4.36E-

06 

0.73 C/G 0.49 0.58 

17 14,628,830 rs62060075 CDRT7 intergenic non-coding 

RNA 

4.64E-

06 

0.60 C/T 0.92 0.61 

8 26,005,267 rs4872401 EBF2 intergenic transcription 

factor 

4.75E-

06 

0.38 G/A 0.96 0.33 

5 40,890,439 rs1697938 CARD6 UTR involved in 

apoptosis 

4.75E-

06 

0.79 T/C 0.54 0.99 

16 22,938,761 rs8044188 USP31 intergenic Unknown 4.84E-

06 

1.38 G/A 0.79 0.95 

9 128,448,334 rs10819190 LMX1B intronic transcription 

factor 

5.41E-

06 

1.32 G/A 0.63 0.82 

5 127,863,758 rs892864 FBN2 intronic component of 

connective tissue 

microfibrils 

5.96E-

06 

1.62 T/A 0.06 0.81 

2 31,430,416 rs115903524 XDH intronic purine 

degradation 

6.41E-

06 

0.51 G/C 0.97 0.83 

19 33,413,730 rs11084877 LOC148189 intergenic non-coding 

RNA 

6.65E-

06 

0.76 A/G 0.76 0.96 

2 138,023,816 rs10209086 THSD7B intronic Unknown 6.95E-

06 

0.78 T/C 0.42 0.98 

9 85,989,249 rs2256039 SLC28A3 intergenic Nucleoside 

transporter 

7.92E-

06 

0.70 A/C 0.86 0.74 

16 85,251,338 rs78765336 FOXL1 intergenic Unknown 8.46E-

06 

0.46 G/T 0.97 0.57 

7 24,585,776 rs55782418 MPP6 intronic tumor 

suppression and 

receptor 

clustering 

9.59E-

06 

0.58 G/C 0.96 0.90 

17 51,515,165 rs79331640 ANKFN1 intergenic Unknown 9.97E-

06 

0.45 G/A 0.97 0.54 
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