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SUMMARY 

Human pluripotent stem cells (PSC) provide a unique entry to study species-specific 

aspects of human disorders such as Alzheimer’s disease (AD). However in vitro 

culture of neurons deprives them of their natural environment. Here we transplanted 

human PSC-derived cortical neuronal precursors into the brain of a murine AD 

model. Human neurons differentiate and integrate into the brain, express 3R/4R Tau 

splice forms, show abnormal phosphorylation and conformational Tau changes and 

undergo neurodegeneration. Remarkably, cell death was dissociated from tangle 

formation in this natural 3D model of AD. Using genome wide expression analysis, 

we observed up-regulation of genes involved in myelination and down-regulation of 

genes related to memory and cognition, synaptic transmission and neuron projection. 

This novel chimeric model for AD displays human-specific pathological features and 

allows the analysis of different genetic backgrounds and mutations during the course 

of the disease.  

 

INTRODUCTION  

Aloïs Alzheimer described in 1906 the main pathological hallmarks of Alzheimer’s 

disease (AD): amyloid-β (Aβ) plaques, neurofibrillary pathology and tangles, 

astrogliosis and neuronal loss (Alzheimer, 1906). Cerebrovascular amyloid 

angiopathy, microgliosis, inflammation and major synaptic alteration are other 

pathological features of AD (Katzman, 1986; McGeer et al., 1988; Crews and 

Masliah, 2010; Spillantini and Goedert, 2013).  

The amyloid hypothesis links abnormally folded Aβ peptides in a linear and causal 

cascade to the other disease hallmarks, including neuronal tangle formation and 
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neuronal cell death (Hardy and Selkoe, 2002; critique in De Strooper and Karran, 

2016). This hypothesis has provided the theoretical basis for the generation of 

numerous animal models, diagnostics and therapeutics for AD. However, evolving 

insights have made increasingly clear that a more complex theory and more 

elaborate in vivo models are needed to understand the long prodromal phase of the 

disease (De Strooper and Karran, 2016). Rodent AD models (Ashe and Zahs, 2010; 

LaFerla and Green, 2012) usually over-express mutated forms of the familial AD 

(FAD) causing genes APP and/or PSEN, leading to extensive amyloid plaque 

deposition, Aβ-associated neuroinflammation, and some synaptic dysfunction. 

However, crucial aspects of the disease process, like neuronal tangle formation and 

severe neuronal cell loss, have never been convincingly demonstrated in rodents 

(Kokjohn and Roher, 2009; Morrissette et al., 2009; Crews and Masliah, 2010). The 

relevance of these genetic models to study sporadic AD, where patients do not carry 

mutations in APP or PSEN is debated. 

Human embryonic stem cells (ESC) and patient-derived induced pluripotent stem 

cells (iPS) allow modeling of human neurological disease in a human genetic context  

(Brennand et al., 2015; Paşca et al., 2014; Studer et al., 2015; van den Ameele et al., 

2014).  Neurons derived from iPS cells of FAD patients showed altered Aβ42/Aβ40 

ratio and abnormal Tau phosphorylation (Yagi et al., 2011; Israel et al., 2012; Shi et 

al., 2012; Kondo et al., 2013; Choi et al., 2014; Muratore et al., 2014; Hu et al., 

2015). Recently, a three-dimensional, human neural stem-cell derived culture (Choi 

et al., 2014) displayed A plaque-like structures and Tau silver positive aggregates 

(Choi et al., 2014). The cells heavily overexpress exogenous APP and PSEN FAD 

genes. No cell loss was detected and neuroinflammatory and vascular components 

of the disease are lacking in this in vitro model. It remains indeed crucial to 
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complement in vitro approaches with in vivo experiments to study human neurons in 

the context of the diseased brain.  

Neural precursors derived from PSCs (reviewed in (Suzuki and Vanderhaeghen, 

2015)) can be transplanted into the rodent brain, resulting in specific patterns of 

cortical neuronal maturation, connectivity and synaptic activity, well beyond what can 

be achieved in a purely in vitro condition (Gaspard et al., 2008; Espuny-Camacho et 

al., 2013). We use here this approach to investigate whether Aβ species generated in 

an AD mouse model (Radde et al., 2006) are sufficient to induce full AD pathology in 

non-affected, genetically non-manipulated human neurons. This chimeric model 

presents numerous Aβ plaques and A-associated neuroinflammation in the human 

transplant and, importantly, the transplanted neurons show remarkable signs of 

neurodegeneration. These pathological features are not detected or are far less 

important in the mouse host brain and in transplanted PSC-derived mouse neurons. 

Thus human neurons respond to Aβ pathology differently from their murine 

counterparts in vivo.  

 

RESULTS 

Human grafted neurons integrate into the mouse brain and are exposed to β-

amyloid  

We differentiated GFP-expressing human PSCs into cortical precursor cells in vitro to 

implant them as xenografts into the brains of newborn mice (Figure 1 A, Figure S1 E-

F) (Espuny-Camacho et al., 2013). We used transgenic Tg (Thy1-APPSw,Thy1-

PSEN1*L166P) 21Jckr, further called APP/PS1-21, mice (Radde et al., 2006) and 
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crossed them with immunodeficient NOD.CB17-Prkdcscid/J, further called NOD-SCID 

mice (Shultz et al., 1995), to generate AD mice or WT littermates suitable for grafting 

experiments (Espuny-Camacho et al., 2013). We additionally used GFP-expressing 

mouse neurons derived from murine PSC as controls (Figure S2 H-I) (Gaspard et al., 

2008). 

The cells present a normal karyotype (Figure S1 D) or CGH array (not shown) and 

undergo neuronal and telencephalic/cortical specification in vitro as attested by beta 

III tubulin, Tau, Tbr1 and Ctip2 staining (Figure S1 A-C). The transplanted human 

neurons express GFP and human-specific markers like Hu Nuclei (Figure S1 G-H) 

and present cortical (Tbr1+, CTIP2+, Satb2+, Brn2+);  telencephalic (Foxg1+), and 

mature neuronal (NeuN+, MAP2+ ) identities (Figure 1, B-G, Figure S1 I-J). Electron 

microscopy combined with GFP-immunogold labeling shows numerous synapses 

between the human graft and the mouse host (Figure 1 H-I). RNA-seq analysis 

confirms broad expression of telencephalic, cortical, glutamatergic and some 

expression of gabaergic, astrocytic and oligodendroglia genes (Figure S1 K). 

Cholinergic, dopaminergic or neural crest derived cell identities are less abundant or 

absent (Figure S1 K).  

Aβ-plaques are present in the AD mouse host brain (GFP negative), as assessed by 

Thioflavin, 6E10 and Congo Red staining (arrows; Figure 1 L-N, Figure S2 A-E). 

Congo Red+ plaques show birefringence when using plane-polarized light (Figure S2 

E). Importantly, Aβ plaques are detected within GFP+ human neuronal clusters 

(arrowheads; Figure 1 L- M’, Figure S2 A-B’, D-E) and near single human neuronal 

cells integrated into the mouse host tissue (arrows; Figure 1 N, Figure S2 C). Aβ 

plaques within human clusters are more diffuse than mouse host dense-cored 

plaques, and are significantly smaller (Figure 1 O; 120±6 µm2 in mouse host; 88±8 
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µm2 in human grafts). No significant differences in number of Aβ plaques per unit 

surface are detected (Figure 1 P; 40±3 plaques/mm2 in mouse host; 71±16 

plaques/mm2 in human grafts). Aβ reactivity is, as expected, not observed in WT 

mice (Figure 1 J-K).  

Aβ plaque ultrastructure is very similar in the human transplants and in the mouse 

host: one or more cores of extracellular Aβ filaments (asterisks; Figure 1 Q-T) 

surrounded by dystrophic neurites (arrowheads). Immunogold labeling against 

human cell-specific markers, i.e. the GFP transgene or endogenous STEM121 

marker, confirms that Aβ deposits (asterisk) and dystrophic neurites (DN) are within 

grafted human clusters (arrowheads point to immunogold particles; Figure S2 F-G).  

PSC-derived mouse neurons transplanted under similar conditions also present Aβ 

plaques and DNs inside murine clusters (Figure S2 H-K). 

Thus, the transplanted neuronal clusters integrate into the mouse host tissue and are 

exposed to Aβ deposits produced by the AD mice.  

Amyloid- associated neuroinflammation in the human neuronal transplants 

We detect GFAP+ astrocytes (Figure 2 A-B,E-F) and Iba-1+ microglia cells (Figure 2 

C-D,G-H) clustered around Thioflavin+ Aβ deposits in mouse host tissue (GFP ̶ ; 

arrows) and human grafts in AD mice (GFP+; arrowheads). Significant increases in 

the number of GFAP+ astrocytes and Iba1+ microglial cells are seen in AD vs WT 

mice (Figure 2 M-N), but mouse host and human transplants do not differ 

significantly. Microglia cells performing phagocytosis are detected (red arrowhead; 

Figure 2 K). Astrocytes and microglial cells within human clusters are mostly of host 

origin as attested by the lack of GFP immunoreactivity (arrowheads; Figure 2 I-J,K-L). 

Ultrastructural analysis of astrocytes and microglia cells in AD mice show an 
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activated hypertrophic morphology with 76% and 74% of cells showing enlarged 

and/or phagocytic phenotypes, respectively (Figure 2 P-T and  R-V). These 

phenotypes are rarely found in WT mice (Figure 2 O,Q,T,V), indicating that the 

elicited immune response is induced by the Aβ-associated pathology and not a 

consequence of unexpected host-graft reactivity.  

Thus, both grafted human neuronal clusters and mouse host tissue are similarly 

exposed to A-associated neuroinflammatory responses characterized by astrocytic 

and microglial cell reactivity and recruitment to the Aβ plaque sites.  

Extensive neuritic dystrophy and alterations of synaptic markers surrounding 

A plaques in human neuronal transplants 

We examined the grafted human neuronal clusters exposed to A for signs of cellular 

or neuritic abnormalities. Dystrophic neurite structures (DNs) are found associated 

with Aβ plaques in both mouse host and human grafts in AD mice 4MPT (Figure 3 A-

B,D,E), but not in WT mice (Figure 3 C,F). DNs present a globular structure (Figure 3 

B,E) and a heterogeneous content of vesicles (red boxes), dense bodies (red 

arrowheads), mitochondria (blue boxes), and neurofilaments (green boxes) (Figure 3 

G-N). Myelin alterations are also detected (arrowheads; Figure S4 K-L). 

Ubiquitin staining confirms the presence of DNs around Thioflavin+ Aβ plaques in 

mouse host tissue and human clusters 4MPT (Figure 3 O-R) with 85% of Aβ plaques 

surrounded by DNs in human grafts vs 58% in mouse host (Figure 3 S). DNs are also 

detected in human clusters in AD mice by GFP or human-specific STEM121 staining 

(arrowheads; Figure 3 O, Figure 4 C, Figure S2 L-M) but are absent in human grafts 

in WT mice (Figure 4 A). We observe abnormal accumulations of the presynaptic 

markers synaptophysin (SYP) and vesicular glutamate transporter 1 (VGlut1) around 
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A plaques in human clusters in AD mice (Figure 4 C-D,J-K), similar to the 

accumulations found in human AD brains (Brion et al., 1991) (Figure S3 A-D). These 

accumulations are absent in human clusters in WT mice (Figure 4 A-B,H-I) and are 

less important in mouse host or in mouse neurons grafted into AD mice (Figure 4 E-

F,L-M, Figure S3 E-H), with 74% and 70% of A plaques in human grafts surrounded 

by SYP and VGlut1+ structures, respectively, vs 23% and 39% in mouse host (Figure 

4 G,N). The dendritic marker MAP2 reveals an area devoid of staining around A 

plaques in human clusters in AD mice (Figure 4 O-P) that is minor in mouse host 

(Figure 4 Q-R). The absence of MAP2 is mirrored by the accumulation of SYP+ or 

Tau+ structures around A plaques (Figure S3 I-P). The postsynaptic marker Homer1 

confirms the reduction of dendritic staining around A plaques in human neuronal 

clusters (Figure S3 Q-T).  

Thus DNs surrounding A plaques display abnormal accumulations of presynaptic 

and axonal proteins, while human dendritic and post-synaptic proteins become 

reduced. These neuritic changes are much more subtle in mouse host tissue or 

mouse neuronal clusters grafted in the AD mice.  

Major degeneration and loss of human neurons in vivo  

Robust neuronal loss is a crucial AD hallmark lacking from existing animal models 

(Kokjohn and Roher, 2009; Morrissette et al., 2009; Crews and Masliah, 2010). 

Remarkably, the density of human neurons at 6MPT, evaluated using GFP together 

with the pan nuclear marker TOPRO3 (Figure 5 A-F) or HuNuclei (Figure S4 A-F), is 

much lower in transplants in AD mice (Figure 5 D-F) than in WT mice (Figure 5 A-C), 

although similar amounts of cells were injected. In contrast, nuclei density is similar in 

mouse host tissue in AD (Figure 5 J-L) vs WT mice (Figure 5 G-I).  
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Quantification shows that the density of mouse host tissue neurons is not significantly 

changed (98% in AD vs 100% in WT) while the density of human neurons in AD mice 

is reduced to 54% compared to WT animals (Figure 5 M). The density of human 

neurons at 2MPT, before A plaques are detected, is not different between AD and 

WT animals (Figure 5 M). Thus the human cells integrate normally and similarly in 

WT and AD mouse brain following transplantation and cell loss occurs specifically in 

AD animals at later stages when A pathology is present in vivo.  

Semithin sections of human transplants stained with Toluidine blue also show dense 

Aβ plaques, disorganized neuropil texture and reduced neuronal density in AD mice 

(Figure 5 N-O), while no such morphological alterations are seen in mouse host 

tissue and PSC-derived mouse grafts in AD mice. On the contrary, many healthy-

appearing neurons are detected near Aβ plaques (Figure 5 Q, Figure S4 J). 

Ultrastructural analysis and quantification of neuron density confirm a significant 

decrease in the number of neurons in human grafts in AD at 6MPT (Figure 5 W; 1463 

± 64 neurons/mm2 in grafts in WT vs 344 ± 31 neurons/mm2 in grafts in AD), and the 

absence of significant differences in mouse host tissue at this age (Figure 5 W; 925 ± 

47 neurons/mm2 in host in WT vs 817 ± 37 neurons/mm2 in host in AD).   

Importantly, up to 33% of human neurons in AD mice show a necrotic phenotype 

(Figure 5 X) characterized by electron lucent nuclei with highly dispersed chromatin, 

swelling of cytoplasm, and swelling and disintegration of cytoplasmic organelles 

(Figure 5 S-S’,T-T’) (Naganska and Matyja, 2001; Ueda et al., 2007; Burattini and 

Falcieri, 2013). Enlarged mitochondria with disrupted cristae (red arrowheads), large 

vacuoles (blue arrowheads), and even rupture of the nuclear membrane (green 

arrowheads) are also seen (Figure 5 S’-T’). However, such phenotypes are 

completely absent in human neurons in WT mice (Figure 5 R-R’,X). The effects 
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appear human-specific, as no signs of degeneration are observed in mouse host 

tissue or in PSC-derived mouse neurons in AD mice (Figure 5 V,X, Figure S4 N). 

Apoptotic cell death does not contribute strongly to the cell loss at this stage as no 

increased caspase-3 activated staining (not shown), or TUNEL labeling is observed 

(Figure S4 O-Z).  

Overall, the human grafts exposed to Aβ undergo major neuronal loss and 

neurodegeneration in vivo via a necrosis-mediated mechanism. Moreover, this effect 

is species-specific as mouse host neurons or grafted mouse neurons exposed to the 

same Aload do not undergo degeneration.  

Gradual appearance of the 4R Tau splicing form in human neurons in vivo 

Adult murine brain mainly expresses the 4R Tau isoform containing four microtubule-

binding repeats. During human brain embryonic development only the 3R splice form 

of Tau is detected, while the adult human brain expresses 3R and 4R Tau splice 

forms in a 1:1 ratio (Goedert and Jakes, 1990). We thus studied the expression 

pattern of Tau using specific antibodies raised against 3R or 4R Tau splice forms 

(Figure S5 M-N).  After 2 and 4MPT, 3R Tau is expressed while 4R Tau is detected 

only in 0.7% of the human neurons (GFP+ or STEM121+). 4R Tau is widely 

expressed in mouse host tissue (Figure 6 A-B,E-F,A’-B’,E’-F’,M, Figure S5 A-C). 

However, at 6MPT, 89% of the human neurons express high levels of 4R together 

with 3R Tau (arrows; Figure 6 I-J,I’-J’,M, Figure S5 G-I). In addition, RNA-seq 

analysis of human grafts in old animals (8 MPT) shows a 3R/4R Tau expression 

close to 1, similar to the ratio in adult human brain (Figure 6 N). 

We wondered whether the appearance of 4R Tau could be accelerated in our model 

using two human iPS lines derived from a patient carrying the pathogenic Tau 
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mutation Ex10+16, (further indicated as Tau*) (Sposito et al., 2015). This mutation is 

considered to favor 4R Tau expression and causes Fronto-temporal dementia (FTD) 

(Hutton et al., 1998). Following in vivo transplantation, human Tau* neurons 

(HuNCAM+) showed no 4R Tau expression at 2MPT (Figure 6 C-D,C’-D’). However, 

at 4MPT 37% of the human Tau* neurons expressed 4R together with 3R Tau 

isoforms (arrows; Figure 6 G-H,G’-H’,M, Figure S5 D-F) in agreement with previous 

findings in vitro (Sposito et al., 2015). At 6MPT 84% of Tau* neurons highly 

expressed 4R together with 3R Tau (arrows; Figure 6 K-L,K’-L’,M, Figure S5 J-L). 

Human Tau* neurons transplanted into the AD mouse brain show similar phenotypes 

as described above. We detect numerous Aβ plaques within the grafts (Figure S6 A-

H’) and DNs (Figure S6 I-J). SYP+ and VGlut+ accumulations are surrounding Aβ 

plaques (Figure S6K-L’). Importantly, the density of grafted human Tau* neurons near 

Aβ plaques is reduced to 28% compared to WT animals (Figure 5 M, Figure S6 M-R). 

Toluidine blue stained semithin sections (Figure S6 S-T) and EM analysis (Figure S6 

U-V) confirm neuronal loss and necrosis that are not seen in human Tau* neurons in 

WT mice.  

Thus, major AD human-specific pathological hallmarks are reproduced with iPS-

derived human neurons from a FTD patient transplanted into AD mice. 

Presence of pathological Tau species in human neurons in vivo 

We analyzed Tau pathology in the grafted human neurons. AT8+ hyper-

phosphorylated forms of Tau are found in the cell bodies of human neurons and 

human Tau* neurons (arrowheads; Figure 7 B,E) and in DNs adjacent to Aβ plaques 

(arrowheads; Figure 7 C,F) at 8 MPT in AD mice. Staining is similar to that found in 

AD human brain (arrows; Figure S7 J-O) and in AD mouse tissue (arrowheads; 
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Figure 7 H-I). In fact, more than 95% of A plaques show AT8+ DNs in mouse host, 

human grafts and human Tau* grafts (Figure 7 S). 

Importantly, MC1+ staining, which reveals a pathological Tau conformation present in 

human AD brain (Weaver et al., 2000), is also detected in few cell bodies of human 

neurons and human Tau* neurons (arrowheads; Figure 7 K,N and Figure S7 A-C’) 

and in more than 96% of DNs surrounding Aβ deposits at 8 MPT in AD mice 

(arrowheads; Figure 7 L,O,T and Figure S7 D-F’), which is similar to human AD brain 

(arrows; Figure S7 P-U). However, no MC1 staining is found in mouse host tissue in 

AD mice (Figure 7 Q,R,T and Figure S7 G-I’), as previously described (Kokjohn and 

Roher, 2009; Morrissette et al., 2009). The lack of MC1 reactivity in AD mouse host is 

probably not explained by human-specificity of the antibody as it labels also mouse 

Tau in a pericyte deficient APP transgenic mouse model (Sagare et al., 2013). No 

AT8 nor MC1+ staining is detected in WT mice (Figure 7 A,D,G,J,M,P).  

Cytoskeletal alterations with abnormal accumulation of straight 10 nm-wide 

neurofilaments are detected in DN of human neurons in AD mice 6-8 MPT (Figure S7 

V-V’). In addition, Hirano bodies, paracrystalline inclusions with an array of 

symmetrically organized 8-10 nm filaments, are also present (Figure S7 W-W’). 

However, abnormal filaments in the form of paired helical filaments or twisted ribbons 

have not been detected. 

These results show that even after 6-8 MPT the human neurons do not present 

definite tangle pathology although clear hyperphosphorylation and pathological 

conformational alterations of Tau are observed. Thus, there is major 

neurodegeneration even in the absence of full spread tangle pathology in the human 

neurons. 
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Transcriptome analyses reveal human specific signatures of AD  

To assess global transcriptional changes in the human grafts in AD vs WT mice, we 

performed RNA-seq analysis at two time-points: 4-5 MPT (young) and 8 MPT (old 

mice). Global analyses of gene expression patterns reveal interesting alterations in 

several gene ontology categories (Ashburner et al., 2000). Genes involved in 

synaptic transmission, gated channel activity, and neuron projection (GO:007268, 

GO:0022836, GO:0043005) are significantly down-regulated at 8MPT in human 

neurons in AD vs WT mice (Figure 8 A, Figure S8, Table S5). Additionally, genes 

involved in cognition and learning and memory (GO:0050890, GO:0007611) also 

show a trend towards down-regulation. GO categories related to immune or 

inflammatory response (GO:0002376, GO:0006954) show a non-significant up-

regulation. It should be noted that our analysis includes only the human gene 

expression programs in the transplanted neurons and not the murine derived immune 

cells of the brain (Figure 8 A, Figure S8). Genes from the GO category regulation of 

cell death (GO:0010941) are up-regulated at 8MPT. Representative genes among 

these categories are shown in Figure 8 B. Significant differential expression of 

mRNAs and non-coding RNAs is detected already at early but more at late stages in 

human transplants in AD vs WT mice (Tables S2-S5). Interestingly, among the most 

strongly up-regulated genes in the human neurons in AD mice at 8MPT (Table S4) 

are a couple of non-coding RNA genes: LINC01007 and RP11-89N17.4. Genes 

involved in myelination (MOBP, MAG, UGT8, MOG, MBP) are also up-regulated in 

the transplanted human cells. Alterations in myelination are known to occur in AD 

(Ettle et al., 2015; Bartzokis, 2011), but few studies have investigated the role of 

oligodendrocytes and myelin in AD (De Strooper and Karran, 2016; Bartzokis et al., 

2011). In the list of down-regulated genes we find OTOF, GABRE, TAC1, PTK2B, 
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and CACNA1H involved in neurotransmission and RHGAP36 involved in vesicle 

transport and regulation (Table S5). Interestingly COL25A1 also known as CLAC is 

down-regulated (Table S5). CLAC specifically binds to fibrillized Aβ and is present in 

Aβ plaques in AD patients (Hashimoto et al., 2002; Tong et al., 2010). 

To further evaluate the relevance of our model for human AD, we compared the gene 

expression data from human neurons with a published dataset of human AD samples 

(Zhang et al., 2013). We performed co-expression clustering analysis using WCGNA 

(Langfelder et al., 2008) yielding modules of genes showing a similar expression 

pattern across samples (Figure 8 C). This analysis generated 37 modules from 

human transplants. The overlap of genes of these modules (left column) with the 

modules identified by Zhang et al. (right column) is determined using a Fisher exact 

test. These data demonstrate that the transplanted human neurons show 

transcriptional changes in gene modules that are also affected in the human AD brain 

(Zhang et al., 2013).  

 

DISCUSSION 

The generation of better in vivo models that closely resemble the pathological 

features present in the human AD brain is instrumental to test new hypotheses with 

regard to AD etiology and for the validation of new therapeutic approaches. Ideally, 

such a model would incorporate a human genetic background, be versatile and 

robust and include aspects such as innate inflammation, cellular heterogeneity and 

minimal use of transgenes to drive the pathogenesis (De Strooper and Karran, 2016).   

In the current study, we transplanted cortical neuronal precursors differentiated from 

one normal ESC line (H9), and from two FTD iPSC lines derived from the same 
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patient, into the brain of a well-characterized AD mouse model. Although three cell 

lines is a limited number, all displayed similar profound degeneration and necrosis 

when exposed to Aβ in a large number of independent transplantation experiments. 

In addition, the human specific pathology was compared with host mouse neurons 

and transplanted PSC-derived murine neurons, which show much more resistance to 

Aβ pathology than the human neuronal counterparts.  

At 4MPT already the human neurons show many signs of neurodegeneration. 

Dystrophic structures are found and presynaptic components like synaptophysin and 

vesicular glutamate transporter 1 accumulate, while the dendritic marker MAP2 and 

the postsynaptic marker Homer1 disappear around A plaques.    

At 6MPT a significant loss of human neurons is found to an extent that has never 

been reported for mouse neurons in the many existing models for AD. Neuronal 

density is strongly reduced (down to 54%) in human grafts in AD vs WT mice 

whereas no significant differences were observed in mouse host tissue. Importantly, 

at 2MPT similar densities of human neurons are observed in AD and WT mice, 

indicating that implantation is normal, and cell loss occurs only later over the course 

of the disease. EM analysis revealed that 33% of human neurons in AD mice show 

signs of degeneration at 6MPT. The cell loss appears to be mostly necrotic based on 

morphological criteria. Genome wide expression analysis of human transplants 

(8MPT) shows however up-regulation of a broader category of genes related to 

regulation of cell death. This GO category contains many genes that are only 

indirectly involved in the regulation of cell death processes. Further work will be 

needed to clarify whether some of the altered genes play causal roles in the cell 

death process we observed here.  
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Strikingly, this major neurodegeneration and human neuronal loss occur in the 

absence of detectable tangle pathology. It was recently suggested that the induction 

of neuronal tangles critically depends on the expression of 4R Tau as seen in the 

human adult brain (Choi et al., 2014). At 2 and 4MPT the human neurons express 

mainly 3R isoforms, but after 6MPT 4R Tau isoforms are expressed in 89% of the 

human neurons. In addition, the 3R/4R Tau ratio in human neurons comes close to 1 

at 8MPT, as seen in the adult human brain. We detect Tau AT8, and MC1 

hyperphosphorylation. MC1 detects definitely pathological conformational changes in 

Tau (Jicha et al., 1997), and  MC1 staining is not readily detected in murine AD 

models.  iPS cells expressing the Tau mutation Ex10+16 linked to FTD (Sposito et 

al., 2015) show an earlier appearance of 4R Tau, and a higher tendency to cell death 

when exposed to Aβ. The data are in line with the idea that Tau expression is crucial 

for Aβ induced toxicity in AD transgenic animals (Roberson et al., 2007; Leroy et al., 

2012). However, we did not detect Tau tangles after 8MPT in human neurons nor in 

human Tau* neurons. Likely even longer periods in vivo are required for detectable 

tangle pathology, or additional seeding is needed to induce the tangle conformation. 

The NOD-SCID background needed for the experiments does unfortunately not allow 

analysis beyond 8MPT due to increased incidence of graft-unrelated tumor formation.  

Recently, a three-dimensional in vitro AD model with human neuronal stem cells that 

overexpress mutated FAD genes was reported (Choi et al., 2014). This model uses 

matrigel as a 3D support matrix for the cells, and recapitulates Aβ pathology. The 

model also presents pathological Tau phosphorylation and Tau filaments but fails to 

show neurodegeneration or cell death. We have not modified our neurons with APP 

or PSEN mutations and neurons were grown within the brain, which is arguably a 

more natural situation than the matrigel used in the cell culture system. It is intriguing 
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that Tau aggregation was detected in the cell culture system without 

neurodegeneration, while in vivo neurodegeneration is seen without tangle formation. 

Further investigations are needed to understand better the relationship, if any, 

between abnormal Tau conformation and cell death.   

A particular important aspect of the current approach is that innate immunity, 

believed to play an important role in AD (Heneka et al., 2015), remains apparently 

intact in the model. As shown, host-activated astrocytes and microglia cells are 

recruited to the human transplants, and similar neuroinflammatory responses are 

observed in human clusters and mouse host. Activated microglia cells have been 

proposed as essential for the cell loss in AD (Fuhrmann et al., 2010) and this might 

explain the lack of cell loss in the 3D cell culture system discussed above.  

Lastly, our model allows a genome-wide transcriptome analysis of the human 

neurons exposed to Aβ at early and late stages of the disease in vivo. Intriguingly, we 

observe two non-coding-RNA sequences among the most up-regulated genes. 

RP11-89N17.4 expression might be altered in AD patients (Gui et al., 2015), and 

data from our lab show dysregulation of LINC01007 in AD patients (unpublished 

results). While these findings are still premature, it should motivate additional work 

exploring the role of non-coding RNAs in neurodegeneration (Salta and De Strooper, 

2012). We also notice that COL25A1 is down-regulated at late stages. Interestingly, 

rare variants in COL25A1 have been associated with healthy aging and possible 

protection against AD (Erikson et al., 2016). Other up-regulated genes are involved in 

cell death and myelination while many down-regulated genes are implied in memory 

and cognition, synaptic transmission, gated channel activity, neurotransmitter levels 

and neuron projection. We validated our model comparing our results with the results 

of a previous genome-wide gene expression study of AD patient brains (Zhang et al., 
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2013). The good concordance, taking into account that Zhang et al. provided data on 

total brain blocks from patients, while we analyzed gene expression changes in 

human neurons specifically, is encouraging.  

In conclusion, we present here a novel in vivo approach to investigate AD 

mechanisms in human neurons by generating a mouse/human brain chimera. This 

approach opens the door to explore how different human genetic backgrounds 

modulate AD related features in vivo. This initial work demonstrates clearly the 

importance of a human molecular and cellular background to observe full 

neurodegeneration in the presence of Aβ plaques.  
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FIGURE LEGENDS 
 
 

Figure 1. Human grafted neurons integrate into the mouse brain and are 

exposed to A 
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(A) Schematic representation of the experimental outlay. (B-G) GFP+ grafted human 

neurons stained with the GFP antibody (green, B-G) and with the cortical deep layer 

markers Tbr1 (B) and CTIP2 (C), the upper layer markers Satb2 (D) and Brn2 (E), 

the telencephalic marker FoxG1 (F) or the mature neuronal marker MAP2 (G). (H-I) 

Electron microscopy combined with GFP immunogold (arrowheads) shows synaptic 

contacts from the human transplant to the mouse host tissue (H), and reverse (I) 

4MPT. (J-N) GFP (green) and Thioflavin-S (red) stainings show Aβ plaques within 

human transplants (arrowheads) and in mouse host tissue (arrows) in AD mice (L-N) 

but not in WT mice (J-K) 4MPT. Panel M’ relates to panel M. Panel N shows an 

isolated GFP+ neuron close to Aβ plaques (arrows). (O-P) Quantification of Aβ 

plaque mean area (O) and of the number of Aβ plaques per area (P) in mouse host 

(n=5) and human grafts (n=5) in AD mice 4MPT. Data are represented as mean +/- 

SEM, Student’s t-test:**p<0.01, ns= non-significant. (Q-T) EM images show Aβ 

deposits (asterisks) within human transplants or mouse host tissue in AD mice 4MPT. 

Scale bars: 25 µm (B-G, J-N); 500nm (H-I); 2 µm (Q); 1 µm (R); 10 µm (S); and 5 µm 

(T).  

Figure 2. Aassociated neuroinflammation in the human neuronal grafts  

(A-H) Representative micrographs of mouse host tissue (A-D) and GFP+ human 

grafts (green, E-H) in AD mice. GFAP+ astrocytes or Iba1+ microglia cells (red) are 

associated with Thioflavin+ A plaques (blue) 4MPT and 6MPT. Arrows and 

arrowheads show Aβ plaques in mouse host tissue and within human grafts, 

respectively. (I-L) GFP- astrocytes and microglial cells (arrowheads; I-L) are present 

inside human grafts. Notice host, GFP-, reactive microglia in phagocytic state (red 

arrowhead; K). (M-N) Quantification of the number of GFAP+ astrocytes or Iba1+ 
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microglia cells per area in mouse host (WT: n=3 animals 4MPT, n=4 6MPT; AD: n=3 

animals 4MPT, n=4 6MPT) and human grafts (WT: n=3 animals 4MPT, n=4 6MPT; 

AD: n=3 animals 4MPT, n=4 6MPT). Data are represented as mean +/- SEM, two 

way-ANOVA with Bonferroni posttests: *p<0.05; **p<0.01; ***p<0.001. (O-V) 

Ultrastructure of hypertrophic reactive astrocytes (P,S) and reactive microglia (R,U) in 

human grafts 4MPT and 6MPT in AD mice. Notice non-reactive astrocytes and 

microglia in WT mice (O,Q) and phagocytosing microglia adjacent to dystrophic 

neurites (R) or degenerating material (U) in human grafts in AD mice. The cytoplasm 

of these cells has been outlined (O-U). DN: dystrophic neurite; m: microglia. (T,V) 

Quantification of the percentage of glial cells showing hypertrophic and/or phagocytic 

morphology in human grafts in WT (n=3) and AD (n=3) mice 6MPT. Data are 

represented as mean +/- SEM, Student’s t-test: ****p<0.0001. Scale bars: 25 m (A-

L); 2 µm (P-S) and 5 µm (O,U).  

Figure 3. Neuritic dystrophy surrounding Aplaques in human neuronal 

transplants in AD mice 

(A-B,D-E) Ultrastructure of dystrophic neurites (DNs, arrowheads) around Aβ plaques 

(asterisks) in human grafts and mouse host tissue in AD mice. (C,F) Ultrastructure of 

axons (red arrowheads) and dendrites (blue arrowheads) in human grafts and mouse 

host tissue in WT mice. (G-N) Heterogeneous content of DNs in human grafts and 

mouse host: accumulations of vesicles (red boxes; G,H), dense bodies (arrowheads; 

I,J); mitochondria (blue boxes; K,L) and neurofilaments (green boxes; M,N). (O,R) 

Ubiquitin+ DNs (red) close to Thioflavin+ A plaques (blue) in GFP+ human grafts 

(green) and mouse host tissue in AD mice 4MPT. (S) Quantification of the 

percentage of Aβ plaques surrounded by ubiquitin+ DNs in mouse host (n=5) and 
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human grafts (n=5) in AD animals 4MPT. Data are represented as mean +/- SEM, 

Student’s t-test: ****p<0.0001. Scale bars: 25 µm (O-R), 5µm (A), 2 µm (B, D-F, J-L, 

N); 1 µm (C, G, I, M) and 500 nm (H). 

Figure 4. Specific accumulation of neuritic/synaptic markers around A 

plaques in human neuronal grafts in AD mice  

 (A-M) Representative images of human clusters in WT and AD mice and AD mouse 

host tissue stained with GFP (green), Thioflavin (blue) and synaptophysin (SYP, red; 

B,D,F) or VGlut1 (red; I,K,M) 4MPT. SYP+ and VGlut1+ accumulations around Aβ 

plaques in GFP+ human clusters in AD mice (arrowhead; D,K). Minor accumulations 

in mouse host tissue in AD mice (arrow; F,M). (G,N) Quantification of the percentage 

of Aβ plaques surrounded by SYP+ or VGlut+ accumulations in mouse host (n=5) and 

human grafts (SYP: n=5, VGlut1: n=4) in AD mice. Data are represented as mean +/- 

SEM, Student’s t-test: **p<0.01; ****p<0.0001. (O-R) Representative images of 

human clusters and mouse host tissue in AD mice stained with GFP (green), 

Thioflavin (blue) and MAP2 (red) 4MPT. GFP+ human clusters show lack of MAP2 

around A plaques (arrowheads), while minor effects were detected in the mouse 

host tissue (arrows). Scale bars: 25 m (A-R).  

Figure 5. Neurodegeneration and neuronal loss in human but not in murine 

transplants in AD mice 

(A-L) Representative images of human grafts (A-F) and mouse host tissue (G-L) in 

WT and AD mice stained with GFP (green), Thioflavin (blue) and the nuclear marker 

TOPRO3 (red) 6MPT. (A-F) Areas devoid of TOPRO3+ cells are evident within the 

human grafts in AD mice (F) together with abundant Aβ plaques within human 

clusters  and in surrounding host tissue (arrowheads and arrows, E). In contrast, 
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homogeneous staining of mouse nuclei is seen in AD mice (L) even in the presence 

of Aβ plaques (arrows, K). Human grafts and mouse host tissue in WT mice show 

homogeneous staining of nuclei (C,I) and no A plaques (B,H). (M) Percentage of 

relative cell density (number of nuclei per area) of mouse host tissue neurons (AD 

n=4 animals; WT n=4 animals), human neurons 2MPT (AD n=4 animals; WT n= 3 

animals), human neurons 6MPT (AD n= 4 animals; WT n= 4 animals) and human 

Tau* neurons 6MPT (AD n= 3 animals; WT n= 3 animals) in AD animals compared to 

the density in WT animals expressed as 100%. Data are represented as mean +/- 

SEM, one way-ANOVA with Bonferroni posttests: **p<0.01, ***p<0.001, ns= non-

significant. (N-Q) Toluidine blue stained semithin sections of human clusters and 

mouse host tissue in WT and AD mice 6MPT. Human clusters in AD mice (O) show 

accumulation of dense Aβ plaques (asterisks), disorganized neuropil texture and 

reduced neuronal density. AD mouse host tissue (Q) show accumulation of dense Aβ 

plaques (asterisks) but no gross changes in neuropil texture or reduced cell density 

compared to WT (P). Arrowheads point to neurons. (R-V) Ultrastructure of grafted 

human and mouse host neurons in WT and AD mice 6MPT. R’, S’ and T’ relate to R, 

S and T. DN: dystrophic neurites. Signs of neurodegeneration consistent with 

necrosis are specifically observed in human neurons grafted in AD mice (S, S’, T, T’). 

Red, blue and green arrowheads point to degenerating mitochondria, vacuolar 

structures and disrupted nuclear membranes, respectively. (W) Quantification of 

neuronal density expressed as the number of neurons per area in mouse host (WT 

n=3, AD n=3) and human grafts (WT n=3, AD n=3) 6MPT. Data are represented as 

mean +/- SEM, two way-ANOVA with Bonferroni posttests: ****p<0.0001; n.s = non-

significant. (X) Quantification of the percentage of dying neurons in mouse host (WT 

n=3, AD n=3) and human grafts (WT n=3, AD n=3) 6MPT. Data are shown as mean 
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+/- SEM, two way-ANOVA with Bonferroni posttests: ****p<0.0001; n.s = non-

significant. Scale bars: 25 m (A-L); 50µm (N-Q); 5µm (R,T,V); 2µm (S,U,R’); 1 µm 

(S’,T’).  

Figure 6. Temporal pattern of 3R and 4R Tau expression in human neurons 

grafted in vivo 

(A-L’) Grafted human neurons (A-B,E-F,I-J) detected with GFP (green) or grafted 

human Tau* neurons (C-D,G-H,K-L) detected with HuNCAM (green), and stained for 

4R Tau (red) after 2,4,and 6MPT. Higher magnification images are shown in A’-L’. 

Arrows show 4R Tau+ human neurons. (M) Quantification of the percentage of 4R 

Tau+ cells in human grafts (n=3 animals 4MPT; n=6 6-8MPT) and human Tau* grafts 

(n=4 animals 4MPT; n=2 6-8MPT). Data are represented as mean +/- SEM, two way-

ANOVA with Bonferroni posttests: **p<0.01, ***p<0.001. (N) Quantification of the 

RNAseq data for 3R/4R Tau ratio in human grafts in young (4-5 MPT) (n=5 WT, 7 

AD) and old (8 MPT) (n=2 WT, 5 AD) animals. Results are shown as mean +/- SEM, 

Student’s t-test: ***p<0.0001. Scale bars: 25 m (A-L’). 

Figure 7. Tau hyperphosphorylation and abnormal Tau conformational changes 

in grafted human neurons 

 (A-R) Immunohistochemistry with AT8 (brown; A-I), or MC1 (brown; J-R) of human 

grafts, human Tau* grafts, mouse host tissue and non-grafted mouse brain tissue in 

WT and AD mice. AT8+  neuronal cell bodies (arrowheads; B,E) and DNs around 

Congo Red+ Aβ deposits (pink, asterisks) (arrowheads; C,F,H,I) in human grafts (B-

C), human Tau* grafts (E-F) and in mouse host tissue (H-I) in AD animals. MC1+  

neuronal cell bodies (arrowheads; K,N) and DNs around Congo Red+ Aβ deposits 

(pink, asterisks) (arrowheads; L,O) are found in human grafts and human Tau* grafts 
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in AD mice but not in mouse host tissue (Q,R). Arrowheads point to soma and DNs+ 

structures. Asterisks mark Congo Red+ A plaques. Counterstaining with hematoxylin 

(blue). (S-T) Percentage of A plaques surrounded by AT8+ and MC1+ DNs in human 

grafts (n=4), human Tau* grafts (n=3) and mouse host tissue (n=3) in AD mice. 

Results are shown as mean +/- SEM, one-way ANOVA with Kruskal-Wallis test, 

****p<0.0001; ns = non-significant. Scale bars: 50µm (A-R). 

Figure 8. Transcriptional changes in human neurons grafted in vivo 

(A) Genes ranked according to the significance of the differential expression of up- 

(purple) and down-regulated (blue) genes for young (4-5MPT) and old (8MPT) 

human grafts. The x-axis shows the enrichment score according to the Gene Set 

Enrichment Analysis (GSEA). Significance of enrichment: ***p<0.001; **p<0.01; 

*p<0.05. (B) Log fold change of differential expression (brown: down- and green: up-

regulation) of a selected set of genes in young and old samples. P-values are 

corrected for multiple testing: ***p<0.001; **p<0.01; *p<0.05. (C) WCGNA co-

expression modules compared to the modules from Zhang et al., 2013. Four extra 

gene sets (prefix: DE) from the most differentially expressed genes (up & down in old 

& young mice) are included. Significance of overlap was determined by a Fisher 

exact test and Benjamini Hochberg multiple testing correction. The plot depicts the 22 

modules (out of a total of 37) that show a significant overlap with the Zhang modules, 

indicating the best matching Zhang module on the right. The bars indicate the 

adjusted p-value. 

  


