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RAbstract

In this study, we investigated gold nanoparticle (AuNP) interactions in blood using thromboelastography as a rapid screening tool to
monitor their influence on blood coagulation. 1.2 nM colloidal AuNPs ranging from 12 to 85 nm have no effect in the blood, however, 5 nM
AuNPs demonstrate pro-thrombogenic concentration dependent effects with a reduction in clot formation. Size effects exhibit a non-linear
trend with 45 and 85 nm particles resulting in a faster pro-thrombotic response. Clot strength decreased with AuNP size with the greatest
reduction with 28 nm particles. We assessed AuNP interactions in the blood focusing on their biological activity. AuNP-RGD possessed pro-
coagulant activities, while PEG-thiol, human fibrinogen and clopidogrel prevented blood clot formation and influenced platelet activity, and
were more efficient when bound to nanocarriers than unbound ligands. Such tests could fill the knowledge gaps in thrombogenicity of NPs
between in vitro test methods and predict in vivo haemocompatibility.
©2017TheAuthor(s). Published byElsevier Inc. This is an open access article under theCCBY license (http://creativecommons.org/licenses/by/4.0/).
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RThe application of nanotechnology in medicine has received

global attention in many important areas ranging from new
diagnostics using image enhancing contrast agents to targeted
delivery and photodynamic therapy.1–3 Gold nanoparticles
(AuNPs) are an important class of material as their unique
physicochemical properties such as the adsorption of near
infrared light releasing thermal energy offers new opportunities
in the treatment of disease.4 Much research has focused on the
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versatility of AuNP chemistry (e.g. wettability, energy, charge),
reactivity, size, shape, and concentration on protein adsorption
and cell behavior.5,6 Exposure of AuNPs to serum or plasma
leads to the formation of soft (sec-min) and hard (h-days) protein
corona to create a conditioned interface at which the cells
respond.7–10 Studies have shown that strong links exist between
nanoparticle (NP)-protein interactions, immunogenicity and
cytotoxicity.11–13 While other nanomaterials have been found
to induce platelet aggregation, alter blood coagulation pathways
and produce unwanted side effects.14–16 Recent strategies
tailored toward surface modification use passivating ligands
such as polyethylene glycol (PEG), peptides, antibodies and
therapeutics to enhance their bioactivity for targeted delivery to
direct cell uptake, improve clearance and minimize accumulation
in the tissues.17 However, there is a real shortage of laboratory
based tests to evaluate NP interactions in the blood, and their
influence on blood coagulation, which is integral to their design,
overall safety, and efficiency en route to the clinic.

AuNP interactions have been studied with components of the
blood, and focus on platelets, coagulation factors and plasma
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1t1:1

AuNP size was compared with published data43 vs. TEM measurements, and
calculations were performed to standardize their molar concentration, C.t1:2

t1:3 Sample
Reported size -
TEM (nm)

Mean diameter -
TEM (nm)

N C (mol/L)

t1:4 I 16.0 12.32 (±1.8) 5.78 × 104 86.5 × 10−9

t1:5 II 24.5 28.64 (±5.5) 7.26 × 105 6.89 × 10−9

t1:6 III 41.0 45.31 (±7.0) 2.87 × 106 1.74 × 10−9

t1:7 IV 71.5 63.25 (±8.6) 7.82 × 106 0.64 × 10−9

t1:8 V 97.5 85.96 (±10.9) 1.96 × 107 0.26 × 10−9

Table 2 t2:1

Highlights AuNP size and ζ potential after incubation for 1 h in PPP. t2:2

t2:3Sample Hydrodynamic diameter (nm) ζ potential (mV)

t2:4Before After 1 h
incubation*

Before After 1 h
incubation* Q1

t2:5I 34.3 (±0.3) 162.4 (±6.7) −39.8 (±0.4) −19.1 (±0.9)
t2:6II 43.6 (±0.1) 110.4 (±4.0) −40.6 (±1.1) −25.3 (±0.3)
t2:7III 54.5 (±0.7) 139.6 (±7.7) −38.4 (±0.9) −29.0 (±0.1)
t2:8IV 73.8 (±3.9) 137.4 (±3.4) −41.2 (±2.0) −20.5 (±0.7)
t2:9V 104.6 (±0.7) 186.6 (±2.0) −34.0 (±0.3) −21.8 (±1.1)
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proteins.18 AuNPs (30 and 50 nm) incubated in blood plasma,
double in size, and increase their surface charge, and have no
effect on platelet aggregation and coagulation tests.19 Surface
curvature influences the amount of protein, and studies exploring
a variety of ligands demonstrate that protein structure, NP
composition, size and chemistry have the greatest influence over
protein corona.10,19–24 Fibrinogen, albumin and γ-globulin have
strong interactions with AuNPs (5-100 nm) causing changes in
protein conformation.10,19 Modification of AuNPs (30 nm) with
PEG indicated that the composition of corona was only slightly
influenced by the total amount of bound protein, which did not
correlate with blood coagulation tests.25 Studies with polypho-
sphate functionalised AuNPs (10-50 nm) show activation of the
intrinsic pathway and cause rapid procoagulant effects by
reducing clotting times.26 AuNPs (13 nm) modified with
sulphonated chitosan, and pyrimidine (10 nm) show prolonged
clotting times, inhibit platelet aggregation, and interfere with
thrombin and fibrin to demonstrate anti-thrombogenicity.27–28

While studies with carboxylated polystyrene NPs show selective
activation of the intrinsic pathway through size dependent effects
(220 nm) and influence enzyme activity.29 The limitations in
many of these studies are similar to those encountered in the
clinic, which rely on plasma coagulation tests. Activated partial
thromboplastin time (aPTT) and prothrombin time (PT) are static
assays that measure both the intrinsic and extrinsic pathways of
the coagulation cascade in isolation, and lack the cellular
components (e.g. platelets) and clotting factors present in whole
blood.30 Prolonged aPTT and PT times are insensitive to small
changes in coagulation, and do not always predict prothrombo-
genic states.30 Platelet aggregation tests may not detect small
changes in the level of activation, hence the need for more
sensitive test methods to monitor NP interactions in the blood.

Hemostasis is a delicate balance between procoagulant,
anti-coagulant and fibrinolytic pathways in response to trauma
to prevent blood loss. Blood coagulation is triggered in response
to injury to release tissue factor or by activation in response to a
foreign material to trigger the extrinsic or intrinsic pathways
resulting in a cascade of enzymatic reactions.16,31–32 Both
pathways converge in to the common pathway through
enzymatic cleavage of prothrombin in to thrombin to activate
the conversion of fibrinogen in to fibrin monomers to form a
mesh network and platelet plug resulting in a stable clot.16,31–32

Surface sensitive and physical techniques are available to study
blood coagulation such as quartz crystal microbalance (QCM) to
measure changes in mass.28 Viscoelastic changes in developing
T
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blood clots can be monitored under low shear stress conditions
using thromboelastography (TEG®) to measure all aspects of
coagulat ion and hemostasis fol lowing therapeutic
intervention.33–35 Recent standardization of TEG® has been
used to determine the thrombogenicity of vascular biomaterials
and nanocomposites, as well as, zinc oxide (70 nm) and silicon
dioxide (232 nm) NPs to highlight procoagulant and
anti-thrombogenic activity.36–38

Currently, there are no studies, which investigate the
influence of AuNPs in citrated whole blood (CWB) when all
of the cellular and plasma components are present despite being
the first nano-bio interface encountered via intravenous routes of
delivery.16 We selected AuNPs as they are already used as
nanomedicines for targeted drug delivery, and in the treatment of
cancer as Au nanoshells.39–40 In this study, we investigate the
effects of AuNP size (10-100 nm) and composition and their
interactions in plasma and CWB using TEG®.41 Our original
hypothesis was that AuNPs would produce size and concentra-
tion dependent effects, as well as, a differential response to each
other. Finally, we assessed the influence of AuNPs with tailored
biological activity, and demonstrate the use of TEG® as a rapid
screening tool to monitor NP blood-interactions under constant
physiological conditions in vitro.
Methods

Preparation of colloidal Au

All reagents were purchased from Sigma–Aldrich UK, unless
otherwise specified. Sterile de-ionized water (dH2O) was
purchased from Baxter Healthcare UK. Five colloidal Au sols
(I-V) were prepared using methods described by Turkevich and
Frens to produce AuNPs ranging from 16 to 100 nm in diameter
by reduction of Au (III) chloride trihydrate (HAuCl4.3H2O)
using sodium citrate (Na3C6H5O7) as the reductant as shown in
(Eq. (1))42,43:

Auþ3
aqð Þ þ citrate ions C3H5OCOO3

3‐
� �

aqð Þ→Au0 sð Þ ð1Þ

0.10 g HAuCl4.3H2O was dissolved in 1 L dH2O to form a
0.25 mM stock, and 10 g Na3C6H5O7 was prepared in 1 L dH2O
as the reducing agent. AuNP synthesis was conducted in a
laminar flow hood by transferring 50 ml of 0.25 mM stock to a
250 ml conical flask, which was heated to 100 °C on a hot plate
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Figure 1. (A-C). Image of colloidal Au samples (colloidal samples I-V) after reduction with sodium citrate. Stability is achieved through electrostatic
stabilization (B) with citrate ions (C3H5OCOO3

3−), and the colors indicate different sized AuNPs with unique LSPR (C) in the UV–vis spectra for each Au sol.
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was added to the stock solution, which changed color after 25 s
from blue to orange followed by red (sample I-III) and blue
to violet (IV-V) indicative of particle nucleation and growth
(Figure 1, A-B).43 All samples were heated for 5 min after the
reaction to allow for complete reduction of HAuCl4.3H2O, and
allowed to cool before being stored at 4 °C.

Characterization of AuNPs

UV–visible spectroscopy
Au sols were characterized through UV–vis spectroscopy

(Jasco, UK model no. V-630) to obtain spectra of localized
surface plasmon resonance (LSPR) generated by AuNPs
(Figure 1, C). Quartz crystal cuvettes with a path length of 10
mm were used to obtain adsorption spectra using 2 ml 1% wt.
sodium citrate as a baseline measurement. 2 ml Au sol was
analyzed using scan speeds of 400 nm/min to record wavelengths
over 1100 to 200 nm, and was used as a quality control test to
ensure consistency (n = 3).

Transmission electron microscopy (TEM) analysis of AuNPs
Copper grids (Gilder Grids, UK, 300 mesh) were prepared by

placing 100 μl of 1.2 nM Au sol on to the surface, and allowing
to settle for 2 min before wicking off excess liquid with filter
paper. The grids were allowed to air dry before analysis using an
FEI/Phillips CM120 TEM using energy-dispersive X-ray (EDX)
spectroscopy and image capturing software (Advanced Micros-
copy Techniques, USA) in random fields of view at ×58,000
magnification (n = 60).

Optimisation of AuNP concentration
Equal concentrations of colloidal Au were achieved through

calculation and treatment steps using reported methods.44

Briefly, the average number of Au atoms (N) in each spherical
NP was estimated using (Eq. (2)), where D is the average core
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Figure 2. (A-B). TEM images of AuNPs (colloidal samples I-V) and EDX spectra (VI) show their elemental composition. AuNP size (B) was compared with
published data43 vs. TEM measurements, and calculations were performed to standardize their molar concentration, C.
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diameter, ρ is the density (19.3 g/cm3) and M is the atomic
weight of Au (197 g/mol) assuming a uniform spherical shape
and fcc crystal structure.

N ¼ π
6
ρ
M

D3 ¼ 30:89602 D3 ð2Þ

The molar concentration (C) of each Au sol was calculated
using (Eq. (3)) by dividing the total number of Au atoms (Ntotal)
in HAuCl4 in solution over the mean number of Au atoms per NP
(N), where V is the volume of the reaction solution (L) and NA is
Avogadro's number.

C ¼ Ntotal

NVNA
ð3Þ

It is assumed that the reduction of Au+3(aq) to Au
0
(s) in Eq. (1)

was 100% efficient. Stock solutions of 20 nM AuNPs were
prepared by serial dilution of sample I, and centrifugation of
samples II to V.45 Briefly, AuNPs were transferred in to a 2 ml
low binding eppendorf tube (Corning Inc., USA), and centri-
fuged for 20 min. A 5415R micro-centrifuge (Eppendorf,
Germany) was used for samples I-III (e.g. 7500, 6500, 3000 g)
and Mistral 3000i centrifuge (MSE, UK) for samples IV-V,
respectively (e.g. 1500 g, 1000 g). The supernatant was carefully
removed and centrifuged again, and the supernatant was
discarded, and recombined with the original sample. The
combined sample was centrifuged again, the supernatant
discarded, and the AuNP pellet was dispersed by vortex in the
desired volume of dH2O to produce a 20 nM stock. After a
further centrifugation/resuspension step, the Au sol was
measured by UV–vis and DLS to confirm that centrifugation
had not aggregated the particles, and was similar to newly
synthesized AuNPs.
T
E
D
 

Interactions of AuNPs in CWB

Blood collection and isolation of platelets and plasma
Ethical approval was granted (9215/001) in compliance with

the Human Tissue Act, 2004. Whole blood was collected from
healthy consenting volunteers using 2.7 ml blood collection
tubes (BD Vacutainer) containing 0.109 M sodium citrate (3.8%
w/v) as anti-coagulant. CWB was processed immediately after
collection. To obtain platelet rich plasma (PRP), a 50 ml
centrifuge tube containing 20 ml Lymphoprep™ (Axis-Shield,
UK) and 20 ml CWB (1:1 ratio) was transferred in to a centrifuge
tube without agitation or mixing (Figure 3, A). The tube was
centrifuged at 200 g for 20 min at 20 °C. Platelets were collected
from above the buffy layer and placed in to a sterile centrifuge
tube followed by a hemocytometer count. The plasma fraction
was collected and centrifuged again at 200 g for 20 min to obtain
platelet poor plasma (PPP), which was carefully transferred in to
sterile centrifuge tube prior to use.

Evaluation of AuNP interactions in PPP
A Zetasizer Nano-ZS (Malvern Ltd., UK) was used to

measure dynamic light scattering (DLS) and zeta (ζ) potentials of
AuNPs to determine their size and charge before and after
incubation in PPP. 1 ml Au sol at 20 nM was incubated with 1 ml
PPP in a sterile eppendorf tube for 1 h at 37 °C in 5% CO2/95%
humidified air. After 1 h the samples were centrifuged as
described previously, and the supernatant discarded and 1 ml
dH2O was added to redisperse AuNPs by vortexing, and was
repeated three times to remove excess PPP. Disposable capillary
cells were used for DLS and ζ measurements, and were rinsed
with dH2O before introducing 500 μl AuNPs. The temperature
was set to 25 °C, and allowed to equilibrate for 120 s. An
average of three samples was used for DLS after 10-15 runs per
cycle, and 20 runs per cycle to calculate ζ potentials using
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Figure 3. (A-C). Image (A) presents the isolation of PRP and PPP after centrifugation of CWB. HFib [μg/ml] with AuNPs (colloidal samples I-V) was
determined through ELISA (B), DLS and ELS (C) highlight their size and ζ potential after incubation for 1 h in PPP. * = P b 0.05.
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Smoluchowski's equation. An ELISA assay kit was used to
quantify human fibrinogen (HFib) in the presence of AuNPs, and
was used in accordance with the manufacturer's instructions
(ICL Labs, USA, cat no. E-80FIB). Briefly, a standard
calibration curve of HFib (400 ng/ml stock) was prepared in
sample diluent, and 100 μl of standard was transferred in to a 96
well plate (n = 4). 166 μl AuNPs were added to 500 μl of PPP
(0.66 nM) and incubated at 37 °C for 1 h. Each AuNP-PPP
sample was centrifuged and resuspended in dH2O and diluted
1:200 followed by incubation for 1 h in the microtitre plate. Each
well was washed three times, and 100 μl anti-HFib-HRP was
allowed to incubate for 30 min followed by further wash steps,
and 100 μl TMB substrate solution was added and incubated in
the dark for 10 min. 100 μl stop solution was added, and the
optical density (OD) at 450 nm was measured using an Anthos
2010 (Biochrom Ltd., UK) plate reader.

Platelet aggregometry with AuNPs
Platelet aggregometry was performed using a platelet

aggregation profiler, PAP-8E (Bio/Data Corporation, USA),
and calibrated with PPP and PRP (200 × 106 platelets/ml) at
37 °C. Cuvettes with magnetic stirrers were prepared with 225 μl
PRP and 25 μl AuNPs (2 nM), and 25 μl adenosine diphosphate
(2 μM ADP) as a control. Each test was allowed to run for 10
min. Platelet morphology was also evaluated in the presence of
AuNPs and after surface modification (see 2.3.5) using scanning
electron microscopy, and is presented in supplementary
information (SI 1.1, Figure S1).

Thromboelastography (TEG®) and thrombin generation (TG)
A TEG® hemostasis analyzer measured viscoelastic changes

of developing blood clots under low shear stress conditions to
monitor blood coagulation and hemostasis (Figure 5, A-D). A
TEG® 5000 analyzer (Haemonetics Corp, USA) was used to
study CWB-AuNP interactions at 1.2 and 5 nM concentrations
using disposable polystyrene TEG® cups and pins using defined
parameters described in the supplementary section (SI 1.2
Table S1). Before each test, the analyzer was calibrated
E
D
 P

R

according to manufacturer's instructions. The cups were placed
in the TEG® analyzer to equilibrate at 37 °C before
experimentation. Colloidal AuNPs and 0.2 M CaCl2 was
incubated at 37 °C prior to testing. 20 and 85 μl of a 20 nM
stock AuNP solution was added to TEG® cups followed by the
addition of 320 and 255 μl of blood to obtain 1.2 and 5 nM
concentrations. The solution was gently mixed in the TEG® cups
followed by the addition of 20 μl CaCl2 to initiate blood
coagulation (final vol. 360 μl). All tests were measured
immediately, and CWB in the absence of AuNPs was used as
a control (n = 3 per condition). Further tests with AuNP (sample
I = 12 nm particles) stock solutions were performed to monitor
the influence of residual ions during their preparation and after
resuspension in dH2O. 20 μl supernatant and 0.25 nM HAuCl4 was
added to TEG® cups followed by CWB andCaCl2 to understand the
influence on blood coagulation (SI 1.3, Figure S2).
Surface modification of AuNPs
20 nM AuNPs (sample I) stock solutions was used to modify

NPs with polyethylene glycol methyl ether thiol (PEG-thiol, Mw
6000) and 3-mercaptopropionic acid (3-MPA) as described in
reported methods.46 PEG-thiol (5 mM, 100 μl) and 3-MPA
(5 mM, 900 μl) were prepared in sterile 1 ml dH2O to generate
mixed ligands. The solution was stirred for 30s and allowed to
react overnight (18 h) at 4 °C. Each sample were centrifuged at
4000 g for 30 min to remove excess PEG-thiol and re-suspended
in 1 ml dH2O prior to experimentation. Bi-ligand modification
was selected due to their stability in a range of pH and salt
solutions, and free carboxylic groups for conjugation studies and
future work. 10 μl HFib (10 mg/ml) was reacted with 990 μl
AuNPs to yield a 10 μg/ml AuNP-HFib dispersion. Clopidogrel
is a known anti-platelet agent and inhibitor of adenosine
diphosphate (ADP) chemoreceptors on the platelet surface to
prevent blood from clotting. 10 μl clopidogrel (5 mg/ml) was
added to 990 μl AuNPs to yield a 5 μg/ml AuNP-clopidogrel
dispersion, and is effective in the microgram concentration
range. Fibronectin (Fn) is a glycoprotein present in the blood
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R(~0.4 mg/ml), and is composed of multiple L-arginine-

glycine-L-aspartic acid (RGD) tripeptide domains, which bind
to integrin receptors on the cell membrane to direct cell fate, e.g.
adhesion, migration and differentiation.47 10 μl RGD (1 mg/ml)
was added to 990 μl AuNPs to yield a 1 μg/ml AuNP-RGD
dispersion. Each AuNP dispersion was sonicated for 30 s, and
incubated for 1 h (except PEG-thiol ~24 h) followed by
centrifugation to remove any unbound material, and
re-dispersed in 1 ml dH2O. UV–vis measured peak LSPR,
which indicated that the modification had been achieved prior to
testing, and was used for TEG® as described previously. Surface
modified AuNPs (1.2 nM) were compared with stock solutions
of free ligands comprised of PEG-thiol, HFib, clopodigrel and
RGD tripeptides. 20 μl of each solution was added to TEG® cups
followed by the addition of 320 μl of CWB and 20 μl CaCl2 and
compared with AuNPs to understand their influence in the blood
and role as a surface coating on the NP carrier (SI 1.4, Figure S3).

Statistical analysis

Statistical analysis was performed using mean values,
standard deviations for colloidal AuNPs (I-V) for particle
characterization, plasma incubation, platelet aggregometry and
TEG® analysis. One-way ANOVA tests were carried out in
conjunction with Tukey and Duncan Post-Hoc tests using IBM
SPSS Statistics v.24 software (Statistical Analysis System,
Chicago, Illinois, USA). *indicates P values of b0.05 were
considered to be significant when colloidal AuNPs were
compared with controls.
Results

Characterization of AuNPs

Synthesis of colloidal Au produced stable sols identified by
their unique color arising from different sized NPs (Figure 1,
A-C). UV–vis spectra revealed strong signatures indicative of
LSPR at 521 nm (I), 528 nm (II), 531 nm (III), 541 nm (IV) and
553 nm (V), which indicate the adsorption of light in the
blue-green region of the spectrum. TEM analysis revealed the
shape and size of AuNPs. Generally, spherical AuNPs became
more irregular, and oval shaped with increasing size. High
resolution images show spherical AuNPs in sample I with a
uniform size of 12 nm, and sample II with a bimodal distribution
and size of 28 nm (Figure 2, A). Sample III was mostly spherical
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with few irregularly shaped NPs, which had a uniform
distribution of 45 nm, and sample IV contained oval and rod
shaped NPs with a size of 63 nm. Sample V had fewer spherical
NPs, and a uniform distribution at 85 nm in diameter. All
samples, matched their predicted size and within the limit of
error. EDX spectra confirmed that NP composition was derived
from Au (Figure 2, AVI). Figure 2, B, provides a summary of
TEM data used to calculate the number of atoms (N) and molar
concentration (C) to standardize each Au sol (Figure 2, B).
AuNP interactions in PPP

We studied AuNP interactions after isolation of PRP and PPP
from CWB (Figure 3, A). AuNPs (I-V) were incubated in PPP
for 1 h followed by ELISA to determine the level of HFib
(Figure 3, B). Generally, the level of HFib bound to AuNPs
almost doubled from 600 to 1000 μg/ml showing elevated levels
when compared with plasma controls. However, the slight increase
in HFib adsorption with AuNP size from 1000 to 1250 μg/ml was
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and 5 nM concentrations. * = P b 0.05.
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significantly with an increase in hydrodynamic size after incubation
in PPP, doubling in size (Figure 3, C) or more, and their mean
intensity and size distributions are presented in the supplementary
information (SI 1.5, Figure S4). ζ potentials calculate the
electrophorectic mobility of AuNPs as a streaming potential
surrounding the electric double layer by oscillating electric fields.
Mean ζ potentials changed significantly before (−39 ± 3 mV) and
after incubation (−23 ± 4 mV) with an increase in NP size, and
decrease in negative charge. Sample I showed the largest change in
diameterwith almost a 5-fold increase from34 to 162 nm, and a 50%
reduction in ζ potential from −39 to −19 mV. Samples II-IV all
doubled in size ormorewhilst ζ potentials show a similar decrease in
negativity. Sample V showed the smallest increase in diameter and
decrease in negativity.

AuNP interactions in PRP

The principle of platelet aggregometry is to measure the extent
of aggregation using agonists (platelet activators), e.g. ADP.
Aggregation is recorded as a function of % light transmission
through changes in OD (Figure 4, A). In Figure 4, B, ADP
initiated a rapid response causing platelets to aggregate after 1 min
with 60% aggregation at 2 min, and 70% after 10 min
(Figure 4, B). The level of platelet aggregation (%) in the
presence of AuNPs was low in each of the samples tested as
follows: (I) 12%, (II) 13%, (III) 9%, (IV) 14%, (V) 11% after
10min with some aggregation due to shear forces generated by the
magnetic beads. We compared aggregometry data with platelet
morphology using SEM in the presence of AuNPs and after
modification with PEG-thiol, and RGD along with a strong
agonist control, collagen type I (SI 1.1, Figure S1). This work
suggests that platelet activation and aggregation occurs via surface
bound ligands, and could link platelet aggregometry to TEG® data
and warrants future study.

TEG® to monitor blood-AuNP interactions

TEG® provided information on blood coagulation kinetics
using a small amount of blood placed inside a cup to monitor clot
formation (Figure 5, A-D). We studied coagulation in the
presence of AuNPs obtained in all of the colloidal samples (I-V)
at concentrations of 1.2 and 5 nM, which had the same size and
charge characteristics as described earlier to measure their
influence on clot initiation (R), clot build up and kinetics
(α-angle°) and overall clot strength (MA). Analysis of blood
with 1.2 nM AuNPs shows no statistical significance in any of
the parameters tested (Figure 6, A-C). Studies with 5 nM AuNPs
show a significant decrease in R time in samples III and V
(7.8 ± 0.3 min) when compared with blood without NPs
(12.5 ± 1 min) indicating a faster rate of clot formation and
prothrombotic state (Figure 6, D-F). No difference in α-angle
was apparent. There was a significant reduction in MA in
samples II (44 ± 2 mm), III (48 ± 1.3 mm) and IV (49 ±
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clear trend in relation to AuNP size, but a concentration
dependent effect from 1.2 to 5 nM. TEG® parameters also
provided data on thrombus generation (TG), maximum rate
(MRTG), and time to reach the maximum rate of TG (TMRTG),
which correlates with thrombin-anti-thrombin complex (TAT)
used in thrombin generation assay, which is described in detail in
the supplementary sections (SI 1.6, Table S2).48

Surface modification of AuNPs

We selected the lower concentration of 1.2 nM AuNPs to
study the influence of surface modification using sample I
(AuNP I) comprised of 12 nm particles to investigate their
interactions with surface bound ligands in CWB (Figure 7, A-G).
Each ligand was selected on the basis of bioactivity as follows; 1)
to prevent protein adsorption (PEG-thiol), 2) pre-condition the
corona (HFib), 3) immobilize platelet inhibitors (clopidogrel),
and 4) immobilize activators of platelet function (RGD).
Analysis of CWB and untreated (bare) AuNPs before and after
modification with PEG, HFIB, and Clop show no difference in R
time values. However, blood containing AuNP-RGD presents
a significant decrease in R time (8.25 ± 0.25 min) when
compared with untreated AuNPs (12 ± 0.7 min) indicating a
faster, prothrombotic response. A reduction in clot build up
and kinetics was apparent with AuNP-PEG (26 ± 0.5°),
AuNP-HFib (24 ± 0.75°), and AuNP-Clop (22 ± 1°) when
compared with untreated AuNPs (33 ± 1°). The same trends
were apparent in overall MA compared with AuNP-PEG
(53 ± 0.4 mm), AuNP-HFib (44 ± 0.6 mm), and AuNP-Clop
(45 ± 1.6 mm) when compared with untreated AuNPs (59 ±
0.6 mm). Their influence on MRTG, TMRTG and TG, are
described in detail in the supplementary sections (SI 1.6,
Table S3).
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Discussion

We synthesized a range of AuNPs with varying size to study
their interactions in CWB. UV/vis spectroscopy and TEM was
used to analyze their LSPR, core diameter, shape and
composition, which confirmed that smaller NPs (I-III) were
spherical and became more irregular with increasing size
(IV-V).43 A two-step seed mediated approach can be used to
increase their size range and warrants future study. AuNPs
doubled (or more) in size when incubated in plasma and DLS
differed from TEM as size can be overestimated depending on
shape distribution and Brownian motion. Moreover, smaller NPs
experience greater changes in hydrodynamic diameter with the
formation of protein corona.10,49 ζ measurements of untreated
AuNPs show negative potentials due to charge stabilization with
citrate ions (C3H5OCOO3

3−). After incubation, a reduction in ζ
was apparent due to the effects of protein adsorption and
screening of the charge. Previous studies report that HFib is
abundant in the corona of AuNPs, and binds through
electrostatics or thiol (−SH) groups via cysteine resulting in
Au-S bond formation.50–51 We quantified the level of HFib with
AuNPs, and found that the concentration almost doubled
indicating a very strong level of interaction. Platelet aggregation
tests show little change in the presence of AuNPs after 10 min
similar to reported data.16,19 Recently, AuNPs have been shown
to have proaggregatory effects after activation of platelets with
ADP, and show size dependent reactions with 20 nm particles
having the greatest influence on platelet factor 4 release.52

Activated platelets bind to fibrinogen via αIIbβ3 integrin
receptors and cleavage by thrombin in to α or β chain
fibrinopeptides self-assemble in to a fibrin network resulting in
a platelet plug.53–54 Moreover, since AuNPs show little
interaction with inactivate platelets, the level of pre-activation
by NPs is an important parameter that warrants further study.

TEG® was used to study the influence of AuNPs in the blood
and sodium citrate is a known anticoagulant, which chelates
calcium ions (Ca2+) to disrupt clotting by inactivating co-factors
and platelets.41 Restoration of hemostasis is achieved by adding
CaCl2 (Ca

2+) to activate blood coagulation. TEG® studies with
1.2 nM AuNPs had little influence on blood coagulation kinetics.
However, large differences were apparent at higher concentra-
tions with a faster R time values from 12 to 15 min to 8-9 min for
1.2 nM and 5 nM, respectively. R time is a physical
representation of standard clotting studies, and the time taken
for the clot to span from the cup edge to the pin. Both samples III
(45 nm) and V (85 nm) had the greatest influence on R time (7.8
min), and α-angle (36.5°) resulting in a prothrombotic response,
and faster rate of clot formation measured by the speed of fibrin
build-up and extent of cross-linking. It is known that HFib
undergoes self-assembly on flat Au surfaces to form
nanofibrils.54 When bound to AuNPs, conformational changes
could disrupt the trinodular structure of HFib (9 × 47.5 × 6 nm),
which has similar dimensions to NPs. This could attract
coagulation factors to the surface by exposing binding sites or
epitopes to enhance enzyme activity, and warrants further
investigation. MA is a measure of fibrin and platelet bonding via
αIIbβ3 receptors and represents the total strength of the fibrin
clot, and correlates with platelet function. Generally, clot
T
E
D
 P

R
O

O
F

strength decreased significantly in the presence of AuNPs, and
the greatest reduction was apparent in sample II (28 nm), III
(45 nm) and IV (63 nm). Perhaps AuNPs bind greater amounts of
HFib with a strong affinity due to the increased surface area
causing aggregation of AuNPs, which could hinder thrombin
activity, and reduce the level of fibrin available for cross-linking
reactions to reduce platelet activity resulting in a weaker clot.
Moreover, thrombus generation (TG) was significantly reduced,
which may account for weaker clot formation. More studies are
needed to examine the procoagulant effects of AuNPs on enzyme
activity, fibrin assembly and clot stability, which will influence
fibrinolysis impacting on cell uptake, clearance and accumula-
tion in the tissues.55–56

We modified AuNPs to tailor their bioactivity as an example
of targeted and site specific delivery to study the influence of
non-specific protein adsorption (PEG-thiol), protein corona
(HFib), and inhibition (clopidogrel) or activation (RGD) of
platelet function. AuNP-PEG had no effect on R time, but
reduced clot formation (α-angle°) and strength (MA). It is known
that PEG increases their circulation lifetime in the blood when
used in combination with nanocarriers or drugs. AuNP-PEG has
been shown to slightly influence the amount of bound proteins,
and some level of binding has been found to be essential to direct
cell uptake as a prerequisite for specific targeting.25,56

AuNP-HFib had little influence on R values, but severely
disrupted clot formation (α-angle°) and strength (MA), similar to
that seen previously, indicating that HFib bound to AuNPs plays
a key role in the prevention of fibrin build-up, polymerization
and cross-linking and adhesion of platelets to fibrin. Similarly,
AuNP-Clop impaired blood clot formation and strength as
clopidogrel is a known antiplatelet agent and prodrug, which
inhibits ADP receptors on platelets, and is used to inhibit blood
clotting and prevent stent-mediated thrombosis.57 AuNP-RGD
was found to have prothrombotic effects, which have signifi-
cantly faster R times with no effect on clot formation and
strength. RGD is active ligand for adhesive matrix proteins such
as HFib and Fn, which bind to αIIbβ3 receptors on activated
platelets, which are essential for aggregation.

Our results demonstrate that TEG® is well suited to study
AuNP interactions in CWB, and gives dynamic information on
blood coagulation in vitro. When used as a rapid screening tool
TEG® offers a detailed analysis of thrombogenicity presenting
an ideal platform to select test candidates (e.g. charge and
bioactivity) and optimal formulations to screen their safety and
efficacy in human blood, and can potentially replace the need for
non-essential animal tests. TEG® is already used in the clinic to
determine anticoagulant and procoagulant states and deficiencies
in fibrinogen and platelet function. Such tests can fill the
knowledge gaps between in vitro test methodology and in vivo
performance to produce data, which is predictive of the clinical
situation.36 Much effort is needed to standardize TEG® with
other sensitive methods to understand how NPs effect the level of
activation of co-factors and platelets, which would represent a
significant breakthrough in understanding hematological events
at the nano-bio interface. For example, specific targeting of the
coagulation pathways, e.g. factors XI or VII could lead to new
therapies for coagulation disorders, e.g. treatment of cardiovas-
cular disease, hemophilia or blood cancers using nano-drugs or
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screening new tools for nano-surgery and develop haemostatic
agents or improve diagnostic tests with enhanced sensitivity.

In summary, we characterized AuNPs to study their
interactions in plasma and in human CWB using TEG® and
demonstrate prothrombogenic effects, and reduction in R values
(time until initial clot formation) in a concentration dependent
manner. Size effects exhibit a non-linear trend with 45 and 85 nm
sized particles resulting in a faster prothrombotic response. Clot
strength decreased significantly with NP size the greatest
reduction being with 28 nm particles. We investigated tailored
surface modification of AuNPs in the blood further to focus on
their biological activity. AuNP-RGD possessed procoagulant
activity, while PEG-thiol, HFib and clopidogrel influenced clot
formation, fibrin build-up and platelet activity. Such tests can be
used to fill the knowledge gaps in thrombogenicity, and fully
optimize new nanoformulations in vitro to predict in vivo
haemocompatibility.
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