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Abstract  

The control and inspection operations within the context of safety and quality 

assessment of bulk foods and feeds are not only of particular importance, but are also 

demanding challenges, given the complexity of food/feed production systems and the 

variability of product properties. Existing methodologies have a variety of limitations, 

such as high costs of implementation per sample or shortcomings in early detection of 

potential threats for human/animal health or quality deviations. Therefore, new 
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proposals are required for the analysis of raw materials in situ in a more efficient and 

cost-effective manner. For this purpose, a pilot laboratory study was performed on a set 

of bulk lots of animal by-product protein meals to introduce and test an approach based 

on Near Infrared Spectroscopy (NIRS) and geostatistical analysis. Spectral data, 

provided by a fiber optic probe connected to a FT-NIR spectrometer, were used to 

predict moisture and crude protein content at each sampling point. Variographic 

analysis was carried out for spatial structure characterization, while ordinary kriging 

achieved continuous maps for those parameters. The results indicated that the 

methodology could be a first approximation to an approach that, properly 

complemented with the Theory of Sampling and supported by experimental validation 

in real-life conditions, would enhance efficiency and the decision making process 

regarding safety and adulteration issues. 

Keywords: NIRS; Geostatistics; kriging; in situ analysis; real-time control; mapping of 

analytes. 

 

 

Introduction 



Quality and safety control of foods and feed before they enter the marketplace is a 

crucial target for all the stakeholders involved (manufacturers, regulatory bodies and 

agencies, business operators, organizations, etc.). Consequently, establishing proper 

surveillance plans and monitoring programs across all stages of the production chain 

becomes a key pillar for ensuring regulatory enforcement and compliance1. In a 

practical sense, guidelines and standards proposed by international organizations (e.g. 

ISO, FAO, CEN, ISTA) have tackled this goal2. However, good practice codes and 

quality assurance systems are also needed by the agro-food industry, where traceability 

and quality control of both raw materials and final product are determining factors.  

All this poses many challenges of different nature and scope, for instance, logistical, 

operational and methodological problems. Of particular importance and difficulty is the 

upstream part of the supply chain, where complete assessment of incoming bulk raw 

materials is critical for their correct characterization. In this case, normal practice is to 

perform sampling and analysis as two separate phases. While the former is carried out 

in product reception or storage areas, the latter generally occurs in a laboratory 

environment. The control of bulk products has traditionally been governed, however, by 

an analytical view, which means that the role of sampling has often not been given 

enough attention. Indeed, sampling errors typically contribute most to the measurement 

uncertainty, amounting to 10-100 times the analytical errors3.  



The Theory of Sampling (TOS) provides definitions and fundamental principles, 

classified according to the spatial nature of the lot (e.g. 0-D –batch sampling, or 1-D lots 

–process sampling), for designing representative sampling processes and characterizing 

and tackling material heterogeneity4. The TOS stipulates a systematization of the total 

sampling errors (TSE) derived from every stage in a sampling procedure. For 0-D lots, 

they comprise a set of five errors, including both correct sampling errors or errors 

associated with the material alone (the Fundamental Sampling Error – FSE and the 

Grouping and Segregation Error –GSE) and incorrect sampling errors or errors 

associated with the sampling process (the Increment Delimitation Error – IDE, the 

Increment Extraction Error – IEE and the Increment Preparation Error – IPE)5,6. Within 

the TOS framework it is possible to control the systematic (bias) and the random parts 

of the sampling error, assuring an accurate (unbiased) and reproducible (precise) 

sampling process and, consequently obtain a representative sample7. 

TOS-compliant standards are already available and systematic approaches are outlined 

in the literature8,9. They address methods for eliminating or minimizing as many 

sampling errors as possible. Moreover, a set of criteria and specifications are described 

in order for practical sampling to be representative. TOS states the importance of 

compositing several increments from the lot, which demands a statistical selection 

process that must not compromise the representativity of the mass-reduced sample for 

analysis. Both selection and mass reduction processes are critical, and TOS establishes 



techniques and methods regarding these two features9,10. Nevertheless, under real 

conditions, restrictions and nonstatistical issues (primarily, economical and practical 

considerations) dominate most of the current sampling standards and protocol designs, 

where sampling is also commonly considered as a simple process of material collection. 

The risks of failing to correctly select the final analytical aliquot are, however, decisive. 

If the increments extracted do not truly represent the original lot, decisions about the lot 

might be incorrect, regardless of the accuracy of the analytical methods used11. 

Alternative approaches to grab sampling and mass reduction methods are needed, and 

new schemes within the TOS context addressing the existing constraints of sampling 

and analysis operations are also essential. These should provide alternatives to 

overcome drawbacks such as the highly expensive and time-consuming implementation 

of sampling or limitations on the ability to increase the sampling volume. In addition, 

the existence of so many steps in the field-to-aliquot pathway and the fact that analytical 

results are achieved later in time and distant in space from the source (usually in the 

laboratory) are preventing current methods from providing in situ inspection, 

management and decision-making solutions. In view of the preceding, the control needs 

for evaluating bulk raw materials and feedstuffs more efficiently are not currently being 

met. Accordingly, the proposal and assessment of fast and reliable tools for this 

evaluation is imperative12.    



Extensive research over recent years on near infrared (NIR) spectroscopy has shown the 

potential of this technology for carrying out rapid and reliable analysis in a multitude of 

types of foods and feeds, including heterogeneous materials13,14. However, far fewer 

papers have addressed the NIRS analysis of bulk products with the aim of improving 

existing sampling plans, even though its integration into these plans as an analytical tool 

would bring multiple benefits. To begin with, it would enable qualitative and 

quantitative non-destructive analysis, dispensing with the need for extracting samples 

from the inspection batch. Near infrared spectroscopy is characterized by requiring only 

a few seconds to perform each measurement, which would enhance productivity, 

increase the sampling intensity (allowing a much closer approximation to the target 

decision unit), and encourage product evaluation in a more cost-effective way. These 

features contribute to making this technology ideal for providing in situ support to 

counter, for example, product misbranding, adulteration or safety issues, which are 

crucial to safeguarding the production chain from inappropriate or unsafe raw materials.    

Additionally, this methodology can produce a result at each measuring point, allowing 

this extra spatial information to be fully exploited by tools dealing with spatial patterns 

of variables. In this context, Geostatistics, a branch of statistics specializing in the 

analysis and interpretation of spatial continuous data, encompasses a set of useful 

techniques for recognising and modelling the spatial autocorrelation of the sampled 

variable. There are many published sources for case studies using geostatistics, most of 



them in disciplines related to earth sciences, such as hydrogeology, soil science, 

geography, ecology or climatology15–19, but applications to bulk food/feed products, can 

hardly be found. Nevertheless, geostatistics offers in this context the opportunity to go 

further in the development and optimization of procedures for estimating the spatial 

variation of properties of interest, using as inputs the existing observations, in order to 

make predictions at unsampled points. NIRS plus geostatistics leads to the possibility of 

mapping the spatial distribution of attributes under study, for an efficient evaluation of 

bulk lots of raw materials. This could be an important tool for planning sampling 

strategies and making real-time decisions regarding quality and safety issues.  

The aim of this study was to analyse, on a laboratory scale, the spatial behaviour and 

variability of key analytical constituents (moisture and protein) in feed products, 

specifically in bulk lots of animal by-product protein (ABPs) meals. For that purpose, a 

methodology combining NIRS and geostatistical analysis is proposed. 

 

Materials and Methods 

Data generation 

This pilot study intends to simulate in a laboratory environment the methodology to be 

implemented for the control of truckloads of bulk lots of ABPs. To this end, two 



different case studies were carried out. The first study involved original lots coming 

from the rendering plant, while the second study assessed two types of adulteration.  

Case study 1 

Data were collected from a set of 15 batches of ABPs of diverse species composition 

(Table 1). Bulk lots were placed into a glass container (0.5 m in length, 0.35 m in width 

and 0.3 m in height) for analysis, where the top surface in each test reached a height of 

0.15 m approximately. The measurements were performed in two horizontal planes, 

parallel to the top surface, at a depth of 0.04 (layer A) and 0.12 m (layer B). A 

methacrylate sheet, designed with a grid of 140 holes (10 x 14), was placed on the 

product surface to precisely position the probe for analysis at the insertion points 

(Figure 1a). At each point of the grid, the probe was first inserted to reach the layer A 

where a measurement was taken; then it was introduced deeper to obtain a measurement 

at layer B. 

Table 1. Species composition percentages for each ABPs batch. 

LOT Species Percentages Reference Chemistry (%) 

Poultry Pig Cattle Sheep Dry 

matter 
Crude Protein (on dry 

matter basis) 

1 100    88.66 72.11 

2 58 42   88.40 71.45 

3 64 36   89.01 75.05 

4 100    88.74 74.75 

5 50 50   86.73 77.08 

6 100    88.60 70.14 

7 100    88.23 72.55 

8 100    90.19 69.77 



9 100    89.89 71.16 

10 23 60 11 6 90.44 61.64 

11 58 42   89.79 73.31 

12 100    90.20 70.98 

13 100    89.20 71.27 

14 100    89.72 70.62 

15 100    89.54 70.52 

 

[insert Figure 1] 

Case study 2 

Different conditions were evaluated in ABPs batches through a new set of tests, in 

which two sort of adulterations were simulated. First, contamination by moisture was 

induced in two lots (1 and 7): 500 ml of water was poured one day prior to analysis over 

each corner of the glass container containing lot 7 (Figure 1b), while lot 1 was tested in 

the same way but using 100 ml of water in each corner and 50 ml in the middle (Figure 

1c); as in study 1, layers A and B were measured in both cases. Two further tests 

addressed the problem of detecting unacceptable heterogeneity due to either poor 

mixing of products or an irregular composition in incoming bulk lots of ABPs. These 

consisted of making two different types of mixtures between lots 1 and 5. In the first 

case, an accumulation of sample from lot 1 was located at one corner of the container 

(Figure 1d), while in the second test, two opposite corners were filled with sample from 

lot 1 (Figure 1e). In these tests measurements were taken only for layer A. 

NIRS Analysis 



A Matrix-F FT-NIR instrument (Bruker Optics, Germany) was used to measure 

reflectance spectra in ABPs lots (operating range 834.2-2502.4 nm). The equipment was 

interfaced to the Turbido reflection probe (Solvias AG, Switzerland) (Figure 1a), which 

consists of a stainless steel body with an insertable length of 300 mm and an outer 

diameter of 12 mm. The probe is configured with two optical fibers (600 µm core): one 

illumination fiber and one detection fiber. Two fiber cables (100 m in length) were used 

to connect the probe to the instrument. The probe end, which is angled at 20º, has a 

sapphire optical window illuminating a 1.5 mm diameter spot.  

First, the noise level of the signal was assessed along the spectral range by applying to 

the log 1/R data a first derivative pre-treatment, with a single-unit gap and 5 data points 

smoothing. Visual evaluation found that spectra became noisy at the beginning and at 

the end of the spectral range, which led to the selection of the spectral range 1386-2033 

nm. 

In preliminary work a dataset of 346 samples of ABPs from different species (poultry 

by products meal, pork meal, cattle meal, meat and bone meal and mixture of different 

species) was analysed with the same instrument but using a detection head for 

contactless measurements (measurement area of 10 mm; working distance of 10 cm). 

Prediction equations were developed and different strategies were implemented for 

validation purposes, including an external validation from a totally independent set of 

19 samples. The Modified Partial Least Squares (MPLS) regression method was used, 



and four cross-validation groups were established20. Combined standard normal variate 

(SNV) plus Detrend treatments were used for scatter correction21. First- and second-

derivative treatments were tested: 1.5.5.1, 1.10.5.1, 2.5.5.1 and 2.10.5.1, where the first 

digit is the number of the derivative, the second is the gap over which the derivative is 

calculated, the third is the number of data points in a running average or smoothing, and 

the fourth is the second smoothing22. Further details can be found in 23,24. 

The following statistics were used to evaluate and select the best calibration model for 

each of the study parameters: standard error of calibration (SEC); standard error of 

cross-validation (SECV); R2
C

 (coefficient of determination for calibration) and R2
CV 

(coefficient of determination for cross validation); ratio of performance to deviation 

(RPD), i.e. the ratio of standard error of performance to standard deviation, and 

coefficient of variation (CV)25.  

Results for external validation were evaluated using the validation protocol 

recommended by 26 and 27 based on the following statistics: standard error of prediction 

(SEP), standard error of prediction corrected for bias (SEP(c)), bias and R2
v (coefficient 

of determination for validation). This statistical process is based on the determination of 

a known significant error, termed “bias”, and an unexplained significant error, termed 

SEP(c) (standard error of prediction, bias-corrected). Generally, for calibration groups 

comprising 100 or more samples, and validation groups containing nine or more 

samples, the following control limits are assumed: Limit Control SEP(c) = 1.30 x SEC 



(standard error of calibration); Limit Control bias = ± 0.60 x SEC (standard error of 

calibration), minimum 0.6 for R2v. 

On the basis of this preliminary work, the full data set was then transferred to the 

analysis mode used in this work (Turbido reflection probe). For transferring the 

database, the standardization methodology described in 28,29 was used. Later on, a 

recalibration procedure was performed for NIR analysis of the target lots by the probe. 

This calibration allowed a prediction to be obtained for each probe insertion point in the 

designed grid, where each spectrum was the result of 32 scans with a scanner velocity of 

10 kHz and a resolution of 16 cm-1. A set of ten raw NIR spectra collected with the 

probe from lot 1, displaying typical peaks characteristic of this type of products, can be 

seen in Figure 2. A measurement of a white reference was taken with a probe-specific 

spectralon every set of 42 measurements, which meant about every 25-30 minutes in 

time. In order to avoid cross contamination between measurements from different 

sampling points, compressed air cleaning was performed after every probe insertion. 

[insert Figure 2] 

Software OPUS v7.0 (Bruker Optik) was used for spectral acquisition and noise 

evaluation. WinISI v.1.50 (Infrasoft International, Port Matilda, PA, USA), MATLAB 

v. 7.8 (The MathWorks, Natick, USA) and PLS Toolbox (Eigenvector Research, 

Manson, USA) were used for calibration transfer and evaluation, and for obtaining NIR 

predictions. 



Geostatistical analysis 

The geostatistical analysis aimed at characterizing and representing the spatial pattern 

and distribution of moisture and protein content in ABPs lots of case studies 1 and 2. 

For this purpose, the geostatistical study was developed in two major stages: (a) 

structural analysis and (b) spatial estimation.  

Structural analysis 

The data set for each lot and case study was first assessed and prepared for geostatistical 

analysis. This assessment included the performance of normality tests and skewness and 

kurtosis calculation30. Having examined the distributions, the variographic analysis or 

spatial correlation analysis involved two steps: variogram estimation and its subsequent 

modelling.  

The semivariogram (variogram is often used synonymously) plots the semivariance, 

γ(h), against the distance between pairs of sample points (usually referred to as lag and 

denoted by h), and is defined as follows: 
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where N(h) represents the number of pairs of points separated by the vector h, whereas 

z(u) is the variable under consideration depending on the location or vector of spatial 

coordinates u. Graphically, the result of the computation of semivariances via Equation 

1 from a sequence of lag classes, varying in length within an interval and in orientation 



up to a given tolerance on angle, is termed sample variogram or experimental 

variogram. This variogram measures the average dissimilarity between z values with 

respect to the lag classes, and it is a key tool supporting the structural analysis of the 

spatial continuity and variability of a regionalized variable31.  

The analysis of the spatial continuity typically begins with an omnidirectional 

variogram32, for which the directional tolerance (α) is set at 180º, large enough that it 

could be thought as the average experimental variogram over all directions and in which 

only the magnitude of h is important, so the vector is replaced by the scalar in Equation 

1. In this study, omnidirectional variograms were calculated for each case study and 

ABP lot based on the protein and moisture NIR predictions.  

Once the omnidirectional variograms were computed, directional variograms were 

calculated to detect anisotropy (differences in the autocorrelation structure depending on 

direction). In this case, four directions were considered, defined by the progression 0, 

π/4, π/2, 3π/4, i.e. 0, 45, 90, 135 degrees, with α=π/4 (45º), in order to observe possible 

differences in ranges (geometric anisotropy), in scales (zonal anisotropy) or in shapes 

(indicating a trend)32–34. 

Regarding the features and interpretation of a variogram, a typical one shows that the 

larger the separation distance between observations, the higher the semivariance, or in 

other words closer points present more similar values than those further apart. This 

behaviour, however, may only persist up to a certain finite lag distance, beyond which 



the variogram levels off. The distance at which the variogram stabilises is called the 

range (a), and it determines the limit beyond which z(u) and z(u+h) are uncorrelated or 

spatially independent. The semivariance value at the range is called the sill, which is the 

upper bound of the variogram and the a priori variance of the process. At the other end 

of the distance scale, almost every experimental semivariogram produced within the 

applied science domain is not strictly zero for 0 lag. This discontinuity at the origin of 

the variogram is called the nugget effect, which means that γ(h) does not tend to zero 

when h does. From a purely geostatistical point of view, the nugget effect is commonly 

assumed as a consequence of a short scale variability. In contrast, the Theory of 

Sampling has proposed a detailed description on the physical meaning of this effect35. 

The range, the sill and the nugget are the three most important parameters for describing 

a semivariogram31–33. 

In order to tackle spatial prediction, continuous functions have to be fitted to the 

experimental values provided by the sample variogram. The problem of estimating 

attribute values at unsampled locations needs a model of spatial dependence, which 

allows computing a variogram value at locations different from the existing data points. 

Therefore, modelling the experimental variogram is the most frequent approach to 

defining the pattern of spatial continuity. For this purpose, a set of permissible models 

obeying certain rules and constraints are widely used31–33,36. 



There are basically two types of variogram models: those that reach a plateau, or 

bounded, and those that do not, or unbounded. The spherical (Equation 2) and 

exponential (Equation 3) functions, the most common bounded models, and the linear 

model (Equation 4), as an unbounded function, were used for the fitting of the 

variogram.       
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A more thorough description and discussion on structural analysis, including variogram 

interpretation or assumptions, constraints and mathematics related to variogram 

modelling, can be found in31–33,36.  

Spatial estimation  

A number of spatial interpolation mechanisms address the estimation of the value of 

continuous properties at unobserved sites within the area from which the observations 

originated. In this field, a family of generalized least-squares linear regression 

algorithms, called kriging37, have traditionally been used in Geostatistics. Among all the 

existing interpolation techniques, kriging is characterized by being a highly-accurate 

and robust method, successfully overcoming the task of describing the relationships 



between sample points and computing the estimations at unmeasured locations with 

reliable results38. 

The basic form of the linear regression estimator Z*(u) is defined as36: 
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where u and ui are the location vectors for the estimation point and the neighbouring 

data points, indexed by i; n(u) is the number of data points in a given local 

neighbourhood or window W(u) centred on u and used for the estimation of Z*(u); λi(u) 

are the weights, whose relative proportions mainly vary according to the positions of the 

sampling points and the values of the variogram functions, assigned to datum z(ui) 

interpreted as a realization of the random variable Z(ui); m(u) and m(ui) are the 

expected values of the random variables Z(u) and Z(ui). 

The kriging estimator differs depending on the model adopted for the random function 

Z(u) itself. Z(u) is decomposed into a trend component, m(u), and a residual 

component, R(u) = Z(u) – m(u). The different kinds of kriging are distinguished 

according to the model considered for the trend m(u). The methodology in this work is 

based on ordinary kriging (OK), which is the most robust method and one of the most 

common type of kriging in practice33.  

Ordinary kriging is frequently associated with the acronym BLUE for “best linear 

unbiased estimator”. It is “linear” as its estimates are weighted linear combinations of 



the available data; it is “unbiased” since the residual component is modelled as a 

stationary random function with zero mean; it is “best” because it aims at minimising 

the error variance 𝜎𝐸
2(u). OK accounts for fluctuations of the mean over the entire 

domain, so limits its stationarity to the local neighbourhood W(u), centred on the 

location u being estimated, where the mean is deemed unknown. In this case, filtering 

the unknown local mean by forcing the kriging weights to sum to 1 leads to the OK 

estimator (Equation 6). 
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Further detailed information on spatial data processing and ordinary kriging theory and 

practice is described in32,33,36,39,40. This approach was implemented to form the moisture 

and crude protein predictions, and produce a continuous map for each parameter and 

each ABP lot in the previously mentioned case studies.  

All geostatistical analyses were carried out in the R environment (version 3.2.1), 

including the exploratory data analysis, the variographic analysis and the mapping of 

spatial estimations. The R package Gstat was used to develop the methodology 41. 

 

Results and discussion 



NIRS calibrations 

Results for external validation using the validation set (N=19) showed that relevant 

statistics for moisture and crude protein (bias, the R2
V and the SEP(c)) were all within 

the limits recommended by 26,27 for external validation 24. 

Once the results from the previous work were obtained, NIR calibration equations for 

predicting moisture and crude protein constituents in ABPs with the probe were 

developed using the dataset of 346 samples. 

The calibration for moisture accounted for 76.9% of the variation existing in the set, 

while the SECV was 0.36% in this case (Figure 3a), equal to the one reported by the 

previous work24. The equation for crude protein presented a coefficient of determination 

of 86.4% and a SECV value of 2.45% (Figure 3b), similar to the one obtained in 24 

(2.4%).  

[insert Figure 3] 

Taking into account the uncertainty for both critical process quality control parameters 

(moisture and crude protein) and the chemical variability encountered in ABPs, and also 

if all the relevant indicators are considered with caution when interpreting the goodness 

of fit of the model developed42–44, the results reveal that the NIRS equations displayed a 

reasonable predictive ability for a process control application, thus confirming their 

validity for the purpose of the present paper. 

Case study 1 



Omnidirectional variograms, as a result of the structural analysis at layer A for the same 

batches involved in case study 2 (lots 1, 5 and 7), are reported in Figure 4. These 

variograms, with plots of semivariance against distance (mm), are shown for both 

constituents, crude protein and moisture, and for each ABP lot.  

[insert Figure 4] 

The experimental semivariograms for crude protein, calculated from NIR predictions at 

each point of the sampling grid, generally show a steady increase in the semivariance 

with lag distance. Therefore, linear models were used for the fitting of the variogram of 

this parameter. In order to fit the model to the experimental values, the R package gstat 

needs to perform iterations based on starting values for the parameters nugget, sill and 

range. Moreover, one of these three parameters needed to be fixed to use the linear 

model, so after a number of trials the range was fixed at a value of 180 mm. All protein 

tests displayed a slight slope with a discontinuity at the origin (Lot 1: 1.32; Lot 5: 2.09; 

Lot 7: 1.85) (Figure 4a, 4c, 4e), which according to geostatistics may reflect a short 

scale intrinsic variation31–33. However, the TOS provides a more comprehensive 

conceptualization and interpretation of the nugget effect for this type of application, as it 

is defined as the sum of all variances in the sampling procedure (correct and incorrect 

sampling errors) as well as the total analytical error (TAE)35.  

Therefore, both the sampling scheme and the signal acquisition errors when taking 

measurements with the probe are likely to have had an impact on the experimental 



variograms in these cases, producing the discontinuities at the origin. This illustrates the 

intimate link that should be established between sampling (TOS) and process analytical 

technologies in order to build an effective and reliable analytical chain10. Further 

research should tackle that link so as to determine and minimise the real impact of these 

errors on the subsequent steps of the methodology proposed. 

Concerning the sample variograms for moisture, the different behaviour that lot 1 shows 

in this case compared to lots 5 and 7 is noteworthy. The exploratory data analysis for lot 

1 indicated a high-kurtosis distribution (data not shown), which could be the reason why 

the observed effect was an absence of variability in the data and a pure nugget 

variogram (Figure 4b), i.e. the nugget variance remained constant for all h 32,33. On the 

other hand, Figure 4d and 4f illustrate semivariograms for moisture with a clear spatial 

autocorrelation, reaching a plateau in both cases. The theoretical function for the fitting 

of these bounded variograms was the spherical model, which resulted in nugget values 

of 0.023 (Lot 5) and 0.05 (Lot 7), and ranges of 145.78 (Lot 5) and 186.27 (Lot 7). 

These range values are consistent with the species composition of both lots, so the lag at 

which measurements become spatially independent when the lot consists of a single 

species (Lot 7) is higher than when the lot comes from a mixture of species (Lot 5). 

All the directional variograms calculated in this case study showed that there were no 

differences in the autocorrelation structure with direction, reaching the same ranges and 



sills as the omnidirectional variograms. Therefore, omnidirectional variograms were 

finally used in the spatial estimation stage.  

Once the structural analysis was completed, ordinary kriging was performed from all 

data points of the grid, so that spatial estimations could be made between them 

throughout the whole area in each layer of measurements. The continuous surfaces 

obtained for the crude protein and moisture parameters are shown in Figure 5. A visual 

inspection of the maps allows the spatial behaviour of the constituents to be inferred in 

each case. The protein maps mostly display uniformity, as might be expected from the 

previous structural analysis. This is plausible, given the industrial manufacturing 

process of the tested products, which results in animal by-product protein meals with a 

high degree of homogeneity. Conversely, maps representing moisture content show a 

spatial pattern with more variability, except for lot 1, in which the surface becomes flat 

between the sampling points due to the pure nugget variogram32,33. The results of this 

case study motivated the performance of a second set of trials, in which the 

methodology could be evaluated to serve as a surveillance tool for prompt detection of 

risk zones corresponding to moisture contamination or other adulteration.  

[insert Figure 5] 

Case study 2 

To evaluate the response of a geostatistical study for identifying contamination or 

adulterations in bulk lots of ABPs, a set of tests was carried out in the manner described 



in the methodology (Case study 2). Figure 6 shows the omnidirectional variograms for 

all tests performed. In this case study, the anisotropy analysis did not reveal evidence of 

significant differences in the spatial autocorrelation with direction either, which may 

otherwise have indicated the existence of a trend or any kind of anisotropy. As a 

consequence, omnidirectional variograms were used again. 

Measurements taken at layers A and B, both from contaminated lots 7 (Figure 6a and 

6b, respectively) and 1 (Figure 6c and 6d), produced omnidirectional semivariograms 

with evidence of spatial continuity for the moisture parameter. After fitting spherical 

models to the sample variograms, the nugget parameters were close to zero in most 

cases, whereas the range at which the sill is reached varied from 142.95 to 255.16 mm.  

[insert Figure 6]   

The predictions, obtained using ordinary kriging in the same way as for case study 1, 

were mapped and the continuous surfaces are shown in Figure 7. If the distribution of 

water used for performing each test (Figure 1b and 1c) is taken into account, it can be 

seen how these distributions are accurately characterize by the maps. Figure 7a and 7b, 

associated with layer A and B of lot 7, display high values of moisture at the four 

corners, precisely where the highest concentration of water took place. Furthermore, the 

maps representing the moisture distributions of lot 1 (Figure 7c and 7d) show how the 

deeper layer manages to detect and represent the small amount of water collected and 

located in the middle.    



[insert Figure 7] 

Finally, in order to evaluate how the geostatistical procedure responded to an irregular 

composition in lots of ABPs, which might be indicating product mislabelling or 

adulteration, two more tests based on an adulteration of the lot 5 with sample from lot 1 

were carried out. Figure 6e shows the semivariogram from NIR predictions for the 

crude protein constituent and the first type of mixture (Figure 1d), while Figure 6f 

displays the omnidirectional variogram for the second sort of contamination (Figure 1e). 

Linear models were used again to fit a theoretical model to the sample variograms. They 

showed nugget values of 1.97 and 2.37 respectively. The steeper slope in these two 

cases compared with those in case study 1 can be interpreted as an indication of the 

higher level of variability found in case study 2.  

The spatial distributions of protein are shown in Figure 7e and 7f. The map for the first 

mixture shows a different behaviour for the protein values in the upper right-hand 

corner, which correspond to the location of the lot 5, as Figure 1d indicates. Moreover, 

the surface representing the second type of adulteration allowed the inference of the 

original distribution since, as Figure 1e shows, the material from lot 1 was located both 

in the upper right-hand corner and the lower left-hand corner of the container. As a 

consequence, the geostatistical study achieved promising results here regarding rapid 

detection of changes in spatial patterns of the crude protein parameter in ABPs lots, as it 

also did with moisture.  



Conclusions 

The results described in this paper represent a first step towards defining a new method 

for in situ analysis and evaluation of bulk materials, i.e. directly at reception in the agro-

food industry before the material enters the production chain. NIRS technology enables 

the implementation of methodologies for real-time analysis. In addition, it provides 

many more measurements than existing procedures at lower costs. These characteristics 

allow the Theory of Sampling (TOS) approach along with geostatistical techniques to be 

applied in this context to exploit the extra spatial information provided by NIR 

measurements. Together these provide a framework with significant potential within 

which fast assessment of spatial distributions of key properties in animal by-product 

protein meals could be made. This laboratory study suggests it would be worth carrying 

out further research with regard to the evaluation of the sampling and analytical errors 

derived from the implementation of this methodology as well as performing validation 

tests in real situations, for example, in trucks and railway wagons. 
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