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This paper is a review of geophysical and climatic trends associated with extreme weather events and natural
hazards, their implications for urban areas and the effects of continued environmental modification due to urban
expansion. It discusses how urban design, technological development and societal behaviour can either ameliorate or
worsen climate-induced hazards in urban areas. Pressures – ranging from excessive rainfall causing urban flooding to
urban temperature extremes driving air pollution – require more attention to understand, model and predict
changes in hazards in urban areas. It concludes that involving different techniques for data analysis and system
modelling is more appropriate for practical decision-making than a purely reductionist approach. Successfully
determining the future environment of megacities will, however, require joint action with societally informed
decision makers, grounded in sound scientific achievements.
1. Introduction and overview
From the earliest times, socio-economic factors and the ease of
withstanding natural hazards in larger groups have led people to
conglomerate. Throughout the world, from the smallest
communities to the largest cities, these gatherings have formed self-
replicating patterns of organisation (Batty, 2008; Hunt, 2005).
However, as the Second UN Habitat Conference in 1996 recognised
(UN, 1996), cities, ‘especially in developing countries’, can also be
responsible for the degradation of regional environments with
harmful impacts for people and ecosystems, including deterioration
of health and safety, increased air pollution, inadequate sewage and
water management distribution systems and modification of patterns
and intensities of storms and floods (Grimm et al., 2008; Hondula
et al., 2014; Hunt, 2009a). Risks from disease and pandemics
coupled with increased exposure owing to population increase and
climate change also have implications for future vulnerability of
urban areas (Hunt et al., 2016).

While cities serve as important agents that provide economic (e.g.
employment), social (e.g. education) and a host of biophysical
benefits (e.g. access to clean water and sanitation), their increasing
size also places undue strain on infrastructure, increases energy
demand and has led to ecological degradation (Grimm et al., 2008).
As this paper further explains, the increasing size and population of
cities generally lead to worsening of environmental hazards. In
addition, these factors extend the distances around cities where
hazards can be exacerbated. This is why cities are also becoming
more vulnerable to hazards produced by other megacities located
upwind and by upwind environmental dangers, such as smoke from
burning and pollutants from shipping (e.g. Cheng and Chan, 2012;
Lin et al., 2014; Li et al., 2015; Zhang et al., 2011). As cities and
clusters of cities, or conurbations, expand, their energy use
(Madlener and Sunak, 2011) and pollution emissions increase
(Akimoto, 2003). Cities can also alter the adjoining rural
environment and the rivers and coasts that are so crucial to the
livelihoods of small communities and natural ecosystems (Aguilar,
2008; Ehrenfeld, 2000; Georgescu et al., 2009; Lee et al., 2006; Li
et al., 2016a; Salvati et al., 2012; Shao et al., 2006; Yang et al.,
2016a). In particular, although recent estimates indicate cities take
up less than 1% of the Earth’s landmass (Schneider et al., 2010),
they are responsible for a disproportionate amount of long-lived
greenhouse gas (GHG) emissions (Satterthwaite, 2008; UN, 2007).

This paper is first a review of current and projected extreme
weather event trends and associated natural hazards, as well as of
most recent studies in the field. Second, the authors consider the
effects of these occurrences on urban hazards and their impact on
urban environmental vulnerability and sustainability. The
conclusions highlight how studies of hazards and vulnerability
provide the basis for estimating impacts and policy development.

2. Trends in climate-related hazards
Trends in climate-related hazards will be discussed in two
subsections focusing mainly on their relation to regional climate
extremes and urban growth (Figure 1).

2.1 Extremes in regional climate and environment
New observations and earth system models are showing how the
climate has varied in the past in different characteristic ways
(IPCC, 2014). Weather patterns are determined not only by
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climate, but also by orographic factors and other elements of the
earth climate system with their own intrinsic variability
(Schellnhuber et al., 2004). Over millennia, familiar atmospheric
circulations such as temperate westerly winds and subtropical
trade winds have persisted, even through ice ages (Houghton,
2015). However, although hemispheric oceanic circulations such
as the Gulf Stream have endured, there have been large
fluctuations, affecting ocean temperatures in subarctic regions
(Broecker, 2010). Observational evidence reveals local climatic
effects associated with natural variations in atmospheric winds
and ocean currents over annual and decadal periods – for
example, the El Niño–Southern Oscillation – and movements and
variability of zones of forestation and desertification, such as the
once-in-a-century southward movement of the Sahel in the 1970s.

Palaeoclimate models, and biochemical measurements, now show
that humans have also played a role in influencing the regional
variability of climate, originally through agricultural and forestry
management and, more recently, through the development of built
environments and GHG emissions (Hunt, 2005; Lentz et al.,
2014). For example, the magnitude of the current melting of the
Arctic summer ice and glaciers across the world is larger than
what has occurred naturally since the last ice ages about 10 000
years ago. The conclusion of IPCC (2014) is that this trend is
likely to be the result of human effects, although high levels of
internal variability can mask or interrupt the visibility of
2
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anthropogenically induced changes (Swart et al., 2015). A
schematic diagram illustrating the diversity of natural effects and
hazards influenced by climate change is shown in Figure 1.

IPCC (2014) concludes with high confidence that globally
averaged near-surface temperatures will remain essentially
constant for centuries even if anthropogenic emissions were to
stop completely, unless there is a considerable net removal of
carbon dioxide from the atmosphere. Furthermore, the continued
decline of biological species associated with a changing climate is
likely to endure unless the current trend in climate change begins
to reverse. Recent measurements suggest that ice sheet
temperatures may have already risen to the point where polar and
mountain ice sheets and glaciers are beginning to fracture and
slide into the ocean at a sufficient volume rate that they may
continue to do so, even if the global average temperature of the
forthcoming 200–300 years returns to what it was in 1850. This
would cause significant sea level rise of several metres over the
next millennium, resulting in catastrophic flooding and associated
impacts on global society (IPCC, 2014). The current scientific
majority view is that unless the future level of human influence on
climate were to decline sometime during this century through
global action (therefore halting the current rise of carbon dioxide
emissions by or prior to mid-century; see the study by Stern
(2006)), the aspects of the climate system (e.g. biosphere) will
begin to change irreversibly (Lenton et al., 2008). This is the
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Figure 1. Main natural effects and hazards influenced by climate change. Atmosphere – large fluctuations in ocean basin scale circulations (i);
vertical wind, temperature profiles (ii); intense air pollution (iii). Land – growth in urban areas (iv); desertification (v); reduced snow and land
ice, with more floods on mountainous terrain, causing landslides and flooding (vi). Ocean and water – changes in coupled ocean–atmosphere
circulations in tropics and polar regions (vii); rivers systematically growing or shrinking (viii); variable sea level rise (ix). L, size of urban area
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assumption of much current policy-making and is the subject of
this review. However, this notion is not shared by the entire
scientific community (Lawson, 2008). For example, while
Solomon et al. (2009) argue that ice cap loss, hence sea level rise,
is irreversible due to the longevity of atmospheric carbon dioxide
emissions and already-risen ocean temperatures, Notz (2009)
defends that there is no ‘tipping point’ for the loss of Arctic
summer sea ice; therefore, sea ice is more likely to recover if
climate warming is stopped by reversing carbon dioxide
emissions to pre-industrialisation levels (if not prior to), as
supported also by Tietsche et al. (2011). Conversely, the
irreversibility of the ice sheet loss covering Greenland and the
West Antarctic cannot be ruled out (Notz, 2009).

Recent analysis of climate prediction models and observational
analysis indicate that while short-term trends (i.e. decadal scale or
less) may not necessarily reveal long-term trends, the effects of
increasing carbon dioxide emissions have played an important
role in global warming, generally exceeding 0·1°C/decade, since
the middle of the previous century (Tollefson, 2016). Of key
relevance for urban areas are the effects on the variability of
climate, including their impacts on the global environment and
society. Atypical events include ‘extreme’ events, defined broadly
as events that differ from average weather and climate and/or that
may persist over longer periods. Other atypical events are the
significant changes in trends, including those owing to the
occurrence of extreme events (Hov et al., 2013; IPCC, 2012).
There are significant similarities between the main features of
climate variability and other complex systems. An important
characteristic is that, as fluctuations increase in frequency and
magnitude, the non-linear interactions between the various
components of the processes under investigation become more
significant. In addition, physically based reductionist models
become more reliable than purely statistical extrapolations based
on past events (Hunt et al., 1996, 2012).

An example of short-term, high-magnitude events is strong
convective updrafts and downdrafts, resulting from higher surface
temperature, deeper troposphere and cooler stratosphere, which lead
to higher rainfall intensity (now reaching 200mm/h, double its
value 10 years ago in South-east Asia; see the studies by the Hong
Kong Observatory (2016), Wong et al. (2011) and Lee et al.
(2010)). Consequently, increased frequency of lightning has been
observed (Hunt et al., 2010; ten Hoeve et al., 2012) with a wider
global distribution extending to the Arctic regions, as demonstrated
by regular monitoring from satellites and globally from ground
networks. This trend is leading to enhanced fire risk, forest
degradation and destruction, more rapid run-off and consequential
drought in some mountainous areas. These trends in convective
storm events are associated with alteration in the changing nature
of tornadoes with increased maximum wind speeds and greater
widening of the affected regions (Elsner et al., 2015; Hunt and
Hangan, 2013), particularly in south-eastern USA. However,
observational analysis for other portions of the USA indicates a
decreasing or near-zero trend in tornado temporal variability since
 [ University College London] on [15/03/17]. Copyright © ICE Publishing, all ri
1950 (Guo et al., 2016), highlighting the importance of regionally
based impact and vulnerability analysis.

Equally important types of extremes include periods of very warm
or cold weather, rainy or snowy or very windy, which occur more
frequently and persist over considerably longer periods than
observed historically (Heim, 2015; IPCC, 2014; Matthews et al.,
2016; WMO, 2013). Model simulations combined with physical
arguments and exploratory analysis of recent global weather
anomalies have concluded that such ‘blocking’ events will occur
more often and last longer (Cassou and Guilyardi, 2007; Li et al.,
2012). Sometimes, these events occur in a region simultaneously
as climatic anomalies in other regions (Cheung et al., 2012). A
recent notable illustration was the extreme 2010 flooding in
Pakistan, which was associated with blocking in western Russia
and persistent high temperatures in Moscow. Importantly, not all
global computer models have come to this conclusion (Pelly and
Hoskins, 2003).

Global climate modelling has progressively become more useful
(i.e. since the 1970s) as spatial resolution has improved, leading
to better representation of the key regional variations of planetary
climate. The incorporation of urban canopy models within earth
system models enables improved understanding of the interacting
components of the earth system jointly with human activities
(e.g. Li et al., 2016b, 2016c). Deficiencies in the representation
of the marked trends and fluctuations in regional climate remain,
such as mountainous regions (with reduced snowmelt and
extremes in flooding) and polar regions associated with
ocean–atmosphere–cryosphere interactions, and in modelling the
lower tropical atmosphere, including the particular effects of
urban areas at high spatial resolution (Shaffer et al., 2016).

2.2 Climate change and urban growth leading to
increased hazards and vulnerability

Although the great cities of the world were largely founded for
furthering trade, they were also designed, in part, to protect their
citizens from natural and artificial hazards, including those
associated with extreme weather conditions (Hunt 2009b, 2013).
However, urban hazards may become greater, as human activities
change and the overall size of the city (denoted by diameter L in
Figure 2) grows. In Asia and Africa, an additional 16% increase
in the total urban population is expected for both continents by
2050 (UN, 2014) (for more information on increase in urban
population see World Bank (2017)). This is a significantly faster
rate than that at which global climatic parameters are changing,
such as the annual average temperature increase relative to pre-
industrial values (doubling over about 70 years) (for Chinese
megacities, see the study by Chan and Yao (2008)). These
changes are likely to lead to increased energy use and emissions
of pollution. In addition, recent research has shown that projected
impacts on near-surface temperature within urban areas are of the
same order of magnitude as the effects due to large-scale climate
change (Georgescu et al., 2013, 2014), underscoring the
significance of cities as instruments of adaptation and mitigation.
3
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Even with no change in the form of or the type of activities
within a city, as the built-up area (i.e. size) and energy use
increase, differences in temperature and humidity between the
urban and rural areas grow significantly. Atmospheric flows are
changed as a result of increased convection and turbulence. In
desert areas (such as central China), strong inversion layers and
dust lead to trapping of air pollution. In addition, the larger the
city, the larger the total emissions of air pollutants and the higher
the concentration (approximately in proportion to L; Figure 2). As
their size increases above the characteristic ‘mesoscale’ distance –

that is, Rossby radius, LR (Hunt et al., 2004) – the influence of
the earth’s rotation becomes significant at mid-latitudes. The
physico-chemical properties of the air and water, and many
aspects of the biosphere, depend on the relative sizes of green and
built-up areas (Figure 2). Changes in these properties also depend
on the buildings and planning of cities, their infrastructure and
people’s social behaviour patterns and government structures (e.g.
Eakin et al., 2017), which vary between regions and countries and
among large and small cities or even rural areas. In addition, most
people spend about 80% of their time indoors, where
environmental factors (e.g. temperature, air circulation and quality
4
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and humidity) are generally designed for much of the time to be
markedly different from those outside (Rupp et al., 2015; Sailor,
2014). Indoor environmental control affects energy use and the
actual levels of temperature and air quality experienced by
occupants (Hunt and Li, 2014), but have consequential
implications for outdoor environments (e.g. Salamanca et al.,
2014; Taleghani et al., 2013).

In ‘low-rise’ megacities, the average heights of buildings are
approximately constant (e.g. in Europe, Africa and some US cities
such as Phoenix, Arizona), although most now have one or more
central business districts, which have incorporated buildings of
greater vertical dimension. However, in ‘high-rise’ megacities in
Asia and South America, the average level of buildings has
continued to rise relative to the narrow spaces between buildings.
In both types of megacities, as L extends over 30–100 km, it
becomes comparable with the size of the LR mesoscale weather
patterns (Hunt et al., 2004). Over this distance, winds tend to
change direction as air passes over the city and continues to affect
the atmospheric boundary layer and patterns of precipitation
downwind (Cheng and Chan, 2012; Li et al., 2013a).
Mesosynoptic

Less rainMore rain

Urban forcing

Up/down slope

Upwind effects
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Figure 2. Increased hazards (DH) in urban areas in relation to urban forcing. When the size of the urban area (L) becomes equal to or
greater than LR (i.e. Rossby radius), the overall climatic hazards become typically more asymmetrical with a significant skew in the
downwind direction. In this diagram, air motion is from left to right, and, as shown in the graph at the bottom, air pollution, mean
temperatures and cumulative wind-driven hazard(s) increase with the distance downwind
 all rights reserved.
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In low-rise cities whose forms, with few exceptions, are not
changing significantly, the populations are increasing,
approximately in proportion to the area – that is, L2 (Hunt et al.,
2011). But in high-rise cities with rising population densities, the
total population is rising at a faster relative rate. Consequently,
stationary energy sources such as those used in heating/cooling/
servicing buildings and for supplying industries and water (of
particular relevance in California; see the study by Andrew (2009))
are increasing slightly more rapidly than L2. However, the
additional energy used for transportation (except in cities with high
usage of public transportation that are also more likely to integrate
technological advancements – such as those mentioned by
Carrington (2016)) is increasing significantly more rapidly as cities
grow. Because the lengths of journeys in urban areas increase with
L, and the population and incomes are increasing as L2, the heat
released per unit area by transportation is increasing in proportion
to L (Hunt et al., 2011). The energy for buildings, industry and
road transport is generally supplied from outside built-up areas.
New low-carbon-dioxide energy sources will therefore be
necessary to avoid the contribution of urban areas to global
emissions of harmful pollution (Kammen and Sunter, 2016).

The thermal environment affected by the city is determined by the
heat capacity of buildings, differing properties of urban land
surfaces (e.g. absorption or reflection of solar radiation), local
heat emission from energy systems (e.g. air conditioning (AC)),
heat from transportation (Sailor, 2011) and other anthropogenic
sources such as reradiation from buildings and traffic. Equally
important is the reduced ventilation caused by wind resistance of
buildings and, in some cities, the reduction of solar radiation
produced by dust and particles of air pollution. These factors,
which can be modified by planning, building design and operation
of urban systems, alter the surface and temperatures inside and
outside buildings (Georgescu et al., 2015). During summer
periods, temperatures are raised inside the urban area for longer
periods compared with rural areas, whose temperatures decrease
at a faster rate after sunset. The average temperatures over 24 h in
urban areas can exceed rural temperatures by 5°C or more, with
serious implications on energy use and health, although this value
has considerable geographical and seasonal dependencies.
Importantly, the urban heat island (UHI) phenomenon in high-
density cities such as Hong Kong is rather due to anthropogenic
impacts, whereas in low-rise, less compact cities, the temperature
increase is additionally governed by the re-emission of energy
absorbed by the built environment (Yang et al., 2016b). While the
UHI can reduce the need for heating in cold seasons, its effect
will considerably increase energy use for cooling purposes during
the summer (see US Department of Energy, 2013). Compounding
the aforementioned changes in the physical environment are
implications of, for example, extreme heat events (EHEs) in
cities, with broad health consequences (Hajat et al., 2007, 2014;
Hoshiko et al., 2010; Huynen et al., 2001; O’Neill and Ebi,
2009). But if streets are covered with trees, or roofs with
vegetation, the shade and evapotranspiration lower daytime peak
urban temperatures (Georgescu, 2015; Li and Norford, 2016;
 [ University College London] on [15/03/17]. Copyright © ICE Publishing, all ri
Maggiotto et al., 2014; Middel et al., 2015; Tan et al., 2016;
Yang et al., 2016c). In large south-eastern Asian cities (e.g. Li et
al., 2013b), the UHI typically exceeds 2°C at night. By contrast,
in large cities in continental climates (with populations greater
than five million people) during high-pollution episodes in winter,
the urban temperatures can be lower compared to rural areas
throughout the diurnal cycle.

The effect of heat release in the city also affects the variation of
temperature as the air moves across the city, with maximum
values where high-rise buildings are concentrated in the centre of
the city and towards the downwind side. The larger the city, the
greater this effect is. Over the neighbourhood scale of 1–3 km,
temperatures are raised or lowered by parks, rivers, buildings and
the presence of other urban forms (Connors et al., 2013; Declet-
Barreto et al., 2013). A distribution of smaller parks lowers the
average temperature more than a few large parks (Bohnenstengel
et al., 2011) and reduces the impacts of heatwaves as shown in
mortality statistics for New York City (J. Huang, personal
communication, Hong Kong University, Hong Kong, 2013). Such
considerations bring to light the significance of urban design and
form (Connors et al., 2013; Zhou et al., 2011), which necessitate
discussion within a broader urban sustainability framework than
has been acknowledged to date (Georgescu et al., 2015).

2.2.1 Example 1: energy use in a desert urban area
An example of the complexity by which urban areas can modify
environmental hazards is associated with the heat emitted by AC
systems. Physics-based modelling simulations accounting for the
variation in people’s behaviour have been confirmed by variations
in observed temperatures. The results quantify the amount of
electricity used on diurnal time scales during a number of EHEs
in a rapidly urbanising semi-arid metropolitan area (Phoenix,
Arizona), indicating that cooling from AC contributes about 53%
of the overall daily electricity requirements during these periods.
Electricity consumption peaked during late afternoon hours
(roughly 3–6 p.m., locally), when the demand for AC approached
two-thirds of the total hourly demand (Salamanca et al., 2013).

The multilayer building energy modelling (BEM) system,
dynamically coupled to an atmospheric model, was designed to
predict cooling/heating energy demand (i.e. the energy demand
associated with ambient meteorological conditions) and has been
applied at city scale for contemporary and future conditions
associated with urban expansion (Salamanca et al., 2014, 2015).
However, the BEM system alone is not able to predict the total
energy demand because the human behaviour consumption
element (i.e. the energy component that is not associated with the
meteorology and therefore depends entirely on human behaviour)
needs to be accounted for separately.

Salamanca et al. (2013) estimated the human behaviour
consumption (i.e. base load), analysing citywide observed
monthly mean electric loads for a specific year. For the Phoenix
metropolitan area, minimum observed electric loads occurred
5
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during March and November, coinciding with moderate
environmental weather conditions. These two months were
considered the baseline months with negligible heating/cooling
electric consumption. In this way and based on observed data, the
diurnal cycle of the human behaviour consumption was
computed, coupled with the meteorological component and used
to calculate both electricity consumption and its contribution to
the region’s UHI (Salamanca et al., 2013, 2014, 2015).

With higher peak temperatures and longer hot periods anticipated
in future summers, electrical demand by AC systems will have to
be met by energy plants and the electric grid (Huang and Gurney,
2016). Reliable energy forecasting methods, such as the
simulations described above, will be needed for resource planning
of rapidly growing urban areas, particularly in the extreme
conditions of semi-arid environments. Complicating such
situations is the positive impact on air quality associated with the
destabilisation of the planetary boundary layer (due to heat
emission from AC units), which promotes night-time vertical
mixing and underscores challenges of urban adaptation
(Georgescu, 2015; Sharma et al., 2016). Therefore, compensating
effects on thermal, air quality and other indicators underline the
need for comprehensive markers that characterise the totality of
urban-induced effects.

From an energy perspective, AC use is greatest during the same
periods of extremely high temperatures that cause higher
transmission losses and reduced thermal efficiencies at electric
generation facilities. During a 2006 heatwave, electric power
transformers failed in Missouri and New York, causing
interruptions of the electric power supply. In addition, more than
2000 distribution line transformers in California failed during a July
2006 heatwave, causing loss of power to approximately 1·3 million
customers. Research ascertaining the potential for individual and
institutional adaptive strategies to lessen impacts due to extreme
heat and, in particular, impacts on human health risk caused by
blackouts is necessary to establish support tools aiding the
development of novel protocols for heat risk emergency response
monitoring and planning (Kuras et al., 2017). Thus, increased
cooling demand may increase the occurrence of peak loads
coinciding with periods when generation efficiencies are lowest.
Furthermore, the effects of high temperatures may be exacerbated
when wind speeds are low or night-time temperatures are high,
preventing transmission lines from cooling. This is a particular
concern because night-time temperatures have been increasing at a
faster rate than daytime temperatures (e.g. Georgescu et al., 2013).

Comparison with observational data has demonstrated that the
physics-based modelling system is an effective tool for assessing
(indoor) urban cooling requirements, which involves evaluating
electricity consumption for different urban growth patterns and
under extreme summertime weather conditions. These studies will
be crucial for the development of reliable projections on future
cooling needs and environmental consequences of rapidly
urbanising regions under various climate scenarios (Bartos and
6
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Chester, 2015; Georgescu et al., 2012, 2014) that strategically
incorporate adaptation and mitigation strategies alleviating energy
demand (Georgescu et al., 2014; Salamanca et al., 2016).

2.2.2 Example 2: Asian and subtropical cities
These cities have shown how, when very low regional
temperatures occur, temperatures can become even lower in urban
areas as a result of air pollution or sand storms reducing solar
radiation. The provision of heating that compensates for the
cooling results in higher air pollution, subsequently exacerbating
hazards associated with extreme low temperatures. The main
hazards associated with pollutants in urban areas also arise from
high concentrations of contaminants from industry, transport and
agriculture, as well as particulates arising from natural sources
(e.g. wind-blown sand or noxious gases from lakes) (Jacobson,
2012; Li et al. 2015, 2016a), and may cause serious health
implications (Pope and Dockery, 2006).

As winds transport pollutants into an urban area, concentrations
tend to increase in the downwind direction. At high temperatures
during summer months, particularly in the tropics, climatic
variations can induce low winds and high temperatures, which
may be raised further by high emissions from static and moving
sources, such as episodes in Athens in 1987 (Matzarakis and
Mayer, 1991) and Moscow in 2010 (Shaposhnikov et al., 2014)
and others in Beijing and Shanghai (Huang et al., 2010; Wang
and Gong, 2010). Because road vehicles are the main source of
polluting gases and particles in urban areas, and because journey
distances (particularly for low-rise cities) increase as cities
expand, emissions of air pollutants per unit area also increase in
proportion to the diameter L. The transport of atmospheric
boundary layer pollutants leads to the degradation of air quality
downwind, over distances that, in some meteorological conditions,
can extend hundreds of kilometres (Cheng and Chan, 2012).

As air pollutants are transported across the city, while some gases
increase in concentration, others such as nitrogen oxides undergo
chemical transformation and are reduced in the centre while
increasing in the outer regions. Overall, the magnitude of the
pollutant concentration increases with L. With anthropogenic
climate change as an additional forcing agent, the sources of
pollutant and heat increase in urban areas can be compounded by,
for example, widespread use of AC in buildings and vehicles.
Both hazards are worsened by lengthy periods of calm conditions,
which are projected to occur with increased frequency under a
future climate characterised by increased occurrence of synoptic-
scale blocking (Cassou and Guilyardi, 2007; Li et al., 2012).

2.2.3 Example 3: amplification of hazards in urban areas
Natural hazards arising outside urban areas are changed
significantly within them. In some situations, different urban
hazards act in combination. In the presence of high winds,
including tropical cyclones (TCs) and tornadoes, although the
resistance of buildings reduces the mean wind speeds over the
urban areas compared with outside, locally, wind speeds can
 all rights reserved.
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exceed rural wind speeds in gaps between buildings, and turbulent
gusts are amplified (Britter and Hunt, 1979; Oke, 1987). In
addition, because significant numbers of high-rise buildings are
being built in often highly populous coastal cities that are subject
to impacts from TCs, there is concern about the growing
vulnerability of their inhabitants (McGranahan et al., 2007;
Pielke, 2007). Although global climate change is increasing the
average sea surface temperature and the average tropopause
height, there is not yet any conclusive statistical evidence about
the projected strength and frequency of TCs. However, there is
evidence that the trajectories of those major TCs that reach land
are changing and reaching latitudes lower than those they reached
previously (e.g. in northern Malaysia). In general, the resistance
to the airflow caused by the built environment tends to deflect
onshore winds parallel to the coast while amplifying peak near-
surface winds (Chan and Chan, 2015; Hunt et al., 2004). As
urban areas expand, this trend is likely to be amplified, which
may also reduce the onshore movement of TCs. Coastal
agricultural regions, either surrounding or within urban areas
themselves, that rely on TC rainfall may be negatively affected if
precipitation is reduced sufficiently, potentially resulting in
increased irrigation demand to meet required yields.

Hydrological extremes in the form of drought and flood can be
amplified in urban areas. The return period of intense precipitation
over short periods (100 mm/h) in Asia has decreased (e.g. from 37
to 18 years according to Hong Kong Observatory (2016); cf.
Wong et al. (2011) and Lee et al. (2010)). The peak intensity of
rainfall is likely to occur not only in geographical areas where the
surface air flow converges, which can happen in mountains, but
also within megacities, which affect regional climates (Benson-
Lira et al., 2016; Chow et al., 2016; Holst et al., 2016; Georgescu
et al., 2012; Shepherd et al., 2011; Smith et al., 2013). The
prediction of rainfall and flooding in the low-lying and almost
completely urbanised areas of the island of Singapore is
improving as a result of detailed computational models and a
dense network of real-time data (Chow et al., 2016; Pereira et al.,
2014). Deeper convection caused by climate change effects on the
troposphere makes such events more likely in future. Important
impacts are also evident below the land surface–atmosphere
interface. Decreased precipitation and increased evaporation
associated with longer periods of droughts and high-temperature
episodes are depleting underground reservoirs and natural
aquifers. In India, reduced monsoon rains are lowering water
levels in some lakes and rivers. Water shortages tend to be
exacerbated both within and around expanding urban areas,
particularly in Asia and Africa, where some city aquifers are now
more than 30 m below ground level (Morris et al., 2003).

Flooding hazards in urban areas are partly caused by more rapid
run-off from distant ice- and snow-covered mountains caused by
global warming, or by agricultural practices such as reducing tree
cover, which has been found to correlate with vulnerability against
flooding (see the study by Pauleit et al. (2005) for a UK example).
The results are seen in overflowing rivers and watercourses and in
 [ University College London] on [15/03/17]. Copyright © ICE Publishing, all ri
unconfined areas such as streets and fields. Many secondary effects
occur in urban areas such as landslides, weaker foundations,
collapsing structures (e.g. in Boulder, Colorado, USA, the floods of
2013 resulted in more than US$1 billion in property damage) and
loss of land into coastal seas, depending on local geography and
infrastructure. In the Philippines, these secondary effects are found
to influence the overall movement of floodwaters and the extent of
danger to communities (DOST, 2012). The Tropical Cyclone
Haiyan in 2013, upon reaching southern Philippines, caused
unusually large damage to buildings and trees, in large part because
over the shallow coastal waters, wind stress drove a large surge,
lifting rocks from the seabed and transporting them several
kilometres inland. Importantly, urban design strategies that include
the incorporation of man-made rivers, reservoirs and planned flood
areas have been shown to reduce local flooding hazards relative to
surrounding areas, highlighting the importance of engineered
infrastructure resilience as a potential adaptive mechanism.

Other hydrological hazards occur with wind- and earthquake-
induced surges and waves (or tsunamis) onto coasts (Fernando,
2008). Such hazards flood urban areas along coasts and along
canals connected to the coasts (as occurred with Hurricane Ike; see
the study by Kennedy et al. (2011)). Arctic coastal communities
are now at risk from tsunamis generated by seismic activity that
has until now been suppressed by sea ice. The examination of the
tsunami waves of 2004, 2010 and 2011 in Asia and the Pacific has
illustrated how such hazards are affected by similar physical and
natural changes of climate (Klettner et al., 2012). As the tsunami
in March 2011 reached the east coast of Japan, significant
variability in the wave amplitude was observed and in the surge
movement (backwards and forwards up the shore) before flooding
of urban areas and the industrial plant at Fukushima.

3. Discussion and conclusions
This paper examines how extreme natural and artificial hazards in
the atmosphere, hydrosphere and on land are becoming more
severe and more frequent as global climate changes. The review
emphasises the changing patterns and greater spatial variability of
these hazards over different geographical and climatic regions. As
a result, the observed trends and patterns of hazards are diverging
from those of past decades and centuries. Existing models suggest
that this divergence will grow in the future, with more intense,
longer-duration and more frequent extreme events. The extent of
the increase and variability in climate-induced hazards varies
between regions and for each specific hazard (Table 1).

In growing megacities, these factors include their surface area
extent, urban population and growth rate, urban design/
technology, socio-economic factors and overall societal behaviour.

In considering the major physical and natural causes of hazards,
this paper also describes and analyses their societal effects, and
future work will examine the impacts on policy development. The
concept of societal effects extends beyond the useful, but
essentially passive, concept of vulnerability. For example,
7
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Table 1. Relating environmental hazards to urbanisation and climate change factors
8
ed
Types of natural and artificial hazards arising from extreme
environmental variations (positive or negative denoted by +/−)
and/or increased persistence and/or increased frequency in
 by [ University College London] on [15/03/17]. Copyright © ICE Publish
(a) Wind speed (+/−)
(b) Temperature (+/−)
(c) Natural and artificial pollutants/radiation in the atmosphere, land

and water (+)
(d) Hydrological processes – for example, flooding, sea level rise/

drought (+/−)
(e) Primary and secondary geophysical hazards leading to

environmental hazards – for example, earthquakes/tsunamis,
volcanoes/landslides, floods/landslides, storm surges/floods, sand
storms/air pollution (+)

(f) Biological/environmental – for example, disease, desertification (+)
Urbanisation and vulnerability effects
 Amplification or reduction of natural hazards (listed above); hazards
associated with infrastructure and human activities in urban areas
(dependent on size, location, design and economy of urban areas);
complex hazards associated with natural and human influences on
global, regional and urban environment – for example, higher/lower
winds; higher temperatures, increased air pollution and
increased/decreased water pollution; shortages/excesses of water
Examples of significant hazards in large urban areas
 Coastal and/or riverine cities
New Orleans (a), Houston (a), New York (a, e, f ), Bangkok (d ), Dhaka

(a, d ), Tokyo (a, c, e), Hong Kong (a, c, d ), Jakarta (c, e, f ), Manila
(a, c, d ), Paris and London (b, c, f )

Inland cities
Phoenix (b, c), Beijing (b, c, f ) Xian/other cities in central western China

(b, c, e), Moscow (b, c, f ), Athens (b, c, f )
National/
international

policies

Large
impacts

Local
impacts

ImpactsLocal hazards +
vulnerability

Global factors

Climate change

Societal

Technological

Infrastructure

Urban
biosphere

Time

scales

Hazards and immediate impacts

TH

TR

Recovery and restoration

Secondary hazards/long-term impacts

Longer-term resiliency

By way of technological infrastructural means and
international agreements

Local societal
assessment and

response

Figure 3. System diagram for effects of hazards, impacts and policies associated with global climate change, growing urban areas and
societal responses (TH, period of hazards; TR, period of long-term impacts and recovery)
ing, all rights reserved.
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communities have shown increasing capability to obtain and use
information in advance of and during hazards (e.g. Hondula and
Krishnamurthy, 2014) and are increasingly adept at moderating
hazard impacts (e.g. reducing the magnitudes and social impacts
of floods in urban areas; see Lagmay (2015)). The recovery of
communities following hazards can reduce long-term impacts.
Equally significant are the urban–biosphere interactions
surrounding and within megacities, which have vast effects on
health and the agriculture/forestry municipalities in Latin America
and South-east Asia.

The diagram shown in Figure 3 illustrates how the ‘dynamical-
systems’ methodology (e.g. Wilson, 2000) facilitates a holistic
overview (Smuts, 1926) and informs decisions about the empirical
or scientifically based interactions, the various factors that
influence or control some broadly connected collection of
processes and organisations. Here, the authors are considering the
links between global and regional climate changes and the
processes and hazards that affect urban hazards, impacts and
potential ameliorating policies (see Hunt (2009b) for complex
relationships between these). The review presented here includes
an appraisal of the impact on health, in particular the combination
of temperature extremes and intense air pollution from traffic,
heating and AC use and particulates entering cities from rural or
upwind urban areas. The authors stress the value of
comprehensive policy development accounting for place-based
variability (Table 1) and therefore directly address compensating
effects on thermal, air quality and other indicators that
characterise the totality of urban-induced effects. Simultaneously,
the authors acknowledge that wedge-type approaches (e.g. Pacala
and Socolow, 2004) can provide insight into optimising the
efficacy of urban policies, favouring some strategies over others.

The authors assert that involving different techniques for data
analysis and system modelling is more appropriate for practical
decision making than the purely reductionist approach that builds
up semi-empirical models and connects them to basic data of all
the various factors (e.g. Hunt et al., 2012). The utility of such
methods should ensure increasingly pragmatic approaches to
planning the form(s), size(s) and overall future growth of built
environments, as well as the development of appropriate policies
for green infrastructure and societal behaviour that will lower
energy use. To achieve success, however, will require action that
is in concert with societally informed decision makers, grounded
on sound scientific achievements. Collectively, these actions will
determine the future environment of megacities.
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