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                                                                                   Abstract 

According to quantum chemical (QC) calculations of a series of n-alkanes (CnH2n+2 at n = 1-8) the gap ΔHL 

between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) 

decreases with increasing methylene group (-CH2-) number in the n-alkane chain. While the LUMO level 

appears to be relatively unchanged, in good agreement with experimental results, the HOMO level is 

unstabilized and ΔHL decreases from approximately 11 eV (methane) to 6.5 eV (n-octane). Comparative ab initio 

calculations show not only the quantum confinement effects (QCE) in n-alkanes in the gas phase due to the 

reduction of the ΔHL value, but also enabled selection of cost-effective methodologies for modelling long-chain 

n-alkanes (n > 8). The used methodologies include ‘Local Spin Density Approximation’, combining special 

exchange functional with suitable correlation functional. Electronic structures and energetics of n-pentane 

(C5H12) in the evaporation/condensation processes are studied to understand the molecular mechanism for these 

processes. Two main step processes, liquid (L)
1

liquid-gas (L-G) interface
2

gas (G), are analysed. 

While phase transformations between L and L-G is estimated as activation processes, it is found that there is no 

energy barrier in the transitions between L-G and G. 

  

1- Introduction 

N-alkanes (CnH2n+2 at n > 4) are the main compounds in Diesel and petrol fuels. Due to a wide range of 

applicability of n-alkanes in science (1) and engineering (2), many groups have tried to develop or refine various 

molecular models for studying alkanes in the gas and liquid states using quantum chemistry (QC) (3, 4), all atom 

force field (AAFF) (5-7), united-atom force field (UAFF) (8, 9) and coarse-graining force field (CGFF) (10) 

methods. The resolutions of these approaches change from electronic structures (QC) to beads (a set of united 

atoms) in CGFF. Both QC and classical models are powerful methods for investigations of alkane chemistry and 

physics at molecular level. They can deal with various timescales, system sizes and related quantum effects. 

While advanced QC methods are based on many-body interactions of electrons and nuclei, classical force fields 

can describe interaction of particles (atoms, united atoms and beads) via pair-wise electrostatic, hydrogen 

bonding, and van der Waals potentials. Note that pure QC methods can give ground state properties (T = 0 K), 

and the temperature dependent properties such as enthalpy of vaporization can be estimated using the quantum 

thermo-chemical (QTC) calculations. An alternative approach can be based on Molecular Dynamics/Monte 

Carlo (MD/MC) (with (QC) or without (FF) consideration of electrons and nuclei) simulation algorithms in 

which thermal effects are taken into account.  

Q2
Q1

 
     TT: ΔE = 0.00 (0.00)                           GT: ΔE = 0.58 (0.94)                          G+G+: ΔE = 0.91 (1.89)                       G+X˗: ΔE =2.76 (3.29)                                       

Figure 1 Structures and relative energies (kcal/mol) of four isomers of n-pentane obtained using QC and FF 

methods. T refers to the trans conformer with dihedral angles φ1,2 = ±180°, G refers to gauche torsion with φ1,2 = 

±60°, X refers to φ1,2 = ±90°. φ1 refers to the angle between the planes 1C-2C-3C and 2C-3C-4C; φ2 refers to the 

angle between the planes 2C-3C-4C and 3C-4C-5C (see the left-hand side scheme).  

 

Traditionally evaporation and condensation of n-alkane droplets have been investigated using MD/UAFF 

simulations (11, 12). In these processes it is essential to take into account the influence of conformational 

changes caused by temperature and dynamical interactions. Since the energy difference between most 

conformers of n-alkanes is about 1-3 kcal/mol, capturing these conformers by UAFFs or even AAFFs would be 

challenging. Energies of four isomers of C5H12 (Figure 1) calculated using Coupled-Cluster with Single and 

Double Excitations /correlation consistent-polarized Valence Triple Zeta (CCSD (T)/cc-pVTZ) (13) and AAFF 
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(Optimized Potentials for Liquid Simulations - All Atom (OPLS-AA)) (5) (shown in the brackets) are essentially 

different in QC and force field methods.  

For OPLS-AA-FF energies the relative errors are in the range from 20 to 100%. While QC calculations show the 

values of mole fractions of 0.282, 0.673, 0.034 and 0.011 for conformers of TT, GT, G
+
G

+
 and G

+
X

+
 

respectively (14), the calculations based on the molecular mechanics (MM) method for the same conformers at 

300 K lead to rather different values: 0.491, 0.436, 0.064 and 0.009 (15). Using OPLS-AA-FF, Jorgensen's group 

(5) identified C22H46 as the smallest and most stable n-alkane with hairpin (folded) geometry, while Suhm et al. 

(16) showed, using QC methods and Raman spectroscopy techniques, that C17H36 is the starting point for n-

alkanes with the folded structure. There is balance between intra- and intermolecular interactions in these 

molecules (16). These conflicting results have stimulated our interest in finding a suitable method to study the 

effects of conformational changes or isomerizations of alkanes. We believe that analysis of these effects is 

important for clarifying the molecular mechanism of the evaporation/condensation processes. 

An MC statistical mechanics simulation has shown that n-alkanes (from C4H10 to C12H26) stay in anti-

conformations with two gauche bonds per molecule in the gas phase and pure liquid (5). In this study OPLS-AA 

was applied to a series of these alkanes. Obtained results are in excellent agreement with experimental data. 

Enthalpy of evaporation of n-dodecane obtained using MC simulation and experimental methods were reported 

to be 16.28 and 14.65 kcal/mol, respectively. Siu et al. (6) developed a revised version of OPLS-AA for long 

chain hydrocarbon molecules using MD simulation techniques, called L-OPLS-AA, in which intra-molecular 

parameters of the force field are refitted using high level ab initio calculations. The results were in better 

agreement with experimental data in comparison with the results reported in (5): 22.27 and 14.59 kcal/mol for 

enthalpy of vaporization of n-dodecane by OPLS-AA and L-OPLS-AA, respectively.  

None of these force fields are suitable for modelling of n-alkanes at high temperatures (internal combustion 

engine conditions) since those have been developed for simulation of biomolecules. Siepmann’s group 

developed a series of novel FFs named TraPPE (Transferable Potentials for Phase Equilibria) for modelling the 

vapour-liquid equilibrium of hydrocarbons (alkanes, cycloalkanes, alkylbenzenes, polycyclics and their 

mixtures) (9, 17-25). These FFs were parameterized to the experimental values of heat of evaporation and 

density in both gas and liquid phases. Although the TraPPE FFs could provide significant progress in modelling 

of n-alkanes over a wide range of thermodynamic conditions (temperature and pressure) using various 

resolutions (AA, UA and CG) (19, 20, 24), they could not take into account the effects of the detailed electronic 

structures of n-alkanes during such processes as evaporation/condensation. Knowledge of electronic structures 

allows one to find an answer to the questions: why does the HOMO-LUMO gap in alkanes decrease when their 

backbone becomes longer? What are the changes in energies and structures of alkanes during 

evaporation/condensation from the liquid (L) into the gas (G) state and what are the features of the processes at 

the liquid-gas (L-G) interface? Part of the second question might be answered using classical FFs such as 

TraPPE but without consideration of quantum effects caused by changes in the electronic structure. Therefore, in 

this study, we focus on the electronic structures of n-alkanes.  

The focus of the paper is on comparative quantum chemical (QC) calculations for n-alkanes. In the first part of 

the paper, a series of short n-alkanes (n = 1-8) in the gas phase is considered in order to respond to the question 

Why does the HOMO-LUMO gap decrease as the number of carbons (n) in the chain of alkanes increases? In the 

second part, we will try to extend our calculations to n-pentane molecule in the liquid phase to find out whether 

transformation of the molecule from the liquid phase to the gas phase, or the inverse of this, is a single step 

process or whether it includes several steps for evaporation/condensation from/to a droplet. These results will 

provide new insight into the evaporation/condensation of droplets taking into account changes in the n-alkane 

electronic structures during evaporation/condensation. The results will be shown to be in good agreement with 

experimental observations (25-27). 

 

2- Method of analysis and computational scheme 

All calculations were performed using Gaussian 09 (28), WinGAMESS (version 11 Aug 2011 (R1)) (29) and 

GaussView program for visualization (30). Several QC approaches, such as the second-order Møller-Plesset 

(MP2) perturbation theory, Density Functional Theory (DFT), Semiempirical Quantum Chemical (SQC) and 

Hartree Fock (HF) methods, were applied to the analysis of alkanes in the gas phase (Figure 2). QC calculations 

in the liquid phase were performed using an improved SQC potential called the Pairwise Distance Directed 

Gaussian (PDDG) function (31). In order to find out the relationship between the HOMO-LUMO gap and 

electronic structures of several conformers in n-alkanes, a setup was prepared to evaluate the effect of 

conformational changes (rotation of the atoms or united atoms around the single C-C bonds) on the molecular 

orbital bands (MOBs). Two torsion angles φ1 and φ2 (Figure 1) in the backbone of n-pentane molecule were 

scanned in 10 degree increments using the PDDG/PM3 potential. This gave 36×36 stationary points for n-

pentane molecule over the potential energy hypersurface. While these dihedral angles were constrained for each 

point, other remaining internal parameters were optimized. This allowed us to identify the locations of all 

minima, transition states and even second-order saddle points over the PES (Figure 3).   
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Using the same potential, a relaxed SCAN on the PES was also used for the analysis of attachment/detachment 

of n-pentane molecule from/to the slab (18C5H12) (see Figure 4a) to  identity of the reactants and products 

corresponding to each TS structure during the evaporation. The profile energy is presented in Figure 4b. Note the 

SQC is not considered to be reliable for quantitative determination of the activation barriers, providing only 

useful qualitative information on the PES (position of stationary points on the PES). Our conformational 

analyses are limited to SQCs.  

For validation of the PDDG/PM3 function and selection of the best potential, inter- and intra-molecular 

interactions were compared with CCSD (T)/cc-pVTZ results. The results of comparison of intermolecular 

interactions C3-C12 are shown in Table 2. The relative errors in the electronic energies of n-pentane molecule as a 

function of two torsion angles using PDDG/PM3 are shown in Figure 4. We followed this strategy to find out 

which would be a cost effective QC potential/method for studying the evaporation/condensation dynamics at the 

level of electronic structures. 

3- Results 

This section shows energies and structures of alkanes in both gas and liquid phases. First, the structures of a 

series of the n-alkanes (n=1-8) were fully optimized in the gas phase for evaluation of the HOMO-LUMO gap 

using various QC methods and basis sets. It is shown in Figure 2 that the HOMO-LUMO gap decreases by about 

5 eV when the length of the n-alkane chain increases. To find out the reason for this we have investigated the 

relationship between conformational changes of n-alkanes and their MOBs. We started with QC calculations for 

selected n-alkanes in the gas phase. 

 
Figure 2. The values of the OMO-LUMO gap versus the number of carbon atoms in n-alkanes (C1-C8). 

 

3-1 QC calculations in the gas phase 

 Using the results discussed above, a setup was prepared for studying inter- and intra-molecular interactions 

in alkanes. We compared them with high level ab initio potentials (MP2 and CCSD (T)) to find the best potential 

for studying of evaporation of n-alkanes. Firstly we calculated the interaction energies between two identical 

molecules (C3-C12). The results are shown in Table 1. In contrast to the semiempirical potentials of PM6 and 

AM1, the PDDG/PM3 potential has a good agreement with MP2 results. The HF methods and some 

conventional DFT were also unable to produce accurate results. Therefore, PDDG/PM3 could be considered 

reliable for estimating the inter-molecular interactions between n-alkane molecules only for the trans-conformer 

which is the most stable conformer among others (see conformer TT in Figure 1 and compare it with other 

cases).  

In our analysis, we relied on the most stable conformation of n-alkanes (all-trans) for studying inter-molecular 

interactions and considered the effects of other conformers in the following part of the study in which intra-

molecular interactions are discussed in detail. Recent QC studies of n-butane, n-pentane, and n-hexane molecules 

showed that the contribution of trans-conformers rapidly decreases with increasing temperature and the 

contribution of others increases with increasing temperatures from 100 to 500 K (33-36). The same authors 

established experimentally and theoretically that conformational changes strongly affect MOBs of n-alkanes. 

This encouraged us to search for all conformers of one of the n-alkanes using the PDDG/PM3 semiempirical 

potential in QC calculations.   

The range of variations of electronic energies was determined for all stationary points of n-pentane molecule, as 

a representative of n-alkanes, using the PDDG/PM3 potential. We found four minima, six transition states that 
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connect minima and four second-order saddle points that connect all TSs. This could be a hint for clarification of 

the conformational energy-dependent HOMO-LUMO gap. As can be seen from Figure 3a, the value of the 

relative electronic energy increased up to 17 kcal/mol which corresponds to the energy of the second-order 

saddle point conformer. This value would be larger for longer alkanes since the number of conformers 

dramatically increases with increasing length of the backbone of n-alkanes (the number of nonequivalent minima 

conformers for C5H12, C6H14, C7H16 and C8H18 are 4, 12, 30 and 95 respectively). The relative values of energy 

for one of the stable conformers increase from 2.76 kcal/mol for  G
+
X

˗
 isomer of n-pentane to 4.92 kcal/mol for  

X
˗
G

+
X

˗
 isomer of n-hexane and to 8.08 kcal/mol for  L

+
G

+
X

˗
G

+
X

˗
 isomer of n-octane (37). Moreover, since the 

LUMO level was shown to be relatively unchanged, in good agreement with experimental results (25-27), it can 

be concluded that conformer isomerization (conformerization) can lead to a decreasing HOMO-LUMO gap.  

 

Table 1. Comparison of inter-molecular interaction energies (kcal/mol) in n-alkanes 

Molecule PDDG/PM3 MP2/cc-

pVTZ* 

PM6 AM1 HF/ 

6-31G** 

DFT_B97D/ 

6-31G** 

OPBE/ 

6-31G** 

OPBESOL/ 

6-31G*) 

C12 -10.2 -10.5 -2.7 0.0 -0.2 -8.3 -0.6 -1.9 

C11 -9.3 -9.6  

C10 -9.7 −8.75 

C9 -7.3 −7.75 

C8 -5.9 −6.68 

C7 -5.5 −5.96 

C6 -4.5 −4.91 

C5 -3.6 −3.92 

C4 -3.1 −2.97 

C3 -2.0 −2.08 

*Data collected from [32]. MP2 results were in good agreement with CCSD (T)/cc-pVTZ (see [32]). 

 

For validation of the PDDG/PM3 potential, we compared intra-molecular interactions of n-pentane with high 

level ab initio calculations to find out whether the calculated values of energy can be reliable. The results 

showed that PDDG/PM3 fails in reproducing CCSD (T)/cc-pVTZ results since relative errors reached ±3 

kcal/mol (see Figure 3b). This issue is related to all SQC methods; these cannot locate TSs correctly on the 

potential energy hypersurface. The main reasons for this are related to the unusual nature of the TS structures 

and also their properties which are not available from experiments. Moreover, according to (38), none of the 

semiempirical potentials can model activation barriers accurately since estimation of the barriers requires a high 

degree of accuracy in basis sets (SQCs are in the lowest levels of the basis sets). An error of ~1.5 kcal/mol in the 

estimation of interaction energies led us to more than one order of magnitude overestimation in the rate of 

evaporation (39). The intra-molecular interactions have significant effects on the evaluation of activation 

energies during the evaporation process.  

 

 
Figure 3 (a-left hand side) Contours of relative energies (kcal/mol) of n-pentane molecule obtained using the 

PDDG function; (b-right hand side) relative errors (kcal/mol) of the PDDG/PM3 potential in the PES of n-

pentane molecule. 

 

Martine’s group recently developed a double-hybrid DFT in which exchange and correlation effects are taken 

into account along with spin component contributions and dispersion effects (40). This potential could reproduce 

inter- and intra-molecular interaction energy values in good agreement with high level ab initio methods; the 

reported errors were less than 0.2 kcal/mol which is better than the chemical accuracy (13). The essential point 

for our modelling is applicability of a suitable potential that can model conformational changes properly. We 
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find that DSD-PBEP86-D2 has these specifications for our molecules (see (41-44) for details). Therefore, DSD-

PBEP86-D2 is suggested as a cost-effective potential for studying alkanes in both gas and liquid phases at a 

reasonable computational cost. 

 

3-2 Liquid phase 

In this part of the paper, we describe structurally and energetically the removal of n-pentane molecule from a 

slab of 18 n-pentane molecules (Figure 4). Before starting QC calculations, we optimized the structure of the 

slab using  OPLS-AA force field. This gave us an initial conformer in which molecules were in a zigzag shape 

(all-trans form) and the distances between their centres of mass were about 0.4 nm. This structure is labelled Re 

in Figure 4.  
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Figure 4 (a) Structures of the initial (Re), the most stable intermediate (Int2) and final products (Pr) of n-

pentane slab in L, L-G and G, respectively. (b) Energy profile of removal of n-pentane molecule from the slab 

(all values of energies were calculated based on the PDDG/PM3 potential, kcal/mol). 

 

A specific technique was applied for obtaining energies and structures of alkanes during the evaporation in the 

liquid phase (L), liquid-gas (L-G) interface and gas phase (G). A reaction coordinate was defined as a distance 

along the normal to the plane formed by the centres-of-mass of n-pentane. This allowed us to find electronic 

energies along with relevant structures when the distance between the central molecule in the slab (hereafter 

denoted RM) and the centre of mass (COM) of the slab changed with a step of 0.005 nm. The evaporation starts 

with the rotation of the methyl group (-CH3) around single bonds of C-C in the backbone of the n-pentane. At 

this stage of the process, the dihedral angle of φ1 in RM changes from 178° in Re to 118° in TS1 and 92° in Int1. 

This means that the structure of RM has changed from TT in Re in the L phase to GT in Int1 in the L-G 

interface. The energy barrier was calculated to be 5 kcal/mol (Figure 4b). The torsion angle φ1 in Int2 reached 

73° in Int3. This single bond rotation, via TS2, leads to the formation of the most stable conformer along the 

reaction pathway (Int2). The presence of the Int2 shows the concept of surface tension in the L-G interface at 

the site of evaporation. This downhill process (ΔE = -2.8 kcal/mol) proceeds with relatively small barriers (ΔE
‡
 

= 4.4 kcal/mol). For the subsequent step, while φ1 remains almost constant (70-80°), φ2 changes from 174° in 

Int2 to 94° in Int3. This endothermic step (6.3 kcal/mol) occurs with a barrier of 15.7 kcal/mol (TS3) in the 
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interface of L-G showing its rate-limiting step in the evaporation process (Figure 4b). At the last step Pr was 

produced. At this stage RM was removed from the slab (its distance was 1.8 nm). It was as stable as Int4 but 

much more unstable than Int3 (Figure 4b) showing a barrier-less step in the evaporation/condensation processes. 

The energy gap between Int3 and Int4 or Pr shows that RM is near the surface and needs sufficient kinetic 

energy to be evaporated. Therefore, it can be concluded that evaporation/condensation is not an activated 

process.  

This multi-step process leading to accurate estimation of the evaporation coefficient cannot be limited by only 

one value even under constant thermodynamic conditions. We aim to extend this work in the future by studying 

the dynamics of these processes with reliable QC potentials. These QC results are expected to enable us to 

estimate the evaporation/condensation coefficients more accurately than was done earlier (11-12). 

 

4- Conclusion 

Our QC calculations in the gas phase show that conformerization energies in n-alkanes are mainly responsible 

for the reduction of the HOMO-LUMO gap since their contribution increases dramatically with increasing chain 

length of n-alkane molecules. We have found that evaporation of n-alkanes is a multi-step complex process for 

which the transformation of a molecule from L to L-G is considered as an activation process and a barrier-less 

process occurs during the transition from L-G to G. While phase transformations between L and L-G are 

estimated as activation processes, it is found that there is no energy barrier in the transition between L-G and G. 

A double hybrid DFT as a cost-effective potential is suggested for studying the dynamics of evaporation of n-

alkanes. In this approach all important processes are taken into account (effects of exchange, correlation, 

dispersion and also spin component contributions of electrons). 
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