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Abstract 

As the number of cars has expanded to 1 billion, technologies to slow the 

consumption of oil are sought. A 10 wt. % reduction of a car body mass can lead to a 

7 % decrease in fuel consumption. Thus, there is a quest for high strength to weight 

ratio, high elastic modulus, toughness and low cost materials for the vehicle industry. 

Biological composites such as nacre, have outstanding mechanical properties 

because of its microstructure and aim of this project is to mimic the hierarchical 

structure of nacre. 

 

In this project, clays including montmorillonite, laponite, Black Hills bentonite as 

well as kaolinite were used to fabricate the layered structure of nacre. A solution 

casting method was used to build the hierarchical nacre-like composite and in-situ 

photo polymerisation, vacuum impregnation and vacuum assisted filtration methods 

were employed for preformed clay sheets and polymers (methyl methacrylate, 

tri(ethyleneglycol) dimethacrylate, poly(propylene glycol) dimethacrylate as well as 

epoxy resin) to mimic the structure of nacre. 

 

XRD was used to indicate the intercalation of polymer and orientation function of 

clay sheets and SEM for microstructure detection. Tensile testing was used to 

investigate the properties of different volume fraction (40-70 vol. %) composites and 

the highest value 98 MPa came from 50 vol. % MMT/PVA composite. The 

mechanism of polymerisation of acrylic groups with clays present was analysed and 

redox polymerisation was introduced for the kaolinite/PMMA system. Kaolinite/ 

PMMA samples were tested via three points loading and a composite with flexural 

strength of (40 ± 20) MPa and flexural modulus of (30 ± 20) GPa was obtained. 
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1.1 General introduction 

The stages of civilization of human beings are named after materials: Stone Age, 

Bronze Age and Iron Age. The development of materials promotes new leading 

technologies and promising futures. 

 

In modern and contemporary history, engineers have been looking for a kind of 

material which has properties like low density, high strength and high elastic 

modulus. This ‘super material’ could be potentially used in industry especially in the 

automotive industry.  

 

The global number of cars has exceeded 1 billion [1]. The world consumption of oil 

was 4.13 Pg (4130 million tonnes) in 2012 as reported by British Petroleum [2]. The 

greenhouse gas (CO2) concentration increased in the atmosphere from 277 parts per 

million (ppm) to 404 ppm between the pre-industrial value on 1750 and June 2016 

[3]. It is predicated that global temperatures will increase by 0.2 °C per decade [4]. 

Fossil fuels are non-renewable energy resources and it is reported [2] that global oil 

consumption grew by the rate of 1.9 million barrels per day (b/d) in 2015 from the 

historical average. Compared with the rate in 2014, which is 1.1 million b/d, it shows 

a significant increase. It is advisable therefore the technologies should be developed 

to slow down the rate of production of carbon dioxide.  

 

Transport made up 22 % of global CO2 emissions, which is the second largest 

producer following electricity and heating, which accounted for 41%. Road transport 

accounted for about 75 % of transport emissions [5]. Generally, it is found that fuel 

economy of a vehicle improves by 7 % when there is a 10 % reduction in weight [6]. 

Decreasing vehicle weight allows manufacturers to achieve the same level of 

performance with a smaller engine, smaller fuel tank and smaller emissions. 

 

A new generation of cars in which the chassis is made from carbon fibre reinforced 

composites (CFRC) has been developed by Volkswagen with reported 250 mile per 

gallon (about 106 km per litre) performance [7] (Figure 1-1).  
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Figure 1-1. CFRC frame used in VW concept vehicle. [7] 

CFRC was invented at the Royal Aircraft Establishment in 1963. Traditional 

materials, such as cast iron and stainless steel, the strength to weight ratio is around 

20 kNm·kg
-1

 for cast iron and 30 kNm·kg
-1

 for stainless steel, the stiffness to weight 

ratio is about 12 MNm·kg
-1

 and 20 MNm·kg
-1

, respectively, as shown in Figure 1-2 

[8]. Compared with traditional materials, CFRC itself has big advantages in both 

strength to weight ratio and stiffness to weight ratio, which are 200 kNm·kg
-1

 and 80 

MNm·kg
-1

, respectively. 

 

Figure 1-2. Ashby map of strength-stiffness of materials, focusing on metals and 

alloys. [8] 
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However, CFRC manufacture is very energy and labour intensive and the resulting 

capital cost is nearly 10 times than that of glass fibre reinforcement composites and 

20 times compared with metals and alloys. This may inhibit the market penetration 

of such vehicles (Figure 1-3) [8]. In this case, it has taken almost 50 years for CFRC 

to be used in the industrial automobile as the cost of CFRC decreases with new 

technologies. 

 

 

Figure 1-3. Ashby map of strength-cost of CFRC. [8] 

 

Ajay Kapadia, the senior leader of Knowledge Transfer Network on advanced 

composites materials, points out that ‘carbon fibre composites currently cost five 

times more than their metallic equivalents. It is unlikely that the cost of carbon fibre 

will significantly decrease.’ [9] 

 

There have been several attempts to utilize low-cost materials to take the place of 

carbon fibre composites in car shells. For instance, at the 2014 London Design 

Exhibition, there was a concept car of which the shell is made of polypropylene and 

aluminium as shown in Figure 1-4. 
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Figure 1-4. Low carbon vehicle with polypropylene/aluminium shell. 

 

The challenge now is to produce a cheaper material with higher ratios of strength to 

weight and stiffness to weight. This research seeks materials for use in industrial 

processes especially in vehicle body construction that have high strength to weight 

ratio, high elastic modulus, toughness and low cost compared with currently 

available composites. The project aims to develop composites that mimic structures 

found in nature, particularly nacre (mother of pearl). One of the most promising 

potential choices is polymer-clay nanocomposites. 

 

In 1985, Japanese scientists invented a new kind of composite called polymer-clay 

nanocomposites (PCN) at Toyota Central Research and Development Laboratories 

[10]. It became a new promising field for researchers to take part in. Compared with 

pure polymers, the new composite which consisted of no more than 3 vol. % clay 

provided better mechanical properties.  

 

In this work, high volume fraction clay composite will be investigated. As part of the 

introduction to this thesis, the motivation for the work is explained by setting it in 

the context of an assessment of China. A comprehensive review on the available 

literature on biomimetic composites is presented in Chapter 2. Details of materials 

and the methods used are highlighted in Chapter 3. The results and discussion are 

given in Chapter 4-7. Conclusions are provided in Chapter 8 along with directions 

for further work. 
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1.2 Motivation for this research 

The motivation of this work was created because the environment in China has 

become extremely polluted. China has been the second biggest economic system of 

the world since 2011. It can be suggested that the Chinese population was too 

entranced by the prospect of wealth to realize what would happen in the context of 

pollution. In 2012, smog happened in the Chinese capital city Beijing, just as 

occurred in London in 1952. Thus 60 years later, the situation is even worse than at 

that time in London. The air quality of major cities in China was given in Figure 1-5. 

In 2013, 8500 people died because of smog in the major cities in China, such as 

Beijing, Shanghai, Guangzhou and Xi’an. 

 

 

Figure 1-5. Air quality in China 2013. [11] 

 

A journalist James Fallows, mentioned in one public report [11] as ‘at one point in 

mid-January, Air quality index (AQI) in Beijing soared as high as 993, far beyond 

levels health officials deem extremely dangerous’. The AQI in London was generally 

between 20 to 80 in 2013. [12] 

 

Smog appeared in conjunction with the highest density of population. Beyond half of 

Chinese is suffering this pollution, which is more than 0.68 billion people. One of 

the causes of smog is vehicle exhaust emissions. 
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The domestic production of oil in China cannot meet the demand resulting from 

development. The shortage is becoming more and expanding rapidly. It pointed out 

that imported oil was about 120 million tonnes in 2004 and will expand quickly in 

the following decades to fulfil the economic needs [13]. Figure 1-6 shows oil 

demand in China between 2000 and 2020 [14]. It is estimated from the beginning of 

2020, the demands of oil will be up to 500 million tonnes every year [14]. 

Unfortunately, the domestic oil production can only satisfy less than 40 % of the 

demand. 

 

Figure 1-6. Histogram of oil demands in China. A: extrapolation of oil demands 

between 2000 and 2020. B: extrapolation under a strategy for reducing oil 

consumption. C: extrapolation under a further reducing oil consumption strategy. 

[14] 

 

In this kind of emergency, China has to find oil replacements. Abundant coal reserve 

is the major fossil fuel resource and is about 5500 billion tonnes in China [14]. The 

‘proved coal reserve’ is estimated about 115 billion tonnes and almost 40 times 

compared with the oil reserve in China [14]. Therefore oil substitution technology by 

means of coal is widely researched and developed. This may give Chinese industry a 

viable power solution. In other words, Coal-to-Liquid (CTL) technology will play a 

significant role in the long term for oil substitution production. As Figure 1-7 shows, 

the oil production through CTL needs water. Some reports reveal that the water 

consumption of 1 tonne of oil production requires up to 7 tonnes of water. The 

sulphurous gas emissions caused by coal is also an environment problem [14]. 
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Figure 1-7. The Coal-to-Liquid process (Synfuels China, 2004–2005). [14] 

 

China has already built the world’s largest CTL project in Ningxia province. It can 

produce 4 million tonnes oil per year. In the meantime, it gives the environment a 

huge burden of pollution.  

 

The aim of this research is to synthesise light-weight ordered composites with high 

mechanical properties for materials applications in the car industry. The first 

investigative step is to analyse the mechanism of natural nacre and to biomimetically 

simulate the structure using clay and polymer via a water-evaporation induced 

process. Next, acrylic monomers are synthesized for the polymerisation reaction with 

clay by heating or UV-light polymerisation. The next stage was to use potential 

reinforcement agents, such as montmorillonite, kaolinite. Such composites should 

have improved elastic modulus and barrier properties. Subsequently, the interaction 

of clays with the polymers is studied with the aim of preparing composites based on 

epoxy resin groups. Furthermore, graphene oxide will be investigated. The ultimate 

objective is to find appropriate conditions for polymerisation and reinforcement to 

prepare composites with mechanical properties in the range suitable for composite 

applications in the automotive industry. 
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2.1 Composite materials 

Composite material is a type of material which is made up of more than one 

constituent with different physical or chemical properties. Hull and Clyne found that 

the composite contains a strong and stiff reinforcement and a softer matrix [1]. The 

strong and stiff constituent is generally in the elongated form, which is implanted in 

the softer matrix [1]. There are natural composite materials in the world, for instance, 

wood and bone. Wood contains fibrous chains of cellulose and the cellulose is 

combined with lignin to form the wood. Bone has a complex structure with stiff 

inorganic component embedded in tough organic constituent served as matrix, 

known as collagen [1]. Composite can be described as materials which consist of 

‘one or more discontinuous phases embedded in a continuous phase’, this definition 

was given by Agarwal and Broutman [2]. 

 

Normally, the discontinuous phase shows stiffer and stronger mechanical properties 

than the continuous phase. The discontinuous phase in a composite is known as the 

reinforcement and the continuous phase is named as matrix. The reinforcement of 

discontinuous material can undertake the applied excess stress and/or load with 

matrix in the material, hence suppress cracking of the matrix. Therefore, stress 

and/or load should be transferred between the reinforcement and the matrix through 

interaction, otherwise the matrix would be over loaded and lead to cracking. Also, 

the reinforcement mechanism involves absorbing energy before fracture. This is 

achieved through increasing toughness, for example, fibre pull-out in fibre-

reinforced composites when over loaded [2]. The fibre sizes of the traditional 

polymer composites are in microns levels, while the reinforcement of PCN is usually 

in the scale of nanometre (1-100 nm), the size of reinforcement is the main 

difference between traditional polymer composites and PCN. Nevertheless, the 

aspect ratios can be very high. More interfacial interaction between reinforcement 

and matrix would be probable since the size of clay particles is ~10
3
 times smaller 

than that of the traditional fibres [2]. In PCN materials, the clay particles serve as 

nano-material reinforcement. Unlike a continuous fibre reinforced composite, 

thermoplastic nanocomposites can be processed by extrusion, injection moulding 

and similar processes. 
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2.2 Structure of polymer-clay nanocomposites 

There are three types of structure that develop in PCN when polymers are introduced 

to clays—conventional, intercalated and exfoliated. Most composites are made up of 

a mixture types. Basal spacing is defined as the distance between the (001) plane in 

the unit cell and the (001) plane in the next unit. If the polymer does not enter the 

galleries (basal spacing does not change), the composite is designated 

‘conventional’. An increase in basal spacing indicates the polymer enters into clay’s 

interlayer, but the clay can still keep its structure; it is called intercalated. If the 

polymer penetrates the clay galleries in the meanwhile the polymer breaks down the 

layered structure, resulting in the platelets separating and the clay layers are evenly 

distributed among the polymer, the structure is called exfoliated [3]. Figure 2-1 

indicates the three modes of PCN structure.  

 

 

Figure 2-1. Different structures of PCN. [3] 

 

2.3 Principles of biomimetics 

Biomimetics is an interesting idea to simulate the way that nature has used to 

survive. Nature has used more than five millions of years to evolve and adapt [4]. 

Thus there is an assumption that some mechanisms for survival developed in this 

time are thought to be the best and the simplest.  
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This research is biomimetic as it attempts to develop a strong and light as well as 

high strength and tough high-performance material. A composite with such 

properties already exists in nature and it is called nacre, sometimes referred to as 

‘mother of pearl’ because of its optical lustre. 

 

2.3.1 The properties of nacre 

Nacre, which arises about 600 million years ago, can prevent molluscs being eaten 

by their predators and being harmed from stone or tide with their protective structure 

[5, 6]. The creature itself creates the superb structure at ambient conditions using 

abundant calcium-based materials, mainly aragonite (calcium carbonate). They can 

combine calcium carbonate with their own protein to form a layered structure, the 

inner side of which is iridescent (Figure 2-2) [4]. 

 

 

Figure 2-2. Photograph of the inner, iridescent region of the nacre. [4] 

 

In the 1960s to 1980s, researchers have investigated the layered structure of nacre by 

scanning electron microscopy (SEM). Figure 2-3 shows the structure of nacre [4, 7, 

8]. 
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Figure 2-3. SEM image of fracture surface of nacre. [4] 

 

The layers grow confluently and are highly organised as an ordered mineral 

structure, shown in Figure 2-4. This material which is created by the mollusc with a 

small amount organic component (about 5 wt. %) between mineral layers gives nacre 

itself outstanding mechanical properties. The hierarchical structure can be up to 2000 

layers. The single aragonite platelet (or tablet) is 5 to 10 μm in diameter and the 

height is around 0.5 μm. 

 

 

Figure 2-4. High magnitude view on the platelets of nacre. Corrugated surface as 

white arrow point out. [4] 
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In the meanwhile, there is another hierarchical level called a mesolayer which is 

caused by temperature and food fluctuations (Figure 2-5). Generally, a mesolayer is 

around 20 μm thick. It is made of organic material and is reported to 'appear 

approximately every 300 μm separating regions of regular platelet stacking' [9-12]. 

 

 

Figure 2-5. (a) Fracture surface of nacre showing the brick-mortar structure 

separated by mesolayer. (b) Nanolayer of nacre and organic membrane. (c) 

Mesolayer and nanolayer within a partially demineralised nacreous structure. [4] 

 

The process of shell formation is described as an 'organic matrix-mediated' [13] 

process. During growth, the organic part can be added into inorganic layers as long 

as the mineralization happens. Nacre can organize the structure by forming inorganic 

and organic layers alternatively using molecular recognition and interactions. 

Therefore, nacre gets a highly controlled structure using both inorganic and 

inorganic materials to deliver mechanical properties and organic beauty as well as 

humid and corrosion resistance in the sea [13, 14]. 

 

The material can be defined as a self-assembled polymer/mineral composite. This 

material has outstanding properties which have drawn lots of attentions from 

different disciplines, especially in material science [15]. The organization of nacre 
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has inspired numerous interesting ideas, some of them are shown in Figure 2-6. 

 

 

Figure 2-6. Summary of nacre inspiration in advanced materials applications. [15] 

 

Nacre, made of 95 wt. % calcium carbonate and 5 wt. % protein with KIC=3-10 

MPa·m
1/2

, has achieved 100 to 1000 times tougher than that calcium carbonate from 

which it is made [16]. Tensile strength can be up to 40-100 MPa [17] and Young's 

modulus is 60-70 GPa [18]. The 5 wt. % organic parts are generally embedded in the 

interface between tablets [17]. The organic fraction can affect the toughening 

mechanism of nacre due to cohesion between the tablets in a certain distance [11]. 

 

As mentioned before, the three dimensional aragonite tablets are about 0.5 μm thick 

and 5-10 μm in diameter. In columnar nacre, the tablets are arranged in columns [17] 

while in sheet nacre, they arrange in a random way, shown in Figure 2-7. 
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Figure 2-7. Schematics of sheet nacre and columnar nacre and their SEM picture. 

[19, 20] 

 

From 1970 to 1995, it is believed that the tablets are made up of a few twinned small 

crystals [21]. However, recent reports [22, 23] using atomic force microscopy show 

that the tablets are composed of nanograins or called nanoasperities instead (Figure 

2-8), and are separated by a well-designed network of organic protein [11]. 

 

 

Figure 2-8. Nanograins on the aragonite tablets. [11] 
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Because of the nanoasperities, nacre can interlock the tablets between each other 

resulting in great mechanical properties. When tensile loaded in the direction parallel 

to the tablets, the nanoasperities can limit crack propagation as indicated in the 

schematic Figure 2-9 [4]. 

 

 

Figure 2-9. (A) Schematic of two platelets with nanoasperities during sliding (B) The 

stress–strain curve of nacre shows the hardening mechanism. [4] 

 

The aragonite tablets are stacked vertically and connected tight with the adjacent 

parts. Among these tablets, there was 5 wt. % protein which act as glue to stick them 

together (Figure 2-10 and 2-11). When subjected to tensile loading, the soft organic 

bio-polymer between tablets can endure high stretching and dissipate energy by 

visco-plastic deformation [4, 24]. 

 

 

Figure 2-10. SEM images of fracture surface of shell. A distinct structure is observed 

in each platelet as black arrows indicated. High magnitude view on the platelets 

shows their connection (white arrows). [4] 
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Figure 2-11. Transmission electron microscopy (TEM) image of nacre shows the 

organic phases are connected with each tablet. [24] 

 

Mineral bridges, which are embedded in organic layers, have been confirmed as 

another toughening mechanism in nacre (Figure 2-12) [25].   

 

 

Figure 2-12. Mineral bridges in nacre. [25] 

 

Meyers and Lin reported that when loaded parallel to the tile direction in nacre, two 

principal mechanism of failure may occur, one is failure of the tile and another is 

sliding along the tile surface [10, 11]. In this case, the nanoasperites on the surface of 

aragonite tablets can inhibit the sliding movement of the tile. The mineral bridges 

among these bricks can interlock the bricks and the organic protein which can act as 

glue to limit the sliding to a certain distance. These three different models synergize 

together resulting in the high mechanical properties of nacre, and they are shown as 

schematics in Figure 2-13 and 2-14 [11, 26]. 
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Figure 2-13. Sketch of the structure of nacre and a single platelet of nacre. [26] 

 

 

Figure 2-14. Three mechanism models during sliding between platelets. (A) 

Nanoasperities hardening (B) Organic stiffening (C) Fractured mineral bridges 

toughening. [11] 

 

Inspired by nacre, this work attempts to simulate 'bricks and mortar' structure and 

intends to achieve this by adding polymer (which is intended to act in the same way 

as protein) into high volume fraction clay or graphene oxide (to act as calcium 

carbonate) ordered structures. 

 

2.3.2 Attempts to replicate the nacre structure 

In 1998, poly (dodecylmethacrylate) (PDM) /silica nanocomposite was prepared by 

Sellinger et al., which is a dip-coating self-assembly approach [27]. This process 

began with mixing silicate solution and monomer in assistance with coupling agent, 



page 41 

 

surfactant and initiators in an ethanol/water solvent [27]. The ethanol evaporated 

during dip-coating, so the concentration of nonvolatilizable components increased 

and formed micelles in the solution. The formation of the composite was promoted 

by the continuous evaporation of ethanol. This leads to prompt organization of 

reinforcement and matrix precursors into a laminated structure together. The organic 

polymerisation can be induced by application of light or heat to stabilize the 

structure of composite and to generate covalent bonds at the interfaces between 

matrix and reinforcement. The hardness increased from 0.1-0.4 GPa to 0.8-1.0 GPa 

through polymerisation, measured by the nanoindentation of the nanocomposites 

[27]. 

 

Layer-by-layer assembly (LBL) was investigated to mimic the nacre structure in 

2003 [28]. LBL relies on combination of different charged clays and polyelectrolyte 

to generate a hierarchical structure in nanoscale. In the films, ordered clays were 

cooperated with polymer to create covalent and hydrogen bonding. When loaded, 

load transfer can occur between clay sheets and the polymer resulting in good 

mechanical properties. Cationic poly (diallyldimethylammonium chloride) (PDDA) 

and anionic montmorillonite (MMT) were used to form layered structures using 

LBL. The PDDA/MMT nanocomposites show high mechanical properties. The 

tensile strength of the composite films obtained was 106 MPa due to the strong 

attractive electrostatic and van der Waals interactions at the interface of MMT 

platelets and the polymer chains [28]. Moreover, poly (vinyl alcohol) (PVA)/MMT 

layered composites have also been prepared by this method [29]. The film has high 

flexibility and transparency. After glutaraldehyde cross-linking, tensile strength of 

the film reached 400 MPa and 106 GPa Young’s modulus was obtained. The acetal 

bridges after cross-linking, the hydrogen bonding between PVA and MMT, and the 

Al-O-C bonding forming by organic-inorganic phases contributed to the high 

mechanical properties of composite. Various polymers have been combined with 

MMT to prepare the nacre-like structure via LBL by the same group [30, 31]. 

 

Bennadji-Gridi and co-workers reported the preparation of films by slowly 

evaporating the MMT suspension and sodium hexametaphosphate (HMPP) or 

sodium polyacrylate (SPA) mixture in 2006 [32]. They obtained a nacre-like sample, 

the platelets overlapped each other and the direction of platelets was parallel to the 
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original substrate, as indicated in Figure 2-15 [32]. A three point flexure testing was 

carried out to analyse the mechanical properties of the film. The bending strength of 

the thinner samples were 112 MPa, whereas the thickest samples (>140 μm) showed 

a much lower value about 45 MPa [32]. This is caused by the numerous 

perpendicular cracks to the film surface which may be created when the water was 

evaporating. It is reported that the bending strength of samples increased when 

decreasing the rate of evaporation [32].  

  

 

Figure 2-15. A cross section of the composite film prepared by evaporation. [32] 

 

Lamellar nanocomposite materials have been generated by evaporation-induced self-

assembly [33]. The material was created by forming the poly (tripropylene glycol 

diacrylate) (PTPGDA) and indium–tin–oxide (ITO) layers alternatively [33]. As 

ethanol/water solution evaporated, the concentration of the non-volatile constituents 

increased. The continuous evaporation promoted the combination of the 

reinforcement and matrix components, resulting in production of layered structure. A 

free-radical polymerisation process was then carried out to generate a polymer/ITO 

composite with average layer spacing of 3 nm [33]. 

 

Ice-templated, or freeze casting is the method to simulate the structure of nacre by 

Tomsia and co-workers [34-36]. The method was illuminated by eliminating the 

solutes from the suspension during ice formation when cooled to low temperature. 

Eliminated solutes were then entrapped in the gaps between each ice crystal. Tomsia 

et al. prepared a water-based suspension which was made of 50 wt. % of alumina 
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particles and organic additives [34], followed by cooling the suspension to -80 °C. 

At this stage, the lamellar ice grows directionally desorbing the Al2O3 particles, thus 

a template was formed by Al2O3 particles and acted as the ceramic scaffold. Then the 

obtained templates were freeze-dried to get rid of water, fired to 400 °C for the 

organic additives removal, and finally sintered at 1500 °C for creating a ceramic 

scaffold [34, 35]. 

 

This ceramic scaffold was used to generate the nacre structure by infiltration with a 

polymer under a perpendicular pressure to the lamellae. The polymer was used to 

produce a dense packed structure as well as consolidate the composite. The thickness 

and length of these sintered ceramic layers were in the range of 5-10 μm and 20-100 

μm, respectively [34, 36]. Poly (methyl methacrylate) (PMMA) was then infiltrated 

into the ceramic scaffolds. The average thickness of the polymer layers is 1-2 μm, 

acting as the protein layers in nacre [34, 36]. The structures are shown in Figure 2-

16. 

 

 

Figure 2-16. (a) The Al2O3-PMMA lamellar structure prepared by ice-templated 

(white: ceramic; black: polymer). (b) The nacre-like structure produced by pressing 

and sintering the lamellar scaffolds. [34] 

 

In a bending test, this kind of hybrid material produces similar stress-strain curves 

compared to nacre. Before failure, the inelastic deformation of both materials were 

higher that 1 %. The flexural strengths of lamellae and the nacre-like structures were 

120 and 210 MPa, respectively. Whereas the flexural strength value of alumina was 

320 MPa and natural nacre was 135 MPa. In terms of the fracture toughness, both 
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composites are higher than that of natural nacre [34-36]. The flexural strength can 

further improved by reducing the thickness of the ceramic layers and the crack-

initiation fracture toughness can increase as well. The flexural strength can be 

determined by adjusting the cooling rate during the free drying stage, the particle 

size of alumina, additives as well as the suspension concentration [37-39]. It also can 

be promoted by chemically grafting a methacrylate group on the surface of alumina 

particles before infiltrating the polymer in to form robust bonding between organic-

inorganic system [34, 36]. It was also reported that the chemical grafting increased 

the strength by 80 % and toughness of the nacre-like structure 70 %, respectively 

[34]. This is because of organic polymer which is located between the inorganic 

layers acts as viscoelastic ‘glue’ that allows interfacial sliding but in a limited range. 

 

Electrophoretic deposition (EPD) is another method to generate films rapidly with 

adjustable thickness and shape. Since 1970s, EPD has been widely operated to 

obtain advanced ceramics and now it has been applied to produce layered 

nanocomposites [40]. It depends on the motion of charged particles which can gather 

at corresponding electrode under applied electric field. To obtain a layered 

composite, EPD is operated by depositing clay alone into an ordered structure, then 

infiltrating the polymer into clay layers. It can also achieved by depositing clay and 

polymer at the same time if they are dispersed homogenously in the suspension [40]. 

 

Lin et al. produced a nacre-like structure using gibbsite nanoplatelets and poly 

(ethylenimine) (PEI) [41]. Different potentials were applied to suspension in a 

parallel plate cell. Gibbsite and PEI were adsorbed to the cathode to generate 

composite. The preferred direction of formed nanoplatelets is parallel to the 

electrode. The results of nanoindentation measured on the coatings illustrated that 

the reduced modulus of the coating depends on the contact depth add ranges from 

2.20 to 5.17 GPa. The modulus of the composite was 0.4 GPa which was lower than 

that of gibbsite films [41]. This is caused by the soft PEI component located between 

the gaps of the hard clay layers. In another study, using sol-gel method, Liu obtained 

the surface roughness which was similar to that of nacre by coating silica onto the 

surface of gibbsite [42]. After polymerisation of photosensitive monomer, the cured 

polymer was penetrated in the galleries between the clay layers to create the 

composite. The tensile strength of the composite was around 30 MPa, and the 
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toughness was 10 times higher than that of the PEI [42]. 

 

Hot-press assisted slip casting (HASC) is another technique to generate layered 

structure, which has been used to obtain Al2O3/epoxy resin composites [43]. The 

composite is produced in the following steps: Firstly, the alumina and epoxy resin 

were mixed together, then the mixtures were poured into a mould, followed a hot-

pressed procedure for half hour at 150 °C for polymer curing. The loading pressure 

forced epoxy resin matrix to flow among the whole mould and aligns alumina 

perpendicular to the pressing direction. The obtained composite was made up of 

around 60 vol. % highly ordered alumina [43]. The microstructure was shown in 

Figure 2-17. 

 

 

Figure 2-17. The cross section of the Al2O3/epoxy resin nacre-like composite 

obtained by HASC. [43] 

 

Three-point bending measurement illustrated that fractures occur along the interface 

of two components due to debonding between alumina and epoxy. To compare the 

performance of composite with pure epoxy, the flexural modulus of epoxy resin were 

2.78 GPa, the strength was 122 MPa, while the flexural modulus of the composite 

were significantly improved to 19-23 GPa and the strength increased to 133-155 

MPa. The flexural strength of the composite was close to that of natural nacre which 

is 135 MPa [34, 36].  
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Figure 2-18. (a) Processes of the artificial chitosan/MMT films. (b) Cross section of 

the chitosan/MMT film. (c) Stress–strain curves of chitosan/MMT film. [44] (d) 

Stress–strain curves of PVA/MMT film. [45] (e) Samples prepared by evaporation 

and SEM image of cross-section of the composite. 

 

In recent years, a self-assembly method has been used to produce the clay based 
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ordered composite. Compared with LBL techniques, this process is simple and 

timesaving. Yao and co-workers [44] and Walther’s group in Helsinki [45, 46] 

produced layered polymer/MMT composite using this method. The clay 

nanoplatelets were covered by polymer randomly during mixing and stirring, 

followed by centrifugation to remove excess polymer. The ordered composites is 

formed after self-assembly process (Figure 2-18) [44, 45].  

 

The tensile strength of chitosan/MMT nanocomposite films is as high as 100 MPa 

due to the load transfers from chitosan to MMT layers. (Figure 2-18 (c)) [44]. The 

mechanical properties can be further improved by adding cross-linking agent into 

ordered nacre-like PVA/MMT nanocomposite films. The tensile strength and Young's 

modulus for the composite with glutaraldehyde cross-linking are 165 MPa and 27 

GPa, respectively; while with boric acid cross-linking, the values can reach to 248 

MPa and 50 GPa. (Figure 2-18 (d), (e)) [45]. Furthermore, PDDA/MMT hybrid film 

with counter ions can be generated with the same method, but with different charges 

due to the counter-ion exchange mechanism [46]. It is reported that the higher charge 

of the counter ions enhanced the mechanical properties. To be specific, the tensile 

strength of the composite with PO4
3- 

increased to 151 MPa and Young’s modulus of 

the hybrid composite with PO4
3-

 reached 33 GPa.  

 

In 2012, Li and Zeng [47] obtained nacre-like structure using calcium carbonate 

nanotablets (CCNs). They made the calcium carbonate particles by mixing CaCl2 

and urea together, then adding hexadecyl-trimethylammonium bromide (CTAB), 

ethylene glycol (EG) and polyoxyethylene sorbitan monolaurate (Tween-20) in the 

solution. The CTAB, EG and Tween-20 can inhibit the nanoparticles growth and 

stabilize the structure of it. The solution was then heated in autoclave, centrifuged 

and washed to obtain the final CaCO3 nanoparticles. The wet CaCO3 nanoparticles 

were then mixed with gelatine and through vacuum evaporation to obtain the nacre-

like composite. The ultimate strength of layered composite was 97 ± 4.6 MPa, and 

Young’s modulus can be as high as 4.5 GPa. The mechanical properties of different 

artificial nacre-like composites are given in Table 2-1. 
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Table 2-1. Summary of artificial nacre-like nanocomposites. 

Layered composite Method Inorgani

c 

fraction 

/vol.% 

Tensile 

strengt

h /MPa 

Young's 

modulus 

/GPa 

Year

s 

Ref

. 

PDM /silica Dip-coating N/A N/A N/A 1998 27 

MMT/PDDA Layer by layer 30 106±11 11±2 2003 28 

MMT/PVA Layer by layer 50 150±40 13±2 2007 29 

MMT/PVA with GA 

cross-linking 

Layer by layer 50 400±40 13±2 2007 29 

MMT/HMPP Evaporation 87.7* N/A N/A 2006 32 

TPGDA/ITO Evaporation N/A N/A N/A 2006 33 

Al2O3/PMMA Ice-template 80 160 N/A 2008 34 

MMT/Polyacrylamid

e 

Electrophoreti

c deposition 

89.6* N/A 16.92 2007 40 

MMT/Chitosan Vacuum 

filtration 

60 100 10.7 2010 44 

MMT/PVA+borate Vacuum 

filtraition 

50 248±19 45.6±3.

9 

2010 45 

MMT/PDDA+ PO4
3−

 Vacuum 

filtration 

50 151 33 2010 46 

CaCO3/Gelatine Vacuum 

evaporation 

19.1* 97±4.6 4.5 2012 47 

* recalculated from weight percentage with density of 3100 kg·m
-3

 for MMT, 2480 

kg·m
-3

 for HMPP, 1320 kg·m
-3

 for Polyacrylamide, 2711 kg·m
-3

 for CaCO3 and 1300 

kg·m
-3

 for gelatine. 

 

2.3.3 Factors influencing self-assembled montmorillonite during 

drying 

Walley and co-workers designed a series of experiments on different factors 

influencing the structure of dried clay layers. These factors included the 

concentration of clay, pH value and drying rate, each of which influences the 
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structure of composites [48].   

 

Walley found that the ordered microstructure generated from a 1 wt. % untreated 

montmorillonite suspension can obtain the structure compared with films generated 

from 2-3 wt. % suspensions [48], while the structure deteriorated when the 

composition of clay increased further. When the composition of clay increased to 5 

wt. % in the suspension, the structure of clay was disordered. The reason is that the 5 

wt. % has high viscosity, and it is hard for MMT platelets rotation. Thus, it 

suppressed the movement of particles to obtain ordered layers. During drying, the 

concentration of suspension was increased from 5 wt. % [48]. This implied that the 

ordered structure was generated in a low concentrated suspension, where platelets 

were able to rotate in the suspension and the subsequent drying process latched the 

platelets in fixed position. The appearance of drying cracks and high radius were 

accompanied by the microstructural change, which was not observed in the film 

obtained from clay with lower concentrations. Hence the disordered microstructure 

had degraded mechanical properties because of weak interface interactions [48].  

 

Considering the influence of pH value, under lower pH condition, the viscosity 

increased due to H
+
 ions binding to the edge of layers. This can promote the edge-

face interactions. While at a higher pH value, platelets dispersed well. Although 

layered structure can be generated in all cases, the clay tactoids were curved under 

lower pH conditions [48]. 

 

The drying rate is another important factor which can influence the quality of 

texturing, ordering (scientifically) and manufacturing time (commercially). The self-

drying process of clay films has a lower opportunity cost compared with other 

methods, such as LBL and ice-templated, since no labour and few capital inputs are 

required. Therefore, it can be tolerated for the slow drying rate, because of higher 

structural order and lower opportunity cost. 

 

A higher temperature or air flow can lead to a faster drying rate. Through the SEM 

figures, Walley [48] found the film was generated irregularly with replete with 

cracks at the fastest rate (231 nm·s
-1

). The SEM showed layered structure of the 

composite, but it is accompanied by undulations, scrolls and distortions [48]. 
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2.3.4 Introduction of electric double layers and zeta potential 

When dispersed in suspension or emulsion, particles usually bring a negative charge 

because of (1) chemical groups at the surface of the particle that can ionize leading 

to a charged surface; (2) chemical compounds adsorbed by the particle leading to a 

charged surface [49]. Some properties of suspension or emulsion are determined by 

the charge amount of particles. 

 

When the nanoparticles carry a negative charge, positive ions in the solution could 

be adsorbed strongly at the charged surface of the particles [50]. The charge of the 

particles can influence the ion distribution nearby. An electrical double layer (EDL) 

is organised at the interface of particle-liquid system [51]. An EDL is usually divided 

into two parts: an adsorbed layer or an inner layer formed by tightly bonded particle 

surface and ions; and a diffuse layer or an outer layer where the ion distribution 

contributes to the balance of electrostatic attractions and thermal motion of ions, as 

shown in Figure 2-19. The electric potential between the adsorbed layer and diffuse 

layer is called Zeta potential. The value of Zeta potential commonly ranges from 

+100 mV to -100 mV [52]. At a sufficient distance, the potential can be as the same 

as the bulk solution value [51]. 

 

Figure 2-19. Electric double layer surrounding nanoparticle. [52] 

 

The value of the Zeta potential can be used to predict the stability of colloid. High 

degree of stability can be obtained with Zeta potential values higher than +25 mV or 

lower than -25 mV of the nanoparticles [52]. Dispersion will tend to aggregate with a 

low value because of the dominant van der Waals inter-particle attractions. When the 
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potential equals zero, the colloid will precipitate into a solid [53]. The relationship 

between the stability and value of Zeta potential is summarized by Riddick in Table 

2-2 [50]. 

 

Table 2-2. The relationship between the stability and value of Zeta potential. [50] 

Stability characteristics Avg. Zeta potential (mV) 

Maximum agglomeration and precipitation 0 to +3 

Range of strong agglomeration and precipitation +5 to -5 

Threshold of agglomeration -10 to -15 

Threshold of delicate dispersion -16 to -30 

Moderate stability -31 to -40 

Fairly good stability -41 to -60 

Very good stability -61 to -80 

Extremely good stability -81 to -100 

 

The charged particle can be moved under an electric field. The amount of the charge 

determines the speed of the movement. Generally, a bigger charge on a particle 

moves it faster [49]. In an electrophoretic process, the Zeta potential depends on the 

moving rate of charged particles. Zeta potential is widely used in many industrial 

applications such as ceramics, pharmaceuticals, medicine, mineral processing, 

electronics and water treatment [54]. 

 

2.3.5 Clay and electric double layers 

The adsorbed layer is a thin layer of hydrated cations and it is close to the clay 

particle surface. The thickness is generally several angtroms. Adsorbed cations and 

clay particles move together and they are difficult to separate due to the high 

concentration of ions and the small distance between layers which gives rise to a 

strong electrostatic attraction force [55]. 

 

The diffuse layer is a thicker ion layer compared with the adsorbed layer. It consists 

of aqueous cations and anions and extends from the outside of the absorbed layer 

until where the solution concentration is homogeneous. The cations in this part of the 
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layer diffuse from the outside of the adsorbed layer with lower concentrations 

because of thermal motion. Therefore, as the distance between cations and particles 

becomes larger, the electrostatic force decreases. The cation distribution in the 

diffuse layer is heterogeneous and increasing when close to the diffusion layer. 

According to the type of clay and its concentration, the thickness of the diffuse layer 

can be in the range from 10 to 100 Å [55]. 

 

A slipping plane is located between adsorbed and diffuse layers (Figure 2-19). 

Cations of the adsorbed layer move together with clay particles whereas cations in 

the diffuse layer exhibit hysteresis. This hysteresis happens because when clay 

particles move; the cation movement lags behind that of clay when it realises the 

change of electric balance and this results in the formation of a slipping plane [55]. 

 

There is a potential difference between a clay particle surface and the place where 

the concentration of ions in aqueous solution is homogeneous, which is called 

thermal potential. It depends on the number of negative charges on the clay particles. 

The higher thermal potential the negative charges of clay particles have, the more 

cations can be adsorbed by clay particle [55]. 

 

A potential difference exists between the slipping plane and place where the 

concentration of ion is homogeneous, this potential is named Zeta potential. This 

potential depends on the negative charge of clay particles and the positive charge of 

absorbed cationic layers. The higher Zeta potential indicates more adsorbed cations 

of the diffuse layer which results in a thicker diffuse layer [55]. 

 

The type of cation determines the electrovalence and hydration ability of cations. 

When clay particles adsorb cations, these cations neutralize the negative charges of 

the clay surface. The negative charge of clay is constant, so when the cations have 

higher charge, fewer cations are needed. Then the Zeta potential and the cation 

number in the diffuse layer decreases; a lower number of cations and a thinner 

hydration film of clay surface results in a clay system that is easier to congeal. If the 

cations adsorbed by clay particles have low electrovalence (Na
+
), the Zeta potential 

and the cation number in the diffuse layer increases, the hydration film of the clay 

surface becomes thicker and clay particles are difficult to congeal [56]. 
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Cations (for example Na
+
) have high hydration ability and the hydration film is thick 

which can produce a stable slurry, but there is an ideal range of the Na
+
. If Na

+
 

concentration is too high, it will also make the slurry congeal instead of dispersing. 

There are two reasons for this: (1) high concentration gives cations more opportunity 

to squeeze into the adsorbed layer, resulting in decrease of Zeta potential, a thinner 

diffuse layers and hydration films. The well-dispersed system turns to congeal; (2) 

higher cation concentration or a large number of cations gives a weaker hydration 

ability. Meanwhile the cation hydration process can take water molecules away from 

the clay, therefore hydration films near clay particles become thinner and a well-

dispersed system turns to congeal [56]. 

 

Cations which are adsorbed on clay surfaces can hydrate and so hydration films form 

at clay particle surfaces. The higher Zeta potential the system has, the thicker are the 

diffuse layers and hydration films. This allows a higher repulsion force between clay 

particles, and the system has better dispersibility. Therefore, when clay particle 

surfaces carry the same amount of charge, hydration dispersibility of the clay in a 

suspending liquid depends on the Zeta potential [56]. 

 

In acid and neutral clay suspension liquids, OH
-
 of the Al-OH bond, O

2-
 of the Si-O 

bond on clay platelet edges leave the bonds because of ionization or bond breaking. 

As a result, clay particle edges present positive charges to form a diffuse electric 

double layer with positive charge. Compared with the negative charges of the clay 

surface, the positive charges at edges are much less and as a result, clay particles 

present net negative charge [56].  

 

The properties of clays that result from the charges on clay particle surfaces depend 

on the pH value of the whole solution. When the pH value increases, the edges can 

change and present negative charge instead of positive. When the pH value reduces, 

the negative charges on clay particle surfaces (faces) can change to be positive. 

Therefore in order to ensure that clay particles bring stable negative charges to form 

stable negative charged diffuse electric double layer, the suspension liquid must be 

alkaline. The pH value is generally 8.0-9.0, sometimes this value can reach 9-10 

[56]. 
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2.4 Structure of clays and graphene oxide 

2.4.1 Structure of montmorillonite 

Montmorillonite is one of the smectite family and known as an ion-exchangeable 

clay which is generally made up of aluminosilicate layers. The formula of it can be 

written as (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2·nH2O [57]. 

 

 

Figure 2-20. Structure of MMT. [57] 

 

 

Figure 2-21. Details of particle view of MMT. [57] 

 

The layered structure, shown in Figure 2-20, presents one octahedral sheet of 

alumina (aluminosilicate) or magnesium silicate sandwiched by two silica 

tetrahedrons [57]. ‘Each layer has small net negative charge because of an 

isomorphous substitution of ions in the framework’, shown in Figure 2-21 [57]. A 

small portion of the metal cations in the central octahedral layer is replaced by 
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cations of lower valence but similar size. This produces an electrical charge 

imbalance that is corrected by the presence of cations held outside and between each 

of the sheets. The cations located at interlayer positions are named as exchangeable 

cations. Montmorillonite can contain different species in the rooms of interlayer to 

provide intercalation type composite [57]. 

 

2.4.2 Structure of laponite 

Laponite is also known as ‘hydrous sodium lithium magnesium silicate’ [58]. It is an 

artificial layered clay with similar crystal structure and composition to MMT. The 

composition of it are indicated as SiO2, 65.82 %; MgO, 30.15 %; Na2O, 3.20 %; 

LiO2, 0.83 %, reported by Levitz et al. [58]. 

 

The density of laponite is given as 2530 kg·m
-3

. It is reported that laponite single 

crystals are layered discs with the size of 25 nm in diameter and 0.92 nm in thickness 

[59]. The laponite discs are arranged into stacks and sharing interlayer cations like 

Na
+
 ions.  

 

2.4.3 Structure of kaolinite  

Kaolinite is a hydrated aluminum disilicate mineral formed by natural hydrothermal 

decomposition that commonly exists in soils or sedimentary rocks. Kaolinite has a 

general composition as Al2Si2O5(OH)4. Unlike MMT, it has a 1:1 dioctahedral 

phyllosilicate structure which means kaolinite has structurally asymmetric layers. 

The aluminium atoms bonded with apical oxygen atoms and inner hydroxyl in one 

octahedron while the other layer side is composed of a silicate layer structure with 

silicon atoms connected tetrahedrally to oxygen atoms [60]. The structure of 

kaolinite is shown in Figure 2-22 [61]. In addition to abundant mineral availability, 

kaolinite also has advantages of high crystallinity and purity. However, a limited 

amount of research on intercalated kaolinite/polymers composite has been reported 

[61]. The reason might lie in the hydrogen-bonding between the layers that makes 

the interaction between interfaces of kaolinite and polymers quite different from 

other smectite clay/polymer. Additionally, kaolinite was reported with a poor swell 
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as well as a low cation-exchange capacity (1-15 meq/100g) compared with other 

mineral clays such as MMT (80-150 meq/100 g) [60, 62-65]. 

 

 

Figure 2-22. Structural diagram of kaolinite showing two 1:1 layers joined together 

by hydrogen bonding. [61] 

 

2.4.4 Structure of graphene oxide 

Graphene is constituted by ‘planar monolayer of conjugated sp
2 

carbon atoms 

bonded in six-membered rings’, the structure is shown in Figure 2-23 [66]. The 

thickness of single-layered graphene is less than 1 nm, which is reported as the 

thinnest material discovered among the world. The width of the graphene sheet is 

varied from 10 nm to 1 cm. Besides, graphene is the strongest material at present. 

Single-layered graphene was found to exhibit Young’s modulus and tensile strength 

of 1100 GPa and 130 GPa, respectively [67]. 

 

Figure 2-23. Schematic showing structure of graphene. [66] 



page 57 

 

The main structure of graphene oxide is the same as the structure of graphene but 

with functional groups, such as OH and COOH. The structure of graphene oxide is 

shown in Figure 2-24 [68]. With these functional groups, the graphene oxide is much 

easier to react with chemicals as compared with graphene, and GO can form bonds 

between its functional groups (-OH or -COOH) with some polymers [68].  

 

 

Figure 2-24. The structure of graphene oxide. [68] 
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3.1 Details of materials and their sources 

The montmorillonite (MMT) used in all experiments were Nanofil 116® (Rockwood 

Company, Southern Clay Products Inc. USA) and BH Natural MMT (Blackhill 

Bentonite LLC, Wyoming, USA). The theoretical density of MMT powder is 3100 

kg·m
-3

. Laponite used was laponite Rd® (Rockwood Company, Southern Clay 

Products Inc. USA). The density of laponite powder is 2530 kg·m
-3

 given by 

supplier. The theoretical density of kaolinite is 2460 kg·m
-3

 from Barrisurf LX kaolin 

(Imerys Minerals Ltd., Cornwall, UK). All of these four clay samples were received 

as dry powders. 

 

Graphene oxide (GO) was synthesized following a modified Hummer’s method [1]. 

A sample of 10 g graphite powder (<20 μm, Sigma Aldrich, UK) was stirred with 

cold concentrated sulphuric acid (230 mL at 0 °C) in an ice bath, followed by adding 

30 g potassium permanganate slowly to make sure the temperature of the mixture 

was less than 20 °C, then cooled to 2 °C. After that, the mixture was stirred gradually 

at room temperature for at least 15 min. Distilled water (230 mL) was added slowly 

to the mixture and the temperature kept under 98 °C. Before adding hydrogen 

peroxide (100 mL), the diluted suspension was stirred for 15 mins and further diluted 

with distilled water to 1.4 L. Finally, GO particles were centrifuged from the 

suspension and washed with distilled water until pH=7 and freeze-dried to remove 

water. The products were then added to distilled water and subjected to an ultrasonic 

probe (Hielscher UB200S from IKA Labortecknik, Staufen, Germany) at 0.5 duty 

cycle and 50 % power (120 W) for 72 hr to get a well dispersed GO suspension. 

 

3.2 Solution-casting process of clay and GO/PVA composite 

3.2.1 Self-assembled process of clay discs 

The self-assembled clay discs were made as Walley reported [2]. Using MMT as an 

example, a suspension of 1 wt. % MMT was made in distilled water (10 g Nanofil 

116 in 990 mL in 1500 mL capacity bottles). After stirring the suspension vigorously 

for 6 hr, the suspension was subjected to an ultrasonic probe. The suspension was 
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poured into polystyrene petri dishes of 86 mm diameter and left to dry under a 

perspex cover to prevent dust and to slow the evaporation rate at a temperature of 

(23 ± 2 °C) and relative humidity 60 ± 10 %. The MMT sheets were dried at an 

evaporation rate of 12 nm·s
-1

 within 864 ks to produce 100 % MMT ordered film. 

 

3.2.2 Original process of solution casting from Walley [2] 

A suspension of 1 wt. % MMT was made in distilled water (10 g Nanofil 116 in 990 

g in 1500 mL capacity bottles). After stirring the suspension vigorously for 6 hrs, the 

suspension was subjected to ultrasonic probe for 30 min at 0.5 duty cycle and 50% 

power (120 W). Polyvinyl alcohol powder (Mw=85000-124000, 99+ % hydrolyzed, 

Sigma Aldrich, UK) was dissolved in water at 80 °C under magnetic stirring for a 0.6 

wt. % solution. 

 

A suspension of 0.6 wt. % laponite was made by adding 6 g laponite powder into 

994 g distilled water and stirred for 605 ks (7 days) and subjected to ultrasonic for 30 

min at 0.5 duty cycle and 50% power (120 W).  

 

To prepare the clay/PVA film, the PVA solution was slowly poured into clay 

suspensions. Then, the clay/polymer mixture was stirred for an extra 43 ks (12 h) at 

room temperature for polymer adsorption by clay particles. In the end, this 

suspension was poured into 86 mm petri-dishes and left at room temperature for film 

formation. It took about 1.2 ms (14 days) to form the thin film until a constant 

weight of each sample. A series of clay/PVA composite films with different clay 

weight/volume fractions were generated. Figure 3-1 indicated the process of self-

assembly. 
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Figure 3-1. Illustration of self-assembly process. 

 

A dispersion of 0.2 wt. % graphene oxide was made by adding 2 g graphene oxide 

powder into 998g distilled water and subjected to ultrasonic probe for 259 ks (72 h) 

at 0.5 duty cycle and 50 % power.  

 

3.2.3 Modified process of solution casting of MMT/PVA 

nanocomposite 

A suspension of 1 wt. % MMT was made in distilled water (10 g Nanofil 116 in 990 

g in 1.5 L capacity bottles).  

 

Figure 3-2. The MMT suspension after centrifugation. Left: sediment shows 

unexfoliated platelets and black solid impurities. Right: supernatant MMT 

suspension and PVA solution. 
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After stirring the solution vigorously for 6 hrs, the solution was subjected to an 

ultrasonic probe for 30 min at 0.5 duty cycle and 50 % power (120 W).  

 

Then the suspension was introduced to a Heraeus Biofuge Primo Centrifuge machine 

with 6000 rpm (RCF=3340 g) for 30 min to remove unexfoliated platelets and 

impurities in MMT. Then the supernatant was collected and the new suspension's 

concentration is 0.238 wt. % (taking 50 g suspension and dried in oven, calculated 

by the ratio of the residual and 50 g) as shown in Figure 3-2. Then the new clay 

suspension was used to make the clay/PVA composites. 

 

3.3 MMT/epoxy resin composite 

Epoxy resin RX 672H/BK and RX 900D/BK with hardeners HX672H/NC and 

HX900D/NC were purchased from Robnor Resins Ltd. UK and used as received. P-

phenylenediamine (1,4-diaminobenzene, PPD), 37 % hydrochloric acid (HCl) and 

28 % ammonia solution were purchased from Sigma Aldrich Ltd. UK. 

 

3.3.1 Mixture of clays and epoxy resins  

1) 5 mL epoxy resin RX672H and 2.5 mL hardener HX672H was mixed in 2:1 

volume ratio, then the mixture was stirred to form a fluid. 5.0 g Nanofil 116 was 

gradually added to the resin mixture, and stirred for 10 mins to make sure the MMT 

evenly dispersed in the mixture. After stirring, the mixture was poured into 

preformed moulds which were made by aluminium foil and put the moulds in a 

vacuum oven at 80 °C for 2 hr for resin curing. In the end, aluminium foil was 

peeled off then the cured disc was polished to get a flat surface for XRD.  

 

2) Procedures 1 were repeated with BH natural clay, laponite and kaolinite instead of 

Nanofil 116. 

 

3) 5 mL epoxy resin RX900D and 2.3 mL hardener HX900D was mixed in 100:46 

volume ratio and stirred for a homogeneous fluid.  
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4) Epoxy resin RX900D and hardener HX900D were taken place of RX672H and 

HX672H in 1 and 2 with curing time 4 hr at 80 °C in the vacuum oven. 

 

3.3.2 Self-assembled clay discs 

The process to make self-assembled clay discs was the same process as used in 

section 3.2.1. An extra centrifugation for 30 min at 6000 rpm was applied for BH 

natural MMT to remove impurities of the suspension. 

 

3.3.3 Ion-exchanged MMT 

PPD was one of modifiers for MMT and this ion-exchange process was undertaken 

based on an existing method [3, 4]. 

  

Nanofil 116 MMT (5 g) was gradually added into 200 mL of distilled water and 

placed on a magnetic stirrer at 1000 rpm stirring for 1 hr at room temperature. 0.65 g 

(6 mmol) of PPD and 0.5 g of HCl were mixed in a beaker and stirred for at least 15 

min. Then the PPD mixture was gradually poured into the clay suspension and 

stirred for another 12 hr followed by centrifugation at 6000 rpm for 15 min. The ion-

exchanged suspension was washed with acetone several times. Finally, the 

suspension was poured into a 86 mm petri-dish and dried in the a vacuum oven at 

60 °C. 

 

3.3.4 Vacuum impregnation 

A vacuum impregnation method was used to increase the probability of intercalating 

epoxy resins into clays. The vacuum condition may pump out the gas in MMT 

structure and when the vacuum environment is released, the pressure from outside 

may also enhance the chance for penetration of epoxy resins into clays. 

 

Epoxy resin RX672H and HX672H were mixed in a mass ratio of 2.4:1. A 

preformed MMT sheet was placed in a glass petri dish. The petri dish was then 
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placed inside a vacuum desiccator. The desiccator was sealed with a high-vacuum 

silicone grease (Sigma Aldrich Ltd. UK) and pumped for 300 s. The RX672H and its 

hardener was added gradually from a dropping funnel (Figure 3-3) onto the surface 

of clay by adjusting the valve on top of the desiccator. The vacuum was held for a 

further 5 min, and the vacuum atmosphere released. 

 

 

Figure 3-3. Schematic of vacuum impregnation system. 

 

The same process was repeated using another epoxy resin RX900D and PPD 

modified MMT discs. 

 

The resin-clay discs were treated by three different systems before curing: 1) the 

discs were left at room temperature. 2) The discs were placed into a refrigerator and 

kept for 72 hr then allowed to cure under room temperature. 3) The discs were 

placed into a refrigerator and kept for 120 hr then allowed to cure under room 

temperature. 

 

The comparison experiment was set to prove the influence of time on resin curing. 

Even though the two kinds of resin have a long curing time compared with industrial 

resin, it could also cure at room temperature and inhibit the intercalation of the resin 
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because curing increases the resin viscosity. 

 

3.4 Polymerisation of methyl methacrylate (MMA) and 

MMA/clay composites  

Benzoyl peroxide (75 % BPO and 25 % water) and methyl methacrylate 99 % 

stabilized (MMA) were purchased from Sigma Aldrich Ltd.UK and used without any 

treatment. 

 

1 wt. % and 4 wt. % BPO/MMA mixtures were made by adding 0.4 g BPO into 29.7 

g MMA and 0.8 g BPO into 19.4 g MMA. The mixtures were prepared in all 

experiment with 0.5:1, 1:1 and 1:1.5 weight ratio with MMT, laponite, alumina and 

kaolinite, respectively. 

 

Heat polymerisation was undertaken on a hot plate in a sealed aluminium reactor. 

The holder was designed with gas entry and exit as well as a drilled hole to 

accommodate a thermocouple (Figure 3-4). Before heating to the polymerisation 

temperature (80 °C), nitrogen is passed throught a silicon pipe and through the 

holder for 1 min to replace air in the whole system. 

 

 

Figure 3-4. (a) Schematic of the reactor used for polymerisations. 

 

A rubber ‘O’ ring was used to seal the reactor, shown in Figure 3-4 (b). After several 

cycles of polymerisation, the 'O' ring was replaced with a new one as it swells. The 

clamps were closed and a balloon was set at the nitrogen outside to keep a nitrogen 

atmosphere after the 1 min nitrogen flow.  
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Figure 3-4. (b) Plan of the reactor used for polymerisations. Inner diameter is 96.5 

mm. Bolts are 4 mm (M4) in diameter. 

 

3.5 Photo polymerisation of laponite/polymer composite 

The monomers used in this part were tri (ethyleneglycol) dimethacrylate (TEGDMA) 

(Sigma-Aldrich Ltd. UK) and poly (propylene glycol) dimethacrylate (PPGDMA) 

(Sigma Aldrich Ltd. UK). The average molecular weight of TEGDMA is 286.32 

g·mol
-1

 and PPGDMA is 560 g·mol
-1

. Camphorquinone (Sigma Aldrich Ltd. UK) 

was used as photoinitiator the amine accelerator used was N,N-dimethyl-p-toluidine 

(DMPT) (Merck Chemicals, UK). All chemicals were used without any further 

treatment. 

 

The monomer solution was made up of 98 wt. % monomer (both TEGDMA and 

PPGDMA), 1 wt. % camphorquinone and 1 wt. % DMPT. The mixture was then 

introduced to a magnetic stirrer in 200 rpm for 5 mins to make sure the photoinitiator 

dispersed well. The solution was placed in a brown glass bottle and kept in a 

refrigerator. 
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3.5.1 Infiltration of monomer in self-assembled structure 

Due to the sensitive property of the monomer, experiments were carried out in a dark 

area within a short time. Camphorquinone can initiate the polymerisation under blue 

light of the wavelength 465 nm. However, sunlight can be also trigger the reaction in 

a longer time range. The procedures below show the steps about how the experiment 

was carried out. 

 

A preformed clay sheet was put in a glass petri dish and immersed in monomer 

solution (98:1:1 solution) for 24 hr, as a comparison another clay was immersed for 

72 hr. The glass petri dishes were left in a dark place and covered with aluminium 

foil to avoid evaporation before polymerisation. Polymerisation will be indicated in 

section 3.5.2. 

 

A comparison experiment was set up with a vacuum impregnation method. The clay 

disc was placed in a vacuum desiccator and pumped for 10 min. The monomer 

solution was gradually added from a dropping funnel onto the clay surface. The 

system was kept under vacuum conditions for 60 s and then the vacuum was 

released. The disc was then polymerised. 

 

Experiments with the monomer solution (both TEGDMA and PPGDMA) were 

conducted in a vacuum desiccator but the clay discs were kept under vacuum 

conditions for different ranging from 540 s to 68.82 ks. (540 s, 960 s, 1680 s, 3006 s, 

21.6 ks, and 68.82 ks). Then the discs were polymerised. 

 

3.5.2 Polymerisation of clay discs 

Oxygen in the atmosphere acts as an inhibitor of the photo polymerisation reactions. 

Therefore, the monomers were polymerised in an oxygen free atmosphere. A device 

was set to polymerise the discs as seen in Figures 3-5 (a) and (b). The device was 

made up of poly (methyl methacrylate) and was designed with gas entry and exit in 

order to let nitrogen go through all the system. It was sealed by a neoprene rubber 

‘O’ ring.  
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Figure 3-5. (a) A front view of photo polymerisation device. 

 

 

Figure 3-5. (b) A top view of photo polymerisation device. 

 

The photoinitiator, camphorquinone is reported to have the highest absorption peak 

under blue light with a wavelength of 465 nm [5]. The polymerisation device was 

embedded a group of light emitting diodes (LEDs) on a circuit board so that it can 

emit light for photo polymerisation.  

 

The monomer/clay disc was located on a piece of polytetrafluoroethylene (PTFE) 
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sheet, followed by sealing the whole system. A nitrogen gas flow introduced for 300 

s to remove oxygen inside the device. The LEDs were turned on in a darkroom for 

polymerisation.  

 

3.6 Study of kaolinite and kaolinite composite 

This part of work was cooperated with two Masters students, Hao Su and Kate 

Sanders who were under my supervision and advice. 

 

3.6.1 Kaolinite sedimentation process 

A 1 vol. % kaolinite suspension was made by adding 24.6 g kaolinite into 990 mL 

water in a 1500 mL glass beaker and then introduced to a magnetic stirrer at 1000 

rpm at room temperature for 10 min. After stirring, the suspension was treated by an  

ultrasonic probe for 30 min at 0.5 duty and 50 % power. This experiment was set up 

to modify determine pH value which optimizes kaolinite particle dispersion. Then, 

the suspension was chosen to make a batch of 10 mL samples in which the pH value 

is varied from 1-10 (adjusted by HCl or ammonium hydroxide). This batch was then 

put on the bench as shown in Figure 3-6. The sedimentation height was recorded as a 

function of time.  

 

 

Figure 3-6. Kaolinite suspensions at different pH values. 
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3.6.2 Kaolinite epoxy resin system 

This part of work took two main steps 1) A preformed kaolinite sheet was made 

either by the self- assembly process as in section 3.2.1 or vacuum assisted filtration 

method. 2) Epoxy resin was penetrated into clay by vacuum impregnation (section 

3.3.4) and self -infiltration at ambient conditions. 

 

Vacuum filtration: this method was used to scale up the kaolinite sheet. Compared 

with MMT or laponite, kaolinite itself has larger plates and based on the previous 

experiment, it is less possible for the epoxy resin to get into the interlayers of MMT 

due to the long carbon chain of resin which gives resin a high viscosity. However, 

epoxy resin is a structurally strong polymer so that it is worth making large plates of 

kaolinite-resin composite. The filtration plates were prepared by a hierarchy filter 

system. The filter system was layered by two pieces of Whatman grade 1 filter paper 

(pore size 11 µm) and two pieces of Whatman grade 2 filter paper (pore size 8 µm), 

followed by a layer of nitrocellulose membrane (pore size 5 µm). These layers were 

designed in sequence and moistened with distilled water before use to make sure no 

trapped air or folds were present which could cause an irregular surface of the 

kaolinite filter cake. A frame with size 200 ± 0.25 mm in length and 150 ± 0.25 mm 

in width was set at the top of the filter system and clamped tight to hold the kaolinite 

suspension during filtration. 

 

Self-infiltration method: a desired mixture of resin and its hardener was dropped at 

both top side and bottom side of kaolinite filter cake to identify the influence by the 

size of kaolinite. Generally, the size of kaolinite plates was smaller on the top 

compared with that at the bottom. The kaolinite sheets were left at ambient 

conditions until the mixture fully cured. 

 

3.6.3 Kaolinite/MMA composite 

MMA was washed twice by a 10 % sodium hydroxide solution, followed by washing 

with distilled water until the pH=7. The inhibitor was removed by the previous step 

and then MMA was filtered and stored in a refrigerator. 
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N,N-dimethyl-p-toluidine (DMPT) was purchased from Sigma Aldrich Ltd. UK 

without any further purification with a Mw=135.21 g·mole
-1

. 

 

3.6.3.1 Redox polymerisation of MMA 

MMA was mixed with BPO at the desired concentration, and the mixture was added 

to DMPT. The DMPT:BPO molar ratio should be 1:1. The pre-polymerisation 

mixture was stirred for 30 s before being polymerised at room temperature. The 

polymerisation was checked every 300 s. An even mixing of the MMA/BPO solution 

with DMPT leads in a viscous orange liquid as a semi-polymerised state. 

 

Experiments with MMA and BPO: 1, 1.5, 2 and 4 wt. % concentration BPO was 

added to the unstablised MMA, in the meanwhile, a 1:1 molar ratio of DMPT:BPO 

was mixed with BPO-MMA. Considering the 75 % purity benzoyl peroxide 

(molecule weight is 242.23 g·mole
-1

), the mass ratio should be 1:2.389. MMA from 

which the inhibitor had been removed was then mixed with 2 and 4 wt. % BPO as 

well as the same molar ratio of DMPT. 

 

3.6.3.2 Redox polymerisation of kaolinite and MMA 

Redox polymerisations were conducted with both raw kaolinite powder, and filter 

cake of kaolinite under nitrogen. The MMA/BPO/DMPT mixture was prepared as 

detailed in section 3.6.3.1. When the mixture was added into the kaolinite powder, it 

polymerised immediately while in terms of the filter cake, the mixture was left for 

300 s at room temperature before added in the kaolinite filter. 

 

3.7 Characterisation of instruments and their operation 

3.7.1 Fourier transform infrared spectroscopy (FTIR) 

FTIR spectra were obtained with an ALPHA Bruker Optics FTIR spectrophotometer 

equipped with ZnSe ATR crystal. The samples were scanned from 400-4000 cm
-1

 

wavenumber with a 32 scan for each sample. 
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3.7.2 X-Ray diffraction (XRD) 

For the purpose of measurement of basal plane spacing of clays and other plate-like 

reinforcements, XRD data were collected using a Siemens D500 X-Ray 

diffractometer using Cu Kα1 radiation with a wavelength of 0.154056 nm. The 

diffractometer was operated at 40 kV and 30 mA. Scans began at a low angle of 2° 

and scanned to 24° of 2θ in 0.05° steps at 4 s per step. 

 

For characterisation of the orientation function of the clay/polymer composite, XRD 

Bruker D-8 discover was used. The angle θ was set at the peak corresponding to d002 

of the MMT mineral or its composite generally giving 2θ at ~7.5° and kept constant. 

The angle ψ was initially set at -10° and was rotated to 80° in 5° /steps. A recording 

was made on the detector at each step of ψ. A trace of intensity as a function of θ at 

each ψ step was them plotted. The scan was measured under DA VINCI solution 

with a VANTEC 500 detector with a voltage of 50 kV and current of 1 mA. The 

baseline was constructed and the peak area was integrated using Bruker software. 

Details of the method of obtaining an orientation function from this data set are 

described in Section 4.3.3.  

 

3.7.3 Measurement of mechanical properties 

Tensile testing of the polymer and its nanocomposites was performed using a 

Hounsfield H10KM/0348 testing machine, presently maintained by Tinius Olsen 

(Salford Redhill, Surrey, UK). In general a 100 N load cell was used with a 

crosshead speed of 5 mm per min. The calibration of the machine was done using 

dead weight and the deviation between recorded and actual force was 0.4 % upon 

which a calibration factor was based. Gauge length was measured using a Vernier 

caliper and was generally set at 70 mm. The tensile stress and strain were calculated 

as follows, 

Tensile stress: 
F

A
     (3-1) 

Tensile strain: 
0

L

L



    (3-2) 
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In some cases, the Young's modulus, E, was estimated from the slope of stress-strain 

curve at the origin designated, a tangent modulus for the various polymers as 

follows. 

Young's modulus: 0F L
E

A L






 


  (3-3) 

 

3.7.4 Differential scanning calorimetry (DSC) 

The thermal behaviour of the films was investigated by differential scanning 

calorimetry (DSC) using a DSC 822 (Mettler Toledo) instrument at a heating rate of 

5 °C per min under N2 from 25 °C to 300 °C. 

 

3.7.5 Scanning electron microscopy (SEM) 

The SEM, JEOL JSM-6700F Field Emission Scanning Electron Microscope 

(FESEM), was used to observe the cross-sections of the ordered structures under 10 

kV and 10 μA with the pressure no higher than 3×10
-4

 Pa. The samples were placed 

in vacuum to remove adsorbed water or solvents from the surface. The samples were 

coated with Au/Pt for 45 s in argon atmosphere to increase their electrical 

conductivity. 

 

3.7.6 Energy dispersive X-ray spectroscopy (EDS) 

An EDS was used to detect the elemental composition of the samples as well as 

elemental distribution. This device was combined with SEM 6700F with a working 

distance between 8-15 mm. The data was analysis by INCA system.  

 

Another EDS used in this project was an independent Energy dispersive X-ray 

fluorescence spectrometer. This EDS 7000 (Shimadzu, Japan) was operated to detect 

the elements in the bulk material under 50 KV and 100 μA in helium atmosphere. 

Each scan was taken 60 s and each sample has 2 scans. The report can be created 

with oxygen elements in and out.  
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3.7.7 Thermogravimetric analysis (TGA) 

Thermal analysis of the polymers and nanocomposites were conducted on Q500 

thermal analyser. Samples (~10-20 mg) were heated using an aluminium pan at a 

constant rate of 10°C·min
-1

 under N2 at a flow rate of 40-60 mL·min
-1

 between 25 °C 

and 800 °C. 

 

3.7.8 Atomic force microscopy (AFM) 

Surface morphology was analysed under AFM multimode-8 Bruker. The centrifuged 

MMT suspension was diluted to 10
-3

 wt. % and dropped to a new mica disc and 

dried at room temperature. For AFM imaging, the mode was set as peak force mode 

with frequency 2 kHz, the chips point set as x=0, y=0, z=1-2 micro meter and was 

moved slowly to contact the sample under a voltage of 0.03 V. The data was 

analysed with software Nanoscope 1.7. 

 

3.7.9 UV-VIS spectrometer 

A UV-Visible (Lambda 950, Perking Elmer) was used to determine the transparency 

of the samples. Before readings were taken, a background scan was performed. The 

transmission spectra of each disc was recorded in the range between 800 and 400 

nm.  

 

3.7.10 Laser cutter 

Laser cutter (Universal 3000,USA) was used to cut the sample into small strips with 

the dimension 10 mm width and 50 mm long under 10 % power under 100 speed, 

1000 PPI and 0.30 Z Axi. 

 

3.7.11 Ultrasonic probe 

Ultrasonic vibrations were used to assist in the dispersion of the monomer and 
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polymer into the clay galleries. Ultrasonic homogenizer sonicator model U200S-

Control from IKA Labortechnik Staufen, Germany was used at duty cycle 0.5 with 

constant amplitude of 50 %. 
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Chapter 4 

Development of Clay/Polymer Composites  
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4.1 Montmorillonite and polyvinyl alcohol nanocomposites 

by solution casting 

In this part of work, high volume fraction MMT composites (40-70 vol. %) with 

water-soluble polymer poly (vinyl alcohol) were investigated by different 

instruments. 

 

4.1.1 X-ray diffraction of MMT and its composite 

 

Figure 4-1. XRD traces for composites and for MMT-as received after drying for 

864 ks (240h) at ambient temperature. The samples are identified by vol. %. 

 

The results of the XRD peaks were given in Table 4-1. Untreated MMT has a peak at 

2θ=7.2 ° which has a calculated d001 of 12.26 Å by Bragg’s law and is in agreement 

with the properties shown in Figure 4-2, in which the interlayer spacing is 1.25nm. 

 

 

 

 

 



page 85 

 

Table 4-1. Results from XRD Figure 4-1. 

Clay sample 

vol. % MMT 

2θ/ ° Basal spacing/ Å Change of d001/ Å 

MMT  7.2 12.26  - 

Dried MMT  8.9 9.93  -2.33 

40 4.6 19.19  +6.93 

50 4.7 18.79  +6.53 

60 4.9 18.02  +5.76 

70 5.2 16.98 +4.72 

 

. 

Figure 4-2. Properties of Nanofil 116 from Rockwood, USA. 

 

When MMT was dried in a vacuum oven at 60 °C for 12 hr, gallery water was lost 

and the inter-planar spacing decreased to 9.93 Å. There is about 6-11 wt. % gallery 

water and the collapse has been observed by others [1]. The graphs of composites 

(40 vol. %, 50 vol. %, 60 vol. % and 70 vol. %) showed a shift in peak to a lower 

angle, which meant that the basal spacing increased and the polymer intercalated 

without breaking the MMT structure.  

 

4.1.2 SEM figures of MMT and PVA composites 

The polymer-modified and unmodified clay sheets have a similar microstructure 

where the alignment of clay platelets and groups of platelets is obvious and 

unidirectional at the magnification observed. This shows that the PVA does not 
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disrupt the ordered structure obtained by slow drying of clay suspension despite the 

fact that it would have adsorbed on the clay and acted as a steric stabilizing 

adsorbate, potentially changing the way the platelets assemble. The structure of the 

unmodified MMT sheet seen in Figure 4-3 agrees with the results observed by 

Walley et al. [2]. The voids within the structures of the MMT sheets are relatively 

large compared to a single platelet and seem to be empty of polymer Figure 4-4 (a-

d). 

 

 

Figure 4-3. SEM image of fracture surface of MMT sheet slowly dried from 

suspension. 

 

 

(a)                                                                (b) 
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(c)                                                               (d) 

         

                              (e)                                                                 (f) 

 

                             (g)                                                                 (h) 

Figure 4-4. Scanning electron micrographs of cryogenic fracture surface of (a) & 

(b)70 vol. % clay with 30 vol. % PVA composites; (c) & (d) 60 vol. % clay with 40 

vol. % PVA composites; (e) & (f) 50 vol. % clay with 50 vol. % PVA; (g) & (h) 40 

vol. % clay with 60 vol. % PVA. 
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As shown in Figure 4-4, the ordered structure was obtained for all these diverse clay 

volume fractions. PVA was absorbed at the surface of clay and a repulsion force 

between polymers can determine the spacing between two clay layers.  

 

4.1.3 EDS of 50 vol. % MMT/PVA nanocomposite  

 

Figure 4-5. EDS spectrum of elements from MMT/PVA composite. 

 

The EDS spectrum came from the cross section of the 50 vol. % MMT/PVA 

composites. Figure 4-5 shows the elements come from PVA (carbon and oxygen) and 

MMT (sodium, magnesium, aluminium, silicon, oxygen and iron). It is noteworthy 

that a significant iron content (approximately 1.81 wt. %) is found. 

4.1.4 Mechanical testing 

Mechanical testing was carried out on small number of samples and the results are 

displayed in Tables 4-2. All of the samples were cut by hot knife and the width was 

10 ± 0.1 mm. The thickness of each sample was read by micrometer. The calibration 

of tensile test machine is 95 %. 
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Table 4-2. Failure of MMT/PVA composites. 

vol. % MMT Thickness / μm Load Failure / N Stress* at failure MMT/PVA 

composite /MPa 

40 45 ± 0.5 12.2 26.7 ± 0.4 

50 38 ± 0.5 15.4 40.5 ± 0.6 

60 30 ± 0.5 3.6 12.0 ± 0.2 

70 35 ± 0.5 2.4 6.9 ± 0.1 

* mean of three tests 

 

As Table 4-2 shown, the tensile strength is quite low compared with nature nacre 

even with the same brick and mortar structure. The best result of composites is just 

40.5 ± 0.6 MPa coming from a 50 vol. % MMT/PVA composite. 

 

The results shown in Table 4-2 are partly because less polymer gets involved in the 

structure: there are more spaces between MMT plates that need to be filled as the 

volume fraction of MMT increases and there is less PVA. Therefore, the distance 

between layers decreased when the MMT volume fraction increased. 

 

The reason why MMT/PVA composite is a layer-by-layer structure is because during 

drying, Na
+ 

and Ca
2+

 concentration increase which may repel some cations into the 

adsorbed layer and neutralize the negative charge of clay particles. This appearance 

can lead to a thinner electrical double layer. Under this situation, the repulsion force 

between clay layers decreased and allowed them to arrange in layers by van der 

Waals attraction. 

 

The mechanical test results show a decrease in failure stress on going from a high-

polymer 50 vol. % clay sheet to low-polymer content sheet (30 vol. %) of 40.5 MPa 

to 6.9 MPa. As previous research indicated [3, 4] the MMT platelets could be 

covered by about a 0.5 nm thickness layer of polymer on top and bottom, forming a 

sandwich structure of 0.5-1-0.5 nm polymer/MMT system. Therefore, a high clay 

content cannot be fully covered due to the shortage of polymer. Based on this, MMT 

could easily gather and form an agglomerated structure which can lead to a stress 

concentration and lower mechanical properties. 
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As reported [5] the strength of natural nacre is between 40-100 MPa. However, the 

material which comprised MMT/PVA in this work has much lower strength 

compared with nacre. One group in Helsinki [3] reported the material they made 

reached approximately 165 MPa. Moreover, the group in Michigan [6] who 

synthesised similar nanocomposites by the LBL method accomplished 150 MPa and 

after crosslinked by glutaraldehyde, their strength of composites was as high as 400 

MPa.  

 

The reason why the MMT/PVA composite has such a low tensile strength will be 

further discussed in section 4.2. 

 

4.2 Factors affecting mechanical properties of MMT/PVA 

composite 

To account for the tensile strength differences, three hypotheses can be raised. The 

first is the clay which was used in this research, being different in origin to that used 

in comparative work provides weak mechanical properties. In this case, a different 

clay was chosen to use in the project. Black Hills bentonite, a raw montmorillonite 

clay was treated by sedimentation as a purification step which drops 20 % of coarse 

particulate impurity and then treated by the same method as the Nano116 MMT film 

formation procedure which was described in Section 3.2.1. After drying for two 

weeks, the film was tested and the result (20-40 MPa) shows there is not a 

significant difference compared with the Nanofil116 grade MMT. 

 

It could be argued that the reduced strength obtained in the results reported in 

Section 4.1.4 compared with those reported in the literature by Wang and co-workers 

[7] was attributable to the different grades of polymer. Wang et al. used grade 99%+ 

hydrolyzed PVA from Sigma-Aldrich with molecular weight 146-186 kDa whereas 

the results reported in Section 4.1.4 used 85-124 kDa also from Sigma Aldrich. The 

former was therefore obtained and the experiments repeated exactly without 

modifying other variables.  

 

The results provide a comparison for several volume fractions, 40, 50, 60 vol. % and 
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70 vol. % clay and indicate that irrespective of volume fraction there is no significant 

difference attributable to the PVA type despite small differences in molecular weight. 

Subsequent experiments therefore addressed other differences between the two 

laboratories.  

 

The last one was the method by which the clay was dispersed in this research. The 

group in China [7] centrifuged the MMT suspension before mixed with PVA. The 

centrifugation step was then undertaken. The impurities and unexfoliated MMT were 

removed from the suspension after centrifugation. Figure 4-6 shows an example of 

large particles in the MMT/PVA composite without centrifugation which can degrade 

the mechanical properties. 

 

 

Figure 4-6. Particle (size around 20 μm) observed by SEM before centrifugation 

process. 

 

All of those particles are the main cause of defects in MMT/PVA thin film 

introducing stress concentration effects which are indicated below. Geometric 

discontinuities, such as notches and holes as well as foreign particles or even large 

platelets, can form a higher stress field nearby. In consequence, a material could 

break at a lower strength than its theoretical value due to the concentrated stress [8]. 

Therefore, removing such defects or contaminants increased the failure strength of 

composite. 
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Figure 4-7. Effect of geometric discontinuities on stress distribution. [9] 

 

 

                                 (a)                                                                (b) 

 

                                  (c)                                                                (d) 

Figure 4-8. The effect of different cutting methods on the edge of composite 

samples: edge damage can affect the mechanical strength measurement. These are 

SEM images after preparation by (a) hot knife, (b) scissors, (c) laser cutter, (d) blade. 
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Despite the innate geometric discontinuities of the MMT/PVA composite, the surface 

irregularities such as cutting lines and depression created by SEM sample 

preparation could also cause the stress concentration. See Figure 4-8. 

 

The samples were cut by a hot knife in the tensile testing reported in Section 4.1.4. 

After heating for 2 min, a hot knife was introduced to the edge of the sample. The 

edge collapsed during cutting by the shrinkage of PVA which can cause the 

degradation of mechanical strength. (Figure 4-8(a)) 

 

Figure 4-8 (b) shows samples prepared by scissors appeared depression, while in 

Figure 4-8 (c), the composite was cut into stripes by a laser cutter. Due to the high 

energy of the laser, polymers were melted and formed beads along the edge. 

Theoretically, all of these defects can degrade the tensile strength of composite. 

 

Thus, a low temperature process was used and the samples were cut into stripes with 

a blade. They were placed on graph paper and a disposable scalpel was applied to cut 

composites in a straight parallel direction (Figure 4-8 (d)). 

 

Given that the cutting process may introduce the residual stresses, annealing was 

used after blade cutting. 

 

4.3 Characterisation of modified composites 

4.3.1 Study of MMT size after centrifugation  

Atomic force microscopy was operated to characterise the size of MMT clay 

platelets. As reported by Das [10], the mean aspect ratio is calculated by: 

Aspect ratio
d

t
   (4-1) 

where d is the diameter and t is the thickness of MMT. 

 

For the irregular clay platelets, the aspect ratio was given as the ratio of square root 

of area to the thickness [7], which was written as 
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A
S

t
   (4-2) 

 

 

Figure 4-9. Examples of individual MMT platelets by AFM. 

 

Table 4-3. Aspect ratio calculation from AFM Figure 4-9. 

Sample Number Diameter / nm Thickness / nm Aspect ratio 

1 90.1 1.9 49.0 

2 79.3 2.4 33.4 

3 115.6 3.4 33.6 

4 104.4 2.8 37.8 

5 75.8 1.8 42.6 

6 86.9 1.7 50.2 

7 96.6 1.6 62.1 

Mean 92.8 2.2 44.1 

Standard Deviation ± 13.0 ± 0.6 ± 9.6 

Standard Error of the Mean* ± 4.9 ± 0.2 ± 3.6 

*Standard error was calculated as the ratio of the standard deviation to the square 

root of the number of samples (n=7) 
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Therefore, the aspect ratio can be given as 44.1 ± 3.6. In the meanwhile, the 

thickness of MMT was analysed by ‘section’ function of the software Nanoscope 

Analysis 1.7 as showing in Figure 4-10. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 4-10. Examples for thickness analysis by AFM. 

 

As seen in Figure 4-10, the thickness of MMT plates is less than 30 nm after 

centrifugation. The larger particles were removed and the remaining particles are 

smaller which is only no more than 30 layers, calculated as the ratio of the thickness 
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to the interlayer spacing of MMT (calculated from XRD trace in section 4.1.1) which 

is around 1.26 nm. 

 

4.3.2 EDS analysis of elemental composition before and after 

centrifugation 

Two kinds of samples were analysed by EDS 7000, a raw Nanofil 116 MMT powder 

as received and another of the dried sediment which was obtained after centrifuging 

the MMT suspension at 6000 rpm (RCF=3340 g) for 30 min, as shown in Figure 4-

11. 

 

 

Figure 4-11. Sedimentation after centrifugation. 

 

Before EDS detection, the sediment was dried in a vacuum oven at 80 °C for 2 hr.  

 



page 97 

 

 

(a)        

 

                                                                  (b) 

Figure 4-12. EDS shows the elemental composition of (a) Nanofil 116 MMT, (b) 

sedimentation after centrifugation. 
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It is worth mentioning that before centrifugation was applied, the Fe takes up 2.347 ± 

0.001 % in raw material and the Fe in sedimentation account for 1.260 ± 0.001 %. 

The Fe in MMT could affect optical and mechanical properties of MMT/PVA 

composite but it could also influence the catalytic effect on the clay on adjacent 

polymerisation reactions in Section 4.5. 

 

4.3.3 Orientation function of Nanofil 116 MMT 

In order to quantify the degree of MMT platelet orientation, a quantitative 

orientation function was sought; XRD measurements were undertaken to analysis the 

preferred orientation developed in a self-drying MMT sheet as indicated in Section 

3.7.2. 

 

The data were analysed by DIFFRAC.EVA software and Microsoft Excel. After 

integrating the line which corresponds to the MMT (002) plane where the peak is 

2θ=14 °. The intensity of the (002) peak with the specific tilt angle is shown in 

Figure 4-13. 

 

Figure 4-13. XRD data showing the intensity of the (002) peak for each tilt angle, -

10 ° to 80 ° in 5 ° step. 

 

Then, the integrated intensity of each peak was plotted against a given tilt angle to 
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acquire an orientation function curve. A Gaussian function was given as: 

2

22( )I Ae






   (4-3) 

 

Introducing the Gaussian function into Excel, using the ‘Solver’ function, the 

parameters A (scaling factor) and σ (standard deviation) were obtained as 20.54 and 

18.24, respectively. 

 

Then using the fitting parameters A and σ, Equation 4-3 can be plotted as Figure 4-

14.  

 

Figure 4-14. Graph showing experimental MMT orientation distribution function. 

 

The distribution shows that a very strongly ordered structure was obtained by the 

self-drying process and the orientation function curve showed preferred orientation 

were occurred within the absolute value of tilt angle ≤|15°| which agrees with Figure 

4-4 (b) and (d). The derivation from the pure planar-random arrangement is also seen 

in other work on ordered clay composites such as Podsiasdlo [6], though it was not 

measured quantitatively as in this work. The clay platelets tend to undulate [11] and 

the majority of platelets are not arranged exactly parallel as observed by the SEM 

figures of MMT cross sections. Das [10] used a method to quantify the orientation 
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function as 

(180 )
Degree of orientation 100%

180

FWHM
    (4-4) 

 

where FWHM is the full width at the half maximum of the peak in the azimuthal 

intensity profile. The sample (MMT/PVA composite) measured by Das in a tilt angle 

10-15 ° which gave a 78 % degree of orientation [10].  

 

Table 4-4. The degree of orientation of different tilts. 

Tilt degree/ ° I(ψ) Degree of orientation / % 

-10 17.652 ± 0.001 12.478 ± 0.001 

-5 19.758 ± 0.001 13.967 ± 0.001 

0 20.515 ± 0.001 14.502 ± 0.001 

5 19.758 ± 0.001 13.967 ± 0.001 

10 17.652 ± 0.001 12.478 ± 0.001 

15 14.629 ± 0.001 10.341 ± 0.001 

20 11.246 ± 0.001 7.950 ± 0.001 

25 8.020 ± 0.001 5.669 ± 0.001 

30 5.305 ± 0.001 3.750 ± 0.001 

35 3.255 ± 0.001 2.301 ± 0.001 

40 1.853 ± 0.001 1.310 ± 0.001 

45 0.978 ± 0.001 0.691 ± 0.001 

50 0.479 ± 0.001 0.339 ± 0.001 

55 0.218 ± 0.001 0.154 ± 0.001 

60 0.092 ± 0.001 0.065 ± 0.001 

65 0.036 ± 0.001 0.025 ± 0.001 

70 0.013 ± 0.001 0.092 ± 0.001 

75 0.004 ± 0.001 0.031 ± 0.001 

80 0.001 ± 0.001 0.001 ± 0.001 

Total 141.465 ± 0.001 100 % 

 

Degree of orientation of MMT sheets at various tilts is given in Table 4-4. The 

degree is calculated by a given tilt I (ψ) divided the total I (t). To be concluded, the 
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degree of orientation in the range -10° to 10° tilt angle is sum by I (-10°) to I (10°), 

which is then given as 67.392 ± 0.001 %. 

 

4.3.4 Thermal analysis of MMT/PVA composites 

Thermal behaviour of the MMT/PVA composites was analysed by differential 

scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The results are 

given in Figure 4-15 and 4-16. 

 

Figure 4-15. DSC of MMT/PVA composite. The samples are given as the volume 

percentage of clays and each Tm of the sample was given as number. 
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Figure 4-16. TGA of MMT/PVA composites. The samples are identified as volume 

fraction of MMT. 

 

The melting temperature of PVA was given as 220-260 °C by the supplier. The 

melting temperature of the composite was shown to have slightly increased in Figure 

4-15. It could be a possible explanation that the clay content confined the movement 

of polymer segments by adsorption on the high available surface area (650 m
2
g

-1
 for 

fully exfoliated MMT) and this produced the increase in melting point. If so, it 

should also lead to a low-permeability nanocomposite system because gaseous 

diffusion is restricted in the region of immobilised adsorbate [12, 13]. 
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Table 4-5. Analysis of the TGA and DSC data. 

Sample wt. % MMT 

calculated 

from vol. % 

wt. % of 

material 

residue after 

TGA 

wt. % of 

MMT 

calculated 

from TGA 

results 

Tm /  

°C 

 

 

∆Hm/ 

J g
-1

 

Xc % 

Pure PVA 0 5.12 0 - 30.52 22.02 

10 vol. % 

MMT 

21.35 26.44 27.43 - -  

20 vol. % 

MMT 

37.92 39.41 44.10 - -  

30 vol. % 

MMT 

51.15 54.12 63.03 - 8.74 17.06 

40 vol. % 

MMT 

61.96 60.60 71.37 243.39 5.66 14.25 

50 vol. % 

MMT 

70.95 62.94 74.37 248.94 5.15 14.51 

60 vol. % 

MMT 

78.56 71.54 85.44 - - - 

70 vol. % 

MMT 

85.07 71.24 85.05 - - - 

80 vol. % 

MMT 

90.72 71.98 86.00 - - - 

90 vol. % 

MMT 

95.65 77.84 93.54 - - - 

Pure 

MMT  

100 82.86 100 - - - 

 

The degree of crystallinity was calculated by parameters deduced from the TGA and 

DSC traces, and is given in Table 4-5. The degree of crystallinity was found from 

equation 4-5, 

0 (1 )

m
c

H
X

H w



  

  (4-5) 
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where ∆Hm is the melting enthalpy measured in Origin by integrating the melting 

peak. ∆H0 is the enthalpy of 100 % crystallinity PVA given as 138.6 Jg
-1 

[14-16]. w 

is the weight percentage of the MMT content in composites, which is calculated by 

wt. % of the composite after TGA minus 5.12 (data from 100 wt. % PVA after TGA), 

and then divided the wt. % from 100 wt. % MMT after TGA (given as 82.86) minus 

5.12. Considering the 90 vol. % material as an example: 

 

The weight percentage is 77.84 after TGA and this number was contributed by 

residue from both MMT and PVA. The weight percentage of MMT was then give as  

w90= [(77.84-5.12)/ (82.86-5.12)] ×100 %=93.54 %    (4-6) 

 

The calculated data from TGA was w90= 93.54 %. There is a slight difference from 

the data calculated from the vol. %, which is 95.65 %, which may be caused by 

experimental error. 

 

4.3.5 Mechanical properties of MMT/PVA composites 

Padawer and Beecher [17] give a function to estimate the Young’s modulus of a 

composite which is enhanced by platelet reinforcement. 

(1 )R R R mY Y Y      (4-7) 

where α is the ‘Modulus reduction factor’, which is defined as a function of μ,  

tanh( )
1





     (4-8) 

where tanh (μ) is the function given as 

2

2

1
tanh( )

1

e

e










  (4-9) 

where μ is indicated by the function below, 

(1 )

m R

R R

G
s

Y







 

 
  (4-10) 

where s is the aspect ratio of clay platelets which can be deduced from the results of 

AFM and ΦR is the volume fractions of reinforcement, which is calculated by the 

data derived from TGA using function, 
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/

/ (1 ) /

R
R

R m

 


   


 
  (4-11) 

 

The density of polymer matrix is 1269 kgm
-3

 and that of reinforcement clay is 3100 

kgm
-3

, respectively. YR and Ym are the Young’s modulus of MMT and PVA. Ym is 

0.17-0.36 GPa [18] for which 0.27 GPa was picked as median. In terms of smectite 

clay platelet, the Young’s modulus of platelet is in the range 178-265 GPa, given by 

Chen and co-workers [19]. To be specific, Young’s modulus of MMT is indicated as 

270 GPa by Manemvitch [20]. Gm is the shear modulus of polymer which can be 

calculated by, 

2(1 )

m
m

Y
G





  (4-12) 

where  is Poisson’s ratio of polymer. For PVA, it is usually taken as 0.42-0.48 [21] 

since PVA is close to incompressible. In calculation, the Poisson ratio was chosen as 

the median 0.45. 

  

Then introducing all of these values, the Young’s modulus can be predicted as a 

function of clay content. 

 

Tensile strength testing was undertaken at ambient conditions defined as temperature 

21 ± 2 °C and humidity 60 ± 10 %. It is reported by Patro and Wagner [22] that a 

higher humidity (60 %) could promote the movement of PVA along the stress 

direction, resulting in a higher strain compared with 45 % humidity. Moreover, 

researchers [22-24] report the ultimate strength of PVA film are 83 MPa [23] at 35 % 

humidity, 65 MPa [22] at 45 % humidity, 22.5 MPa at 50% humidity [24], 29 MPa at 

70% humidity [22], which can give a basic idea how the strength responds to the 

changing of humidity. 

 

A series of tensile tests based on the different volume fraction MMT and PVA 

composite was carried out to evaluate mechanical properties of nanocomposites. 

Thickness of each sample was measured 3 times by micrometre and given as the 

mean of three readings. There were 3 samples for each of the volume fractions of 

MMT ranging from 30-70 vol. %. The samples were cut into stripe with the width 10 
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± 0.1 mm and length 50 ± 0.1 mm. An example was given as 50 vol. % (Highest 

stress among samples) MMT/PVA composite, shown in Figure 4-17. 

 

 

Figure 4-17. An example of tensile strength test of 50 vol. % MMT/PVA composite. 

 

Table 4-6. The raw and calculated date for tensile testing of MMT/PVA composites. 

Sample vol. % 

MMT* 

Thickness/ μm Ultimate force / N Ultimate Stress/ MPa 

30 55.0 ± 0.5 38.81 70.56 ± 1.0 

40 52.3 ± 0.5 28.48 54.46 ± 0.8 

50 42.2 ± 0.5 41.44 98.20 ± 1.5 

60 35.6 ± 0.5 6.76 18.99 ± 0.3 

70 32.7 ± 0.5 5.35 16.36 ± 0.3 

*Values were given as the mean of three samples 

 

Comparing the results in Table 4-2 and Table 4-6, it can be indicated that the tensile 

strength of composites shows a significant increase in each of the volume fractions 

of MMT. After introducing centrifugation into the process, the tensile strength 

increased from 40.5 to 98.2 MPa (50 vol. % MMT/PVA composite). The Young’s 

modulus of the composites was also investigated and the results were given in Table 

4-7. 
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Table 4-7. Young’s modulus of composites. 

Sample vol. % 

MMT 

Extension/ mm Young’s modulus/ 

GPa 

*Prediction 

Young’s modulus/ 

GPa 

30 1.11 3.18 7.15 

40 1.17 2.33 13.81 

50 1.11 4.42 23.94 

60 0.37 2.57 38.89 

70 0.29 2.82 60.87 

*Values were calculated from the Padawer-Beecher function 

 

It can be seen from Table 4-7 that the values calculated from the tensile test result are 

far behind compared with the prediction value of Padawer Beecher law. The reason 

could be the test was carried out under a high relative humidity. The Young’s 

modulus was defined as the ratio of stress to strain. It can be deduced as, 

FL
Y

A L




 


  (4-13) 

where F is the tensile force, A is the area of cross section of sample, ∆L is the 

extension of the sample and L is the original length of the sample. 

 

As described before, there is a trend that under a high humidity, the strain could be 

increased by the promoted movement of PVA along the stress direction, effectively a 

plasticization of PVA by water. In the meanwhile the stress could be decreased by the 

absorbed water vapour. In this case, the calculated Young’s modulus is much smaller 

than the prediction, as shown in Table 4-7. 

 

4.3.6 Weibull modulus 

According to Weibull statistics, the relationship between average strength,   of two 

batches, 1 and 2 of volumes V1 and V2 is given by: 

1

1 2

2 1

( )m
V

V




    (4-14) 

where   is the average strength of the sample, V is the volume of the sample and m 
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is the Weibull modulus. If all defects are the same size throughout the population, 

there is no variation in strength and the Weibull modulus approaches infinity so that 

1/m =0 and hence (V1 /V2)
1/m

=1 so that there is no effect of volume of sample under 

test. A low Weibull modulus, on the other hand, means a wide distribution of defect 

sizes and in this case the difference of strengths caused by volume is much greater.  

 

Different investigators have quoted different strengths for ordered nanocomposites 

but those differences are only partly due to different materials: some of the 

difference is due to different sample volumes. In reference 6, for example, the test-

piece was less than 2 µm thick. It is therefore possible to correct for the effect of 

different sample volumes as chosen by different investigators by using equation 4-14 

to bring all measurements back to the volume of the ASTM standard test-piece. 

However his requires a knowledge of Weibull modulus and these may differ: they 

are not quoted. Among different research groups [3, 6, 7] of MMT/PVA composites, 

they all announced that the composites have high strength and high toughness. A 

typical value for the Weibull modulus of a high performance fibre composite is 

around 20. [25] Therefore, the reconciliation of sample volume effects is based on 

equation 4-14 with a Weibull modulus of 20.  

 

As recommended from ASTM 3039D for tensile testing of composites, the geometry 

of the specimen is given as width 15 mm, length 250 mm and thickness 1 mm. In 

this case, the modified strength can be calculated in the same volume, which is 3.75

×10
-6

 m
3
. The results are given in table 4-8. It can immediately be seen that some of 

the very high values of strength quoted are brought low by this volume reconciliation 

and indeed the range of different strengths attributed to different investigators is now 

much narrower and probably more realistic.   
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Table 4-8 Modified Strength under the ASTM volume in the same weibull modulus 

 Ref [3] Ref [6] Ref [7] This project  

Length/ mm 20 5 50 50 

Width/ mm 3 1 3 10 

Thickness/ μm 40* 1.48* 8* 22.5* 

Strength/ MPa 165 150 219 98 

Modified 

Strength/ MPa 

114.6 76.14 146 73.6 

* Means of the thickness 

 

4.4 Clays and epoxy resin system 

Epoxy resins are formed from oligomers which include more than one epoxy group. 

Generally, they can be cured with many kinds of curing agents and can be cured over 

a wide range of temperature. After curing, the product generally presents low volume 

shrinkage. Moreover, there is almost no volatile outgrowth in the process. With such 

excellent properties, epoxy resins are used in many industrial applications, such as 

coatings, adhesives and as the matrix of carbon or glass fibre reinforced composites 

as well. 

 

Polyamines and polyacids are the major curing agents used in epoxy resins as they 

contain active hydrogen atoms in their structures. Liquid polyamines such as 

diethylene triamine and trimethylamine are the most widely-used agents [26]. Extra 

promoters (such as polythiol) are often added when the epoxy resin is to be cured at 

room temperature in order to achieve rapid curing. The selection of epoxy curing 

agent depends on the curing temperature. Polyamine is generally used at normal 

temperatures while for high temperatures, the curing agent is usually chosen to be a 

polyacid or anhydride [26-28]. 

 

4.4.1 XRD of clays and clays resin mixture 

To verify the potential of the intercalation of epoxy resin for clays, XRD was used to 
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measure the interlayer spacing after epoxy resin was introduced. Figure 4-18 to 4-20 

show the XRD peaks of clays and clay resin mixtures. For comparison, raw clays 

including Nanofil 116, BH natural MMT and laponite were chosen for XRD 

measurement.  

 

 

Figure 4-18. XRD traces for Nano116 MMT and MMT/resin mixture. 

 

 

Figure 4-19. XRD traces for BH Natural and BH/resin mixture. 
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Figure 4-20. XRD traces for laponite and laponite/resin mixture. 

 

The results of Figure 4-18 to 4-20 were calculated by Bragg’s law and given in Table 

4-9. 

 

Table 4-9. Calculated data from XRD traces of clay and resin mixture. 

Sample 2θ /
 o
 d001 spacing/ Å Increase in d001 / Å 

MMT 7.05 12.53 - 

MMT + resin 672H 6.15 14.36 1.83 

MMT + resin 900D 6.25 14.13 1.60 

BH Natural 7.05 12.53 - 

BH Natural + resin 

672H 

6.05 14.60 2.07 

BH Natural + resin 

900D 

5.85 15.10 2.57 

Laponite 6.55 13.48 - 

Laponite + resin 672H 6.05 14.60 1.11 

Laponite + resin 900D 6.3 14.02 0.53 

 

All the XRD traces were analysed in Origin. Raw Nanofil 116 MMT, BH Natural 

MMT and laponite presented d(001) peaks at 7.05 °, 7.05 ° and 6.55 ° respectively. All 

peaks showed a shift to a lower degree after introduced epoxy resin into clays. The 

shifted peaks indicate an increase in clay basal spacing. In other words, it proved the 
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possibility of resin intercalation before crosslinking. However, there were no 

significant differences in using different kinds of resin. 

 

PPD was used as an ion exchange agent to generate an epoxyphilic MMT through 

amine-cation exchange with exchangeable cations in clays, like Na
+
 or Fe

3+
. XRD 

measurement was conducted to identify the changes in basal spacing of the PPD 

modified MMT.   

 

 

Figure 4-21. XRD trances of MMT and PPD modified MMT. 

 

As shown in Figure 4-21, the peak of modified clay shifted from 7.05 ° to 6.10 °, 

which showed an increase of interlayer spacing from 12.53 Å to 14.48 Å after ions 

exchange. 

 

4.4.2 SEM of self-assembled structure 

Figure 4-22 showing variation clays and their cross sectional structure. As indicated 

in the Figure 4-22, it proved that hierarchical structures of clays were obtained by a 

drying process, which is agreed by the previous study in Section 4.1.2. 
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(a)                                                                (b) 

 

(c)                                                                  (d) 

Figure 4-22. SEM of cross section of variation clays (a) Nano116 MMT, (b) BH 

Natural, (c) laponite, (d) PPD modified MMT. 

 

MMT was explained in the previous study in terms of the structure and orientation 

function. Therefore, no further discussion of MMT is made in this section. 

Laponite has a higher degree of ordered structure than MMT and the distance 

between plates is between 25-40 nm while in MMT it can be up to hundreds of 

nanometres.  

 

The PPD modified MMT plates indicated a different microstructure compared with 

untreated Nanofil116 MMT clay. The cross section of PPD modified MMT still 

remained a layered structure. However, the curvature of layers increased which may 

be caused by promoted interactions between interlayers of the PPD modified MMT. 

This is possible due to the influence of π-interactions next to the alkylammonium 

groups in PPD. 
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The FTIR spectra of Nanofil 116 MMT and PPD modified clay are shown in Figure 

4-23. The 3621 cm
-1

 peak of raw MMT which is -OH stretching belongs to the 

hydrated structure of clay. A -NH2 stretching peak is at 3421 cm
-1

. Moreover, C-C 

stretching can be indicated at 1510 cm
-1

 and 1311cm
-1

. The peaks at 1627 cm
-1

 and 

1264 cm
-1

 represent -NH2 scissoring and C-NH2 stretching respectively [29]. The 

FTIR results showed that the ion exchange method was successful since the PPD has 

been linked to MMT through amine group protonation. 

 

 

Figure 4-23. FTIR spectrums for MMT and PPD modified MMT. 

 

4.4.3 Theoretical study of epoxy resin 

The reaction occurring between epoxy resin and its hardener is an exothermal 

reaction which can release heat upon mixing. The reaction rate in the solid state can 

be written as  

/ ( )E RTd
Ae f

dt


   (4-15) 

where α is the reaction rate, A is the pre-exponential factor of the Arrhenius equation, 

E is the activation energy, R is the universal gas constant which is 8.314 Jmol
-1
K

-1
, 

T is the absolute temperature, and f(α) is the reaction kinetic model [30]. 

 



page 115 

 

The Kissinger method [31] was used with a constant heating rate. When the 

maximum reaction rate happens, the Kissinger model could be applied in the system. 

It is written as: 

2
'( )m

m

m m

AR E
In In f a

T E RT


    (4-16) 

where the βm is the heating rate, Tm is the temperature at the point where the 

maximum reaction rate happens. In the case of the first order reaction, f ' (α) =1, then 

the equation can be indicated as, 

2

m

m m

AR E
In In

T E RT


    (4-17) 

Based on previous research [32-35], higher temperatures may increase the rate of 

epoxy resin cure reaction within the working temperature of epoxy resin. In contrast, 

lower temperatures could postpone the reaction time. However, cure at lower 

temperature with a slower rate could affect the physical properties of the resulting 

resins. In this case, FTIR was carried out to analyse the influence of low-temperature 

storage of the curing system. 

 

Figure 4-24. FTIR spectra for two resins: RX672H and RX900D cured with different 

procedures. (a) RX900D cured after keeping at a low temperature for 72 hr, (b) 

RX900D cured directly at room temperature, (c) RX672H cured directly at the room 

temperature, (d) RX672H cured after keeping at a low temperature for 72 hr. 

*Room temperature was given as 20 ± 5°C. 
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As it can be seen from Figure 4-24, the absorbance peak at 3400 cm
-1

 may be the O-

H stretching. The peak which is about 2926 cm
-1

 illustrates a C-H stretching. The 

peak at 1724 cm
-1

 and 1606 cm
-1

 indicated the Ar-C=C-H stretching of RX672H 

resin. A strong peak at 1244 cm
-1

 could be indicated Ar-O- stretching. In terms of 

RX900D, and the absence of, or weak peaks at 3055 cm
-1

 and 915 cm
-1

 may be 

caused by the opening of epoxy rings. 

 

It is obvious that there was no significant difference between direct curing at room 

temperature and curing after a low-temperature storage in refrigerator. In other 

words, both epoxy resins would probably not be affected by the cooling procedure 

during resin curing. 

 

4.4.4 Analysis of MMT/resin composite 

The potential for intercalation of clay and resin mixture has been proved in Section 

4.4.1. Nanofil116 and BH natural are similar MMT clays. Moreover, laponite is an 

artificial clay based on the MMT structure. In this case, Nanofil116 MMT preformed 

film was chosen to prepare clay/resin composites by a vacuum impregnation process. 

 

 

Figure 4-25. Image of MMT/resin composite sample. 

 

The Figure 4-25 shows weak connections between resin and clay interfaces. In this 

kind of situation, XRD and FTIR were carried out on both side of the composite to 

investigate whether epoxy resin penetrated the interlayers of MMT or not. 

 

Calculated basal spacing is given in Table 4-10. It indicates that the basal spacing of 
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all MMT/resin composites showed an increase. The temperature showed no effect on 

the change of interlayer spacing, even though, a lower temperature means a lower 

reaction rate, leading to a longer time of curing according to the kinetics of epoxy 

resins in Equation 4-16. 

 

The increase of basal spacing in all the PPD treated MMT was larger than any of the 

untreated clays due to the epoxyphilic character after the ion exchange process. 

 

Table 4-10. XRD results of two theta and changes in basal spacing. 

Sample 2θ /
 o
 d001 spacing / Å Increase in d001 / Å 

MMT 7.05 12.528 - 

MMT + 672H+LT 5.95 14.842 2.314 

MMT + 900D+LT 6.15 14.359 1.831 

MMT + 672H+RT 6.15 14.359 1.831 

MMT + 900D+RT 6.25 14.130 1.602 

PPD- MMT + 

672H+LT 

5.25 16.819 4.291 

PPD- MMT + 

900D+LT 

5.65 15.629 3.101 

PPD- MMT + 

672H+RT 

5.25 16.819 4.291 

PPD- MMT + 

900D+RT 

5.25 16.819 4.291 

*RT-sample cured at room temperature; 

**LT-sample cured after a 72 hr refrigerator storage. 

 

Based on Section 4.4.3, the peaks such as C-H stretching and Ar-O- stretching from 

epoxy resin should be found in the FTIR spectrum of the composites if the resin 

infiltrated into clay. 
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Figure 4-26. FTIR spectra for the top surface of clay discs (A) PPD-MMT 672H-

RT*, (B) PPD-MMT 672H-LT*, (C) PPD-MMT-900D-RT, (D) PPD-MMT-900D-

LT, the bottom surface of clay discs (a) PPD-MMT-672H-RT, (b) PPD-MMT-672H-

LT, (c) PPD-MMT-900D-RT, (d) PPD-MMT-900D-LT. 

*samples were given as PPD modified MMT mix with 672H resin cured in room 

temperature; 

**samples were given as PPD modified MMT mix with 672H resin cured in room 

temperature after a 72 hr storage in refrigerator. 

 

In terms of the top surface FTIR, as seen in Figure 4-26 (D) specific peaks (2926 cm
-

1
 and 1244 cm

-1
) of epoxy resins were found in the corresponding regions, 

confirming the infiltration of epoxy resins. In contrast, as to the bottom, no 

corresponding peaks were detected, it could be regarded that there was no 

penetration of epoxy resins to the base of the clay films.  

 

The effect of cryogenic treatment was also investigated by FTIR. In theory, a lower 

temperature would allow resin to cure in a longer time, which may have a positive 

effect on penetration because it allows a longer time for liquid resin to flow into fine 

pores. Compared to curves C and D in Figure 4-26, it can be concluded that the resin 

900D penetrated in MMT probably due to the longer penetration time at low 

temperature in the refrigerator. 
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Figure 4-27. FTIR spectra for the top surface of MMT (a) MMT-672H-RT, (b) 

MMT-672H-LT, (c1) MMT-900D-RT, (c2) MMT-900D-LT, (c3) MMT-900D-

LT120.* 

*sample cured at room temperature after a 120 hr storage in refrigerator. 

 

For an extension time sample LT120, it indicated that the extension time did not 

promote the penetration of epoxy resin. 

 

Base on the analysis of XRD and FTIR, the sample with most potential for 

infiltration of clay samples are MMT/900D resin and PPD modified MMT/900D 

sample treated by cryogenic storage. 
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(a)                                                              (b) 

Figure 4-28. SEM of MMT/resin composite (a) MMT-900D after cryogenic 

treatment, (b) PPD modified MMT-900D after cryogenic treatment. 

 

SEM was undertaken to analyse the cross sections of MMT/900D and PPD modified 

MMT/900D samples. Epoxy resin was barely seen in the spaces between clay 

platelets of both samples. Compared with the solution casting method, vacuum 

impregnation process has a quite short penetration time for polymers. 

 

Even though a 120 hours refrigerator storage process was followed by vacuum 

impregnation, the situation seems no better. The reason for this phenomenon was due 

to the high viscosity of resin. After putting resin into refrigerator, the mixture of resin 

turned into a viscous gel in several hours. The viscosity could become the barrier for 

penetration. Furthermore, a low permeable layered system was built by the high 

aspect ratio and ordered structure of MMT. To be specific, a high aspect ratio can 

increase the path of fluid resulting in an undesirable diffusion system. Finally, 

because of the presence of phenol or bisphenol structure, the steric hindrance of resin 

is quite large which could inhibit the penetration process. Thus once again it is seen 

that the ordered structure, which is indicated as a nacre-like microstructure for 

mechanical properties, provides an obstruction to resin infiltration. 

 

Therefore, poor mechanical properties were predicted because very little resin 

penetrated into the clay. The interaction between layers would be weak. The tensile 

strength of MMT/900D was 28.9 MPa and PPD-MMT/900D was 22.6 MPa while 

the data from supplier of resin shows, RX900D cured resin givens tensile strength 85 

MPa. It could be suggested that epoxy resin was not suitable for Nano116 clay to 
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form a strong nanocomposite. However, it is possible that a low viscosity or a long 

working life resin could penetrate among kaolinite plates, which are much coarser, to 

create a traditional composite instead of trying to penetrate resin into galleries of 

MMT to form a nanocomposite. In order to make MMT nanocomposite by vacuum 

impregnation process, low Mw monomer was suggested. The monomer should be 

small and flat (contain aromatic rings), for instance, methyl methacrylate. 

 

4.5 MMA polymerisation mechanism  

Poly (methyl methacrylate) or PMMA is an amorphous polymer developed in the 

form of transparent sheet in 1932 by Rohm and Bauer [36]. Generally, atactic 

PMMA can be identified as a plastic with 92 % transparency, high impact strength 

and low density [37, 38]. It is polymerised from methyl methacrylate (MMA), which 

is an ester of methacrylic acid. Polymerisation starts at the carbon double bond of 

MMA to form a linked chain with other monomers. The glass transition temperature 

of atactic PMMA is 105 °C [37]. 

 

In terms of mechanical properties, PMMA has a tensile strength of 72 MPa, tensile 

modulus 3.10 GPa. After failure by tensile loads, it shows a 5 % elongation [38]. 

PMMA also has good processing properties as well as thermoforming [39]. 

Therefore, it is widely used in both industry and biomedical applications. 

 

Various polymerisation mechanisms could be used for MMA conversion to PMMA. 

Among these mechanisms, free radical polymerisation is the most widely used 

technique [39]. The free radical process can take place in bulk or solution where it is 

homogeneous, or even in suspension and emulsion where it is heterogeneous [39]. 

Compared with other methods, free radical polymerisation can occur under a relative 

simple condition, so it is commercially used in industry on a large scale [40]. During 

the polymerisation of MMA, there should be a low oxygen partial presence since 

oxygen may act as a radical inhibitor, which can terminate the free radical 

polymerisation [36, 41].  

 

Free radical polymerisation can be promoted by thermally labile compounds, such as 
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benzoyl peroxide (BPO) and 2-2’-azobisisobutyronitrile (AIBN). During heating, the 

labile compound can be decomposed and form free radicals which can react with the 

molecules of MMA, shown in Figure 4-29. The reaction could open the pi-bond of 

MMA and form a reactive centre [39]. When other molecules contact the reactive 

centre, the reaction occurs resulting in propagating of the PMMA chain. MMA 

monomer has a low viscosity which makes it a desirable candidate to mimic nacre 

via impregnation process. 

 

 

(a) 

 

(b) 

Figure 4-29. The initiators decomposition to form free radicals (a) BPO, (b) AIBN. 

 

After the initiator has decomposed, the original concentration of initiator decreases. 

The time is represented by the initiator half-life when the concentration of initiator 

becomes half of its original. 

 

The equation for half-life of initiator can be deduced as below: 

In the first order reaction, the rate of reaction r can be given as, 

dc
r kc

dt


    (4-18) 

where c is the concentration of reactant, t is the reaction time and k is the reaction 

rate coefficient.  

( ) (0)

kt

tC C e   (4-19) 

where C(0) is the original concentration of reactant. When C(t)=0.5 C(0), the time t is  

2ln
t

k
   (4-20) 
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The reaction rate coefficient is dependent on temperature. The BPO and AIBN 

supplier Sigma Aldrich have provided the reaction rate coefficient k of BPO as 

2.0×10
-6

 s
-1

 at 60 °C, 2.3×10
-5

 s
-1

 at 78 °C and 5.0×10
-4

 s
-1

 at 100 °C. The reaction 

rate coefficient k of AIBN is given as 2.2×10
-6

 s
-1 

at 50 °C, 3.2×10
-5

 s
-1

 at 70 °C and
 

1.5×10
-3

 s
-1

 at 100 °C. Thus the half-life of the initiator with a given temperature can 

be calculated by equation (4-20). 

 

A series of experiments was carried out to prove the potential of MMA using 

thermally initiated polymerisation.1 wt. % and 4 wt. % BPO were added to stabilised 

MMA which contains no more than 30 ppm 4-methoxyphonel (MEHQ) as inhibitor. 

The procedures were shown in Section 3.4 while the results are given in Table 4-11. 

The weight loss of MMA is calculated from the weight before heating and after 

heating (excluding the mass of clay/alumina particles). If the MMA fully 

polymerised, there would be no weight difference before and after polymerisation of 

MMA. In other words, the weight loss then was a symbol of unpolymerised MMA. 

 

Table 4-11. Thermal polymerisation of stabilised MMA with 1 wt. % and 4 wt. % 

BPO. 

Sample Before heating/ g After heating/ g Weight loss wt. % 

1 BPO MMA  1.23 0.69 43.9 

1 BPO MMA  1.27 0.70 44.9 

1 BPO MMA  1.08 0.34 68.5 

4 BPO MMA  1.31 0.88 32.8 

4 BPO MMA  1.01 0.77 23.8 

4 BPO MMA  1.37 1.14 16.8 

*Number 1 means 1 wt. % BPO and 4 means 4 wt. % BPO added in MMA. 

 

It can be concluded from the weight loss in Table 4-11, the thermal polymerisation 

can be promoted by increasing the concentration of initiator since the weight loss of 

4 wt. % BPO samples decreased. The weight loss of these samples (1 wt. % BPO/ 

MMA mixture) is all higher than 40 wt. % due to the presence of MEHQ, which is a 

retarder of MMA.  

 

To understand the mechanism of polymerisation inhibition, chain transfer should be 
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introduced first. Chain transfer can be regarded as the termination of the growing 

polymer since it can transfer a hydrogen or atoms to the growing chain to terminate 

the free radical of the polymer [39]. However, it can be treated as an initiation of 

another polymer because it generates a new free radical after donating its hydrogen 

or other atom to the previous radical. This radical exchange reaction is called chain 

transfer reaction [39] which is shown below, 

tK

f fM XA M X A        (4-21) 

where the XA is the chain transfer reactant, X is the transferred atom or species and 

kt is the transfer rate constant. The new free radical can initiate the free 

polymerisation, the new free radical reaction being described as, 

KaA M M          (4-22) 

where ka is the rate of the new free radical polymerisation. This reaction can lower 

the molecular weight of the previous polymer resulting from terminating the carbon 

chain propagation.  

 

If ka is roughly the same as the previous propagation rate kp, in the meanwhile, 

kp >>kt, it can be considered as a normal chain transfer but with a lower Mw polymer 

obtained. If ka≈kp <<kt, the Mw of polymer resultant would be decreased 

dramatically and the polymer turns to be telomers [40]. As the new rate and original 

rate are roughly the same, the overall rate of polymerisation is constant [40]. 

 

If the new free radical polymerisation rate ka is slower than the previous rate kp, it 

shows a decrease both in molecular weight of polymer and rate of polymerisation. 

When kp >>kt, this situation is known as retardation. If kp<<kt, then it shows a 

significant decrease both in molecular weight of polymer and the rate of 

polymerisation, this effect is called degradative chain transfer [38, 39, 41]. In this 

case, the chain transfer reactant is defined as an inhibitor. 

 

An inhibitor can react with free radicals to form a kind of radical which can only 

react with itself or react with other radicals, generating barely reactive products. In 

terms of MEHQ, the phenol group can act as a hydrogen donator which is shown in 

Figure 4-30. Moreover, the phenol group could cooperate with oxygen to inhibit 

chain propagation. 
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Figure 4-30. Mechanism of inhibition by phenol. [38] 

 

In order to analyse the potential of MMA in-situ polymerisation after infiltration or 

vacuum impregnation, three kinds of powder were added into a 4 wt. % BPO/MMA 

mixture. Alumina sample was used here to prove the feasibility of the ice-templated 

method by Lawrence National laboratory which made use of alumina in conjunction 

with PMMA [43] and because aluminium in the clay structure has been held 

responsible for inhibition of polymerisation of acrylic polymers. The results are 

shown in Table 4-12, 4-13, 4-14. 

 

Table 4-12. MMA with 4 wt. % BPO mixed with Al2O3. 

Weight ratio 

(MMA: Al2O3) 

Before heating/ g After heating/ g Weight loss wt. % 

1:0.5 1 1 0 

1:1 1 0.98 2 

1:1.5 1 0.77 23 

 

 

Table 4-13. MMA with 4 wt. % BPO mixed with MMT. 

Weight ratio 

(MMA: MMT) 

Before heating/ g After heating/ g Weight loss wt. % 

1:0.5 1 0.73 27 

1:1 1 0.93 7 

1:1.5 1 0.88 12 
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Table 4-14. MMA with 4 wt. % BPO mixed with laponite. 

Weight ratio 

(MMA:Laponite) 

Before heating/ g After heating/ g Weight loss wt. % 

1:0.5 1.22 0.97 20.49 

1:1 1.23 1.05 14.63 

1:1.5 1.22 0.79 35.25 

 

The weight losses of these samples are not higher than the 4 wt. % BPO + MMA and 

could be caused by the nitrogen flow before polymerisation. It is worth noting that 

after polymerisation, the laponite sample and alumina sample formed a white solid 

while the MMT sample was found to be a yellow rubbery polymer-clay mixture that 

gave a strong MMA smell after opening the aluminium reactor. 

 

This indicates that the MMT inhibits the polymerisation of MMA since a low 

molecular weight polymer was obtained and unpolymerised MMA was evident from 

the strong smell. Other researchers [44-46] have suggested that the aluminium which 

is located at the edge of the silicate layers plays an important role in the 

polymerisation of MMA. When methyl methacrylate monomers are heated with clay 

minerals, the aluminium at clay edges can adsorb the monomer. Then, the 

unexpected orientation of the adsorbed monomer inhibits the electron-transfer 

reactions. Moreover, methyl methacrylate is not susceptible to cationic 

polymerisation [45]. The clay minerals contain Lewis acids, defined as electron pair 

acceptors, for instance, Fe
3+ 

in MMT shown in Equation 4-23. 

3 2

nM Fe Mn Fe      (4-23) 

 

Two mechanisms by Lewis acids could inhibit free radical reactions shown in Figure 

4-31. A prior adsorption of the free radical by Lewis acids could terminate the 

polymer chain growing by combination or disproportionation. 
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Figure 4-31. Mechanism for inhibition of free radical reaction by clay mineral. [46] 

 

Since MMT acts as an inhibitor during chain growth, it was not considered further in 

thermally initiated polymerisation of MMA experiments. In terms of laponite, which 

does not show the inhibition behaviour, may be caused by the absence of aluminium 

of its structure. However, alumina did not inhibit the polymerisation as well. This 

can be explained as the bonding formed in alumina is much stronger than that in the 

silicates layers, giving a less possibility of free aluminium forming at edges which 

can inhibit the polymerisation of MMA. 
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Chapter 5 

Laponite Based Clay/Polymer Nanocomposites 
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In this part of the work, laponite/polymer composites were prepared by two main 

methods: the self-drying method undertaken with laponite suspension and PVA 

solution, and in-situ photo polymerisation which was performed after introducing the 

monomer into self-assembled laponite film.  

 

5.1 Analysis of laponite/PVA nanocomposite from solution 

casting 

5.1.1 X-ray diffraction of laponite and its composite. 

 

Figure 5-1. XRD traces for PVA composites and for as-received laponite. The 

samples are identified by wt. % of laponite. 

 

Table 5-1. Results from XRD traces for PVA-laponite composites from Figure 5-1. 

Clay sample/ 

wt. % laponite 

2θ/ ° Basal spacing/ Å Change spacing/ Å 

Laponite 6.55 13.48 - 

Dried laponite 7.00 12.62 - 0.86 

40 3.45 25.59 + 12.11 

50 4.20 21.02 + 7.54 

60 4.95 17.84 + 4.36 

70 5.95 14.84 + 1.36 



page 134 

 

The initial basal spacing of laponite is 13.48 Å in agreement with Herrera [1]. It can 

be concluded that in all samples irrespective of volume fraction, PVA intercalated 

into laponite since the XRD results show increases in basal spacing. The basal 

spacing of 40 wt. % laponite/PVA composite (25.59 Å) is almost double than the 

original laponite (13.48 Å). 

 

5.1.2 Fracture surface of laponite/PVA composites. 

  

                             (a)                                                            (b) 

  

                           (c)                                                                (d) 

Figure 5-2. SEM of fracture surface of (a) 40wt. % laponite/PVA composites, (b) 50 

wt. % laponite/PVA composites, (c) 60wt. % laponite/PVA composites, (d) 70 wt. % 

laponite/PVA composites. 

 

The fracture surface of 40 wt. % laponite/PVA composite is fully covered by 

polymer, even under 5000× magnification, the layered structure was not observable 
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in the SEM. However, 60 wt. % and 70 wt. % laponite/PVA appear as intensive 

layered structure as can be seen from Figure 5-2. 

 

Since the layered structure cannot been seen clearly in 40 wt. % and 50 wt. % 

laponite composites, 60wt. % laponite/PVA composite was chosen as an example to 

analyse the microstructure of ordered clay/polymer composites which is shown in 

Figure 5-3.  

 

   

(a)                                                                 (b) 

Figure 5-3. SEM of fracture surface of 60 wt. % laponite/PVA composite. 

 

The layered structure was obtained by the solution casting method with interlayer 

polymer intercalated. The bridges between clay layers that can be seen from Figure 

5-3 could be PVA which can act as glue in composites during interlayer sliding. The 

toughening mechanism accomplished by the plastic deformation can avoid stress 

concentrations and to some extent, it can inhibit the propagation of cracks. 



page 136 

 

5.1.3 UV-visible transmittance of laponite/PVA nanocomposite 

 

Figure 5-4. UV-visible transmittance of laponite/PVA nanocomposite. The samples 

were given as wt. % of laponite. 

 

It is worth noting that laponite itself has interesting optical properties. Shikinada and 

co-workers [2] made 57 wt. % laponite nanocomposite with a 90 % transmittance in 

the 400-800 nm region. All of the laponite/PVA samples reported here had a 

transmittance above 80 %. According to the graph, Figure 5-4, high weight fraction 

composites have a higher absorbance coefficient in the visible wavelength region: 

400-800 nm. As reported by Zhu [3], the intrinsic absorbance of separate clay sheets 

at 244 nm tends to extend to 600 nm due to the increasing content of Fe ions. With 

higher clay content, this effect would be more obvious. During the process of 

synthesising laponite, the exchangeable ions in MMT (Fe
3+

) are replaced by Li
+
 or 

Na
+
, resulting in the comparable transparency of laponite. Figure 5-5 shows the 

difference between preformed MMT and laponite film. 
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Figure 5-5. Compared MMT and laponite clay film (a) transparent laponite, (b) dark 

yellow MMT. 

 

The example in Figure 5-6 was set to indicate the Beer-Lambert law. When a beam 

of light, perpendicular to the surface of the sample and defined as z axis, enters a 

material, as shown in Figure 5-6, the radiant flux of light is reduced by each part of 

the sample. The thickness of small parts is given as dz and all the infinitesimals are 

perpendicular the direction of light.  

 

 

Figure 5-6. The illustration of Beer-Lambert law. 

 

Due to the scattering and absorption of photons, the radiant flux is reduced gradually 

when passed through the sample. The function below is given to describe the 
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phenomenon, where μ is the attenuation coefficient, and Φe(z) is the radiant power of 

light. 

( ) ( ) ( )e
e

d
z z z

dz



     (5-1) 

After multiplying the integrating factor 0 ( ') '
z

z dze 
, (5-1) can be written as (5-2) 

0 0( ') ' ( ') '( ) ( ) ( ) 0
z z

z dz z dze
e

d
z e z z e

dz

  
     (5-2) 

Because of the product rule, shown in (5-3) 

( )
d d d

dx dx dx

 
          (5-3) 

equation (5-2) can be derived as  

0 ( ') '( ( ) ) 0
z

z dz

e

d
z e

dz


    (5-4) 

Introducing the thickness of the sample or path length l, the power of incident light is 

given as Φe
i
 = Φe(0), and the transmitted one is Φe

t
 = Φe(l), and equation (5-4) can be 

written as  

0 ( )
l

t i z dz

e ee


     (5-5) 

In terms of the definition of transmittance, it is the ratio of the power of transmitted 

light to the power of incident light. Then it can be concluded that 

0 ( )
l

t
z dze

i

e

T e 



  (5-6) 

Absorbance is defined as the common logarithm of the ratio of power of incident 

light to the power when the light passes through the sample, so  

10 10log ( ) log
i

e

t

e

A T


  


  (5-7) 

The attenuation cross section σ is given as below, where μ is the attenuation 

coefficient and n is the number density. 

n


    (5-8) 

The molar attenuation coefficient is written as (5-9), and amount concentration is 

indicated in (5-10). Where NA, the Avogadro constant, equals 6.022×10
23

 mol
−1

. 

10

A
i i

N

In
    (5-9) 
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i
i

A

n
c

N
   (5-10) 

Introducing (5-8), (5-9) and (5-10) to (5-6), therefore transmittance can be defined as 

(5-11) 

1

( )

10

N l

i i
o

i

c z dz

T

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 
   (5-11) 

Finally, using (5-11) to (5-7), it is possible to get (5-12), which is the Beer-Lambert 

law. 

1

N

i i

i

A c l


   (5-12) 

There is a linear relationship between absorbance and concentration. Using (5-7), we 

can deduce that: 

102 log %A T    (5-13) 

which can be drawn as a figure (Figure 5-7) showing the relationship between 

transmittance and absorbance. 

 

 

Figure 5-7. The relationship between transmittance and absorbance. T ranges from 1-

100 %. 

 

Absorbance can be deduced from the transmittance data using equation (5-13). 

Therefore an absorbance to thickness graph can be drawn as Figure 5-8. The 

thickness of laponite/PVA composites were measured by micrometer. Each sample 
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was given 3 readings and the mean was the final thickness of the film. The thickness 

of composites is in the range of 10-30 μm while PVA film is around 50 μm. 

 

 

Figure 5-8. Graph showing absorbance to thickness of laponite composite within 

400-800 nm. The samples were defined as wt. %. 

 

As reported by Zhu [3], the absorbance to thickness of MMT is in the range of 0.01- 

0.10 with the clay content 10-100 wt. % within 400-800 nm. In other words, the 

absorbance coefficient of MMT is much higher than that of laponite. The graph of 

absorbance to thickness of MMT/PVA composite was given in Appendix 2.  

 

5.2 Study the photo polymerisation in the presence of clay 

Ahead of polymerising monomer with the preformed self-assembled clay, it is 

important to make sure the polymer can intercalate into the interlayer of clays. 

Therefore, XRD was carried out to measure the basal spacing of the mixture. The 

mixture was cured in a brass holder and flattened for the XRD measurement. 
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(a) 

 

(b) 

Figure 5-9. XRD traces of clay/polymer mixture (a) Nano116 MMT mixed with 

PPGDMA and TEGDMA (b) laponite mixed with PPGDMA and TEGDMA. 

 

Figures 5-9 (a) and (b) showing the XRD data of the polymerised samples should be 

compared to the clay powder as received. The peaks at 7.20 and 6.55 represent the 

d(001) plane for Nano116 MMT and laponite, respectively. The traces of the 

polymerised samples showed a shift in peak to a lower degree, which illustrated that 

the basal spacing increased by the intercalation of polymer. The results of the 

changing spacing are presented in Table 5-2. 
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Table 5-2. Calculated results from XRD traces from Figure 5-9 

Clay sample 2θ/ ° Basal spacing/ Å Change in spacing/ Å 

MMT 7.2 12.26 - 

MMT+PPGDMA 6.25 14.13 +1.87 

MMT+TEGDMA 5.55 15.91 +3.65 

Laponite 6.55 13.48 - 

Laponite+PPGDMA 4.65 18.99 +5.51 

Laponite+TEGDMA 4.65 18.99 +5.51 

 

The conclusion of the results in Table 5-2 indicated that the intercalation of 

TEGDMA and PPGDMA in Nano16 MMT and laponite is possible resulting from 

the increase of the basal spacing of clay. 

 

5.2.1 FTIR quantification of degree of conversion and rate of 

reaction 

FTIR was carried out to study the behaviours of the clay in free radical 

polymerisation. Clay and monomer mixture were polymerised on an ATR FTIR 

spectrometer and ‘Timebase’ software was used. All of the spectra were plotted 

together to compare the changes as time goes on. 

 

The monomer conversions are generally evaluated by measuring the amount of 

unreacted monomer after polymerisation [4]. A method was undertaken in the 

experiment following the same quantifying method as Young and co-workers did [5]. 

The degree of conversion and rate of reaction were measured by the differences of 

peak height at 1318 cm
-1

 compared to a baseline. The baseline (1337 cm
-1

) was 

chosen as the point where all the spectra coincided. It should be noted that the peak 

at 1318 cm
-1

 is representative of the C-O stretch in the monomer structure. The 

reason why it is focused on is because this C-O functional group is the symbol of 

MMA monomer: after the monomer is converted into a polymer structure, this peak 

will decrease since there is less monomer than in pre-polymerisation state. The peaks 

assigned at 1635 cm
-1 

is the C=C group which takes part in the polymerisation and 

turned into a C-C bond afterwards. However, the peak at 1635 cm
-1

 may correspond 
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the O-H group as well. Thus, interlayer water in the clay especially in the laponite [6] 

could cause an error which may influence the results. In this case, 1635 cm
-1 

was not 

used in comparison. Young [5] suggested that the change in concentration is 

proportional to magnitude of absorbance change, which can also be deduced from 

equation (5-12). It is clear that the change in peak from Table 5-2 is caused by the 

polymerisation of monomer. Table 5-3 is given to identify the change in peak during 

polymerisation. 

 

Table 5-3.  FTIR assignment with comments corresponded to polymerisation. 

Wavenumber 

/ cm
-1

 

Assignment Comments 

1715 C=O stretch For PPGDMA systems, this peak shifts to 1722 

when the sample polymerises. 

1636 O-H stretch 

or C=C 

stretch 

O-H due to water present in the clay and C=C due 

to presence in monomer. Peak decreases in height 

when monomer changes to polymer. 

1452 C-H scissor Increase in peak height when monomer 

polymerises. 

1318 C-O stretch Decreases in height when monomer polymerises. 

1295 C-O stretch Decreases in height when monomer polymerises. 

1250 C-C stretch Increase in peak height when monomer 

polymerises. 

1166 C-O stretch Decreases in height when monomer polymerises. 

1120 C-O-C 

asymmetric 

stretch 

Increase in peak height when monomer 

polymerises. 
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                                (a)                                                                (b) 

 

                               (c)                                                               (d) 

Figure 5-10. FTIR spectra of clay-monomer absorbance focusing on the peak at 1318 

cm
-1

. (a) PPGDMA with Nano116 MMT at 14.4, 27.9, 121.8 and 349.6 s, (b) 

PPGDMA with laponite at 14.4, 27.6, 121.5 and 228.0 s, (c) TEGDMA with MMT 

at 14.3, 27.7, 121.5 and 590.3 s, (d) TEGDMA with laponite at 14.4, 27.8, 121.4 and 

228.5 s. 

 

Figure 5-10 (a-d) show IR spectra of the clay-monomer absorbance (focused on 1318 

cm
-1

) versus time. Four spectra were plotted together as a function of time. The 

maximum rate of double bond conversion was calculated using the steepest gradient 

(dx/dt) of conversion versus time. The calculated results are shown in Table 5-4. 
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Table 5-4. The degree of conversion of monomer and maximum rate of reaction. 

Sample Monomer Conversion ±  

SD (%) 

Maximum Rate of 

Reaction (% s
-1

) 

 

PPGDMA without clay 92.1 ± 0.4 1.6 

PPGDMA + MMT 93.8 ± 0.7  1.8 

PPGDMA + laponite 86.2 ± 0.2  2.8 

TEGDMA without clay 60.5 ± 0.2  1.6 

TEGDMA + MMT 72.7 ± 0.5  0.8 

TEGDMA + laponite 67.8 ± 0.9  3.0 

 

It can be concluded from Table 5-3 that PPGDMA itself has a quite high monomer 

conversion (92.1 %) The addition of Nano116 MMT increased the degree of 

conversion (92.1 to 93.8 %). On the other hand, in the presence of laponite, the 

degree of conversion rate reduced about 6 % compared to PPGDMA only.  

 

The degree of conversion of TEGDMA/clay is higher than TEGDMA without clay. 

The TEGDMA is composed of a flexible chain, this could promote the double bond 

rotating to react with another methacrylate group which can increase the rate of 

polymerisation [6]. During polymerisation, the diffusion rates of the molecules and 

the rate of polymer chain growth decreases due to the increase of polymer viscosity, 

resulting in a reduced conversion [7]. 

 

According to the ratio of degree conversion to time, laponite accelerated the rate of 

polymerisation both in TEGDMA and PPGDMA.  

 

5.2.2 Fabrication of ordered structures by preformed laponite film 

Attempts were carried out to introduce the monomers (TEGDMA and PPGDMA) 

into the ordered laponite structures. A soaking process was undertaken as the 

monomer could be absorbed by the clay via capillary action. The preformed laponite 

films were immersed in the monomer, allowed to soak in the monomer for a given 

time then cured. It was found that the polymer was gathering at the surface of the 
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preformed clay film after polymerisation. The polymer could be easily peeled off 

from the surface. Extended time did not improve matters (86.4 ks - 259.2 ks). 

 

Neither soaking process nor vacuum impregnation could help the monomer get into 

the layered clay film. It was clearly shown that the monomers were able to 

intercalate in the interlayer of clay as explained in section 5.1.1. However, 

introducing them into a preformed film which has the desired microstructure to 

mimic nacre, proved very difficult. This problem is at the core of the challenge of 

making nacre-like nanocomposites. Carbon and glass fiber reinforced plastics can be 

made by arranging the fibers into the weave that is required and then infiltrating the 

resin and curing it. Unfortunately, at the nanoscale infiltration is obstructed. 

 

Therefore, it can be concluded that the monomer polymerised when it was in 

contacte with the surface of the laponite layer. In this situation, the polymer could 

form an impenetrable layer, which prevented subsequent intercalation of the 

monomer  into the interlayer of clay. 
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Chapter 6 

Kaolinite Based Polymer Composite 

 

  



page 149 

 

This part of work was done with the cooperation with Hao Su, and Kate Sanders 

who were under my supervision and guidance. 

 

6.1 Kaolinte and resin system. 

6.1.1 Sedimentation experiment to adjust the optimal pH for 

kaolinite suspensions 

A batch of vials was used to hold the samples of kaolinite suspension with different 

pH values. At each time step, the sediment height was recorded and a graph was 

plotted showing sediment height versus time (Figure 6-1). 

 

Figure 6-1. Sedimentation graph of kaolinite suspension with different pH values 

plotted by sediment height versus time. The error was too small to be shown in the 

figure compared with the height scale. 

 

It can be concluded that pH 7.3 which is the pH of the original kaolinite suspended 

in distilled water was the optimal condition for the preparation of suspensions for 

making preformed sheets of kaolinite suspensions by self-assembly under vacuum 

filtration. Since the repulsion force of clay particles depends on the pH value, a 

higher pH value that moves the zeta potential away from the isoelectric point of the 
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surface can increase the energy barrier for agglomeration [1] leading to a more stable 

suspension. Generally, the pH should be 8-9 to form a stable suspension for kaolinite, 

sometimes it can be up to 10. However, in this experiment, pH 7.3 provided the more 

stable suspension. In this case, kaolinite suspensions for the preforming process can 

be kept at its original pH or at pH=10. The pH influence is compared in next section. 

 

6.1.2 SEM of kaolinite sheets obtained by the self-assembly 

processes 

SEM was carried out to investigate the structure of self-assembled kaolinite sheets. 

At the same time, the pH value was also taken into consideration, pH 7.3 and pH 

10.0 suspensions were then used to perform self-assembled kaolinite for SEM. The 

cross section was divided into 2 parts, the top region which is close to the air and 

lower region which is close to the base of the petri-dish. 

 

           

Figure 6-2. SEM of lower region of the kaolinite cross section at (left) pH=7.3 

(right) pH =10.0. 



page 151 

 

            

Figure 6-3. SEM of upper region of the kaolinite cross section at (left) pH=7.3 

(right) pH=10.0. 

 

As can be seen from Figures 6-2 and 6-3, a layered structure was found at both pH 

values of the lower region. Based on Walley’s work [2], ordered structures are 

obtained by starting with a low concentration, generally 1-5 wt. %. At the initial 

stage where the concentration is comparatively low, rotation was possible for the 

clay platelets while subsequent drying locks them in position. Compared with MMT, 

kaolinite platelets have a larger size. The rotation would be more difficult with 

increased concentration. As concentration increases, the structure indeed becomes 

more irregular. The layers near the top side retain a lamellar structure with pH 7.3 

while with pH 10.0, an inferior, less ordered structure was obtained from the self-

assembly process. 

 

6.1.3 Kaolinite film fabrication by vacuum filtration 

According to Darcy’s law [3], the time for turning clay particles into a packed sheet 

by filtration depends on the flux of water (J), defined as, 

c

f dx k p
J

V dt x


     (6-1) 

where f  is the packing fraction of kaolinite, Vc is the volume fraction in suspension, 

x is the thickness of kaolinite filter cake and the rate at which thickness increases is 
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dx

dt
 , ∆p is the pressure difference across the growing layer, k is the average 

permeability of the filter cake and η is the dynamic viscosity of the liquid. Thus, by 

equating these, it can be deduced that, 

c

dx k p
x V

dt f


    (6-2) 

Then integrating gives, 

2

c

k p
x V t c

f


     (6-3) 

Therefore, it indicates that the increase in thickness of a kaolinite filter cake is 

proportional to the square root of time.  

x t  

As the degree of ordered kaolinite depends on the rate of filtration, the pressure 

should be adjusted during the development of the filter cake to try to obtain a 

uniform rate of build-up. This is because at a high filtration rate, near the beginning, 

particles settle in a high local flow regime and fail to pack efficiently. When the rate 

of build-up of filter cake is slow, the particles are able to settle in an ordered manner. 

To prove this hypothesis, a simple experiment was set up by two suspensions with 

the same amount kaolinite, followed by the different filtration rate, 51 kPa vacuum 

pump assistant filtration over 3 hr compared to 0 kPa over 5 hr. Then SEM was 

carried out to investigate the structure of kaolinite filter cake, shown in Figure 6-4. 

 

                                          

Figure 6-4. SEM images showing cross sections of kaolinite sheets filtered over 3 h 

(left) and 5 h (right). 
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Figure 6-5. SEM images showing the bottom (left) and top (right) of a kaolinite film 

filtrated in 5 h. 

 

As can be seen from Figure 6-4, the kaolinite filter cake with a slow filtration rate 

had dense packed layers. The orientation of layers has a preferential degree which is 

nearly parallel to each platelet. The filter cake with the slower filtration rate had a 

thickness about 550 µm compared 590 µm for the 3 hr filtration. Thinner sample 

means a dense packed structure since the weight and the area of filter cake are the 

same. 

 

The different sides of the 5 hr sample were chosen to analyse the size of kaolinite 

platelets. The size of the lower side platelets is much larger (can be up to 5 μm) than 

that of top side (50-200 nm), as Figure 6-5 shows. It is believed that in the initial 

stages of filtration, sedimentation of larger particles occurred in the meanwhile. 

Thus, large platelets precipitated at the bottom side in a short time leading to a loose 

packed structure.  

 

6.1.4 Packing efficiency of kaolinite filter cake 

A batch of kaolinite filter cake was measured in order to obtain an estimate of the 

occupied volume fraction. The mass of each filter cake was kept the same as 20.0 g, 

weighed out by an analytical balance with readability of 0.0001 g. The balance is 

accurate to 0.00015, given by the manufacturer. The thicknesses were measured by a 

screw micrometre. The mean reading was obtained from three different parts of the 
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film. The width and length of frame was measured by a ruler. Taking the error of 

length reading into account, the standard deviation was taken as 0.5 mm. 

 

Table 6-1. Thickness of kaolinite filter cake with different filtration rate. 

Sample 

 

Thickness/ μm 

3 h filtration 5 h filtration 

1 520 600 

2 600 550 

3 650 520 

4 580 560 

5 530 560 

6 640 500 

7 610 550 

8 620 570 

Mean 594 551 

Standard deviation ± 44.7 ± 28.5 

Standard error of the 

mean 

± 15.8 ± 10.00 

95% confidence interval ± 31.0 ± 19.7 

 

Thus, the apparent density of kaolinite filter cake is given as, 

a

m

V
    (6-4) 

for the 3 hr infiltration filter cake, the apparent density  

3
3 3

3 3 6

20 10
1.12 10 k

150 10 200 10 594 10
a

m
g m

V





  


   

    
 

while for the 5 hr sample,   

3
3 3

3 3 6

20 10
1.21 10 k

150 10 200 10 551 10
a

m
g m

V





  


   

    
 

The packing efficiency was defined as  

% 100%
a

k

eff



    (6-5) 
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The packing efficiency for 3 hr and 5 hr sample was given as 45.53 % and 49.18 %, 

respectively. 

3

3 3

1.12 10
% 100% 45.53%

2.46 10

a

k

eff





   


 

3

5 3

1.21 10
% 100% 49.18%

2.46 10

a

k

eff





   


 

 

As Hughes [3] suggested, the error of packing efficiency was calculated by the 

propagation of errors in each parameter. In this case the appropriate expression is: 

2 2 2 2( ) ( ) ( ) ( )
%

ef LengthMass Width Thickness

eff m W L T

   
      (6-6) 

The porosity was indicated as, 

1 %P eff    (6-7) 

 

The calculated porosity for 3 hr and 5 hr is given as 54.5 ± 1.2 %, 50.8 ± 0.9 %, 

respectively. Since open porosity exists in the kaolinite filter cake, it is feasible to 

infiltrate resin or monomer into the kaolinite plates. 

 

6.1.4 Orientation function of kaolinite filter cake 

The method used for quantifying the degree of orientation was the same as that 

described in section 4.3.3. The graph of orientation function is given in Appendix 3.  

 

6.1.5 The possibility of infiltration of epoxy resin 

Based on the study of MMT/resin system, it is known that the difficulties for resin 

infiltration depend on the structure of clay and viscosity of resin. Compared with 

MMT, kaolinite itself has larger plates and a coarse structure which should make it 

easier for resin infiltration. 

 

A simple experiment was set up to verify the feasibility of resin infiltration. After 

mixing resin and hardener, a drop of Hxtal NYL-1 was placed separately on upper 
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and lower sides of kaolinite filter cake and then left at ambient conditions. RX900D 

resin, which was used in MMT/resin vacuum impregnation has a curing time 72 hr at 

25 °C, while the curing time for Hxtal NYL-1 is about 7 days at the same 

temperature. In other words, Hxtal NYL-1 allows for a longer time for resin self-

infiltration. 

 

 

(a) 

 

(b) 

Figure 6-6. Infiltration experiment of kaolinite filter cake for 1 hr and 12 hr, (a) 

bottom side (b) top side of kaolinite. 

 

As it can be seen from Figure 6-6, after 1 hr infiltration, the resin placed on the 

bottom side penetrated into the kaolinite. However, drops on the top side remained 

on the surface. As filtration time was extended into 12 hr, it seemed that all the drops 

infiltrated into clay. This experiment gave a preliminary idea that resin could 

penetrate in kaolinite at atmospheric pressure. Thus a possible pathway that the resin 

could penetrate into kaolinite by vacuum impregnation was explored. 

 

6.1.6 Evidence of resin infiltration. 

Kaolinite [4], which has the composition Al2Si2O5(OH)4 ,is free from carbon inside 

the clay. In this case, the vacuum impregnation sample was subjected to EDS for the 

element mapping to see whether the vacuum impregnation works. 
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Figure 6-7. EDS mapping for vacuum impregnation sample. 

 

From Figure 6-7, it can be indicated that drops penetrated into kaolinite successfully 

due to the carbon element detected. It proves that the resin can be introduced in 

kaolinite by vacuum impregnation. 

 

However, the SEM figure showed there are some pores in the kaolinite plates which 

were not filled up by resin as Figure 6-8 shows. 
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Figure 6-8. SEM of kaolinite plates by resin vacuum impregnation. 

 

These larger pores could be caused by irregular stacking of plates during kaolinite 

filter cake formation. The purpose of using resin as an adhesive is to fill up the space 

between plates. If this fails, there is concerned about the stress concentration 

introduced by these defects when loaded. Therefore, absence of resin may degrade 

the mechanical properties. 

 

6.1.7 Mechanical testing of kaolinite/resin composite. 

After vacuum infiltration, the preformed kaolinite sheets were used to make 

kaolinite/resin composites by vacuum infiltration. These samples were tested in three 

point loading. The graph indicating three point flexural loading test was shown in 

Figure 6-9. 

 

 

Figure 6-9. Graph of three point loading test. 
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Samples for three point bending test were prepared as rectangular bars, the flexural 

strength is defined as: 

2

3

2
f

FL

bd
    (6-8) 

where F is the applied force, L is the span of two supporting pins, b is the width of 

the sample and d is the thickness. 

 

The flexural modulus Ef was calculated by: 

3

34
f

L m
E

bd
   (6-9) 

where m is the gradient of the linear section of the load deflection curve. 

 

The span of two supporting pins was kept at 45 ± 0.5 mm. The measured and 

calculated data were shown in Table 6-2. 

 

Table 6-2. Measured and calculated date for three point loading test. 

Sample width of 

the 

sample/ 

mm 

thickness 

of the 

sample/ 

mm 

Force/ N  M*/ N 

mm
-1  

 

σf/ MPa Ef/ GPa 

1* 25.0 ± 0.5 0.550 ± 

0.030 

5.30  0.59  ± 

0.01 

47.3 ± 5.3 3.23 ± 

0.55 

2 24.0 ± 0.5 0.520 ± 

0.020 

4.68   0.46 ± 

0.01 

48.7 ± 3.9 3.11 ± 

0.38 

3 24.5 ± 0.5 0.500 ± 

0.030 

3.04  0.34 ± 

0.01 

33.5 ± 4.1 2.53 ± 

0.52 

4 25.0 ± 0.5 0.580 ± 

0.030 

2.83  0.38 ± 

0.01 

22.7 ± 2.4 1.77 ± 

0.29 

*Example of calculation was given in Appendix 4. 

*M refered to the equation 6-9 

 

The flexural strength of Hxtal NYL-1 epoxy resin is around 69.6 MPa (10100 Psi) 

and the flexural modulus is 2.52 GPa (365000 Psi) given by the supplier. It can be 

concluded the flexural strength of the composite was lower than the epoxy resin 
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from Table 6-2. However, compared with the flexural strength of pure kaolinite 

which was reported as 20.93 MPa by Mustafa [5], the composites showed an 

increase.  

 

As indicated in Section 6.1.6, there are large pores in kaolinite filter cake which is 

the possible reason for the low flexural strength of the composite. During the 

vacuum impregnation, the resin failed to fill the pores in kaolinite as shown in the 

SEM images. According to Wright and Evans [6], the driving force for the organic 

flow to fill the pores is the different capillary pressure. The pressure difference was 

given as, 

1 2

1 2

cos cos
2 ( )non wetting wettingP P P

r r

 
      (6-10) 

where γ is the surface tension, r is the effective pore radius, θ is the wetting angle. In 

this kaolinite/resin system, the pores were treated as non-wetting phase and the resin 

penetrated kaolinite regarded as the wetting phase. The contact angle was commonly 

low of organic resin on kaolinite, so the equation can be written as, 

1 2

1 1
2 ( )P

r r
    (6-11) 

Since r1 is the pore size of kaolinite, a larger pore means a lower capillary pressure 

which could make it harder for resin penetration resulting in filling of smaller pores 

which have preference for penetration but non-filling of larger pores. After resin has 

penetrated into the smaller pores, it was easy to form impermeable layers which 

make further penetration less possible, leaving the resin-empty large pores to 

degrade the mechanical properties. Considering the high viscosity of resin, a low 

viscous polymer should be used to make polymer/kaolinite composite. Therefore, 

MMA was chosen to prepare the composite by infiltration and in-situ polymerisation. 

 

6.2 Kaolinite/PMMA polymer composites by thermal 

polymerisation 

An initial experiment was carried out to analyse the optimum conditions for MMA 

polymerisation. In order to refine the method for MMA polymerisation, two initiator 
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(BPO and AIBN) were used for polymerisation and the time was recorded. The 

results are given in Table 6-3.  

 

All samples undergo an increase in viscosity during polymerisation. Before the solid 

phase polymer appeared, the viscosity of the sample gradually increased. At the 

point when the viscous sample turned to a syrup-like gel, the polymer formed rapidly 

afterwards. This phenomenon is known as auto-acceleration, which is often occurs in 

radical chain polymerisation [7]. The polymer formed quickly in AIBN initiated 

samples during auto-acceleration while this was not observed in BPO initiated 

samples. It could be the contribution of the nitrogen by-product of the decomposition 

of AIBN. Rapid forming of polymer may cause defects in the polymer structure or 

even break the structure of clay after infiltration into clay’s plates. Taking this into 

consideration, AIBN was subsequently eliminated from the thermal polymerisation 

of MMA. As indicated in Table 6-3, a higher concentration resulted in a faster rate of 

polymerisation for both initiators. A fairly short time was needed for MMA 

polymerisation. Thus, the best conditions selected for MMA polymerisation were: 1 

wt. % BPO in stabilised MMA at 80°C for at least 70 min under N2 in the aluminium 

polymerisation reactor. MMA buffer should be added in to prevent the evaporation 

of MMA. 

 

Table 6-3. Results from experiments into optimisation of conditions for the thermal 

polymerisation of PMMA. [8] 

Initiator 

concentration in 

MMA / wt.% 

Polymerisation time / min 

AIBN BPO 

Stabilised 

MMA 

Unstabilised 

MMA 

Stabilised 

MMA 

Unstabilised 

MMA 

70°C 

0.5 45 55 120 90 

1 40 2400 110 75 

80°C 

0.5 35 25 75 60 

1 20 15 70 60 
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6.2.1 Redox polymerisation of MMA 

From previous study of MMT/MMA, it was known that MMT can inhibit 

polymerisation of MMA due to the Fe ions or aluminium at the edge of the silicates. 

Kaolinite was tried again to see whether it is possible to polymerise MMA in the 

presence of it because there is no Fe in the kaolinite structure. The result confirmed 

the inhibition of polymerisation of MMA by kaolinite. It is thought that the 

aluminium at the edge of the silicates was the reason for inhibition since aluminium 

atoms can act as an electron acceptor to degrade the free radical polymerisation by 

termination or by direct electron transfer. 

 

Therefore, an alternative path for thermal initiation, a redox system was developed. 

The system combined two parts, a powder part mixed with BPO and PMMA beads 

and a liquid part which consisted of pre-polymer suspension (PMMA in MMA) with 

an activator component [9,10]. The activator acts as a reducing agent. In general, it is 

an aromatic tertiary amine, such as N,N-dimethyl-p-toluidine (DMPT) or N,N-

diethanol-p-toluidine (DEPT) [11].  The ratio for the mixture was 2:1 [12,13] of 

solid to liquid. After adding activator into the system, the viscosity increased quickly 

even under room temperature conditions. The mechanism for DMPT activation is 

shown in Figure 6-10. 

 

 

Figure 6-10. Mechanism of the redox reaction between DMPT and BPO. [14] 
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In order to make kaolinite/PMMA composites, a redox method could be used to 

provide a pathway for radical polymerisation without heating. However, due to the 

high viscosity of liquid phase of redox system, it is impossible for suspension to 

penetrate into a preformed kaolinite plates. A redox system of BPO and DMPT with 

liquid MMA alone was therefore developed to polymerise under ambient conditions. 

 

A variation of the redox system used MMA containing BPO at 1, 1.5, 2 and 4 wt. %. 

A 1:1 molar ratio of DMPT: BPO was mixed to accelerate polymerisation. 

Concentrations above 4 wt. % BPO were not used even if they could increase the 

rate of polymerisation, because it can reduce the molecular weight of polymer which 

could affect the properties of PMMA and hence of the composite. 

 

To reduce the time of polymerisation, samples were prepared with unstable MMA 

(MEHQ removed MMA) with a 4 wt. % concentration of BPO combined with a 1:1 

molar ratio of DMPT in MMA. The FTIR peaks at 1635 cm
-1

 corresponded to C=C 

in MMA disappeared after redox polymerisation, showing the MMA fully 

polymerised and no C=C left in resultant. FTIR of MMA and PMMA by redox 

polymerisation and PMMA/kaolinite by redox polymerisation were given in 

Appendix 5. 

 

6.2.2 Mechanical testing of samples prepared by redox 

polymerisation in the presence of kaolinite 

The 5 h filtration kaolinite sheet was cut by a scalpel into rectangular shape for the 

redox polymerisation. Oxygen in ambient air could inhibit the polymerisation, so 

redox polymerisation was carried out under N2 atmosphere. 

 

Figure 6-11. PMMA (left); PMMA/kaolinite composites (right) showing top (above) 

and bottom (below) side of kaolinite filter cake. 
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PMMA samples were prepared by the same redox polymerisation to compare the 

mechanical performance of the PMMA-kaolinite composite. Since the kaolinite 

sheets are fragile, they are not taken into account as the comparison experiment. 

Figure 6-11 shows the mechanical testing samples. 

 

6.2.3 Mechanical testing of kaolinite/PMMA composite 

The three point loading test was carried out to analyse the mechanical properties of 

both PMMA from redox polymerisation and kaolinite/PMMA composite. The results 

are given in Table 6-4. 

 

Table 6-4. Results of three point loading of redox polymerised PMMA and 

PMMA/Kaolinite composite. 

 Redox polymerised 

PMMA 

PMMA-Kaolinite 

composite 

σf  / MPa Ef / GPa σf / MPa Ef / GPa 

Mean* 40 2.5 40 30 

Standard deviation ± 30 ± 0.9 ± 30 ± 30 

Standard Error of the 

Mean 

± 10 ± 0.3 ± 10 ± 10 

*Figures and results were given in Appendix 6 

  

As reported [15] the flexural strength of PMMA was 64.2 MPa and the flexural 

modulus of it is 2.5 GPa. The flexural strength of redox polymerisation PMMA 

samples is 40 MPa showing a lower value compared with reported data while the 

flexural modulus shows not much difference. 

 

In terms of composite, even though there is not much difference in the flexural 

strength between PMMA and composite, the flexural modulus shows a significant 

increase from 2.5 GPa to 30 GPa. This indicated that redox polymerisation was 

successful in using MMA only in presence of kaolinite. Since the pre-polymer has a 

comparatively high viscosity, the redox polymerisation is not the desirable pathway 

to make MMT/PMMA nanocomposites at the nanoscale. 
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Conclusions and Future work 
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7.1 Conclusions 

 

As reported in Chapter 4, a drying process was used to fabricate a montmorillonite 

clay and PVA self-assembled structure. Experiments carried out using XRD analysis 

confirmed that the intercalation of PVA was thermodynamically feasible, since there 

was an enlargement in the basal spacing of the MMT. SEM figures give a strong 

support that evaporation-induced self-assembly is a feasible method to mimic nacre-

like nanocomposite using MMT/PVA. It indicates that the ordered structure is not 

disrupted when dispersed clay particles are self-assembled by drying from a water-

based polymer solution with polyvinyl alcohol even though the adsorbed polymer 

layer is expected to change the surface interactions. The mechanical test shows that 

the 50 vol. % MMT/PVA obtained the best mechanical properties among different 

volume fractions but the strength was still quite low, only 40.5 MPa. After trying 

new clay (BH natural) and a higher Mw PVA, the tensile strength showed no 

significant change indicating that the grades of the constituents were not responsible 

for the low strength. After introducing a centrifugation process and a modified 

cutting method, the tensile strength of the composite can be reached to 98 MPa and 

the highest value comes from 50 vol. % MMT/PVA composite. It then can be 

concluded that the low mechanical properties caused by the unexfoliated clay 

fraction and the impurities present in the original clay. 

 

A structural polymer, epoxy resin, was then introduced to preformed MMT film 

made by the self-drying process in an attempt to fabricate a nacre-like composite 

using vacuum impregnation. An ion-exchanged MMT (PPD-MMT) was also tried to 

achieve the nacre-like structure. Even though the ordered structure was confirmed by 

XRD and SEM, the tensile strength of MMT/resin was 28.9 MPa and PPD-

MMT/resin was 22.6 MPa, respectively. These low mechanical properties were 

contributed to by the high viscosity of resin which prevented it gaining access to the 

ordered structure.  

 

In the next step, a low viscosity monomer MMA was used to prepare the nacre-like 

structure by infiltration and in-situ polymerisation. The XRD traces indicated that 

MMA can indeed intercalate into MMT galleries. However, the MMT clay acted as 
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an inhibitor in the free radical polymerisation of MMA. This could be caused by the 

Fe ions or by the aluminium located the edge of the silicate layers.  

 

Laponite based composites were studied in Chapter 5 and it can be concluded that 

the ordered structure was obtained by the evaporation-induced assembly process. 

This is supported by XRD and SEM. It is worth noting that laponite/PVA composite 

has optical properties which give at least 80 % transparency in the range of visible 

light.  Since then, a photo polymerisation idea came out based on the high 

transparent properties of laponite. The results shows that the PPGDMA and 

TEGDMA polymerised when it was in contacted with the surface of the laponite 

layer and formed an impenetrable layer, which prevented subsequent the monomer 

from entering into the preformed laponite and the intercalating into the interlayer of 

clay. Even though the laponite did not inhibit the polymerisation of acrylic groups 

like MMT did, it also failed to allow penetration of the monomer into the interlayer 

of clays in another way, accelerating the polymerisation of PPGDMA and TEGDMA. 

 

A plate-like kaolinite was obtained, which has larger particle size than MMT or 

laponite and it was used to make composites at the micro-level instead of the 

nanoscale.  A low viscosity resin used for commercial applications that demand a 

very long curing time was then introduced to preformed kaolinite filter cake by 

vacuum impregnation. The highest flexural strength of the composites was then 48.7 

MPa, which was lower than the pure epoxy resin, but showed a slight increase 

compared with pure kaolinite. The flexural modulus was roughly the same as resin. 

The SEM images pointed out there were large unfilled pores among the kaolinite 

particles. It could be the main reason for the low mechanical properties of kaolinite. 

However, the pores may be filled by a low viscosity flow of polymer. Taking this 

into consideration, a redox polymerisation method was developed for making the 

kaolinite composite. After three point loading test, the flexural modulus shows a 

significant increase from 2.5 GPa (PMMA) to 30 GPa (composite). This indicated 

that redox polymerisation was successful in using MMA only in presence of 

kaolinite to make a traditional composite but with ordered planar random 

arrangement of particles. 
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A short chapter Appendix 1 indicated that GO/PVA nacre-like nanocomposites could 

be successfully synthesed by a solution-casting process. After ultrasonication, the 

GO layers were separated into small tactoids changing from 19-20 stacks to 2-3 

stacks.  As with the MMT/PVA nanocomposites described above, the microstructure 

was established and the polymer was put in place but a water-soluble polymer is not 

the ideal choice for the matrix. 

 

This project demonstrates that the microstructure required for nacre-like composites 

can be made by self-assembly during drying and by filtration methods. It also 

demonstrates that various structural polymers can intercalate into some of the 

smectic clays used. However, the very serious problem that it highlights is that when 

attempts are made to infiltrate a non-water soluble polymer such as an epoxy resin 

into the preformed structure, infiltration is either obstructed at the surface or large 

internal pores remain unfilled. The strategy for materials manufacture that has 

become commonplace for glass and carbon fibre composites, namely to assemble the 

reinforcing phase into the geometry that is predicted to give high mechanical 

strength and then to infiltrate the resins does not work so effectively at the fine scale 

of reinforcement and pore size required for clay mineral reinforcement.           

 

7.2 Future work 

Although the nacre-like composites were successfully fabricated, there are still some 

issues that need to be developed in this field for the future. The composites fall 

behind in unification with the natural nacre: the inorganic ratio of the artificial nacre 

is much less than that of natural nacre. The accurate control of the thickness of the 

layered structure is still a major challenge. Rapid self-assembly needs to be 

investigated by both physical and chemical methods. The process is still under study 

in an attempt to mimic the nacre-like structure more accurately and on a larger scale. 

 

In Chapter 4, the reported mechanical properties of the composites could be further 

improved. As reported [1, 2] from other groups, the PVA can be crosslinked by GA 

or boric acid. After cross-linking, the mechanical properties of composites should be 

increased due to the formation of the acetal bonding after GA crosslinking. A series 

of different molar ratios of PVA to crosslinking agent should be undertaken. 



page 171 

 

Chitosan and gelatine could be also investigated by the self-drying process since 

both of them are water-soluble polymers. Another possible way to improve the 

mechanical properties of composites could be chemical grafting the surface of clay 

by functional groups like -OH or -NH2, which could be easier to interact with the 

function groups in polymer.  

 

The laponite accelerated the polymerisation of acrylic groups as indicated in Chapter 

5, the mechanism was not clear and needs to be further researched. Other groups [3, 

4] reported that clay has fire retardant properties as well as barrier properties. It 

could be a promising way to produce the laponite composites as the shell of solar 

cells due to its high optical transparency. In this case, the laponite composites allow 

the light pass and keep the oxygen outside to protect the sensitive solar cell from 

oxidation. 

 

The problem with the kaolinite/resin system was lack of complete pore filling. It 

should be infiltrated by a reactive dilute organic agent used to reduce the resin 

viscosity. If the resin can be penetrated into spaces of kaolinite at a low viscosity, the 

mechanical properties should be further promoted, after fully filling the pores in 

kaolinite sheets. 

 

Furthermore, the bio-degradable plastic could be a burgeoning field to be 

investigated with clay-polymer composites. The polymer could be from biomass like 

cellulose, fibronectin and collagen. Upon disposal to landfill, the clay would return 

to the ground as the polymer degrades to products that can be processed in the 

biosphere.  

 

Regardless of the present cost of preparation of GO, it could become a very 

important material in the future. As it has functional groups in its structure, GO can 

react with various polymers. It can crosslink with dopamine alone [5] or combined 

with polyurethane [6] to form a strong composite.  

 

Biomineralization would be another attempt to mimic the natural composite. The 

hierarchical structure of ivory can be fabricated by this process. The calcium 
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carbonate could be combined with silk fibroin microsphere to form an ivory-like 

material.  

 

Clay-polymer hydrogels could be another potential direction. Polyacrylamide or 

poly(N-isopropylacrylamide) could be combined with clay to generate the hydrogel. 

The hydrogel usually shows an extremely large elastic deformation. Unlike the 

brittle material, the hydrogel displays regenerative properties. 

 

Besides use in structural composites, the clay minerals can be also used in bio-

applications, such as cell adhesion and proliferation, as well as drug and gene 

delivery because of clay nanoparticles can be interacted with biomolecules, polymer 

as well as cells. MMT can be used for protection of naked DNA from degradation 

within the acidic environment of the stomach. With laponite, it can be found that 

when added to a hydrogel film, the clay provided a specific site for the cell and 

polymer attachment.  
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Appendix 1. Graphene oxide and PVA composites 

A1.1 Characterisation of GO 

Figure A1-1 shows the X-ray diffraction traces for the graphene oxide. The peak at 

2θ=10.84 ° is the GO peak showing a d(002) spacing about 8.15 Å which was similar 

to that as reported 8.3 Å [1] and 8.6 Å [2]. The author suggested that the distance 

(8.3 Å) was contributed to by a one-molecule thick layer of water bonded between 

the graphene oxide sheets [1]. Due to the freeze-drying process, the water in 

prepared GO was removed, thus it gave a lower value 8.15 Å compared with the 

former. 

 

 

Figure A1-1. X-ray diffraction of prepared GO. 

 

According to the Scherrer equation, which was defined as, 

cos

K


 
   (A1-1) 

where τ is the dimension of ordered layers, K is the dimensionless shape factor, λ is 

the wavelength of X-ray, β is the full width of at half of maximum (FWHM), in 
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radians, θ is the angle read from the peak. The K is roughly 0.9 and λ is 1.54056 Å, β 

is 0.51×22/180/7. θ is 5.42 °. 

 

Then the calculated τ=156.4 Å from Figure A1-1. This value represents 19 to 20 

stacks of graphene oxide sheets.  

 

A1.2 Characterisation of GO/PVA nanocomposite. 

Figure A1-2 shows that XRD traces for GO/PVA composites after the self-assembly 

process at ambient conditions. All of the samples peaks showed a shift to a lower 

angle due to increases of spacing between GO interlayers. The results were given in 

Table A1-1. 

 

 

Figure A1-2. XRD traces for GO/PVA composites after self-assembly process at 

ambient temperature. The samples are identified by wt. % of GO. 
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Table A1-1. Results from XRD traces of GO/PVA composites. 

GO samples 

wt. %  

2θ/ 
o
 Basal spacing/ Å change of d002/ Å 

40 7.3 12.10 ± 0.01 + 3.95 

50 7.5 11.78 ± 0.01 + 3.63 

60 7.6 11.62 ± 0.01 + 3.47 

70 8.2 10.77 ± 0.01 + 2.62 

 

According to equation A1-1, the dimension of ordered layers can be calculated. Take 

40 wt. % GO/PVA composite as an example. The K was about 0.9 and λ is 1.54056 

Å, β is 3.50×22/180/7. θ is 3.65 °. Then τ was 22.73 Å, it gave a brief idea that after 

introducing to ultrasonic treatment for 72 hr, the GO was broken into small parts of 

layers and only 2-3 stacked GO sheets with bonded PVA in interlayers. 

 

A1.3 SEM figures of GO and PVA composites made by self-

drying process 

As it indicated in Figure A1-3, all of the composites made by self-drying process 

showed a layered structure in high levels of orientation. The concentration of 

graphene oxide dispersion is only 0.2 wt. %. With such a low concentration, the 

composite film made by GO with PVA is quite thin (less than 15 μm). 

 

 

                             (a)                                                              (b) 
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                            (c)                                                              (d) 

Figure A1-3. Scanning electron micrographs of fracture surface of (a) 40 wt. % 

GO/PVA composites (b) 50 wt. % GO/PVA composites (c) 60 wt. % GO/PVA 

composites (d) 70 wt. % GO/PVA composites. 

 

One of the aims of this project is to fabricate a relatively low cost structural material. 

In this case, GO cannot be prepared in high quantities in the laboratory and has a 

relatively high cost. Thus, it could be a good choice of future work on high-

performance composites. 
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Appendix 2. The absorbance to thickness of MMT/PVA 

composite 

 

Figure A2-1. The absorbance to thickness of MMT/PVA composite. The sample was 

defined in volume percentage of MMT. 
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Appendix 3. Orientation function of kaolinite 

 

Figure A3-1. X-ray diffraction of the variation of the intensity of the kaolinite (002) 

peak reflection by changes in the tilt angle, ψ. 

 

Figure A3-2. Graph showing experimental kaolinite orientation distribution function. 
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Appendix 4. Flexural strength and modulus of 

kaolinite/resin composite 

Flexural strength calculation for kaolinite/resin sample 1: 

F = 5.3 N, l = (45.00 ± 0.5) mm and b = (25.0 ± 0.5) mm 

d = (0.55 ± 0.03) mm, so d
2
 = 0.55

2 
= 0.3025 mm

2
 

Absolute error in d
2
 = 2 × 0.55 × 0.03 = ± 0.033 mm

2
 

So d
2
 = (0.3025 ± 0.033) mm

2 

 

Therefore σf=(3×5.3×45.00)/(2×25×0.3025) MPa= 47.3 MPa 

And relative error in σf= √((0.5/45)
2
+(0.5/25)

2
+(0.033/0.3025)

2
 )= 0.11 

So absolute error in σf = 0.11 × 47.3 MPa= ± 5.27 MPa 

Overall, σf = (47.3 ± 5.3) MPa 

 

Flexural modulus calculation for kaolinite/resin sample 1: 

The gradient, m, for the linear portion of the stress-strain graphs of samples was 

calculated, along with an estimate of its uncertainty. 

m = (0.59 ± 0.01) N mm
-
1, d = (0.55 ± 0.03) mm,  

l = (45.00 ± 0.5) mm, so l
3
 = 45

3
 = 91125 mm

3
  

Absolute error in l
3 

= 3 × 45
2
 × 0.5 = 3037.5 mm

3
 

d
3
 = 0.55

3
 = 0.166375 mm

3
  

Absolute error in d
3 

= 3 × 0.55
2 

×0.03 = ± 0.027225 mm
3
 

 

Therefore Ef= (91125 × 0.59)/(4×25×0.166375) = 3231 MPa = 3.23 GPa 

And relative error in  

Ef=√((3037.5/91125)
2
+(0.01/0.59)

2
+(0.5/25)

2
+(0.027225/0.166375)

2
)= 0.169 

So absolute error in Ef = 0.169 × 3.23 GPa = ± 0.55 GPa 

Overall, Ef = (3.23 ± 0.55) GPa 
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Appendix 5. FTIR Spectra 

 

Figure A5-1. FTIR spectrum of Barrisurf LX kaolinite. 

 

 

Figure A5-2. FTIR spectrum of methyl methacrylate. 
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Figure A5-3. FTIR spectrum of poly (methyl methacrylate) by redox polymerisation. 

 

 

Figure A5-4. FTIR spectrum of a PMMA/kaolinite composite sample polymerised 

under N2. 
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Appendix 6. Figures and results of three point loading test 

of PMMA and PMMA/kaolinite composite by redox 

polymerisation 

 

Figure A6-1. Three points loading test of PMMA by redox polymerisation. 

 

 

Figure A6-2. Three points loading test of kaolinite/PMMA composite. 
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Table A6-1. Flexural strength and modulus of PMMA. 

PMMA Sample σf / MPa Ef / GPa 

1 18 ± 2 1.9 ± 0.3 

2 18 ± 3 1.5 ± 0.4 

3 34 ± 5 2.2 ± 0.5 

4 39 ± 6 1.8 ± 0.4 

5 60 ± 10 3.1 ± 0.9 

6 46 ± 7 2.6 ± 0.6 

7 70 ± 30 4.4 ± 2.5 

8 22 ± 2 1.9 ± 0.3 

9 47 ± 8 3.4 ± 0.8 

Mean 40 2.5 

Standard Deviation ± 20 ± 0.9 

Standard Error of the Mean ± 10 ± 0.3 

 

 

Table A6-2. Flexural strength and modulus of kaolinite/PMMA composite. 

PMMA-kaolinite Sample σf / MPa Ef / GPa 

1 100  ± 40 80 ± 50 

2 41 ± 4 24 ± 4 

3 23 ± 2 17 ± 3 

4 29 ± 5 16 ± 4 

5 34 ± 3 17 ± 3 

6 34  ± 3 19 ± 3 

7 49 ± 7 16 ± 4 

8 60 ± 10 30 ± 10 

9 40 ± 5 20 ± 4 

Mean 40 30 

Standard Deviation ± 20 ± 20 

Standard Error of the Mean ± 7 ± 7 
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