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Abstract. Currently, some catastrophe models used by the
insurance industry account for liquefaction by applying a
simple factor to shaking-induced losses. The factor is based
only on local liquefaction susceptibility and this highlights
the need for a more sophisticated approach to incorporating
the effects of liquefaction in loss models. This study com-
pares 11 unique models, each based on one of three principal
simplified liquefaction assessment methods: liquefaction po-
tential index (LPI) calculated from shear-wave velocity, the
HAZUS software method and a method created specifically
to make use of USGS remote sensing data. Data from the
September 2010 Darfield and February 2011 Christchurch
earthquakes in New Zealand are used to compare observed
liquefaction occurrences to forecasts from these models us-
ing binary classification performance measures. The analysis
shows that the best-performing model is the LPI calculated
using known shear-wave velocity profiles, which correctly
forecasts 78 % of sites where liquefaction occurred and 80 %
of sites where liquefaction did not occur, when the threshold
is set at 7. However, these data may not always be available
to insurers. The next best model is also based on LPI but
uses shear-wave velocity profiles simulated from the combi-
nation of USGS VS30 data and empirical functions that relate
VS30 to average shear-wave velocities at shallower depths.
This model correctly forecasts 58 % of sites where liquefac-
tion occurred and 84 % of sites where liquefaction did not
occur, when the threshold is set at 4. These scores increase to
78 and 86 %, respectively, when forecasts are based on lique-
faction probabilities that are empirically related to the same
values of LPI. This model is potentially more useful for in-
surance since the input data are publicly available. HAZUS

models, which are commonly used in studies where no local
model is available, perform poorly and incorrectly forecast
87 % of sites where liquefaction occurred, even at optimal
thresholds. This paper also considers two models (HAZUS
and EPOLLS) for estimation of the scale of liquefaction in
terms of permanent ground deformation but finds that both
models perform poorly, with correlations between observa-
tions and forecasts lower than 0.4 in all cases. Therefore
these models potentially provide negligible additional value
to loss estimation analysis outside of the regions for which
they have been developed.

1 Introduction

The recent earthquakes in Haiti (2010), Canterbury, New
Zealand (2010–2011), and Tohoku, Japan (2011), high-
lighted the significance of liquefaction as a secondary hazard
of seismic events and the significant damage that it can cause
to buildings and infrastructure. However, the insurance sec-
tor was caught out by these events, with catastrophe models
underestimating the extent and severity of liquefaction that
occurred (Drayton and Verdon, 2013). A contributing factor
to this is that the method used by some catastrophe models
to account for liquefaction is based only on liquefaction sus-
ceptibility, a qualitative parameter that considers only surfi-
cial geology characteristics. Furthermore, losses arising from
liquefaction are estimated by adding an amplifier to losses
estimated due to building damage caused by ground shaking
(Drayton and Vernon, 2013). There is a paucity of past event
data on which to calibrate an amplifier and, consequently,
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significant losses from liquefaction damage will only be esti-
mated if significant losses are already estimated from ground
shaking, whereas it is known that liquefaction can be trig-
gered at relatively low ground shaking intensities (Quigley et
al., 2013).

Therefore there is scope within the insurance and risk
management sectors to adopt more sophisticated approaches
for forecasting liquefaction for both future risk assessments
and post-event rapid response analyses. It is also important
to develop a better understanding of the correlation between
liquefaction effects and physical damage of the built environ-
ment, similar to the fragility functions that are used to esti-
mate damage associated with ground shaking. This is partic-
ularly the case for critical infrastructure systems since, whilst
liquefaction is less likely than ground shaking to be respon-
sible for major building failures (Bird and Bommer, 2004), it
can have a major impact on lifelines such as roads, pipelines
and buried cables. Loss of power and reduction in transport
connectivity are major factors affecting the resilience of busi-
ness organizations in response to earthquakes as they can de-
lay the recommencement of normal operations. Evaluating
the seismic performance of infrastructure is therefore critical
to understanding indirect economic losses caused by busi-
ness interruption and to achieve this it is necessary to assess
the liquefaction risk in addition to that posed by ground shak-
ing. Therefore in this paper we investigate the performance
of a range of models that can be applied to forecast the oc-
currence and scale of liquefaction based on simple and ac-
cessible input datasets. The performances are evaluated by
comparing model forecasts to observations from the 2010–
2011 Canterbury earthquake sequence.

Bird and Bommer (2004) surmised that there are three
options that loss estimators can select to deal with ground
failure hazards. They can either ignore them, use a simpli-
fied approach or conduct a detailed geotechnical assessment.
The first of these options will likely lead to underestimation
of losses in earthquakes where liquefaction is a major haz-
ard and lead to recurrence of the problems faced by insurers
following the 2010–2011 Canterbury earthquakes in partic-
ular. The last option, detailed assessment, is appropriate for
single-site risk analysis but is impractical for insurance loss
estimation purposes because (1) insurers are unlikely to have
access to much of the detailed geotechnical data required as
inputs to these methods; (2) they may not have the in-house
expertise to correctly apply such methods and engaging con-
sultants may not be a viable option; and (3) loss estimation
studies are often conducted on a regional, national or supra-
national scale for which detailed assessment would be too
expensive and time consuming.

There are three stages to forecasting the occurrence of liq-
uefaction and its scale (Bird et al., 2006). First it is neces-
sary to determine whether soils are susceptible to liquefac-
tion. Liquefaction susceptibility is based solely on ground
conditions with no earthquake-specific information. This is
often done qualitatively and currently this is also the full ex-

tent to which liquefaction risk is considered in some catas-
trophe models (Drayton and Verdon, 2013). The next step
is to determine liquefaction triggering, which determines the
likelihood of liquefaction for a given earthquake based on
the susceptibility and other earthquake-specific parameters.
Finally the scale of liquefaction can be estimated as a perma-
nent ground deformation (PGDf). Since current catastrophe
modelling practice is to consider only the first stage, lique-
faction susceptibility, this paper focuses primarily on the ex-
tension of this practice to include liquefaction triggering.

The models assessed in this paper have been selected be-
cause their input requirements are limited to data that are in
the public domain or could be easily obtained without sig-
nificant time or cost implications, arising for example from
detailed site investigation. Furthermore, the models are ap-
propriate for regional-scale analysis and although some en-
gineering judgment is required in their application, they do
not require specialist geotechnical expertise. In Sect. 2, each
of the models assessed in this paper are described and Sect. 3
presents a summary of the liquefaction observations from
the Canterbury earthquake sequence and the method used to
compare the model forecasts against observations. The re-
sults and statistical analysis of the model assessment are pre-
sented in Sect. 4, in relation to deterministic forecasts, and in
Sect. 5, in relation to probabilistic forecasts. Finally, Sect. 6
briefly considers the performance of simplified models for
quantifying PGDf.

2 Liquefaction assessment models

Nine liquefaction forecasting models are compared in this
paper, including three alternative implementations of the liq-
uefaction potential index (LPI) method proposed by Iwasaki
et al. (1984), three versions of the liquefaction models in-
cluded in the HAZUS®MH MR4 software (NIBS, 2003) and
three distinct models proposed by Zhu et al. (2015). This
section summarizes how each of the models are applied to
make site-specific liquefaction forecasts. This paper presents
a large number of acronyms and variables. For clear refer-
ence, Table 1 lists the acronyms used in this paper and Ta-
ble 2 lists the variables used.

2.1 Liquefaction potential index

The most common approach used to forecast liquefaction
triggering is the factor of safety against liquefaction (FS),
which is defined as the cyclic resistance to cyclic stress ratio
for a layer of soil at depth, z (Seed and Idriss, 1971). The
cyclic stress ratio (CSR) can be expressed by Eq. (1), where
amax is the peak horizontal ground acceleration; g is the ac-
celeration of gravity; σv is the total overburden stress at depth
z; σ ′v is the effective overburden stress at depth z; and rd is a
shear stress reduction coefficient given by Eq. (2).
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Table 1. Reference list of acronyms used in this paper.

Acronym Description

AUC Area under ROC curve
CGD Canterbury Geotechnical Database
CPT Cone penetration test
CRR Cyclic resistance ratio
CSR Cyclic stress ratio
CTI Compound topographic index
EQC Earthquake Commission
FN False negative model forecasts (no.)
FP False positive model forecasts (no.)
FPR False positive rate (FP/observed negatives)
FS Factor of safety against liquefaction
LPI Liquefaction potential index
MCC Matthew’s correlation coefficient
MSF Magnitude scaling factor
MWF Magnitude weighting factor
NEHRP National Earthquake Hazards Reduction Program
PGA Peak ground acceleration
PGDf Permanent ground deformation
PGDfH Horizontal permanent ground deformation
PGDfV Vertical permanent ground deformation
RMSE Root-mean-square error
ROC Receiver operating characteristic
SPT Standard penetration test
TN True negative model forecasts (no.)
TNR True negative rate (TN/observed negatives)
TP True positive model forecasts (no.)
TPR True positive rate (TP/observed positives)
USGS United States Geological Survey

CSR= 0.65
(
amax

g

)(
σv

σ ′v

)
rd (1)

rd = 1− 0.00765z, for z < 9.2 m
rd = 1.174− 0.0267z, for z ≥ 9.2 m (2)

The cyclic resistance ratio (CRR) is normally calculated
from geotechnical parameters based on cone penetration test
(CPT) or standard penetration test (SPT) results. However,
Andrus and Stokoe (2000) propose an alternative method for
calculating CRR based on shear-wave velocity, VS, as shown
in Eq. (3), where VS1 is the stress-corrected shear-wave ve-
locity; V ∗S1 is the limiting upper value of VS1 for cyclic lique-
faction occurrence, which varies between 200 and 215 m s−1

depending on the fines content of the soil; and MSF is a mag-
nitude scaling factor. VS1 is given by Eq. (4), where Pa is a
reference stress of 100 kPa. The magnitude scaling factor is
given by Eq. (5), where Mw is the moment magnitude of the
earthquake.

CRR=

[
0.022

(
VS1

100

)2

+ 2.8
(

1
V ∗S1−VS1

−
1
V ∗S1

)]
×MSF (3)

VS1 = VS

(
Pa

σ ′v

)0.25

(4)

MSF=
(
MW

7.5

)−2.56

(5)

Liquefaction is forecast to occur when FS≤ 1 and forecast
not to occur when FS> 1. However, Juang et al. (2005) found
that Eq. (3) is conservative for calculating CRR, resulting in
lower factors of safety and overestimation of the extent of
liquefaction occurrence. To correct for this, they propose a
multiplication factor of 1.4 to obtain an unbiased estimate of
the factor of safety, FS∗, given by Eq. (6).

FS∗ = 1.4×
CRR
CSR

(6)

FS∗ is an indicator of potential liquefaction at a specific
depth. However, Iwasaki et al. (1984) noted that damage to
structures due to liquefaction was affected by the severity of
liquefaction at ground level and so propose an extension to
the factor of safety method, the LPI, which estimates the
likelihood of liquefaction at surface level by integrating a
function of the factors of safety for each soil layer within
the top 20 m of soil. They calculate LPI by Eq. (7), where
F ∗ = 1−FS∗ for a single soil layer. The soil profile can be
subdivided into any number of layers (e.g. 20 1 m layers or
40 0.5 m layers), depending on the resolution of data avail-
able. Using site data from a collection of nine Japanese earth-
quakes between 1891 and 1978, Iwasaki et al. (1984) cali-
brated the LPI model and determined guideline criteria for
determining liquefaction risk. These criteria propose that liq-
uefaction risk is very low for LPI= 0, low for 0<LPI≤ 5,
high for 5<LPI≤ 15 and very high for LPI> 15.

LPI=

20∫
0

F ∗ (10− 0.5z)dz (7)

One of the critical considerations for insurers is availability
of model input data. For post-event analysis, ground accel-
erations may be available from various online sources, with
one example being the USGS ShakeMaps (USGS, 2014a).
However, if they are not, then it would be necessary to apply
engineering judgment in the selection of appropriate ground
motion prediction equations (either a single equation or mul-
tiple equations applied in a logic tree). The LPI model also
requires water table depth and soil unit weights. If these are
not known exactly, engineering judgment needs to be applied
to estimate these based on information in existing literature.
For the specific case study presented in this paper, some VS
data are available from published sources. However, more
generally VS data are not in the public domain and would re-
quire ground investigation to acquire. Even in cases where
VS data are available, they may not necessarily be available
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Table 2. Reference list of variables used in this paper.

Variable Description Units Input variables

amax Peak horizontal ground acceleration m s2 –
CRR Cyclic resistance ratio – MSF, VS1, V ∗S1
CSR Cyclic stress ratio – amax, σv , σ ′v , rd
CTI Compound topographic index – –
dw Depth to groundwater m –
FS Factor of safety against liquefaction – CRR, CSR
Km HAZUS moment magnitude correction factor – Mw
KW HAZUS groundwater correction factor – dw
K1 Displacement correction factor – MW
LPI Liquefaction potential index – FS, z
MSF Magnitude scaling factor – MW
MW Moment magnitude – –
MWF Magnitude weighting factor – MW
ND Normalized distance to coast (Zhu et al., 2015) – –
PGA Peak horizontal ground acceleration (non-USGS) g –
PGAM,SM Peak horizontal ground acceleration (from USGS ShakeMaps) g –
PGD|(PGA/PLSC) HAZUS expected PGDf for a given liquefaction susceptibility zone m PGA, liquefaction susceptibility
PGDf Permanent ground deformation m –
PGDfH Horizontal permanent ground deformation m -
PGDfV Vertical permanent ground deformation m –
Pml HAZUS proportion of map unit susceptible for a given liquefaction

susceptibility zone
– Liquefaction susceptibility

rd Shear stress reduction coefficient – z

Rf Horizontal distance to surface projection of fault rupture km –
Td Duration between first and last occurrence of PGA≥ 0.05 g s –
VS Shear-wave velocity m s−1 –
VS1 Stress-corrected shear-wave velocity m s−1 VS, σ ′v
V ∗S1 Limiting upper value of VS1 for cyclic liquefaction occurrence m s−1 Fines content
VS(0–10) Average shear-wave velocity in top 10 m m s−1 –
VS(10–20) Average shear-wave velocity between 10 and 20 m m s−1 –
VS30 Average shear-wave velocity in top 30 m m s−1 –
z Depth m –
σv Total overburden stress kPa z, soil density
σ ′v Effective overburden stress kPa σv , z

across the entire study area, thus requiring geostatistical tech-
niques to interpolate. Consequently, this method may only be
applicable in a small number of study areas.

To extend the applicability of the LPI model, two ap-
proaches are proposed to approximate VS from more read-
ily available data. The first approach uses VS30, the average
shear-wave velocity across the top 30 m of soil, as a constant
proxy for VS for all soil layers. Global estimates for VS30 at
approximately 674 m grid intervals are open-access from the
web-based US Geological Survey Global VS30 Map Server
(USGS, 2013), so this is an appealing option for desktop as-
sessment. One disadvantage of this approach is that the like-
lihood of liquefaction occurrence in the LPI method is con-
trolled by the presence of soil layers near the surface with low
VS. Furthermore there is a maximum value of VS at which
liquefaction can occur. Hence the use of VS30 as a proxy for
all layers will result in an overestimation of VS, CRR and FS∗

at layers closer to the surface and, therefore, an underestima-
tion of LPI and liquefaction risk. This is compounded by the
weakness of the USGS VS30 dataset, since the data are es-
timated from topographic slope and the correlation between
these two variables is weak.

The second approach proposes the manipulation of the
same VS30 data to simulate a more realistic VS profile in
which velocities decrease towards the surface rather than be-
ing constant. Boore (2004) proposes simple linear empiri-
cal functions to extrapolate VS30 values in situations where
shear-wave velocity data are only known up to shallower
depths, based on observations from the United States and
Japan. It is proposed to invert the Boore (2004) empirical
functions in reverse and use them to back-calculate shallower
average shear-wave velocities from VS30 data from the USGS
Global Server (USGS, 2013). However, it should be noted
that since the original function was not developed using or-
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thogonal regression, this inversion is an additional source of
uncertainty. For simplicity it is proposed to only use the em-
pirical functions to calculate VS10 (average shear-wave ve-
locity across top 10 m) and VS20 (average shear-wave veloc-
ity across top 20 m). The calculated value for VS10 can then
be used as a proxy for VS at all soil layers between 0 and
10 m depth and both the VS10 and VS20values can be used to
determine an equivalent proxy for all soil layers between 10
and 20 m. From manipulation of the Boore (2004) empiri-
cal functions and the formula for calculating averaged shear-
wave velocities, Eqs. (8) and (9) determine the proxies to be
used in the two depth ranges.

VS(0–10) = 10
(

logVS30−0.042062
1.0292

)
(8)

VS(10–20) = 2× 10
(

logVS30−0.025439
1.0095

)
−VS(0–10) (9)

In this study, both of these approximations are adopted in
addition to the use of known VS profiles, resulting in the as-
sessment of three implementations of the LPI model.

2.2 HAZUS

HAZUS®MH MR4 (from here on referred to as HAZUS)
is a loss estimation software package produced by the Na-
tional Institute of Building Sciences (NIBS) and distributed
by the Federal Emergency Management Agency (FEMA)
in the United States. The software accounts for the impacts
of liquefaction and the Technical Manual (NIBS, 2003) de-
scribes the method used to evaluate the probability of lique-
faction.

HAZUS divides the assessment area into six zones of liq-
uefaction susceptibility, from none to very high. This can be
done either by interpreting surficial geology from a map and
cross-referencing with the table published in the manual or
by using an existing liquefaction susceptibility map. Surface
geology maps are generally not open-access or free to non-
academic organizations and some basic geological knowl-
edge is required to be able to cross-reference mapped infor-
mation with the zones in the HAZUS table. Hence, the first
approach may be problematic for insurers who do not have
the requisite in-house expertise. Where liquefaction suscep-
tibility maps are available, unless they use the same zonal
definitions as HAZUS, it will be necessary to make assump-
tions on how zones translate between the third-party map and
the manual.

For a given liquefaction susceptibility category, the proba-
bility of liquefaction occurrence is given by Eq. (10) (NIBS,
2003), where P [Liq|PGA= a] is the conditional probability
of liquefaction occurrence for a given susceptibility zone at
a specified level of peak horizontal ground motion, a; Km is
the moment magnitude correction factor; Kw is the ground-
water correction factor; and Pml is the proportion of map unit
susceptible to liquefaction, which accounts for the real vari-
ation in susceptibility across similar geologic units. The con-
ditional probability is zero for the susceptibility zone “none”.

For the other susceptibility zones, the conditional probabil-
ities are given by linear functions of acceleration (distinct
for each zone), which are not repeated here. The moment
magnitude and groundwater correction factors are given by
Eqs. (11) and (12):

P
[
Liq

]
=
P
[
Liq|PGA= a

]
KmKw

Pml, (10)

Km = 0.0027M3
w − 0.00267M2

w − 0.2055Mw

+ 2.9188, (11)
Kw = 0.022dw+ 0.93, (12)

where dw is the depth to groundwater. The map unit fac-
tor is a constant for each susceptibility zone, with values of
0.25, 0.20, 0.10, 0.05, 0.02 and 0, going from “very high”
to “none”. In addition to the problems identified for deter-
mining liquefaction susceptibility, the HAZUS method also
requires water table depth to be known or estimated and judg-
ment on selection of appropriate ground motion prediction
equation if ShakeMap or equivalent data are not available.

2.3 Zhu et al. (2015)

Zhu et al. (2015) propose empirical functions to estimate liq-
uefaction probability specifically for use in rapid response
and loss estimation. They deliberately use predictor vari-
ables that are readily accessible, such as VS30, and do not
require any specialist knowledge to be applied. The func-
tions have been developed using logistic regression on data
from the earthquakes that occurred in Kobe, Japan, on 17 Jan-
uary 1995 and in Christchurch, New Zealand, on 22 Febru-
ary 2011. Forecasts from the resulting functions have been
compared to observations from the 12 January 2010 Haiti
earthquake. Since these functions have been developed using
data from the Christchurch earthquake, there is an element
of circularity in assessing their performance against observa-
tions from the same event. However, it is worth noting that
the datasets used to develop these functions have not come
from the same source as the observations used in this case
study. Furthermore, the functions have been calibrated to op-
timize estimation of the areal extent of liquefaction, whereas
in this case study it is the ability of the functions to make
site-specific forecasts that is being assessed.

For a given set of predictor variables, the probability of
liquefaction is given by the function in Eq. (13), where X is
a linear function of the predictor variables. Zhu et al. (2015)
propose three linear models that are applicable to the Can-
terbury region and are adopted in this study: a specific local
model for Christchurch, a regional model for use in coastal
sedimentary basins (including Christchurch) and a global
model that is applicable more generally.

P
[
Liq

]
=

1
1+ e−X

(13)

For the global model, the linear predictor function, XG,
is given by Eq. (14), where CTI is the compound topo-
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graphic index, used as a proxy for saturation, and can be
obtained globally from the USGS Earth Explorer web ser-
vice (USGS, 2014b). VS30 is obtained from the USGS Global
Server (USGS, 2013) and PGAM,SM is the product of the
peak horizontal ground acceleration from ShakeMap esti-
mates (USGS, 2014a) and a magnitude weighting factor,
MWF, given by Eq. (15).

XG = 24.1+ lnPGAM,SM+ 0.355CTI− 4.784lnVS30 (14)

MWF=
M2.56
W

102.24 (15)

For the regional model, the linear predictor function, XR, is
given by Eq. (16), where, additionally, ND is the distance to
the coast, normalized by the size of the basin, i.e. the ratio
between the distance to the coast and the distance between
the coast and inland edge of the sedimentary basin (soil–rock
boundary). The location of the inland edge can be estimated
from a surface roughness calculation based on a digital el-
evation model (USGS, 2014b) or by using VS30 data such
that the inland edge is assumed to be the boundary between
NEHRP site classes C (soft rock) and D (stiff soil) (i.e. at
VS = 360 m s−1). For the Christchurch-specific local model,
the linear predictor function, XL, is given by Eq. (17).

XR = 15.83+ 1.443lnPGAM,SM+ 0.136CTI
− 9.759ND− 2.764lnVS30 (16)

XL = 0.316+ 1.225lnPGAM,SM+ 0.145CTI
− 9.708ND (17)

For applicability within the insurance sector, this model
presents an advantage over LPI and HAZUS since the only
parameter that requires engineering judgment is the selection
of ground motion prediction equation if ShakeMap or equiv-
alent data are not available.

3 Model assessment application

This section summarizes the procedure for comparing the
model forecasts to observations from the Canterbury earth-
quake sequence. A brief description is provided of the liq-
uefaction observation dataset and the additional datasets ac-
cessed in order to provide the required inputs to the nine
models. This is followed by a discussion on the conversion of
quantitative model outputs to categorical liquefaction fore-
casts and an explanation of the diagnostics used to assess
model performance.

3.1 Liquefaction observations

The methods described in the previous section are com-
pared for two case studies from the Canterbury earthquake
sequence: the MW 7.1 Darfield earthquake on 4 Septem-
ber 2010 and the MW 6.2 Christchurch earthquake on
22 February 2011 (GNS Science, 2014), as identified in

04/09/2010 Mw 7.1 Darfield eq
22/02/2011 Mw 6.2 Christchurch eq

0 10 20 30 405 km

Earthquake epicentres
Fault plane
Strong motion stations
Vs profiles

Figure 1. Locations of epicentres and fault planes (Beaven et al.,
2012) of the Darfield and Christchurch earthquakes, strong-motion
stations from which recordings are used to estimate shaking dura-
tions and locations at which shear-wave velocity (VS) profiles are
known (Wood et al., 2011). Note that locations of VS profiles coin-
cide with strong-motion stations.

Fig. 1. The corresponding peak horizontal ground acceler-
ation contours for each earthquake are shown in Fig. 2.

Surface liquefaction observation data have been obtained
from two sources: ground investigation data provided di-
rectly from Tonkin & Taylor, geotechnical consultants to
the New Zealand Earthquake Commission (EQC) (van Bal-
legooy et al., 2014), and maps stored within the Canter-
bury Geotechnical Database (2013a), an online repository of
geotechnical data and reports for the region set up by EQC
for knowledge sharing after the earthquakes. The data pro-
vided by Tonkin & Taylor include records from over 7000
geotechnical investigation sites across Christchurch. After
each earthquake, a land damage category is attributed to each
site, representing a qualitative assessment of the scale of liq-
uefaction observed. There are six land damage categories,
but since this study only investigates liquefaction triggering
the categories are converted to a binary classification of liq-
uefaction occurrence. These data are supplemented by the
maps from the CGD which show the areal extent of the
same land damage categories. To ensure equivalence in the
study, all models are applied to the same study area for each
earthquake, which is the region for which the input data for
all models are available. The study area is divided into a
grid of 100 m× 100 m squares, generating 25 100 observa-
tion sites. It is noted, however, that at some locations within
Christchurch no liquefaction observations are available so
these sites are excluded from the subsequent analysis. As a
result, the study area consists of 20 147 sites for the Darfield
earthquake and 22 803 sites for the Christchurch earthquake.
The observations from the two events are shown in Fig. 3.
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Figure 2. Contours of peak horizontal ground acceleration (PGA) for the Darfield and Christchurch earthquakes (source: Canterbury
Geotechnical Database, 2013b).

Darfield Eq Christchurch Eq

Liquefaction

0.20 0.300.30 0.20
0.300.40

0.40 0.20 0.30 0.40 0.50
0.600.70

0.60 0.50

Liquefaction

0 2 4 6 81 km 0 2 4 6 81 km

LPI3 LPI3

(a) (b)

Figure 3. Location of surface liquefaction observations (brown) in Christchurch and surrounding areas due to the Darfield and Christchurch
earthquakes, based on data provided by Tonkin and Taylor and published within the Canterbury Geotechnical Database (2013a).

3.2 Forecast model inputs

This study includes three implementations of the LPI model:
(1) using known VS profiles (referred to as LPI1 in this pa-
per); (2) using VS30 as a proxy for VS (LPI2); and (3) us-
ing “realistic” VS profiles simulated from VS30 and the
Boore (2004) functions (LPI3). The geotechnical investiga-
tion data provided by Tonkin & Taylor also include values of
LPI calculated at each site from CPT data rather than VS. Al-
though this approach is not feasible for insurers, for reference
its forecasting power is also compared here and this imple-
mentation is referred to as LPIref. Historically it has been
thought that after liquefaction occurs, soils densify and in-
crease their resistance to future liquefaction. However, Lees
et al. (2015) conducted an analysis comparing CPT-based
strength profiles and subsequent liquefaction susceptibility at
sites in Christchurch both before and after the February 2011
earthquake. They concluded that no significant strengthening

occurred and that the liquefaction risk in Christchurch after
the earthquake remained the same as it was beforehand. The
study by Orense et al. (2012) came to similar conclusions and
therefore, for the purposes of this case study, post-earthquake
CPT data are appropriate for assessing liquefaction suscepti-
bility.

A water table depth of 2 m has been assumed across
Christchurch, reflecting the averages described by Giov-
inazzi et al. (2011) – 0 to 2 m in the eastern suburbs and 2 to
3 m in the western suburbs – and soil unit weights of 17 kPa
above the water table and 19.5 kPa below the water table are
assumed, as suggested by Wotherspoon et al. (2014). VS30
data for LPI2 and LPI3 are taken from the USGS web server,
with point estimates on an approximately 674 m grid.

Wood et al. (2011) have published VS profiles for 13
sites across Christchurch obtained using surface wave testing
methods. These sites are identified in Fig. 1. In GIS, the pro-
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Figure 4. Plots comparing observed VS30 with VS30 estimated from Boore (2004) equations, with respect to observed VS10 (a) and observed
VS20 (b). The dashed lines represent the 95 % confidence interval around the Boore (2004) relationships. VS30 is the average shear-wave
velocity in the top 30 m of ground and VS10 and VS20 are the equivalents at 10 and 20 m depth respectively.

files are converted to point data for each 1 m depth increment
from 0 to 20 m, so that each point represents the VS at that
site for a single soil layer and there are a total of 13 points
for each soil layer. Ordinary kriging (with log transformation
to ensure non-negativity) is applied to the points in each soil
layer to create interpolated VS raster surfaces for each layer.
Interpolation over a large area from such a small number of
points is likely to result in estimations carrying significant
uncertainty. However, from the perspective of commercial
loss estimation, this is typical of the type of data that an ana-
lyst may be required to work with and so there is value in in-
vestigating its efficacy. Whilst Andrus and Stokoe (2000) ad-
vise that the maximum VS1 can range from 200 to 215 m s−1

depending on fines content, subsequent work by Zhou and
Chen (2007) indicates that the maximum VS1 could range
from 200 to 230 m s−1. In the absence of specific fines con-
tent data, a median value of 215 m s−1 is assumed to be the
maximum. In practice, a soil layer may have a value of VS1
below this threshold but not be liquefiable because the soil is
not predominantly clean sand. Because of the regional scale
of this analysis though, site-specific soil profiles (as distinct
from VS profile) are not taken into account in determining
whether a soil layer is liquefiable. Goda et al. (2011) suggest
the use of “typical” soil profiles to determine the liquefaction
susceptibility of a soil layer at a regional scale. Borehole data
at sites close to the 13VS profile sites are available from the
Canterbury Geotechnical Database (2013c). These indicate
that in the eastern suburbs of Christchurch, soil typically con-
sists predominantly of clean sand to 20 m depth, with some
layers of silty sand. On the western side of Christchurch,
however, there is an increasing mix of sand, silt and gravel in
soil profiles, particularly at depths down to 10 m. Therefore
it is possible, particularly in western suburbs, that the cal-
culated VS1 values may indicate liquefiable soil layers when
they are in fact not, which would lead to overestimation of
LPI and the extent of liquefaction.

For the implementation of model LPI3, it could be argued
that rather than using the Boore (2004) relationships to esti-
mate VS profiles at shallower depths from VS30, the local VS
data published by Wood et al. (2011) could be used to de-
velop a locally calibrated model. This would be preferable
from a purely scientific perspective. However, the purpose of
this study is to investigate the potential for a simple “global”
model for commercial application, and this is defined in part
as a model that makes use of methods already in the literature
and does not require additional model development. Never-
theless, when using existing models it is useful to assess their
applicability to a study area, and the VS profiles published by
Wood et al. (2011) can be used to assess the suitability of the
Boore (2004) relationships in Christchurch. Figure 4 shows
plots of VS30 against VS10 and VS20 as calculated from the ob-
served profiles and compares these to the Boore (2004) func-
tions. The plots show that the relationships exhibit a small
bias towards the underestimation of VS30. When inverted, the
application of these relationships to Christchurch may there-
fore result in the overestimation of VS at shallower depths
and therefore underestimate liquefaction occurrence. How-
ever, the majority of observed values are within the 95 %
confidence intervals and so the relationships can be deemed
to be applicable.

For application of the HAZUS method, liquefaction sus-
ceptibility zones have to be identified to determine the values
of model input parameters. In this paper liquefaction suscep-
tibility zones are adopted from the liquefaction susceptibility
map available from the Canterbury Maps web resource op-
erated by Environment Canterbury Regional Council (ECan,
2014). From the map it is possible to identify four suscep-
tibility zones: “none”, “low”, “moderate” and “high”. How-
ever, six susceptibility zones are defined by HAZUS (NIBS,
2003). Since the Canterbury zones cannot be subdivided, it
is necessary to map the Canterbury zones onto four of the
HAZUS zones. In HAZ1 the zones are mapped simply by
matching names; in HAZ2, the “low” and “high” zones in
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Table 3. Conversion between Canterbury and HAZUS liquefaction susceptibility zones for three implementations of HAZUS method. Refer
to Table 4 for descriptions corresponding to model acronyms.

Canterbury liquefaction Equivalent HAZUS liquefaction susceptibility zone
susceptibility zones and expected settlement amplitude

Model HAZ1 Model HAZ2 Model HAZ3
Zone Expected Zone Expected Zone Expected

settlement settlement settlement
(cm) (cm) (cm)

None None 0 None 0 None 0
Low Low 2.5 Very low 0 Average low 1.25

and very low
Moderate Moderate 5 Moderate 5 Moderate 5
High High 15 Very high 30 Average high 22.5

and very high

Canterbury are mapped to the more extreme “very low” and
“very high” zones in HAZUS; and in HAZ3, the relevant in-
put parameters for each zone are taken to be the average of
those identified in HAZ1 and HAZ2. The mapping between
susceptibility zones in each of the implementations described
in Table 3. As with the LPI model, depth to water table is as-
sumed to be 2 m across Christchurch.

Three models proposed by Zhu et al. (2015) are com-
pared in this paper: (1) the global model (referred to as
ZHU1), (2) the regional model (ZHU2) and (3) the local
model (ZHU3). The PGA “shakefields” from the Canter-
bury Geotechnical Database (2013b) are used as equivalents
to the USGS ShakeMap. CTI (USGS, 2014b), at approxi-
mately 1 km resolution and VS30 (USGS, 2013) are down-
loaded from the relevant USGS web resources. In total nine
model implementations are being compared, based on three
general approaches (see Table 4).

3.3 Site-specific forecasts

When using probabilistic forecasting frameworks, one can
interpret the calculated probability as a regional parameter
that describes the spatial extent of liquefaction rather than
discrete site-specific forecasts, and indeed Zhu et al. (2015)
specifically suggest that this is how their model should be in-
terpreted. So, for example, one would expect 30 % of all sites
with a liquefaction probability of 0.3 to exhibit liquefaction
and 50 % of all sites with a liquefaction probability of 0.5.
However, when using liquefaction forecasts as a means to es-
timate structural damage over a wide area, it is useful to know
not just the number of liquefied site but also where these sites
are. This is particularly important for infrastructure systems
since the complexity of these networks means that damage
to two identical components can have significantly different
impacts on overall systemic performance depending on the
service area of each component and the level of redundancy
built in.

There are two ways to generate site-specific forecasts from
probabilistic assessments. One approach is to group sites
together based on their liquefaction probability and then
randomly assign liquefaction occurrence to sites within the
group based on that probability, e.g. by sampling a uniformly
distributed random variable. This method is good for ensur-
ing that the spatial extent of the site-specific forecasts re-
flect the probabilities, but since the locations are selected
randomly it has limited value for comparison of forecasts to
real observations from past earthquakes. It can be more use-
ful for generating site-specific forecasts for simulated earth-
quake scenarios.

Another method is to set a threshold value for liquefaction
occurrence, so all sites with a probability above the thresh-
old are forecast to exhibit liquefaction and all sites with a
probability below the threshold are forecast to not exhibit
liquefaction. The disadvantage of this approach is that the
resulting forecasts may not reflect the original probabilities.
For example if the designated threshold probability is 0.5
and all sites have a calculated probability greater than this
(even if only marginally), then every site will be forecast
to liquefy. Conversely if all sites have a probability below
0.5, then none of the sites will be forecast to liquefy. How-
ever, since there is no random element to the determination
of liquefaction occurrence, the forecasts are more definitive
in spatial terms and hence more useful for the this compar-
ative site-specific study. Although not strictly a probabilistic
framework, thresholds can also be used to assign liquefac-
tion occurrence based on LPI by determining a value above
which liquefaction is assumed to occur.

For all of the methods however, the issue arises of what
value the thresholds should take. No guidance is given for
HAZUS, whilst Zhu et al. (2015) propose a threshold of
0.3 to preserve spatial extent, although they also consider
thresholds of 0.1 and 0.2. In their original study, Iwasaki et
al. (1984) suggest critical values of LPI of 5 and 12 for lique-
faction and lateral spreading respectively. However, other lo-
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Table 4. Liquefaction forecasting models compared in this paper.

Model Description

LPI1 Liquefaction potential index (LPI) with known shear-wave velocity, VS, profiles
LPI2 LPI with average shear-wave velocity in the top 30 m, VS30, as a proxy for VS
LPI3 LPI with simulated VS profiles
LPIref LPI calculated from standard penetration test (SPT) results
HAZ1 HAZUS with “direct” conversion of susceptibility zones
HAZ2 HAZUS with “extreme” susceptibility zones
HAZ3 HAZUS with “average” conversion of susceptibility
ZHU1 Global model by Zhu et al. (2015)
ZHU2 Regional model by Zhu et al. (2015)
ZHU3 Local model by Zhu et al. (2015)

calized studies where the LPI method has been applied have
found alternative criteria that provide a better fit for observed
data as summarized by Maurer et al. (2014). Since there is
uncertainty in the selection of threshold values, this study
investigates a range of values for each model. Both the ob-
servation and forecast datasets are binary classifications, so
standard binary classification measures based on 2× 2 con-
tingency tables are used to compare performance.

3.4 Performance diagnostics

Comparison of binary classification forecasts with observa-
tions is made by summarizing data into 2× 2 contingency ta-
bles for each model. The contingency table identifies the true
positives (TP), true negatives (TN), false positives (FP, type I
error) and false negatives (FN, type II error). A good fore-
casting model would forecast both positive (occurrence of
liquefaction) and negative (non-occurrence of liquefaction)
results well. Diagnostic scores for each model can be calcu-
lated based on different combinations and functions of the
data in the contingency tables. The true positive rate (TPR or
sensitivity) is the ratio of true positive forecasts to observed
positives. The true negative rate (TNR or specificity) is the
ratio of true negative forecasts to observed negatives. The
false positive rate (FPR or fallout) is the ratio of false posi-
tive forecasts to true negatives. A useful model would have a
high TPR and TNR (> 0.5) and low FPR (< 0.5).

The results presented in a contingency table and associ-
ated diagnostic scores assume a single initial threshold value.
However, further statistical analysis is undertaken to opti-
mize the thresholds in accordance with the observed data. For
a single model, at a specified threshold, the receiver operating
characteristic (ROC) is a graphical plot of TPR against FPR.
The line representing TPR=FPR is equivalent to random
guessing (known as the chance or no-discrimination line). A
good model has a ROC above and to the left of the chance
line, with perfect classification occurring at (0,1). The diag-
nostic scores for each model are re-calculated with differ-
ent thresholds and the resulting ROC values are plotted as a
curve for the model. Since better models have points towards

the top left of the plot, the area under the ROC curve (AUC) is
a generalized measure of model quality that assumes no spe-
cific threshold. Since the diagonal of the plot is equivalent to
random guessing, AUC= 0.5 suggests a model has no value,
while AUC= 1 is a perfect model. For a single point on the
ROC curve, Youden’s J statistic is the height between the
point and the chance line. The point along the curve which
maximizes the J statistic represents the TPR and FPR values
obtained from the optimum threshold for that model.

In addition to comparing the performance of simplified
models to each other, it is useful to measure the absolute
quality of each model. Simply counting the proportion of
correct forecasts does not adequately measure model perfor-
mance since it does not take into the account the proportion
of positive and negative observations; e.g. a negatively biased
model will result in a high proportion of correct forecasts if
the majority of observations are negative. The Matthews cor-
relation coefficient (MCC) is more useful for cases where
there is a large difference in the number of positive and neg-
ative observations (Matthews, 1975). It is proportional to the
chi-squared statistic for a 2× 2 contingency table and its in-
terpretation is similar to Pearson’s correlation coefficient, so
it can be treated as a measure of the goodness of fit of a bi-
nary classification model (Powers, 2011). From contingency
table data, MCC is given by Eq. (18).

MCC=
TP×TN−FP×FN

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(18)

4 Results

This section summarizes the results of the model applica-
tions using contingency table analysis. The results are first
presented for analysis using a set of initial assumed thresh-
olds for positive forecasts and subsequently for analysis in
which thresholds are optimized for performance. The sensi-
tivity of the forecasts to variation of VS30 and PGA inputs is
also assessed.
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Table 5. Summary of contingency table data and diagnostic scores for all models using initial threshold estimates, including “LPI” models
subject to sensitivity test without Juang et al. (2005) correction factors being applied to the factor of safety. Refer to Table 4 for descriptions
corresponding to model acronyms.

Model True positives True negatives False positives False negatives True positive True negative False positive
(TP) (TN) (FP) (FN) rate (TPR) rate (TNR) rate (FPR)

LPI1 6345 25 685 9442 1478 0.811 0.731 0.269
LPI2 147 35 063 64 7676 0.019 0.998 0.002
LPI3 4287 30 578 4549 3536 0.548 0.870 0.130
LPIref 5964 20 826 14 301 1859 0.762 0.593 0.407
HAZ1 0 35 127 0 7823 0.000 1.000 0.000
HAZ2 0 35 127 0 7823 0.000 1.000 0.000
HAZ3 0 35 127 0 7823 0.000 1.000 0.000
ZHU1 1880 33 483 1644 5943 0.240 0.953 0.047
ZHU2 3135 31 931 3196 4688 0.401 0.909 0.091
ZHU3 2754 31 017 4110 5069 0.352 0.883 0.117
LPI2b 610 34 902 225 7213 0.078 0.994 0.006
LPI3b 6068 20 509 14 618 1755 0.806 0.584 0.416

4.1 Contingency table analysis – initial thresholds

An initial set of results using 5 as a threshold value for the
LPI models, 0.3 as a threshold for the ZHU models and 0.5 as
a threshold value for the HAZUS models is shown in Table 5,
alongside the corresponding diagnostic scores.

The LPI1, LPI3 and LPIref models are the only models
that meet the criteria of having TPR and TNR> 0.5 and
FPR< 0.5, with the LPI1 model performing better despite
being based on VS rather than ground investigation data. Ta-
ble 3 shows that all HAZUS models are very good at fore-
casting non-occurrence of liquefaction. However, this is only
due to the fact that they are forecasting no liquefaction all the
time, and so their ability to forecast the occurrence of lique-
faction is extremely poor. The high TNR but relatively low
TPR of the three ZHU models indicate that they all show a
bias towards forecasts of non-occurrence of liquefaction. The
difference between TPR and TNR is indicative of the level
of bias in the model and in this regard, ZHU2, the regional
model shows less bias than in ZHU1, the global model, as
would be expected. The bias in the ZHU2 and ZHU3 models
is approximately similar although ZHU2 performs slightly
better.

The LPI2 model, using VS30 as a proxy, also shows a very
strong bias towards forecasting non-occurrence, which is ex-
pected since VS30 generally provides an overestimate of VS
for soil layers at shallow depth. At sites where the soil profile
of the top 30 m is characterized by some liquefiable layers at
shallow depth with underlying rock or very stiff soil (e.g. in
western and central areas close to the inland edge of the sed-
imentary basin), VS30 will be high. Hence, this leads to false
classification of shallow layers as non-liquefiable. The LPI3
model with simulated VS profiles exhibits good performance
in forecasting non-occurrence of liquefaction and correctly
forecasts just over half of the positive liquefaction observa-

tions, indicating bias towards negative forecasts. Although
the VS profiles generated through this approach are more re-
alistic than using a constant VS30 value, the VS at each layer
is related to VS30. Therefore, at sites characterized by a high
VS30 value with low VS values at shallow depths, even us-
ing Eqs. (8) and (9) may not estimate sufficiently low values
of VS1 to classify the shallow layers as liquefiable. Another
factor in the LPI models is the use of the bias-correction fac-
tor proposed by Juang et al. (2005). Whilst this correction
factor is appropriate when actual VS profiles are used, as in
LPI1, it may not be appropriate for LPI2 and LPI3 where
non-conservative proxies for VS are used and the resulting
misclassification of liquefiable soil layers balances the con-
servativeness of the Andrus and Stokoe (2000) CRR model.
The sensitivity of the models to the correction factor is inves-
tigated by reproducing the contingency tables for LPI2 and
LPI3 with the same threshold values but ignoring the correc-
tion factor for FS. These models are referred to as LPI2b and
LPI3b and the new contingency table analysis is presented in
Table 5.

These results show that not using the bias correction makes
little difference to the performance of LPI2, as LPI2b still
exhibits an extremely strong bias towards forecasting non-
occurrence of liquefaction. For LPI3, however, the differ-
ence is more significant. Without the correction factor, the
TPR and TNR values for LPI3b reverse, with only just over
half negative liquefaction occurrences being correctly fore-
cast. LPI3b therefore exhibits a bias towards positive lique-
faction forecasts and so it confers no advantage over LPI3.

4.2 Contingency table analysis – optimized thresholds

The results in Tables 3 and 4 demonstrate the performance of
each model with a single initial threshold value. ROC anal-
ysis is used to optimize the thresholds and curves for the 11
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Table 6. Model quality diagnostics and optimum threshold values for each model from ROC curves. Refer to Table 4 for descriptions
corresponding to model acronyms.

Model Area under J statistic Threshold True positive True negative
curve (AUC) rate (TPR) rate (TNR)

LPI1 0.845 0.573 7 0.774 0.799
LPI2 0.630 0.122 1 0.131 0.991
LPI2b 0.630 0.206 1 0.224 0.982
LPI3 0.772 0.420 4 0.581 0.839
LPI3b 0.766 0.414 10 0.617 0.797
LPIref 0.748 0.366 6 0.689 0.678
HAZ1 0.679 0.238 0.1 0.073 0.999
HAZ2 0.608 0.316 0.1 0.134 0.997
HAZ3 0.661 0.315 0.1 0.133 0.998
ZHU1 0.753 0.355 0.1 0.556 0.799
ZHU2 0.760 0.371 0.1 0.767 0.604
ZHU3 0.718 0.306 0.1 0.712 0.594

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tr
u

e
p

o
si

ti
ve

ra
te

(T
P

R
)

False positive rate (FPR)

LPI1

LPI2

LPI3

LPI3b

LPIRef

HAZ1

HAZ2

HAZ3

ZHU1

ZHU2

ZHU3

Note:
LPI2b is not plotted as it is
coincident with LPI2

Figure 5. Receiver operating characteristic (ROC) curves for fore-
casting models. Refer to Table 4 for descriptions corresponding to
model acronyms.

simplified models and reference model are generated using
the ROCR package in R (Sing et al., 2005), as shown in
Fig. 5. For this study, the threshold for the LPI models is
assumed to be a whole number, while for the HAZ and ZHU
models, the threshold is assumed to be a multiple of 0.05
subject to a minimum value of 0.1, which is the minimum
applied by the Zhu et al. (2015). The AUC values, maximum
J statistics, optimum thresholds and corresponding TPR and
TNR values for all models are shown in Table 6.

With optimized thresholds all the LPI models, except
LPI2, and all the ZHU models meet the TPR and TNR crite-
ria (> 0.5). All HAZ models and both versions of LPI2 have
AUC values closer to the “no value” criterion, suggesting

that the problems with these models lie not just with thresh-
old selection but more fundamentally with their composition
and/or relevance to the case study (noting that the HAZ mod-
els have been developed for analysis in the United States).
The reason these are to the left of the chance line is that they
are forecasting non-occurrence of liquefaction at nearly ev-
ery site and hence they are guaranteed a low FPR value. LPI1
is the best-performing model according to both of the ROC
diagnostics and although the optimum threshold value of 7
is higher than proposed by Iwasaki et al. (1984), it is within
the range for marginal liquefaction – 4 to 8 – proposed by
Maurer et al. (2014) and so may be considered plausible.
The two versions of the LPI3 model perform similarly and
have reasonable diagnostic scores but LPI3, with the cor-
rection factor, produces a more plausible optimum thresh-
old value of 4. It is noted, however, that although the opti-
mum threshold for LPI3b is 10, the TPR and TNR criteria
are met with a threshold of 4 but with a lower model perfor-
mance and greater positive forecast bias (J statistic= 0.344,
TPR= 0.806, TNR= 0.538).

The ZHU1 and ZHU2 models perform reasonably with
AUC values and J statistics slightly lower than the LPI3
models, but the optimum thresholds are at the minimum of
the range that has been investigated, confirming the degree to
which these models underestimate liquefaction occurrence.
The ZHU2 model also meets the TPR and TNR criteria with
a threshold value of 0.2, albeit with a greater forecast bias
(J statistic= 0.370, TPR= 0.555, TNR= 0.815). The ZHU3
model, despite being specific to Christchurch, does not per-
form as well as ZHU1 or ZHU2. There are potential reasons
for this anomaly, such as that the ZHU models were cali-
brated to preserve the extent of liquefaction rather than to
make site-specific forecasts or because the data used to de-
velop the models have not come from the same source as the
observation data used for comparison. Therefore these results
do not contradict or invalidate the original findings of Zhu et

Nat. Hazards Earth Syst. Sci., 17, 781–800, 2017 www.nat-hazards-earth-syst-sci.net/17/781/2017/



I. Kongar et al.: Evaluating simplified methods for liquefaction assessment for loss estimation 793

No liquefaction forecast
Liquefaction forecast

0 2 4 6 81 km 0 2 4 6 81
km

LPI1 LPI3

ZHU1 ZHU2
0 2 4 6 81 km 0 2 4 6 81 km

Figure 6. Maps of liquefaction forecasts from selected models for the Darfield earthquake. Unshaded areas are where no forecast was made
due to unavailability of input data. Refer to Table 4 for descriptions corresponding to model acronyms.

al. (2015). The absolute quality of models is evaluated by cal-
culating MCC. In the preceding analysis, the best-performing
model is LPI1 and this has a value of MCC= 0.48. The cor-
relation is only moderate but nevertheless indicates that the
model is better than random guessing. As part of a rapid as-
sessment or desktop study for insurance purposes, this may
be sufficient. LPI3 and LPI3b have MCC= 0.380 and 0.357
respectively, whilst LPIref has MCC= 0.29.

4.3 Mapping of model forecasts

The maps in Figs. 6 and 7 show how forecasts of liquefaction
occurrence, relating to the Darfield and Christchurch earth-
quakes respectively, are distributed across the city for four
of the best-performing models identified in Table 6: LPI1,
LPI3, ZHU1 and ZHU2. Figure 3 shows that a greater extent
of liquefaction was observed in the Christchurch earthquake
than in the Darfield earthquake and this is reflected by all
four models represented in Figs. 6 and 7. However, for both
earthquakes, each of the models forecasts a greater extent of
liquefaction than was observed. In the Darfield earthquake,
most of the liquefaction was observed in the north and east
of the city. Whilst to some degree this spatial distribution is
matched by model LPI1, the remaining models do not repre-
sent the observed distribution well. In particular the models

ZHU1 and ZHU2 estimate a greater proportion of liquefac-
tion in the south of the city. In the Christchurch earthquake,
liquefaction was mostly observed in the eastern suburbs of
the city. All the models forecast the majority of liquefaction
to occur in these areas, although model ZHU2 forecasts more
liquefaction occurring in western suburbs than actually oc-
curred, while model ZHU1 forecasts no liquefaction occur-
ring to the west of the city at all. The spatial distributions of
the forecasts from the LPI models exhibit only limited ac-
curacy, yet they are better than the forecasts from the two
ZHU models. This can be explained partly by the fact the
LPI method is designed for site-specific estimation, whereas
the ZHU models have been calibrated to optimize the extent
rather than the location of liquefaction.

4.4 Sensitivity test – VS30

The sensitivity of the forecasts to variation in VS30 is assessed
for models LPI3 and ZHU1. LPI3 is the best-performing
model that requires VS30 and ZHU2 is the best-performing
ZHU model. The forecasting procedure and contingency ta-
ble analysis for the two models are repeated for two scenar-
ios, one where VS30 is decreased by 10 % at all sites and one
where VS30 is increased by 10 % at all sites.
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Figure 7. Maps of liquefaction forecasts from selected models for the Christchurch earthquake. Unshaded areas are where no forecast was
made due to unavailability of input data. Refer to Table 4 for descriptions corresponding to model acronyms.

In the scenario where VS30 is decreased, the TPR for model
LPI3 increases to 0.819 with a threshold of 4 (the optimized
threshold from Table 6), while the TNR decreases to 0.536,
effectively reversing the bias demonstrated by the original
model. The J statistic reduces significantly to 0.356 indi-
cating lower performance than the original model. With the
new VS30 values, the optimized threshold increases to 9, with
J statistic= 0.426, which is higher than the original model,
TPR= 0.654 and TNR= 0.773. When VS30 is increased,
TPR= 0.308 with a threshold of 4, which is lower than crite-
rion for good performance (TPR> 0.5), TNR= 0.974. This
demonstrates a strengthening of the negative bias in the orig-
inal model and poor performance since the J statistic re-
duces to 0.282. The optimum threshold changes to 1, yet even
with this threshold, while the J statistic improves to 0.388,
TPR= 0.489, which is still below the performance criterion.
These results show that LPI3 forecasts are sensitive to varia-
tion in VS30. Therefore, although currently the optimum LPI3
threshold for Christchurch has been identified as 4, if in the
future more accurate VS30 becomes available, then the anal-
ysis presented in this paper should be repeated to recalibrate
model LPI3 with a new optimum threshold.

Model ZHU2 experiences much smaller changes as a re-
sult of changes to VS30. When VS30 is decreased, and with

a threshold of 0.1 (the optimized threshold from Table 6),
TPR= 0.820, TNR= 0.532 and J statistic= 0.352. When
VS30 is increased, TPR= 0.700, TNR= 0.662 and J statis-
tic= 0.362. For both scenarios all performance criteria are
met and there only small reductions in J statistic. When the
models are optimized, the thresholds change to 0.25 for the
decrease (J statistic= 0.370) and to 0.15 for the increase (J
statistic= 0.368). These results suggest that ZHU2 forecasts
are relatively stable in response to variations in VS30, but
if more accurate VS30 becomes available in the future, then
some performance improvement can be achieved through re-
calibration of the optimum threshold.

4.5 Sensitivity test – PGA

The sensitivity of the forecasts to uncertainty in PGA mea-
surements is also assessed for models LPI3 and ZHU1. In
the two sensitivity test scenarios, the forecasting procedure
and contingency table analysis are repeated for two scenar-
ios: one where PGA is decreased by 10 % at all sites and one
where PGA is increased by 10 % at all sites.

In the scenario where PGA is decreased, the TPR for
model LPI3 decreases to 0.503 with a threshold of 4, while
the TNR increases to 0.905 and there is only a small re-
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Figure 8. Plots of liquefaction probability against liquefaction potential index (LPI) derived from site-specific observations by generalized
linear model with probit link function for two best-performing LPI models. Plots also display the observed liquefaction rates at each LPI
value and classified by sample size.

duction in J statistic to 0.408. The optimized threshold de-
creases to 2, with J statistic= 0.424, which is higher than
the original model, TPR= 0.594 and TNR= 0.830. When
PGA is increased, TPR= 0.652 with a threshold of 4 and
TNR= 0.765, with corresponding J statistic= 0.417. The
optimum threshold changes to 6, with J statistic= 0.419,
TPR= 0.576 and TNR= 0.843. In general, changes in PGA
do affect the scores but, in all cases, the changes are rela-
tively small, particularly with respect to the J statistic, and
the performance criteria are still met.

Model ZHU2 also experiences small changes as a re-
sult of changes to PGA. When PGA is decreased, and
with a threshold of 0.1, TPR= 0.725, TNR= 0.637 and
J statistic= 0.362. When PGA is increased, TPR= 0.798,
TNR= 0.574 and J statistic= 0.372, which is a small in-
crease over the original model. For both scenarios all per-
formance criteria are met and there only small changes to
J statistic. When the models are optimized, the threshold
changes to 0.2 for the decrease scenario (J statistic= 0.369),
but for the increase scenario the optimum threshold is still
0.1. These results suggest that both LPI3 and ZHU2 fore-
casts are relatively stable in response to variations in PGA
and so while small uncertainties in PGA measurements will
change the rates of true positive and true negative forecasts,
overall performance in terms of J statistic remains similar.

5 Probability of liquefaction

When the threshold-based approach to liquefaction occur-
rence is applied to the LPI models, it provides a deterministic
forecast. This may be considered sufficient for the simplified
regional-scale analyses conducted for catastrophe modelling
and loss estimation. However, a modeller may also want to
establish a probabilistic view of liquefaction risk by relat-
ing values of LPI to probability of liquefaction occurrence.
Since the occurrence of liquefaction at a site is a binary clas-
sification variable, it can be modelled by a Bernoulli distri-

bution with probability of liquefaction, p, which depends on
the value of LPI. With data from past earthquakes, functions
relating p to LPI can be derived using a generalized linear
model with probit link function. The probability of liquefac-
tion occurring given a particular value of LPI, λ, is given by
Eq. (19), where 8 is cumulative normal probability distri-
bution function and Y ∗ is the probit link function given by
Eq. (20).

pLPI=λ = P
[
Liq|LPI= λ

]
=8

(
Y ∗
)

(19)
Y ∗ = β0+β1λ (20)

The link function is a linear model with LPI as a predic-
tor variable and is derived from the individual site observa-
tions. Figure 8 displays the relationships between liquefac-
tion probability and LPI fit by this method for the two best-
performing LPI models, LPI1 and LPI3, including 95 % con-
fidence intervals. The relationships are accompanied by plots
of the observed liquefaction rates, aggregated at each value
of LPI. The plot for model LPI3 shows greater scatter of ob-
served rates around the fit line than the plot for model LPI1,
although in both cases the confidence interval is very narrow,
which is a reflection of the large sample size. The confidence
interval for LPI1 (±0.0014) is slightly narrower that the con-
fidence interval for LPI3 (±0.0021), indicating that LPI1 is
the better model for estimating liquefaction probability, just
as it is better at forecasting liquefaction occurrence by LPI
threshold. For both models, the observed rates that are fur-
thest away from the best-fit line are predominantly those that
are based on smaller sample sizes (arbitrarily defined here
as 100). These have less influence on the regression – since
the use of individual site observations implicitly gives more
weight to observations in the region of LPI values for which
sample sizes are larger. Furthermore, the observed rates are
themselves more unreliable for smaller sample sizes. For ex-
ample, for model LPI1, observations based on more than 100
samples have an average margin of error of 0.05, whereas
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Table 7. Coefficients of link function and summary of contingency table analysis for the two best-performing LPI models. Refer to Table 4
for descriptions corresponding to model acronyms.

Model β1 B0 True positive True negative J statistic Area under
rate (TPR) rate (TNR) curve (AUC)

LPI1 0.067 −1.555 0.683 0.869 0.551 0.843
LPI3 0.098 −1.299 0.784 0.856 0.641 0.766

the average margin of error for smaller samples is 0.19. For
model LPI3, observations based on more than 100 samples
have an average margin of error of 0.05 and this increases
to 0.22 when considering the observations based on smaller
samples.

The Hosmer–Lemeshow test (Hosmer and Lemeshow,
1980) is a commonly used procedure for assessing the good-
ness of fit of a generalized linear model when the outcome
is a binary classification. However, Paul et al. (2013) show
that the test is biased with respect to large sample sizes, with
even small departures from the proposed model being clas-
sified as significant and consequently recommend that the
test is not used for sample sizes above 25 000. Pseudo-R2

metrics are also commonly used to test model performance
(Smith and McKenna, 2013), but these compare the proposed
model to a null intercept-only model rather than comparing
the model forecasts to observations. Although the purpose
of the analysis in this section is to relate LPI to liquefaction
probabilistically, contingency table analysis with a threshold
probability to determine liquefaction occurrence remains an
appropriate technique to test the fit of the model (Steyerberg
et al., 2010). Assuming a threshold probability of 0.5, Ta-
ble 7 presents summary statistics from the contingency table
analysis of each model and also the coefficients of the corre-
sponding probit link function.

Both models have values of TPR and TNR above 0.5 and
the values are of a similar order to those obtained in Table 5
for the same models. The exception is the TPR for model
LPI3, which is significantly higher when the threshold prob-
ability is used and eliminates much of the bias towards nega-
tive forecasts. The difference in values of AUC between Ta-
bles 6 and 7 are negligible but the J statistic for LPI3 with a
threshold probability of 0.5 is considerably higher than the J
statistic for the optimal threshold found for LPI3 in Table 6.
This suggests that LPI3 is best implemented as a probabilis-
tic model for liquefaction occurrence. Overall these statistics
indicate that both of the probabilistic LPI models proposed
are good fits to the observed data.

6 Permanent ground deformation

The preceding sections have analysed methods for forecast-
ing liquefaction triggering, but for assessing the fragility of
structures and infrastructure it is more informative to be able
to estimate the scale of liquefaction, in terms of the PGDf. In

fact, fragility functions for liquefaction-induced damage are
commonly expressed in these terms (Pitilakis et al., 2014). A
summary of the available approaches for quantifying PGDf is
provided by Bird et al. (2006), who also compare approaches
for lateral movement, settlement and combined movement
(volumetric strain). The majority of these approaches require
detailed geotechnical data as inputs (e.g. median particle
size, fines content). The likelihood that insurers possess or
are able to acquire such data is low, which means that these
approaches are not suitable for regional-scale rapid assess-
ment. The lack of simplified models is not surprising given
the small number of models that exist for liquefaction trig-
gering assessment and that by definition measuring the scale
of liquefaction is more complex. From the available models
in the literature, there are three that can be applied without
the need for detailed geotechnical data: the EPOLLS regional
model for lateral movement (Rauch and Martin, 2000) and
the HAZUS models for lateral movement and vertical set-
tlement (NIBS, 2003). To demonstrate the challenge faced
by insurers looking to improve their liquefaction modelling
capability, these models are compared to PGDf observations
from the Darfield and Christchurch earthquakes. It should be
noted that the HAZUS model has been developed specifi-
cally for the United States and the empirical data used to de-
velop its constituent parts come mainly from California and
Japan. The EPOLLS model is based on empirical data from
the United States, Japan, Costa Rica and the Philippines.

6.1 Vertical settlement

A time series of lidar surface data for Christchurch has
been produced from aerial surveys over the city, initially
prior to the earthquake sequence in 2003, and subsequently
repeated after the Darfield and Christchurch earthquakes.
The surveys are obtained from the Canterbury Geotechni-
cal Database (2012a). The lidar surveys recorded the surface
elevation as a raster at 5 m cell resolution. The difference
between the post-Darfield earthquake survey and the 2003
survey represents the vertical movement due to the Darfield
earthquake. Similarly the difference between the post-
Christchurch earthquake and the post-Darfield earthquake
surveys represents the movement due to the Christchurch
earthquake. In addition to liquefaction, elevation changes
recorded by lidar can also be caused by tectonic movements.
Therefore, to evaluate the vertical movement due to lique-
faction effects only (PGDfV), the differences between lidar
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Table 8. Summary statistics of vertical ground deformation
(PGDfV) estimates for Darfield and Christchurch earthquakes from
HAZUS models. Refer to Table 4 for descriptions corresponding to
model acronyms.

Score Observed Vertical permanent ground
deformation, PGDfV (m)

HAZ1 HAZ2 HAZ3

Pearson R2 n/a 0.064 0.051 0.058
Mean 0.118 0.003 0.008 0.005
Minimum 0.000 0.000 0.000 0.000
Lower quartile 0.051 0.000 0.000 0.000
Median 0.100 0.001 0.000 0.000
Upper quartile 0.162 0.004 0.004 0.004
Maximum 1.464 0.022 0.066 0.043
Residual mean n/a −0.114 −0.110 −0.112
Root-mean-square error n/a 0.146 0.142 0.144

n/a= not applicable.

surveys have been corrected to remove the effect of the tec-
tonic movement. Tectonic movement maps have been ac-
quired from the Canterbury Geotechnical Database (2013d).
The only simplified method for calculating vertical settle-
ment is from HAZUS (NIBS, 2003), in which the settle-
ment is the product of the probability of liquefaction, as in
Eq. (10), and the expected settlement amplitude, which varies
according to liquefaction susceptibility zone, as described in
Table 3.

The HAZUS model is applied with each of the three im-
plementations used for forecasting liquefaction probability in
the liquefaction triggering analysis. Summary statistics of the
PGDfV estimates from each implementation are presented in
Table 8. This shows that the HAZUS model significantly un-
derestimates the scale of liquefaction, regardless of how liq-
uefaction susceptibility zones are mapped between the Can-
terbury and HAZUS classifications. The residuals have a
negative mean in each implementation indicating an under-
estimations bias. Furthermore, the maximum value estimated
by HAZ1 and HAZ3 is smaller than the observed lower quar-
tile. The coefficient of determination is also extremely low in
each case, implying that there is little or no value in the es-
timates. It is important to note that there is a measurement
error in the lidar data itself of up to 150 mm, as well as a
uniform probability prediction interval around the HAZUS
estimates. However, even when using the upper bound of the
HAZUS estimates (2 times the mean), only around 50 % of
estimates fall within the observation error range. These re-
sults suggest that the HAZUS model for estimating vertical
settlement is not suitable for application in Christchurch.

6.2 Lateral spread

The lidar surveys for Christchurch also record the locations
of reference points within a horizontal plane and the differ-
ences between these data have been used to generate maps

identifying the lateral displacements caused by each earth-
quake on a grid of points at 56 m intervals. Similarly to
the elevation data, the lateral displacements have to be cor-
rected for tectonic movements, although in this case the cor-
rected maps have been obtained directly from the Canterbury
Geotechnical Database (2012b).

The HAZUS model (NIBS, 2003) for estimating ground
deformation due to lateral spread is given by Eq. (19), where
K1 is a displacement correction factor, which is a cubic func-
tion of earthquake magnitude, and the term on the right-hand
side is the expected ground deformation for a given liquefac-
tion susceptibility zone, which is a function of the normalized
peak ground acceleration (observed PGA divided by lique-
faction triggering threshold PGA for that zone). The formu-
lae for calculating these terms are not repeated here but can
be found in the HAZUS manual (NIBS, 2003).

PGDfH =K1×E
[
PGD|(PGA/PLSC)= a

]
(21)

The EPOLLS suite of models for lateral spread (Rauch and
Martin, 2000) includes proposed relationships for estimat-
ing ground deformation at a regional scale (least complex),
at site-specific scale without detailed geotechnical data and
at site-specific scale with detailed geotechnical data (most
complex). In the regional EPOLLS model, PGDfH is given
by Eq. (20), where Rf is the shortest horizontal distance to
the surface projection of the fault rupture, and Td is the dura-
tion of ground motion between the first and last occurrence
of accelerations ≥ 0.05 g at each site.

PGDfH = (0.613MW − 0.0139Rf− 2.42PGA

−0.01147Td− 2.21)2+ 0.149 (22)

Durations have been calculated from ground motion records
(at 0.02 s intervals) obtained from 19 strong-motion accelero-
graph stations in Christchurch, identified in Fig. 1. The
records from each station for both earthquakes are available
from the GeoNet website (GNS Science, 2014). Td is calcu-
lated at each station and then the value at intermediate sites
is interpolated by ordinary kriging. Summary statistics of the
estimates from the regional EPOLLS and HAZUS models
are presented in Table 9. The statistics show that none of the
models estimate PGDfH well. The EPOLLS model overes-
timates the scale of liquefaction, while the HAZUS models
each show an underestimation bias. The mean residuals and
root-mean-square error (RMSE) are higher for the EPOLLS
model, suggesting that the HAZUS models perform slightly
better, but this is of little significance since the coefficients of
determination of the HAZUS models are all extremely low.
A mitigating factor is that the lidar data have a very large er-
ror – up to 0.5 m – in the horizontal plane. Taking this into
account, over 90\%˙ of HAZUS estimates are within the ob-
servation error range, although this needs to be interpreted
in the context of the mean observed PGDfH being 0.269 m.
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Table 9. Summary statistics of horizontal permanent ground deformation (PGDfH) estimates for Darfield and Christchurch earthquakes from
EPOLLS and HAZUS models. Refer to Table 4 for descriptions corresponding to model acronyms.

Score Horizontal permanent ground deformation, PGDfH (m)

Observed EPOLLS HAZ1 HAZ2 HAZ3

Pearson R2 n/a 0.000 0.022 0.032 0.027
Mean 0.269 0.682 0.141 0.172 0.150
Minimum 0.001 0.149 0.000 0.000 0.000
Lower quartile 0.124 0.418 0.000 0.000 0.000
Median 0.206 0.748 0.084 0.050 0.067
Upper quartile 0.312 0.964 0.184 0.191 0.182
Maximum 3.856 1.989 1.872 3.205 2.443
Residual mean n/a 0.413 −0.128 −0.096 −0.118
Root-mean-square error n/a 0.582 0.345 0.438 0.376

Since the HAZUS model underestimates PGDfH, and PGDfH
cannot be negative, the fact that so many estimates are within
this error range is more a reflection of the size of the error rel-
ative to the values being observed. Consequently the statis-
tics in Table 9 are more informative and these show that the
simplified models all perform poorly.

7 Conclusions

This study compares a range of simplified desktop liquefac-
tion assessment methods that may be suitable for insurance
sector where data availability and resources are key con-
straints. It finds that the liquefaction potential index, when
calculated using shear-wave velocity profiles (LPI1), is the
best-performing model in terms of its ability to correctly
forecast liquefaction occurrence both positively and nega-
tively, although it must be noted that its predictive power is
not high. Shear-wave velocity profiles are not always avail-
able to practitioners and it is notable therefore that the anal-
ysis shows that the next best-performing model is the liq-
uefaction potential index calculated with shear-wave veloc-
ity profiles simulated from USGS VS30 data (LPI3). Since it
is based on USGS data, which are publicly accessible on-
line, this method is particularly attractive to those undertak-
ing rapid and/or regional-scale desktop assessments.

The HAZUS method for estimating liquefaction probabili-
ties performs poorly irrespective of triggering threshold. This
is significant since HAZUS methods (not only in respect to
liquefaction) are often used as a default model outside of the
US when no specific local (or regional) model is available.
Models proposed by Zhu et al. (2015) perform reasonably
and, since they are also based on publicly accessible data,
represent another viable option for desktop assessment. The
only issue with these models is that they perform optimally
with a low threshold probability of 0.1, which may lead to
overestimation of liquefaction when applied to other loca-
tions.

As an extension of the liquefaction triggering analysis, this
study also uses the observations to relate LPI to liquefaction
probability for the two best-performing models. In the case
of LPI3, the model performance (as measured by Youden’s
J statistic) actually improves significantly when employed
with a threshold based on corresponding probability rather
than based directly on LPI. The final stage of liquefaction
assessment is to measure the scale of liquefaction as PGDf.
This study only briefly considers this aspect but shows that
existing simplified models perform extremely poorly. Ex-
isting models show very low correlation with observations
and strong estimation bias – underestimation in the case of
HAZUS and overestimation in the case of regional EPOLLS.
Based on this analysis the estimations from these simplified
models are highly uncertain and it is questionable whether
they genuinely add any value to loss estimation analysis out-
side of the regions for which they have been developed.

Data availability. A number of datasets have been used in this
study. One dataset containing liquefaction observations was pro-
vided directly by Tonkin and Taylor and is not publicly available.
Other datasets that have been used are accessible through the Can-
terbury Geotechnical Database (CGD) or the US Geological Survey
(USGS). These datasets include quantitative observations of verti-
cal (CGD, 2012a) and horizontal (CGD, 2012b) permanent ground
deformations, qualitative liquefaction and lateral spreading obser-
vations (CGD, 2013a), observed peak ground accelerations (CGD,
2013b), borehole site data (CGD, 2013c), tectonic movement mea-
surement (CGD, 2013d), shear-wave velocity estimates (USGS,
2013) and Earth Explorer data (USGS, 2014b) for input into the
Zhu et al. (2015) liquefaction assessment models.
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