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Abstract 

Reprocessing of spent nuclear fuels using molten salt media is an attractive alternative to liquid-

liquid extraction techniques. Pyroelectrochemical processing utilizes direct, selective, 

electrochemical reduction of uranium dioxide, followed by selective electroplating of a uranium 

metal. Thermodynamic prediction of the electrochemical reduction of UO2 to U in LiCl-KCl eutectic 

has shown to be a function of the oxide ion activity. The pO
2-

 of the salt may be affected by the 

microstructure of the UO2 electrode. A uranium dioxide filled “micro-bucket” electrode has been 

partially electroreduced to uranium metal in molten lithium chloride-potassium chloride eutectic. 

This partial electroreduction resulted in two distinct microstructures: a dense UO2 and a porous  U 

metal structure were characterised by energy dispersive X-ray spectroscopy. Focused ion beam 

tomography was performed on four regions of this electrode which revealed an overall porosity 

ranging from 17.36% at the outer edge to 3.91% towards the centre, commensurate with the 

expected extent of reaction in each location. The pore connectivity was also seen to reduce from 

88.32% to 17.86% in the same regions and the tortuosity through the sample was modelled along 

the axis of propagation of the electroreduction, which was seen to increase from a value of 4.42 to a 

value of infinity (disconnected pores). These microstructural characteristics could impede the 

transport of O
2-

 ions resulting in a change in the local pO
2-

 which could result in the inability to 

perform the electroreduction. 

1. Introduction 

Research into the reprocessing of spent nuclear fuel using molten salt media has become 

increasingly popular as an alternative to the PUREX process [1-3]. Spent oxide fuel must first be 

reduced to the metallic form prior to electrorefining. One technique of achieving this is via the 

addition of cadmium chloride to a LiCl-KCl eutectic (LKE) salt which serves to oxidise metallic spent 

fuel, resulting in U
3+

 and Pu
3+

 species in solution. These species are then recovered electrochemically 

at solid and liquid electrodes to acquire uranium and plutonium metals respectively [2, 4, 5]. The 

reduction of spent fuel oxides may also be done chemically via the reaction of dissolved lithium in 

LiCl at 650°C, as described by Karell and Gourishankar [6, 7]. Alternatively, spent fuel oxides may be 

reduced by electroplating Li metal onto the working electrode in a Li2O containing LiCl molten salt, 

currently the more favoured route [8-11]. A further, fully electrochemical, technique is also under 

investigation: pyroelectrochemical processing. This technique aims to utilize selective 

electroreduction of spent fuel oxides followed by the successive, selective, electroplating of the 

metal in LKE [12, 13].The authors have shown that the direct electrochemical reduction of uranium 

dioxide to uranium metal in LKE at 450°C is feasible and appears to proceed via a single, 4-electron 

step process, with no observable intermediate compounds formed during the reduction [11]. This 

agrees with thermodynamic predictions [14, 15]. The use of LKE salt is advantageous compared to 

the LiCl melt due to its relatively low operating temperature and, therefore, operating costs. 

However, full scale operation using LKE may be limited in its application because of the limited 

solubility of Li2O in LKE [16]. 
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Littlewood diagrams [17] have also shown that the reduction process may be inhibited by the 

activity of O
2-

 ions in the bulk electrolyte. Too high a concentration of oxide ions may cause the 

UO2|U electrochemical reduction potential to become more cathodic than the deposition potential 

of lithium from the electrolyte. The microstructure of the electrode will affect the efficiency of the 

electrochemical reduction as characteristics of the microstructure (porosity, tortuosity, etc.) may 

impede the transport of electrolyte and/or O
2-

 ions out of the electrode, resulting in reduced three 

phase interlines (3PIs) and/or a local increase in the level of pO
2-

 within the electrode [18-20]. 

Considering that the microstructure of these electrodes is inherently a three-dimensional property, 

these electrodes must be studied in three dimensions in order to capture the true characteristics of 

the microstructure and to afford the ability to optimise the microstructure for the electroreduction 

process. In spite of its importance, there has been little research into the complex microstructure of 

these electrode materials, and to the authors’ knowledge, the microstructure of electrodes for 

molten salt electroreduction have not yet been studied in three dimensions using tomography 

techniques. These tools have, however, been widely applied to other electrochemical devices, such 

as fuel cells and batteries [21-27]. Significant evolution of the microstructure is expected during the 

electroreduction of UO2 to U due to the volume change associated with the reduction process: the 

molar volume of UO2 is ca. 26.7 cm
3
 mol

-1
 whereas the molar volume of U metal is ca. 12.5 cm

3
 mol

-

1
. 

For the first time, three dimensional, focused ion beam (FIB) tomography has been utilised to 

understand the microstructural evolution during the electroreduction process: As UO2 is reduced to 

U, a volume change is expected to occur, creating more pores. However, this microstrucrual 

reconstruction is currently poorly understood. Reconstruction of these volumes have been used to 

extract true microstructural characteristics and have also been modelled using the StarCCM software 

suite to extract the pore-phase tortuosity. 

2. Experimental 

2.1. Experimental set-up 

The use of a molten LKE salt has an operational temperature sufficiently low to permit the use of 

glass in the experimental set-up. This has the advantage of optical accessibility to allow for rapid 

identification of the salt conditions, therefore, an all-glass electrochemical cell furnace were used for 

all electrochemical tests, which is described elsewhere [13]. A “micro bucket” electrode (MBE) was 

fabricated using a 3 mm diameter (10 mm long) molybdenum rod (>99%, Alfa Aesar). A 0.8 mm hole 

was drilled into the cross section of the rod, approximately 2 mm deep, into which UO2 powder was 

pressed. This electrode is then attached to a similar molybdenum rod of greater length using a 0.2 

mm molybdenum wire. This configuration is made the working electrode and can be seen in Figure 

1. An all-glass Ag|Ag
+
 reference electrode was also built, similar to that described in [28], which 

contained 0.75 mol kg
-1

 AgCl in LKE. A 3 mm diameter dense graphite rod (Alfa Aesar) was used as 

the counter electrode.  

LiCl and KCl salts (>99%, Sigma-Aldrich) were dried under vacuum for 48 hours and transferred, 

under argon, to an argon-filled glove box with an atmosphere containing <0.5 ppm of both O2 and 

H2O, for storage.  LKE (100 g) was mixed using a weighted molar average of 59% LiCl and 41% KCl and 

was placed into the reaction cell, inside the glove box. The cell was then sealed with a machinable 

ceramic (Pyrophyllite, Ceramic Substrates and Components Ltd.) cell head and PTFE gasket. The head 

contained holes for electrodes and gas lines with check valves to ensure a gas tight environment (see 

Fig. 1b).  
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Once the cell was sealed inside the glove box, it was transferred to a separate glove box which 

housed the optical furnace and a flow of argon gas (after purging the gas lines) was administered to 

the cell. Once the cell had reached the operating temperature of 450°C, the UO2 –filled MBE was 

rapidly inserted into the cell and left to thermally stabilise for 30 minutes. Finally, the working 

electrode was immersed into the molten salt and left to thermally stabilise. Electrochemical 

measurements were taken using an IVIUMStat potentiostat (IVIUM Technologies). 

 

Fig. 1. Illustration of the micro-bucket electrode configuration, powder is pressed into a 0.8 mm OD (2 

mm) L hole drilled into a molybdenum rod. 

 

 

2.2. FIB Tomography 

FIB Tomography was performed using the “slice and view” technique [29]. During this process, the 

face of interest is first imaged with an SEM before it is milled by a predetermined depth using a 

gallium ion beam. The new exposed face of interest is then image and this process is repeated, 

giving rise to a stack of images. These images may then be stacked together to produce a three-

dimensional representation of the sample volume. During FIB tomography, a trench should be milled 

in order to expose a region of interest [30]. In the case of this study, a 50 × 150 × 20 μm (xyz) trench 

was milled using the FIB (Carl Zeiss XB1540 Cross-Beam focussed-ion-beam microscope (Carl Zeiss 

AG)) with a beam current of 5 nA.  

SEM imaging was acquired using the SE2 detector, an acceleration voltage of 5 keV and a working 

distance of 5 mm, resulting in a pixel size of 90 nm. The sample was aligned to permit FIB 

tomography reconstructions from the edge of the sample to the centre using the “slice and view” 

technique, with each “slice” being 90 nm in depth.  

The image stacks were imported into the Avizo Fire 8 (FEI) software suite for segmentation of the 

pore phase and for three-dimensional reconstruction. A label analysis was then conducted on each 

sample which deduces which pores are connected (based on a 24 voxel neighbourhood) and results 

in each connected pore being assigned a new colour, allowing for visual identification of the pore 

connectivity. 

 

3. Results and discussion 

3.1. Cyclic voltammetry on UO2 electrodes  
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Cyclic voltammetry was performed on the UO2 working electrode, which is presented in Figure 2. 

Peaks C1 and A1 are attributed to reduction and oxidation processes occurring on the molybdenum 

current collector, respectively. The reduction peak C2 is attributed to the electrochemical reduction 

of UO2: 

��� + 4�� → � + 2���   Eq. (1) 

 

This reduction peak is in close proximity to the deposition potential of lithium, C3. From this, the 

pO
2-

 of the melt has been calculated from Littlewood diagrams to be equal to 6 [15]. In addition, 

there is no observable oxidation peak on the anodic scan of the UO2 filled working electrode. This 

suggests that the oxygen anions that have been liberated due to the reduction have diffused away 

from the boundary of the powder. Therefore, these oxygen anions are not available at the working 

electrode to re-oxidise the uranium and would explain the omission of an oxidation peak associated 

with uranium. It is also possible that any Li deposition in contact with the UO2 from peak C3 

(reduction of Li
+
 from the electrolyte) would react chemically with uranium dioxide via the Eq. 2 

��� + 4
� → � + 2
��� Eq (2) 

Li2O is soluble in LKE (albeit lowly) and is a possible side reaction which would also cause omission of 

an oxidation peaks in the CV [16]. 

 

Fig. 2. A three scan cyclic voltammogram of the UO2-filled MBE working electrode (graphite counter 

electrode) at 10 mV s
-1

. Potentials are reported with respect to the Ag|Ag
+
 reference electrode. C2 is 

attributed to the electrochemical reduction of UO2 to U 

 

The resulting, partially reduced, electrode was removed from the molten salt cell and placed in 

methanol for a week to dissolve the solidified melt. The electrode was then impregnated in epoxy 

and polished before being analysed using scanning electron microscopy, as shown in Figure 3(a). 

From this, it is possible to identify two regions: a dense region towards the centre of the electrode 

and a more porous region towards the edge. This is similar to the dense and “coral-like” structures 

observed by Kurata et al. [11]. 

Energy dispersive X-ray spectroscopy (EDS) was performed on both the dense phase and on the 

“coral-like” phase and is shown in Figure 3(b). Observation of these spectra shows that the porous 

phase has no identifiable oxygen peak, indicating the material nearest the edge has undergone 

complete reduction to metallic uranium whilst the material towards the centre of the electrode has 
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not been reduced and the oxide remains. This is in agreement with the three phase interline theory 

described by Qiu et al., [31]. 

 

Fig. 3.  (a)  “Birds-eye view” of the MBE working electrode after cyclic voltammetry. There is a porous 

phase towards the outer edge and a denser phase towards the centre. EDS was performed on the 

regions depicted by boxes 1 and 2 and is shown in (b). The EDS spectra show no observable O (Kα) 

peak on the outer edge region, indicating that this region has been reduced. 

 

3.2. Porosity and pore connectivity 

 

A total of five reconstructed regions of the partially reduced sample were reconstructed each with a 

voxel size of 90 × 90 × 90 nm
3
. The first four regions were a porous, structure, whilst the last 

reconstruction was of the dense phases. The porous structures may be seen to be similar to the 

coral-like structures observed by Kurata et al. [11]. An SEM micrograph depicting the five 

reconstructed regions is shown in Figure 4. 

 

Fig. 4. Milled trench generated using the FIB. Five regions were reconstructed from this and these are 

labelled as regions 1-5. 
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The result of the slice and view technique is a stack of images of the sample along the y-axis. A 

sample “slice” has been reproduced in Figure 5(a). The regions of interest in the images were then 

cropped (e.g. Figure 5(b)) and aligned before a histogram equalisation filter was applied resulting in 

Figure 5(c). This filter improves the contrast in the images: the pixel count histogram for the 

unfiltered image is shown in Figure 5(e), whilst that of the filtered image is shown in Figure 5(f). 

Lastly, the images were converted into binary images by threshold segmentation, as shown in Figure 

5(d). 

 

Fig. 5. (a) Raw image of the sample during FIB tomography. The region of interest is cropped (b) and 

was then subjected to an adaptive histogram equalization filter, resulting in (c). (d) Shows the final 

binarised image used for three-dimensional reconstruction. (e) Pixel count histogram of the original 

cropped image and (f) shows the pixel count histogram after the filter was applied, allowing for good 

segmentation of the phases. 

 

A reconstruction of Region 1 is presented in Figure 6 and shows the segmented porous phase of the 

sample where each connected pore has been assigned a different colour. The high pore connectivity 

of this region is indicated by the large turquoise coloured pore. Also presented in Figure 6(c) and (d) 

are skeletonization projections of the pore phase: these projections visualise the centreline of 

interconnected pores as thinned filaments. That is, the centreline of the porous phase is displayed as 

a network of filaments which help to represent the centroid pathways of the pore network. A high 

density of these filaments is representative of high spatial porosity and a well-connected pore 

system; whereas a low density is indicative of a low spatial porosity. The absence of these filaments 

represents the solid phase of the material. 
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Fig. 6. Region 1 of the partially reduced MBE showing the pore phase in: (a) the XZ plane and (b) the 

XYZ plane. (c) Shows a skeletization of the pore phase in the XZ plane and (d) in the XYZ plane. 

 

The pore connectivity of region one was extracted to be equal to 88.3%. This is calculated by taking 

the largest volume pore and dividing by the total volume of the pores. High pore connectivity would 

permit good diffusion of species through the microstructure. The overall porosity was also extracted 

to be equal to 17.4%, a ratio of the volume occupied by pores to the total volume of the sample. 
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Fig. 7. Volume fraction porosity and the pore connectivity as a function of distance from the current 

collector in the y-direction. A significant change in porosity and pore connectivity is observed. 

 

This method was repeated for all sample regions and the overall porosity and pore connectivity 

values, as a function of distance from the current collector, are shown in Figure 7. Up to a distance 

of ca. 50 μm from the current collector (Regions 1 and 2), similar microstructural characteristics may 

be observed; however, as the distance increases to > 50 μm (Regions 3 onwards) a decrease in both 

the porosity and the pore connectivity is apparent. At a distance of ca. 125 μm, (Region 5), which is 

unreduced UO2, shows an even more significant decrease in porosity and pore connectivity. This is 

consistent with a large extent of reduction at the electrode edge, which is diminished towards the 

centre region of the electrode: a general trend of decreasing porosity and pore connectivity may be 

observed from the outer edge towards the centre of the MBE. This trend is indicative of the 

electrochemical reduction propagating through the MBE electrode, from the edge to the centre, 

following the three phase interline theory, which is described in more detail below. The porosity 

change is attributed to the volume change associated with the reduction of uranium dioxide: as the 

electroreduction from UO2 to U occurs, porosity within the microstructure is produced, facilitating 

the transport of O
2-

 ions through the microstructure. However, the decreased pore connectivity 

towards the centre of the MBE may have consequences on the efficiency of the electroreduction 

process. It is apparent that the microstructure of the electrode is a function of the electroreduction 

front moving inwards. A decrease in pore connectivity, due to the reduction front, may impede the 

transport of O
2-

 ions out of the electrode and may lead to an increase in the level of pO
2-

, which 

could impede of the electroreduction process.  

 

3.3. Tortuosity simulations 

The tortuosity, τ, plays an essential role in characterising the transport of species through the 

microstructure and quantifies the resistance of such a structure to mass transport. This 

encompasses, among others, the migration of electrons, ions, gases and heat. The tortuosity is 

geometrically defined as the shortest path length through a porous structure divided by the normal, 

straight line, distance between the end points of that path resulting in τ being always greater than or 

equal to one [32]. In terms of transport, this would be proportional to the effective cross sectional 

area and inversely proportional to the length of the pore. In addition, for a given pore of fixed 

volume, doubling the length of the pore will result in a halving of the cross section. Therefore, the 
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effect of a change in transport will be squared due to the change in extra path length between two 

points [33-35]. These two definitions are of the tortuosity and the tortuosity factor, respectively. 

The measurement of tortuosity is not trivial: several different methods have been developed, among 

which image based modelling of transport phenomena, is one [36, 37]: achieved by using the 

analogy of Ficks’ and Fourier’s laws in the Star CCM+ computational fluid dynamics (CFD) package. 

For this, a surface mesh was created from the tomography data set in Avizo Fire 8 and imported via a 

.STL file type, into the StarCCM+ CFD software package. A volume mesh was then created to enable 

transport modelling through the pore phase. The tortuosities in each direction (τx, τy and τz) may be 

calculated by modelling the heat flux through the surfaces in the required axis and keeping all other 

surfaces adiabatic. The tortuosities may then be extracted by the application of the following 

equation: 

� = �� ���
����� Eq. 3 

Where τ is the tortuosity, ε is the porosity, QCV is the flux through the control volume and QPore is the 

flux through the pore phase.  For derivation of this equation, the reader is referred to [37].  Figure 

8(a) shows an example surface mesh reconstruction, while Figure 8(b) shows the ‘temperature’ 

distribution across the sample reconstruction after converged heat flux simulation. This 

methodology was applied to all axes for each reconstruction. These results are tabulated in Table 1; 

note, that only the connected pore phase was extracted as the inclusion of other pores would cause 

non-divergence in the CFD calculations and would not influence transport. 

 

Figure 8 (a) An example surface mesh reconstruction and (b) an example of heat flux simulation 

through the y axis. 

 

The tortuosities calculated have been tabulated in Table 1 which shows that after Region 1 more 

significant tortuosity values are present in each direction. These relatively large tortuosities would 

provide resistance to molten salt penetration and significant inhibition of the transport of O
2-

 ions 

away from the active reaction sites. In turn, this could lead to a reduction in the local level of the 

pO
2-

, resulting in a change in the potential for electrochemical reduction. An infinite tortuosity 

represents no pore connectivity in that direction. In such a case, molten salt penetration would not 

occur through that direction, meaning no electroreduction could occur. 

Region τx τy τz 

1 1.46 4.42 12.41 

2 18.85 3.68 12.93 

3 15.02 7.22 ∞ 
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4 ∞ ∞ ∞ 

5 ∞ ∞ ∞ 

Table 1. Tortuosity values calculated along each axis for the four reconstructed regions. Note that a 

value of infinity represents the CFD calculations being unable to diverge. 

 

A three phase interline (3PI) is defined as a region whereby all three of the necessary phases co-exist 

which is a pre-requisite for the electrochemical reduction to occur [18-20]. In the context of metal 

oxide electroreduction in a molten salt, the 3PI is formed of an electronic conducting phase, which 

provides electrons to perform the reduction; an ionic conducting phase, which allows oxide ions to 

be removed via the melt, and the metal oxide phase, which is to be electroreduced. Only at these 

3PIs will an electrochemical reduction be able to occur.  

The 3PI theory predicts that the electrochemical reduction would propagate radially from the 

current collector edge, to the centre of the MBE. This would be along the y-direction defined in 

Figure 4. By observation of the tortuosity in this direction, τY, for all reconstructed volumes it is seen 

to decrease from a value of 4.42 in Region 1 to a value of 3.68 in Region 2. This follows the trend of 

increased porosity and pore connectivity between the two regions. However, the value increases 

significantly from 3.68 in Region 2 to a value of 7.22 in Region 3. This, again, follows the decrease in 

porosity and pore connectivity, which reveals a much more tortuous route for the transport of O
2-

 

ions. These high tortuosity values are explained in Figure 7: although the pore connectivity of the 

entire sample was extracted to be 92.78%, the connectivity between pores is maintained by a single 

pore channel, as depicted in Figure 9. Consequently, although the total pore connectivity is high, the 

transport of O
2-

 ions through this pore phase in the y-direction would be impeded. Region 4 of the 

reconstruction possesses infinite tortuosity values for each direction due to the lack of pore 

connectivity of the sample. This is again seen in Region 5 (the unreduced region). If the reduction 

front doesn’t improve the pore connectivity in this region, the transport of O
2-

 ions out of the 

electrode will be impeded. In order for the electrochemical reduction of UO2 to U metal to proceed 

to completion, pores must be connected during the volume change associated with the 

electroreduction. However, a possible solution to this would be to produce connected pore phase 

microstructure within the UO2 phase. This will ensure that transport of O
2-

 ions from the electrode to 

the counter electrode is not governed by pores becoming connected due to the volume change 

during electroreduction. 

 

Fig. 9. Heat flux through the y-axis direction in Region 2. The blown up region shows only a single 

channel of pore connectivity through the sample. 
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4. Conclusion 

For the first time, the microstructure of partially reduced uranium oxide electrodes has been 

studied. The porosity along the axis of the propagation of the electrochemical reduction was seen to 

reduce significantly with the extent of the electroreduction. Additionally, the tortuosity in this plane 

was also seen to increase from a value of 4.42 to an infinite tortuosity in the dense phase of un-

reduced sample. This microstructural phenomenon may impede the transport of O
2-

 ions from the 

bulk electrode which would decrease the local value of pO
2-

.  This is a dynamic variable which would 

change as the electroreduction propagates throughout the bulk electrode. Because of this, it is 

suggested that the diffusion of O
2-

 ions away from the electrode would be dependent on the volume 

change during electroreduction, causing the isolated pores to become connected. This highlights the 

need to understand and optimise electrode microstructure to enhance 3PIs and the electroreduction 

process. 
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