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We study photoelectron angular distributions (PADs) near the ionization threshold with a newly developed
Coulomb quantum-orbit strong-field approximation (CQSFA) theory. The CQSFA simulations exhibit an
excellent agreement with the result from the time-dependent Schrodinger equation. We show that the low-energy

fan-shaped pattern in the PADs corresponds to a subcycle time-resolved holographic structure and stems from
the significant influence of the Coulomb potential on the phase of the forward-scattered electron trajectories,
which affects different momenta and scattering angles unequally. Our work provides a direct explanation of how
the fan-shaped structure is formed, based on the quantum interference of direct and forward-scattered orbits.

Moreover, our work shows that the fan-shaped pattern can be used to extract information on the target structure,
as the number of fringes in the PADs depends strongly on the symmetry of the electronic bound state.
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I. INTRODUCTION

Quantum interference of matter waves lies at the heart of
quantum mechanics. When an atom or a molecule interacts
with a strong laser field, the bound electron may be ionized by
tunneling through the barrier formed by the Coulomb potential
and the laser electric field [1]. The electron wave packets
ionized at different times with the same final momentum will
interfere with each other [2]. This results in rich interference
patterns in the above-threshold ionization (ATT) photoelectron
angular distributions (PADs) [3], which have been taken as an
important tool in exploring the structure and the dynamics of
atoms and molecules with attosecond temporal resolution and
angstrom spatial resolution [4,5].

Recently, a new type of wave-packet interference, i.e.,
photoelectron holography [6-9], has provided a novel avenue
for ultrafast retrieval of structural and dynamical information
about the atomic or molecular medium. By analogy with
optical holography [10], the electron wave packet which
directly drifts to the detector after tunneling ionization is taken
as a reference wave, while the electron wave packet which
further interacts with the core and then drifts to the detector
acts as a signal wave. These two paths with the same final
momentum interfere with each other, forming the holographic
patterns in the PADs. Since the signal wave scatters off the
target and encodes its structure, the hologram stores spatial and
temporal information about the core and electron dynamics.
For example, a spiderlike holographic structure was experi-
mentally observed in the PADs of metastable xenon atoms
[6,7]. This specific structure is produced by the direct electron
wave packets and the laser-driven forward-scattered electron
wave packets from the same quarter cycle of the laser pulse;
thus, subcycle time resolution is encoded in the holographic
patterns [6,7]. Furthermore, signal and reference waves can
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be born in different quarter cycles, leading to different
holographic structures [11-14]. For instance, a fishbone-like
holographic structure from the interference by the direct and
the backscattered electron wave packets has been identified
experimentally [15]. This structure has been proposed as
a particularly sensitive probe of the molecular structures
[12]. Hence, how to decode the structural and dynamical
information about the target from a given holographic structure
has also attracted great attention. This has led to a novel
approach for extracting the phase of the scattering amplitude of
the signal wave, providing time-resolved imaging of ultrafast
processes [16].

Nonetheless, the understanding of time-resolved photoelec-
tron holography is still quite preliminary. Holographic patterns
are usually understood within the strong-field approximation
(SFA) [1,2], or semiclassical models in which the influence of
the ionic Coulomb potential on the dynamics of the ionized
electron is fully neglected [11,12]. Recently, however, the
Coulomb potential has been found to play an important role
in the photoelectron spectra, leading to, e.g., an unexpected
low-energy structure [17-21] and even a zero-energy structure
[22,23]. The Coulomb potential also modifies the holographic
patterns, resulting in, e.g., the reduced fringe spacing in the
spiderlike holographic structure [6,7] and the appearance of the
clear backscattering holography due to the Coulomb focusing
[11-13]. The physics behind the Coulomb effects is, however,
poorly understood, which greatly hinders a comprehensive
understanding of photoelectron holography and its potential
applications in strong-field and attosecond physics.

Another structure caused by the interplay between the
Coulomb potential and the laser field is a fan-shaped inter-
ference pattern that appears in two-dimensional PADs near
the ionization threshold. This structure has been measured
in several experiments [6,24,25] and has been the topic of
theoretical studies since the past decade [26-29]. Regardless,
there is no direct explanation of how this pattern forms.
Empirical rules for predicting the number of fringes have
been given in [26,28], but this rule loses its efficacy as the
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laser intensity is increased [30]. Furthermore, in [26] the
patterns were related to laser-dressed Kepler hyperbolae with
neighboring angular momenta. However, the arguments in
[26] are backed by classical-trajectory Monte Carlo (CTMC)
computations, for which quantum interference is absent. This
means that there is no direct evidence that the fanlike structure
can be reproduced, or how it develops. Subsequently, the
fan-shaped structure is reproduced with the Coulomb-Volkov
approximation [27], for which the influence of the Coulomb
potential is included in the final electron state, but not in the
continuum propagation. Hence, it does not provide information
on how the Coulomb potential changes the electron trajectories
and only allows a vague explanation for how the patterns form
by performing a comparison with the SFA. Therefore, a new
theoretical method is required to reveal the underlying physics
of the Coulomb effect on the fan-shaped interference patterns.

In this paper, we study the above-mentioned fan-shaped
structure with a Coulomb quantum-orbit strong-field approxi-
mation (CQSFA) theory [31]. This newly developed approach
exhibits a very good agreement with the result from the
time-dependent Schrodinger equation (TDSE), and allows a
direct assessment of quantum interference in terms of a few
electron trajectories and their phase differences. We perform
a detailed analysis of how the fan-shaped pattern forms, and,
more importantly, show that it corresponds to a subcycle time-
resolved holographic structure arising from the interference
between the direct and the forward-scattered electron wave
packets. This type of forward scattering is absent in the SFA,
and corresponds to trajectories along which the electron is
deflected by the Coulomb potential without undergoing a
hard collision with the core. Due to the Coulomb potential,
the phase associated with the forward-scattered trajectories is
significantly changed. These distortions are angle dependent,
and more dramatic for lower-energy photoelectrons, resulting
in the specific fan-shaped structure. Thus, our work explains
how the fan-shaped structure forms under the influence
of Coulomb potential. Moreover, our work shows that the
fan-shaped pattern can be used to extract information on
the target structure, as, for a given set of parameters, the
number of fringes differs for symmetric and antisymmetric
bound states. Additionally, we analyze the electron ionization
dynamics relevant to the fan-shaped structure and identify a
clear signature of nonadiabatic tunneling.

This paper is organized as follows. In Sec. II, we briefly
introduce the CQSFA theory and state the difference between
our approach and other theoretical methods. Subsequently, in
Sec. ITI, we present the CQSFA, SFA, and TDSE simulations
of the two-dimensional PADs of atoms near the ionization
threshold in a linearly polarized laser field and, furthermore,
reveal the underlying physics of the Coulomb effect on the
fan-shaped structure. Finally, in Sec. IV our conclusions are
given. Atomic units (a.u.) are used throughout unless otherwise
indicated.

II. THEORETICAL METHODS

The CQSFA theory [31] employed in this work describes
ionization in terms of quantum orbits from the saddle-point
evaluation of the ionization amplitude. Briefly, in the CQSFA
theory, the initial state is a bound state |1/o(t)) = e'r"|yr),
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and the final state is a continuum state |p (7)) with momentum
pr. This gives the ionization amplitude [2],

Mip) = =i fim [ dio(, 10 @.0) A a0 (o),
N (1)

where U (z,ty) is the time-evolution operator of the Hamilto-
nian H(r) = p?/2 + V(&) + H,(t) with H,(t) = —t - E(t) and
the Coulomb potential V (). Note that Eq. (1) is formally exact.
Employing the Feynman path-integral formalism [32,33] and
the saddle-point approximation [34,35], Eq. (1) becomes
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where the term C(fo.5) = /271 /(3S(Ps.Xy.l0,5,1)/ D10 ) is the
prefactor, dp;(¢)/9r(fys) is related to the stability of the
trajectory,

t

Sx.t0.0) = Tty — f drlp ¥+ P2+ V@] ()
o

denotes the action, in which I, is the ionization potential, p is

the canonical momentum, and p = p + A(7), withfy < 7 < ¢,

is the electron velocity. The index s denotes the different orbits

from three saddle-point equations:

[po + At0)]*/2 + I, = 0, )
P(r) = —Vi VIr(o)l, (5)

and
(1) = p(v) + A(1), (6)

which are solved using an iteration scheme for any given
final momentum [31] with the assumption that the electron is
ionized by tunneling from #; to t(f = Re[fp] and then moves to
the detector with the real time [36,37]. In practice, we assume
that the momentum of the electron is fixed during the tunneling
ionization. In this case, the second term on the right-hand
side of the action S(P,r,#,#) is split into a part inside the
barrier,

SP,r,10) = — f " [B2/2 + Vo, (7)

with the tunneling trajectory r(t) = ft: [p(t)) + A(r)]dT' [36]
and a part outside the barrier,

t

St = - [ delbe o) + B2+ VL ®)
l

with the ionization trajectory determined by Eq. (6).

Our simulations show that there are four types of trajectories
for each photoelectron with any given final momentum [31].
This is consistent with Ref. [38], where this classification was
first introduced. Here, we assume that the laser polarization
is along the z axis and the final momentum along the laser
polarization py. > 0. For trajectories of type I, the tunneling
exit zo > 0, and the electron moves directly towards the
detector without returning to its parent ion. For the type II
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FIG. 1. Two-dimensional PADs of hydrogen atom (I, = 0.5 a.u.) near the ionization threshold in a linearly polarized laser field of intensity
I =2 x 10" W/cm? and wavelength A = 800 nm, for momenta pr < 0.3 a.u. Panels (a), (b), and (c) refer to CQSFA, SFA, and TDSE,
respectively. The momentum component along the laser polarization direction is given by p .. In (a) and (b), we have used E(t) = 2E sin wt
over five cycles, while in (c) we have taken a long laser pulse E(t) = ZE; sinwf x f(t) with a trapezoidal profile f(¢) (up- and down-ramped
over 2 cycles, constant over 8 cycles). The TDSE spectra have been computed employing a window operator of width 5 x 10~ a.u. as discussed
in [46]. All panels have been normalized to the same range to facilitate a direct comparison.

and III trajectories, the tunneling exit zop < 0, meaning that
the initial motion carries the electron away from the detector
before it turns around and finally arrives with the stipulated
momentum p¢. A closer inspection shows that they are similar
to Kepler hyperbolae to which a drift motion caused by
the field is superimposed [26,38]. Trajectory types I and II
are similar to the so-called “short” and “long” trajectories
in the SFA theory. Trajectory type III is not found in the
SFA and can be observed after the Coulomb potential is
considered. In more strict terms, however, our previous results
show that orbit II is twofold degenerate in the SFA, and that
the presence of the Coulomb potential lifts this degeneracy
[31,39].

Finally, there exists an additional trajectory type, denoted
as IV. For this type of orbit, although the tunnel exit points
towards the detector, the electron is driven back to the core
by the laser field, then goes around the core, and finally
moves towards the detector. With increasing photoelectron
final momentum, the shortest distance between the electron
and the core decreases [31]. This distance can be smaller than
the tunnel exit. In this case, this type of trajectory corresponds
to a rescattering event. It is noteworthy that our numerical
simulations show that only type I-III trajectories are needed for
obtaining converged photoelectron spectra in the low-energy
region [31]. Illustrations of these types of trajectories are
provided in our previous publication [31].

Conceptually, the CQSFA differs from the Coulomb-
corrected SFA (CCSFA) theory [38,40], the Eikonal-Volkov
approximation (EVA) [41] and the analytical R-matrix (ARM)
method [42,43], which are the most widespread Coulomb-
corrected strong-field approaches. While the EVA is de-
rived from a laser-dressed Wentzel-Kramers-Brillouin (WKB)
approach in the limit of small scattering angles, and the
CCSFA constructs its trajectories recursively starting from
the Coulomb-free trajectories used in the SFA, the CQSFA
is derived using path-integral methods, which are applied
to the full time-evolution operator. This leads to different
photoelectron transition amplitudes, e.g., the p - r(t) term in
the action of Eq. (3) which is absent in the CCSFA [38,40].
This term is important for obtaining correct interference
patterns, as found in our previous publication [31] for ATI
spectra and in Ref. [44] for ATI PADs. The ARM treats hard
collisions differently, by imposing a spatial boundary. Inside

the boundary, the whole core dynamics are incorporated and
the field is treated perturbatively, while outside the barrier the
EVA is employed.

From the implementation viewpoint, there are also differ-
ences as the CCSFA solves the direct problem of seeking
the final momentum for a given initial momentum, while
the CQSFA focuses on the inverse problem. An important
consequence is that, while for both the CQSFA and the CCSFA
there are four main types of interfering orbits, the number of
contributed trajectories is different for the two approaches.
In fact, sampling in the CCSFA is implemented to obtain a
large number of orbits and then these trajectories are binned
according to their final momenta. Thus, in practice, there is
a huge amount of electron trajectories in the CCSFA, while,
in the CQSFA, one contributed trajectory of each relevant
type suffices. For example, for each photoelectron in the
low-energy region, three trajectories within a driving-field
cycle are needed for obtaining converged PADs. Therefore,
by analyzing the phase difference between these few orbits,
we can directly understand how the interference patterns
are formed and how the Coulomb potential influences this
interference.

In this work, we study the ionization of the hydrogen
atom in a linearly polarized laser field of intensity 1 = 2 x
10'* W/cm? and wavelength A = 800 nm. Unless otherwise
stated, the initial state is taken as the ground state of
the hydrogen atom, o(r) = (r|yo) = e~"//7. In this case,
the form factor in Eq. (2) becomes related to the atomic
dipole moment and can be simplified as (p(ty) + A(ty)| —r -
E(#0)|v0) ~ E(ty)Po. in a linearly polarized laser field along
the z axis [45], where py, is the component of the momentum
Po = p(to) + A(ty) along the laser polarization direction.

III. RESULTS AND DISCUSSION

Figures 1(a) and 1(b) exhibit the two-dimensional PADs
near the ionization threshold computed for the hydrogen atom
in a linearly polarized laser field with the CQSFA and the
SFA, respectively. As abenchmark, we take the ab initio TDSE
calculation shown in Fig. 1(c), which is solved using the freely
available software QPROP [46]. Our results show significant
changes in the PAD for the CQSFA, in comparison with the
SFA simulation. Indeed, there are eight clear peaks in the first
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FIG. 2. Same as Figs. 1(a) and 1(c), but with the different laser
intensity of 7 = 5 x 10" W/cm?.

ATTring at the momentum p  ~ 0.2 a.u., while only four peaks
are found in the corresponding SFA simulations. Moreover, in
Fig. 1(a) a clear radial fanlike pattern is present between the
threshold region and the onset of the first ATI ring, which
completely disappears in Fig. 1(b). The overall interference
pattern in CQSFA exhibits a very good agreement with the
TDSE simulations in Fig. 1(c), reflecting the significant role
of the Coulomb potential on strong-field ionization, which
is consistent with previous publications [26,27]. Note that
there are plenty of examples in the literature, both theoretical
and experimental, for which this structure is reproduced in
different regimes, such as the multiphoton ionization regime
or the deeply tunneling ionization regime (e.g., low-frequency,
mid-IR regime). In these regimes, the number of peaks of the
fan-shaped structure is changed, but not the pattern [26,28].
Indeed, we have also simulated the fan-shaped structure
with the CQSFA theory using different laser parameters, for
example, I =5 x 103 W/cm? (Keldysh parameter y = 1.5
[1]; see Fig. 2). In this figure, there are only six peaks left in
the first ATI ring at the momentum p, ~ 1.8 a.u, but the
fan-shaped structure is still present. Moreover, the overall
interference pattern in CQSFA is qualitatively consistent with
the TDSE simulations in Fig. 2(b), including the correct
number of the peaks. This latter feature has turned out to
be a challenge in Coulomb corrected methods. For instance,
the CCSFA method fails to reproduce the correct number of
the maxima in the TDSE result (see discussion in Ref. [40]).
Only very recently, this has been independently achieved in
[44].

It is worth noting that there is a slight quantitative discrep-
ancy between CQSFA and TDSE in the ionization amplitudes.
For example, Figs. 1 and 2 show that the TDSE yield of the first
ATT ring decays much faster with increasing scattering angle
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FIG. 4. Same as Figs. 1(a) and 1(b), but calculated with quantum
orbits occurred in one optical cycle.

than for the CQSFA (see also Fig. 3 for a closer look at the first
ATT ring). Possible reasons are that the initial electronic wave
packet in the TDSE has an initial momentum and position
spread, while all CQSFA orbits are located at the tunnel exit.
The initial spread of the electronic wave packet has been
shown to be necessary for a good quantitative agreement with
the TDSE in the context of high-order harmonic generation
(HHG) [53-56]. This initial spread seems to be very important
for strong-field ionization as well, as recent phase-space
studies revealed that orbit-based methods that incorporate
this spread exhibit a nearly quantitative agreement with the
TDSE, even if tunnel ionization is not properly accounted
for [57]. In addition, in the very low-energy region of the
spectra, the CQSFA simulation exhibits a marked discrepancy
with respect to the TDSE result. The main reason is that,
because orbits I and III may turn around the core before
being detected, a photoelectron with very low energy is greatly
sensitive to the Coulomb potential. In the presence of both the
field and the potential, this renders orbits II and III highly
irregular and hence difficult to compute. Nevertheless, in
this work we focus on how the Coulomb potential leads to
the generation of the fanlike structure by analyzing quantum
orbits from the CQSFA and the interference pattern in CQSFA
qualitatively exhibits a very good agreement with the TDSE
simulations.

In Fig. 4 we consider only the interference of the orbits
within one driving-field cycle, i.e., the intracycle interference
[29]. The CQSFA outcome [Fig. 4(a)] exhibits eight inter-
ference stripes, which, near the ionization threshold, roughly
point to zero momentum, showing a divergent structure. In
contrast, for the SFA simulations in Fig. 4(b), there are
only six approximately vertical interference stripes, which
bend as the transverse momentum increases. If quantum-
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FIG. 3. (a) and (b) Angular photoelectron distributions of the first ATI ring shown in Figs. 1 and 2, respectively. The square curve in red
and the circle curve in black refer to the CQSFA and TDSE solutions, respectively. The amplitude has been normalized to the maximum value.
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FIG. 5. (a) and (b) Illustration of three orbits from the CQSFA theory in the yz plane for electrons with fixed final momentum p; = 0.2 a.u.
along the 0° and 10° directions with respect to the laser polarization, respectively. The laser polarization is along the z axis. The black circle at
the position (0,0) denotes the nucleus. (c) and (d) Phase difference between orbits I and II as a function of p along 0° and 90° directions with
respect to the laser polarization, respectively. The blue dashed arrows denote the shift of the positions of the interference maxima.

orbit contributions from other optical cycles are also added
coherently, intercycle interference [29] forms characteristic
ATT rings centered around zero momentum. The modulation
between the intracycle and intercycle interference results in
the clear eight peaks in the first ATI ring in CQSFA and
the four ATI peaks in SFA, just as illustrated in Figs. 1(a)
and 1(b), respectively. Moreover, the divergent structure in
Fig. 4(a) corresponds to the fanlike pattern shown in the PADs
in Fig. 1(a). Thus, the difference between Figs. 1(a) and 1(b)
stems from the influence of the Coulomb potential on the
intracycle interference.

More insight can be gained by analyzing the positions of
the interference stripes in the PADs. In the CQSFA theory,
the amplitude of the intracycle interference in the low-energy
region is mainly determined by three quantum orbits [31].
Figures 5(a) and 5(b) depict these orbits in the yz plane for
electrons with fixed final momentum p, = 0.2 a.u. along the
0° and 10° directions with respect to the laser polarization,
respectively. For orbit I, the electron moves directly towards
the detector without returning to the parent ion. In contrast,
for orbits II and III, the electron will turn around the core and
then move to the detector along Kepler hyperbolae to which
a quiver motion caused by the laser field is superimposed
[26,38]. Therefore, the patterns in Fig. 4(a) correspond to
a holographic structure from the interference between the
direct trajectories and forward-scattered trajectories, which are
deflected by the core but do not undergo hard collisions. Orbits
I and II are similar to the short and long trajectories in SFA
[11], while orbit III is not found in the SFA and is observed

after the Coulomb potential is considered [6,38]. If the final
momentum is along the laser polarization [Fig. 5(a)], orbits II
and IIT are symmetric with respect to the polarization direction
and have the same amplitudes. With increasing scattering
angle 6y, orbit III will experience a stronger attraction from
the Coulomb potential, leading to a larger deflection [see,
e.g., Fig. 5(b)]. Due to Coulomb defocusing, the amplitude
of orbit Il decreases significantly with increasing scattering
angle especially for low-energy photoelectrons [47], while the
contributions from orbits I and II become dominant. This
results in well-defined reference and probe signals in the
holographic patterns: orbits I and II, respectively.

Hence, we will focus on the phase difference between orbits
I and II, A® = &y — Py, which is directly related to the
interference pattern and is displayed in Figs. 5(c) and 5(d)
as a function of the final electron momentum, for parallel and
perpendicular scattering angles, respectively. A similar anal-
ysis has been employed in our previous publications [31,48].
For 6,, = 0°, the phase difference decreases if the Coulomb
potential is incorporated. This shifts the interference maxima
in the CQSFA spectra towards lower energies, in comparison
with their SFA counterparts (see the blue dashed arrows).
Physically, this happens because, in comparison with orbit I,
orbit IT accumulates a larger positive phase contribution from
the Coulomb potential as it passes by the core, — ftt Vir(r)ldt
[see Eq. (2)]. With increasing 6y, the above-mentioned shift
becomes smaller and is almost negligible for perpendicular
emission [Fig. 5(d)]. This is not surprising since for 6,, = 90°
orbits I and II are symmetric with respect to the y axis. Thus,
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FIG. 6. (a) Same as Fig. 1(a) for the initial state of hydrogen atom
Yo(r) = e~ //m, and (b) for the initial state of w(()“)(r) ~ e~ " cosb.
The schematic diagram on the left side denotes the orbital symmetry
of the initial state and the interference trajectories. For more details,
see the text.

the influence of the Coulomb potential on the two orbits is the
same. A similar result has been reported in the study of the
interference carpets in ATI [49]. Therefore, more interference
stripes will appear in the low-energy region for the CQSFA, in
agreement with Fig. 4(a). Furthermore, the shift in A® is more
significant for smaller momenta [Fig. 5(c)] as, in this case, the
electron will need a longer time to leave the core region. This
will result in a larger positive phase contribution from the
Coulomb potential and a larger decrease in A®. Therefore,
the interference maxima in the photoelectron spectra will shift
more dramatically for smaller momenta. A similar behavior is
observed for other emission angles 6, , leading to the fanlike
structures in Figs. 1(a) and 4(a).

In the discussion above, we have assumed that the electron
is freed from the ground state of hydrogen atom with spherical
symmetry, ¥o(r) = e~ //7. Indeed, we find that the symme-
try of the initial electronic state also significantly influences the
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fan-shaped structure. If, instead, we employ an antisymmetric
initial state, e.g., (()“)(r) = (r|1p(()“)) ~ e~ cosf, and keep
the same binding energy (0.5 a.u.) for comparison, the
tunnel matrix element in Eq. (2) becomes (p(#y) + A(ty)| — r -
E(10)|¥") ~ E(t)p3,. Figure 6 shows the CQSFA simulations
of the two-dimensional PADs near the ionization threshold in
a linearly polarized laser field for the two kinds of initial
states. As one can see, for the initial state with spherical
symmetry, there are eight peaks in the first ATI ring, while for
the state with antisymmetry, only seven peaks can be observed
in the first ATI ring. The reason for the divergence is that
for the state with antisymmetry, there is an additional phase
difference of & between the direct trajectory and the forward-
scattered trajectory during the tunneling ionization [50] (see
the schematic diagram in Fig. 6). This results in the opposite
interference patterns for the two initial states with different
symmetries: The peaks shown in Fig. 6(a) are suppressed
in the PAD in Fig. 6(b), while the ionization suppression
in Fig. 6(a) becomes enhanced in Fig. 6(b). Therefore, our
simulation shows that the fan-shaped pattern can be used to
extract information about the target’s structure by analyzing
two-dimensional PADs. Note that our results are similar to
the finding in [28], in which an empirical dominant orbital
angular momentum related to the fan-shaped pattern changes
for initial s and p states. In contrast, in a CTMC simulation
[26], it is found that the dominant angular momentum in
the fanlike pattern is virtually independent of the atomic
species.

Finally, Figs. 7(a) and 7(b) show the tunneling time of
the photoelectrons from CQSFA and SFA for orbits I and I,
respectively, for a specific angle 8, . = 0°. Due to the ionization
by tunneling, the time #, becomes complex [2], and Im[#)] > O
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0.1 e el
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FIG. 7. (a) and (b) The real part (solid lines) and imaginary part (dashed lines) of the tunneling time for electrons with 6, = 0° in CQSFA
(red) and in SFA (black). (c) and (d) The corresponding initial velocity at the tunneling exit. The quasistatic expected velocity is denoted by

the blue lines. (a) and(c), orbit I; (b) and (d), orbit II.
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can be related to the tunneling time through the potential
barrier. For each kind of orbit, the photoelectrons are initially
ionized within a temporal window of about 0.027ycte (~60
attoseconds), and the orbits I and II originate from the adjacent
quarter cycles of the laser pulse. Therefore, the subcycle
fan-shaped structure has recorded attosecond time-resolved
electronic dynamics. In comparison with the SFA, for a given
final momentum ps, Re(f) in the CQSFA approaches the
driving-field crossing (¢t = 0) or its crest (r = —0.25T¢yc1e)
for orbit I or II, respectively. This increases (decreases) the
initial field-dressed momentum py for orbit I (orbit II). Along
orbit I, the electron experiences a deceleration in the Coulomb
potential as it moves towards the detector, while, for orbit II,
the electron is accelerated significantly along the polarization
direction due to the interplay of the Coulomb potential and
the laser field [31,36]. In Figs. 7(c) and 7(d) we illustrate
the change of the initial velocity vy = po + A(Re[#]) at the
tunneling exit. Both CQSFA and SFA simulations significantly
deviate from the adiabatic tunneling theory (blue lines in
Fig. 7), in which the electron is assumed to begin its journey
in the continuum with vanishing velocity [1,51,52].

IV. CONCLUSIONS

In summary, we have performed a detailed analysis of the
low-energy fanlike structure observed in PADs using a CQSFA
theory, in which only a few electron trajectories are required
to describe strong-field ionization, and which poses no restric-
tion upon the scattering angle. We show that this structure
constitutes a subcycle time-resolved holographic pattern from
the interference of direct electron trajectories and forward-
scattered trajectories that are deflected, but do not undergo
hard collisions with the core. We go beyond existing studies
by providing direct and in-depth evidence of how the Coulomb
potential alters the phase of the forward-scattered trajectories.
This affects different scattering angles and electron momenta
unequally, leading to the above-mentioned fanlike structure.
Moreover, our work shows that the fan-shaped pattern can be
used to extract information on the target structure, based on the
fact that the number of fringes in the PADs depends strongly
on the symmetry of the electronic bound state.

This physical interpretation of the fan-shaped structure dif-
fers from those presented in the literature. In [26], the emphasis
is placed on the fact that the fan-shaped structure corresponds
to a single specific Legendre polynomial. The structures are
then related to Ramsauer-Townsend fringes using indirect
arguments. Furthermore, the laser-dressed Kepler hyperbolae
with neighboring angular momenta that are associated with
the intracycle fringes would correspond to type II trajectories
in the present notation. However, due to the method being
classical and thus not accounting for quantum interference, no
direct evidence that the fanlike structure can be reproduced
is provided. A similar line of argument is used in [28] for
a very different parameter range, namely the multiphoton
regime. Therein, it is stated that the fan-shaped structure is
caused by the quantum state with an empirical dominant orbital
momentum quantum number /, which is the electron’s main
pathway into the continuum.

One should also note that the fan-shaped structure and
the spiderlike structure reported in Refs. [6,7] are very
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distinct holographic patterns, formed by the interference of
different types of contributing trajectories in very distinct
energy regions. While the fan-shaped structure stems from the
interference of orbits I and II, the spiderlike structure stems
from the interference of orbits II and III. This discrepancy is
related to the fact that the wave packet of orbit III is strongly
deflected by the core. With the increase of scattering angle,
a significant decrease in the probability density of orbit III
rules out its contributing to the fan-shaped structure. On the
other hand, the probability density of orbit III is concentrated
along the polarization axis, which is also the momentum
region occupied by the spiderlike structure. There is also an
“inner” spiderlike holographic structure, which occurs near the
ionization threshold. This structure was reported in Ref. [14],
and has been attributed to the interference between type 11
and type III orbits undergoing multiple recollisions. Since
the ionization events associated with the latter orbits are less
frequent than the standard type I and II orbits, they are not
prevalent in the fan-shaped structure studied in this work. For
details on the high-energy spiderlike structure see our recent
article [39].

In addition, studies employing the closely related CCSFA
method focus either on interference patterns at much higher
photoelectron energies [40], or on the low-energy structure
(LES) [38], whose nature is found to be classical and related
to Coulomb focusing. The fan-shaped structure is attributed
to the interference of all four types of trajectories, while in
our present work we find that it involves mainly trajectories I
and II. Typically, intracycle interference near the threshold is
viewed as a double slit type of interference between trajectories
reaching the detector directly and those starting in the opposite
side. This is a well-known effect within the SFA [29], for
which deflection by the Coulomb potential is neglected. Since,
however, the degeneracy of orbit II is lifted by the Coulomb
potential [31], it was not at all clear that the main contribution
to the fan-shaped structure would still be caused by only two
types of trajectories.

Itis also noteworthy that, overall, the CQSFA exhibits a very
good agreement with the TDSE. This includes the number of
fringes and substructure in the fan-shaped structure. The TDSE
yield, however, decays faster with regard to the deflection
angle. This may be due to the initial momentum and position
spread that exists for the TDSE, but is absent for the CQSFA. In
fact, recent studies on HHG [53-56] and strong-field ionization
[57] indicate that this spread is necessary for a quantitative
agreement with the TDSE.

Finally, a great advantage of the CQSFA is that it provides a
transparent picture in terms of electron orbits leaving its parent
ion and reaching the detector, whose contributions can be
switched on and off at will and directly influence the resulting
patterns. This means that the present method can be applied
to the understanding of Coulomb effects on other holographic
patterns, e.g., the well-known reduced fringe spacing in the
spiderlike holographic structure [6,7].
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