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Abstract. Metabolomic data can potentially enable accurate, non-invasive and  
low-cost prediction of coronary artery disease. Regression-based analytical 
approaches however might fail to fully account for interactions between  
metabolites, rely on a priori selected input features and thus might suffer from  
poorer accuracy. Supervised machine learning methods can potentially be used in 
order to fully exploit the dimensionality and richness of the data. In this paper, we 
systematically implement and evaluate a set of supervised learning methods (L1 
regression, random forest classifier) and compare them to traditional regression-
based approaches for disease prediction using metabolomic data.  
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1. Introduction 

Coronary artery disease (CAD) is one of the leading causes of morbidity and mortality 

worldwide [1]. Definitive diagnosis is by coronary angiography, an invasive procedure 

that can lead to severe complications [2] or by additional often costly imaging  

techniques. Non-invasive blood testing, using circulating metabolites [3] [4], could 

potentially minimize unnecessary tests and predict CAD with higher accuracy.  

Previous research however has been mainly restricted to classical regression-based 

methods [5] [6] and potentially fails to fully exploit the dimensionality and richness of 

the data by accounting for interactions between metabolites. Supervised machine 

learning (ML) methods might be better-placed to address these challenges but have yet 

to be systematically evaluated in this context. Our aims were to a) investigate and 

evaluate supervised ML methods for CAD prediction using metabolomics data and  b) 

compare their accuracy with traditional regression-based approaches. 
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2. Background 

Metabolites are small molecules produced during metabolism or generated by microbes 

within the body [7]. Metabolites are the end-products of gene expression, a process 

closely related to protein/enzymatic reactions and therefore potentially offer a direct 

molecular reflection of the cellular milieu that leads to pathophysiological changes.  

Circulating metabolites may help predict the presence of CAD by firstly identifying 

metabolic disturbances, relevant for atherosclerosis (e.g. diabetes and insulin resistance 

[8] [9]). Additionally, since atherosclerosis occurs at the blood-vessel wall interface, 

blood metabolite measurements could plausibly directly reflect this chronic process and 

help predict CAD existence and stability. However, for selected metabolites studied to 

date, the incremental predictive utility over routine clinical assessments has been  

modest and restricted to a few candidates measured using non-scalable methods.   

Recent high-throughput, low-cost and high-dimensional methods [4] (e.g. nuclear 

magnetic resonance spectroscopy), have re-invigorated hope for using metabolic 

signatures for CAD prediction but analyses of these complex data present new challenges 

before realized. 

ML techniques are data-driven approaches designed to discover statistical patterns 

in large high-dimensional multivariate data and have been previously used for creating 

accurate risk prediction models [10]. Supervised ML methods are a set of techniques 

which aim to infer a function from a labelled training dataset which can predict the  

class of future input vectors. We evaluated penalized logistic regression and random 

forest to assess the predictive performance of metabolites on CAD in a contemporary 

cohort of patients referred to hospital for chest pain investigation or planned coronary 

angiography.  

3. Methods 

3.1. Case and Exposure Definitions 

We used data from the Clinical Cohorts in Coronary disease Collaboration (4C) study 

(n=3409) which recruited patients with acute or stable chest pain from four UK NHS 

hospitals [11]. Patients consented to having their EHR extracted  and provided blood 

samples. We defined presence of CAD as a >50% stenosis [12], occurring in ≥1  

coronary arteries using data from: a) coronary angiography reports and b) EHR  

evidence of previous coronary revascularization procedures (Percutaneous Coronary 

Intervention, Coronary Artery Bypass Graft) recorded in EHR. Participants in whom 

CAD could not be ascertained were excluded. For each participant, 256 metabolites  

were quantified using an NMR technique.  Full details have been published elsewhere 

[4] [11].  Missing metabolite values were imputed and zero mean unit standardized by 

multiple imputation [13] (predictive mean matching [14]) and standardized to zero  

mean unit variance by first subtracting the means and dividing by the standard  

deviations. Data were randomly split into training and test subsets using a 3:1 ratio. 

3.2. Statistical Methods 

We performed logistic regression on each of log+1-transformed metabolite values 

adjusting for known risk factors. We derived principle component factors for the 
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standardized metabolite values and selected the first six for analyses as they accounted 

for >95% of the data variability. We then performed logistic regression on each of the 

Principal Component Analysis (PCA)-derived metabolite factors, and multiple logistic 

regression including all six. Adjusted (age, sex, use of statins, hypertension) and 

unadjusted models were Bonferroni corrected (p<0.05). We performed penalized  

logistic regression using the Lasso penalty which was defined as the lowest error 

obtained from a 50-fold cross-validation. We trained a random forest classifier using 

Gini impurity and 5,000 trees per ensemble. Initial cross-validation was conducted on 

the training set for both the proportion of variables used per tree as well as the  

maximum tree depth. A second cross-validation was conducted on the number of 

variables alone, whilst allowing trees to grow to their maximum depth. This removed  

the uncertainty of tuning a second parameter, and the possible increase in variance due 

to increased depth was considered well counterbalanced by using a very large number of 

ensemble trees. Final predictions were the average individual pooled predictions  

[13] [14] across imputed datasets and evaluated by calculating the percentage of correct 

predictions, ROC curves and AUC.  

4. Results  

We identified 1474 patients with metabolomics in whom CAD was ascertained (Table 1). 
 

Table 1. Summary of study population 

Clinical Characteristics  Clinical 

Characteristics 

   

Men (%) 1106 (78%) Statin use (%) 447 (30%) 
Age (Years) 62.4± 11.6 Diabetes (%) 523 (35%) 
BMI (kg/m2) 29.4± 5.3 Current smoker (%) 278 (28%) 

Diagnosed hypertension (%) 1146 (77%) CAD present (%) 1037 (70%) 

4.1. Comparison of Model Predictiveness 

In the unadjusted models, the random forest classifier had the highest AUC and  

accuracy values and highest ROC curve (Figure 1) and both ML models outperformed 

PCA regression (Table 2). AUC, raw accuracy and PPV were mostly similar across 

models. All models had significantly higher sensitivities than specificities, but PCA 

regression had the most extreme values as it predicted the vast majority of positive  

CAD cases correctly but nearly none of the negative CAD cases. The large disparity in 

sensitivity and specificity for the two other two models shows that they failed to 

accurately distinguish between disease states. When adjusting for confounders, PCA 

regression had the best accuracy but higher AUC and accuracy values compared to 

unadjusted models were observed in all models.  
 

Table 2. Adjusted/unadjusted prediction results; highest AUC values highlighted. 

Model Accuracy AUC Sensitivity Specificity PPV NPV 

PCA regression 0.686 0.625 0.984 0.026 0.691 0.429 
PCA regression adjusted 0.759 0.767 0.957 0.322 0.757 0.771 

L1 regression 0.688 0.663 0.882 0.261 0.725 0.550 
L1 regression adjusted 0.767 0.765 0.949 0.339 0.760 0.750 

Random forest 0.713 0.675 0.941 0.209 0.724 0.615 
Random forest adjusted 0.732 0.711 0.937 0.278 0.741 0.667 
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Figure 1. Unadjusted (left) and adjusted (right) ROC curve  

4.2. Model Compositions and Predictive Metabolites 

Logistic regression: In individual metabolites, strong CAD associations after 

Bonferroni correction were primarily related to lipids, (e.g.  HDL and VLDL), 

apolipoprotein A-I, the ratio of triglycerides to phosphoglycerides and the ratio of 

omega-6, monosaturated, polysaturated values to total fatty acids.  With logistic 

regression on individual PCA-derived factors, the first PCA factor  (VLDL, ratio of 

apolipoprotein B to apolipoprotein A-I, ratio of apolipoprotein B to apolipoprotein A-I, 

0.404 variance) remained statistically significant. When using all factors and adjusting 

for confounders, the first and second factors (IDL and LDL, 0.165 variance) were 

statistically significant. 

Penalized logistic regression: In the unadjusted models, the ratio of  

apolipoprotein B to apolipoprotein A-I was found to have the largest, statistically 

significant negative association with presence of CAD. This was followed by  

cholesterol esters in small LDL which had a large positive association with presence of 

CAD. Saturated fatty acids also had a large negative association, whilst phospholipids  

in chylomicrons and extremely large VLDL had a large positive association. Overall  

~70 predictive metabolites where included in each model with 117 metabolites  

included in at least one of the models used to average the prediction. This suggests that 

whilst excluding confounders, it is difficult to select a small profile of metabolites to 

accurately predict the presence of absence of CAD using penalized regression.  When 

adjusting for confounders, substantially fewer metabolites were selected; the ratio of 

monounsaturated fatty acids to total fatty acids and triglycerides to total lipids ratio in 

IDL had the largest statistically significant positive association while glutamine and 

acetoacetate had negative associations. 

Random forest: In the unadjusted classifier, creatinine was the most strongly 

significant metabolite followed by triglycerides to total lipids ratio in IDL,  

phenylalanine, albumin and lactate. Similar predictors were observed in the adjusted 

models with age being the most significant component followed by creatinine, 

triglycerides to total lipids ratio in IDL, phenylalanine, albumin and lactate. Similar 

metabolite profiles for adjusted/unadjusted models suggest that random forest does not 

incorporate the additional information of confounding variables as well as the other 

models. 
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5. Concluding Discussion 

While ML approaches predicted presence/absence of CAD in the unadjusted models 

(using metabolite data only) with high accuracy/sensitivity, when adjusting for 

confounders they were outperformed by PCA regression in terms of ROC AUC and 

accuracy suggesting that a small number of metabolites can potentially be included in 

prediction models. Multiple individual metabolites that were found statistically 

significant are in agreement with previous literature and our pathological understanding 

of CAD and its development. Among these, the atherogenic lipid particles such as LDL 

are known to be causally related to atherosclerosis, while others such as creatinine  

reflect renal function and are also established markers of CAD risk. Several other 

metabolites have no previous robust association with CAD including phenylalanine and 

lactate and represent potentially novel avenues for investigation. However in seeking a 

metabolic signature to predict CAD, ML models suffered from low specificity. 

This exploratory analysis has identified and exemplified the value of ML models  

for CAD prediction using high-dimensional data, and shown that accuracy of  

traditional regression-based approaches can be surpassed. Nonetheless further research 

is required before these methods can be translated into clinical solutions. 
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