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ABSTRACT

A simple quasigeostrophicmodel is used to examine the outflow from a river, estuary, or strait into a coastal

ocean. As shown by Johnson et al., these quasigeostrophic outflows are accurately described by analytical

long-wave solutions. This paper first uses these solutions and contour dynamics simulations to discuss the

behavior of coastal outflows. Second, it extends the model and the long-wave theory to consider the effects of

ambient currents, tides, winds, or a variable source flux. Third, consideration of the momentum flux at the

source is used to understand the turning of the current, showing that steady solutions conserve momentum,

hence resolving the momentum imbalance paradox of Pichevin and Nof. Finally, a new numerical scheme to

compute steady outflowboundaries is developed. Themodel focuses on the key dynamics driven by the source

velocity and the generation of vorticity as the buoyant fluid adjusts. The simplicity of the model, and insight

given by the long-wave solutions, enables a full understanding of the dynamics. The outflows display a range of

behaviors, including indefinitely growing near-source bulges, steady boundary profiles with varying offshore

width, bidirectional currents, and rarefying or eddy-like leading heads, all of which can be understood with the

long-wave theory. Despite the simplicity of the model, the results show good agreement in comparison with

observations, experiments, and numerical models.

1. Introduction

Outflows of buoyant fluid to the coastal ocean from

rivers or straits connecting seas and ocean basins can be

important features both dynamically and ecologically.

More than a third of land-based rainfall travels to the

ocean through rivers (Trenberth et al. 2007). The fluid in

the source may have significantly different temperature,

salinity, or depth to the ambient and will then adjust and

gain relative vorticity as it is expelled (Spall and Price

1998). These differing properties may cause dramatic

ecological effects, supporting marine ecosystems but

also serving as sources of pollutants such as in the eu-

trophied dead zone of the Mississippi plume (Rabalais

et al. 2002).

The dynamics of coastal outflows can be highly com-

plex due to nonlinearity, the range of temporal and

spatial scales, time dependence, and the significant

number of influencing effects including buoyancy,

rotation, bathymetry, currents, tides, winds, and mixing.

However, the dynamics can be understood and classified

according to the Kelvin and Rossby numbers. Garvine

(1995) identifies the Kelvin number, the ratio of the

offshore length scale to the Rossby radius, as a key di-

agnostic of outflow dynamics. Small-scale outflows such

as the River Teign in Devon or those close to the

equator such as the Amazon have small a Kelvin num-

ber, so they are not affected significantly by rotation and

tend to form radially spreading outflows. Outflows

with a large Kelvin number, comprising large-scale,

mid- and high-latitude outflows such as the Delaware

and Rhine plumes and the Algerian and Norwegian

coastal currents, are affected significantly by rotation.

These typically form asymmetric outflows, which turn in

the direction of Kelvin wave propagation, hereinafter

referred to as ‘‘downstream’’ (rightward in theNorthern

Hemisphere, leftward in the Southern Hemisphere),

and form coherent coastal currents stretching up to

hundreds of kilometers along the coast.
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The second key parameter is the Rossby number of

the outflow. For narrow sources with high discharge,

such as the Columbia River (Hickey et al. 1998; Horner-

Devine 2009) and Hudson River (Chant et al. 2008)

plumes, the Rossby number is sufficiently large that in-

ertia is dynamically significant in the source region. In

these cases a large, roughly circular bulge grows near the

source and a much smaller coastal current carrying

only a fraction of the source flux is formed (Avicola and

Huq 2003; Horner-Devine et al. 2008). The bulge region

is in gradient-wind balance but the coastal current

is in geostrophic balance (Horner-Devine et al. 2006;

Yankovsky and Chapman 1997). For wider sources, or

when the outflow velocity is not as large, such as the

Chesapeake Bay or Delaware Bay outflows, the Rossby

number is low and the near-source region is in geo-

strophic balance, with a smaller bulge and more of the

source flux entering the coastal current (Horner-Devine

et al. 2015; Fong and Geyer 2002). Buoyancy is impor-

tant in the dynamics of outflows, with the expelled fluid

adjusting in depth and gaining vorticity via the stretch-

ing or squashing of vortex columns. While this genera-

tion of relative vorticity, or differences in potential

vorticity from the source to the ambient fluid, is not al-

ways discussed explicitly in studies of outflows, it has

been investigated in a number of works, including ob-

servational (Lake et al. 2005), experimental (Lane-Serff

and Baines 2000), and modeling (Marques et al. 2014)

studies of outflows, both through straits (Spall and Price

1998) and from rivers (Beardsley et al. 1985).

Outflows may also be surface advected or bottom

trapped, with the Hudson Bay, Connecticut River,

Chesapeake Bay outflow, and Mississippi River plumes

being examples of surface outflows and the Rhine and

Long Island Sound being bottom-trapped outflows

(Horner-Devine et al. 2015). A number of factors such as

variable outflow strength, ambient currents, tides, wind

forcing, and a range of processes responsible for mixing

may have significant effects on the dynamics of an out-

flow. The extent of the source of a coastal current can be

anything from highly focused river outflows to extremely

broad, almost continuous sources, such as along the

Greenland coast (Chapman and Beardsley 1989). In this

work, low Rossby number outflows are considered over

the full range of Kelvin numbers and source width and

velocity profiles, with the effects of variable source

strength, ambient currents, tides, and winds also ana-

lyzed. In particular, observations of the Chesapeake Bay

outflow will be used as a typical example to test and

compare to a number of the results here.

The dynamical complexity of coastal outflows has led

to theoretical investigations typically focusing on one

particular aspect or area of the flow in isolation and

developing scalings or qualitative representations of the

dynamics. A number of works have considered steady

coastal currents with constant width. For example, the

two-dimensional alongshore velocity and depth profiles

of a rotating gravity current in a channel have been

derived (Hacker and Linden 2002; Martin and Lane-

Serff 2005; Martin et al. 2005). In experiments, the

scalings of steady, geostrophic, constant-width coastal

currents typically match well to the results (Davies et al.

1993; Lentz and Helfrich 2002; Avicola and Huq 2002;

Thomas and Linden 2007).

The temporal development of vortical flows near

boundaries and the effects of precursorKelvin waves are

discussed in Hermann et al. (1989). Kubokawa (1991)

considered the formation of steady, constant-width

currents from an outflow with a flux of zero potential

vorticity fluid from the left-hand side of the source and a

flux of negative potential vorticity fluid from the right-

hand side of the source in a quasigeostrophic (QG)

1.5-layer model representing the outflow from the

Tsugaru Strait, similar to the present approach.He showed

that steady solutions do not always exist, in which case a

bulge of outflow fluid confined near the source must

grow. McCreary et al. (1997) performed simulations in a

fully nonlinear 1.5-layer model with entrainment and

horizontally varying salinity, for both low and moderate

Rossby numbers. For low Rossby number, the results of

this more complex model supported those of the simpler

Kubokawa model.

It is important to understand where and when these

steady, constant-width currents will form and how they

attach to unsteady or variable-width parts of the flow by

considering the full dynamics of the outflow. Johnson

and McDonald (2006) considered an outflow of vortical

fluid in the rigid-interface limit of the current problem

(i.e., for zero Kelvin number) and derived an analytical

expression for the steady boundary profile and velocity

field, showing how the downstream constant-width

current joined to a variable-width steady current near

the source and an unsteady head downstream.

Other theoretical approaches have included concep-

tual models for the influence of winds on a river plume

(Fong and Geyer 2001; Lentz 2004) or, for inertial out-

flows, modeling the bulge as a circular eddy with bottom

‘‘clipped’’ by the coast (Nof 1988). This clipped circle

method appears to closely resemble bulges observed in

laboratory (Avicola and Huq 2003) and numerical

(Chen 2014) experiments for moderate Rossby number

and has been used to diagnose the fraction of down-

stream transport in these experiments as a function of

the ‘‘impact angle’’ of the outer bulge current, repre-

sented as a baroclinic jet, based on the theory of

Whitehead (1985).
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Another approach is to integrate the momentum

equations over a control volume to deduce properties of

the flow (Nof 1988; Pichevin and Nof 1997; Nof and

Pichevin 2001; Nof et al. 2002; Nof 2005). Applying this

technique, Pichevin andNof (1997) deduced that steady,

rightward-turning currents cannot conserve momentum

and so are impossible—the so-called momentum im-

balance paradox. To resolve this paradox, they suggest

that the flow must be unsteady and either periodically

produce westward-propagating eddies for a northward-

oriented outflow on a b plane or have an indefinitely

growing bulge near the source for non-northward out-

flows or those on an f plane. The significant implication

of these results is that buoyancy and the Coriolis force

are not sufficient to explain observations of steady

rightward currents in the oceans and in experiments as

previously thought. Instead, some other effect, such as

an angled outflow, alongshore currents, or winds, must

provide the momentum flux to turn the current in each

one of these cases.

The approach of this paper is to develop and apply a

model of outflows that captures the key dynamics yet is

simple enough to easily interpret and to enable full

mathematical analysis. The objective is that a complete

understanding of this simplemodel can be used as a base

to expand on and discuss the results of more sophisti-

cated studies. The dynamics are analyzed in full before

further effects and complexity are introduced. It will be

seen that this model represents many aspects of outflows

well. Considering the full spatial and temporal dynamics

of the whole outflow shows when and where certain

features will form. For example, there are situations in

which steady solutions exist but are never realized by a

flow evolving from a steady source.

The outflow is considered in a QG 1.5-layer model that

captures the key dynamics: the rotation-modified source

velocity and the generation of vorticity as the buoyant

outflow adjusts. Although this model makes many sim-

plifications, it is able to explore effects such as variable

source outflow, ambient currents, tides, and winds. The

strength of the model is its simplicity. This enables ana-

lytical solutions to be found for the boundary profile of the

outflow and velocity field over time in many cases. These

analytical solutions are derived for the primary problem

of a constant strength outflow in Johnson et al. (2016,

hereinafter JSM). Here, this theory is discussed in an

oceanographic context and extended to consider the ef-

fects of a variable-strength source or ambient currents.

The analytical solutions, along with numerical simula-

tions, are used to build a detailed understanding of the

dynamics of QG outflows.

Section 2 introduces the model and the analytical so-

lutions given by JSM. Section 3 examines the primary

problem of a constant-strength outflow without ambient

currents, tides, or winds. Sections 3a–c give results for

the evolution of QG outflows comparing simulations

and theory for zero, positive, and negative potential

vorticity. Section 3d uses the momentum flux at the

source to analyze the turning of the current and shows

analytically and numerically that steady solutions con-

serve momentum. Appendix D presents a numerical

scheme for computing steady boundary profiles for

general outflows and gives an asymptotic steady

boundary profile for the limit a / 0. Section 4 extends

the model to consider the effects of variable-strength

sources, alongshore currents, tides, or winds. Conclu-

sions and discussion are presented in section 5.

2. Quasigeostrophic model of a coastal outflow

The coast is modeled as a straight wall along the x axis

and the river mouth as a source discharging fluid into an

initially quiescent ocean occupying the upper half plane

y . 0 (see Fig. 1). The source water is relatively lighter

than the ambient, so it adjusts quickly and ageostroph-

ically to a constant depth D. Let the source lie between

x 5 2L and x 5 L and have depth Ds and volume flux

Q0D, giving an area flux, once adjusted, of Q0, herein-

after simply referred to as the flux. To conserve potential

vorticity (PV) as the expelled fluid adjusts, the squashing

of vortex columns generates relative vorticityP, which is

constant, and positive if Ds , D (Fig. 1b) or negative if

Ds . D (Fig. 1c). The unperturbed depth of the outflow

D is constant so the PV P/D is proportional to the gen-

erated relative vorticity P and is constant, but takes the

sign ofP so itmay be positive or negative.Here, the focus

is on the dynamics following this rapid ageostrophic ad-

justment period so the distance over which the outflow

adjusts is taken to be negligible, compared to the other

scales in the problem.

Coastal outflows are typically large scale but have

shallow features. This work considers outflows without

significant inertia (i.e., small Rossby number) over long

periods, so an appropriate model is that of 1.5-layer QG

flow. Let h be the small interface perturbation, f be the

Coriolis parameter, g0 be the reduced gravity, and g0 5
g(r2 2 r1)/r2 for gravitational acceleration g and upper

and lower layer densities r1 and r2. These give h 5 g0h/f,
a streamfunction for the horizontal velocity u 5 (u, y),

that is,

u5

�
2
›h

›y
,
›h

›x

�
. (1)

The QG PV is (=2h2h/L2
R)/D, for the Rossby radius of

deformation LR 5
ffiffiffiffiffiffiffiffi
g0D

p
/f , and is conserved so
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D

Dt

 
=2h2

1

L2
R

h

!
5 0, (2)

where D/Dt is the material derivative.

An arbitrary source velocity profile is imposed with

the boundary condition on the coast h(x, 0) 5 Q(x),

where the source function Q(x) (m2 s21) is such that

Q(x)5 0 for x,2L andQ(x)5Q0 for x. L. This can

be thought of as a dam-break scenario where basins with

surface heights h 5 0 and h 5 fQ0/g
0 are separated by a

wall with a gap. When the dam is released, the propa-

gation of Kelvin waves rapidly establish the value

h(x, 0) 5 Q0 for x . L along the right-hand coastline,

with this process being instantaneous in theQG limit. The

form of Q(x) is related to the normal outflow velocity by

y(x, 0)5
›Q

›x
. (3)

If D is the domain occupied by the ejected fluid,

bounded by ›D , then from (2)

=2h2
1

L2
R

h5

�
P , insideD ,

0 , outsideD .
(4)

This equation, combined with the boundary condition

specifying the source flux

h5Q(x), for y5 0, (5)

and the requirement that the fluid is quiescent far from

the source

=h/ 0, as x2 1 y2 /‘ , (6)

gives the streamfunction h. The fluid velocity can then

be found using (1). The problem is closed with the initial

condition that the source is switched on at t 5 0 and the

condition that ›D is a material boundary, which, for

outflows where ›D can be expressed as y 5 Y(x, t), can

be written D(y 2 Y)/Dt 5 0 on y 5 Y(x, t) and re-

arranged to

Y
t
5 fh[x,Y(x, t)]g

x
, (7)

where subscripts denote partial derivatives.

Equations (4)–(7) describe the evolution of the ex-

pelled vortical fluid. The velocity is determined by the

streamfunction h, which is in turn completely de-

termined by the shape of the curve ›D . Since the PV is

piecewise constant, the evolution of this curve can be

accurately and efficiently computed using the method of

contour dynamics with surgery (Dritschel 1988).

If lengths in this problem are scaled on
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q0/jPjp

,

the downstream width of a vorticity-driven current in

the absence of background rotation (Johnson

andMcDonald 2006), and time on the vortical timescale

1/jPj, then the flow behavior depends on the sign of P
and on the ratio of the Rossby radius to the vortical

length scale,

a5L
R

ffiffiffiffiffiffiffi
jPj
Q

0

s
. (8)

JSM describe how the parameter ameasures the ratio of

the strengths of vortical effects to Kelvin wave–induced

source flow and also show that the other nondimensional

parameter LR/L, for source width L, has little influence

on the leading-order dynamics. For large a the dynamics

are dominated by the anomalous vorticity, and for small

a they are dominated by the source flow.

As section 3d notes, both the rotation-modified com-

ponent of the source velocity and the vorticity contribute

FIG. 1. The flow geometry near the inlet. (a) A side elevation of

a vertical cut through the inlet region. Before the inlet is switched

on, the ambient fluid in y. 0 is a two-layer quiescent fluid with

density r1 , r2. Here the depthDs of the inlet source is greater than

the depth D of the upper-layer ambient fluid, and so the expelled

fluid squashes vertically in a thin ageostrophic region matching to

the exterior flow. The expelled fluid, occupying a region D, thus

acquires negative potential vorticity P. The disturbance to the in-

terface height is given by h(x, y, t). (b) As in (a), but forDs ,D, so

the expelled fluid stretches vertically and acquires positive poten-

tial vorticity soP. 0. (c) A plan view in the horizontal (x, y) plane

showing the boundary y5Y(x, t) of the vortical expelled fluid at

some time t. 0.
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fluxes of xmomentum that can be used to understand the

turning of the current. The relative importance of these

two momentum fluxes is determined by a. When the

outflow adjusts to a shallower level,P is negative and the

vorticity contributes negative momentum flux, working

against the source and driving the current leftward. As

a measures the balance of these two fluxes, it controls

how much fluid can turn left and how much must turn

right. In the rigid-interface limit a/ ‘, vorticity is solely
responsible for turning the current, and analytical solu-

tions for steady boundary profiles are given by Johnson

and McDonald (2006), with currents with P positive

turning right and those with P negative turning left. The

equations here are left in fully dimensional form and,

noting that the evolution of an outflow depends only on

a and the sign of P, the dynamics are discussed over the

full parameter range.

Long waves

Typically coastal outflows have a much larger along-

shore extent than offshore. In this case, (4) can be re-

placed by

›2h

›y2
2

1

L2
R

h5

�
P , 0, y,Y ,

0 , y$Y ,
(9)

and solved explicitly to give the streamfunction h(x, y, t)

for a current of width Y(x, t)

h5L2
RP

"
e(y2Y)/LR

2
1

 
Q

L2
RP

1 12
e2Y/LR

2

!
e2y/LR 2 1

#
.

(10)

Using this expression in (7) and writing Z(x, t) 5
exp(2Y/LR) gives the equation for the evolution of the

current width

›Z

›t
1PL

R
Z

 
11

Q

L2
RP

2Z

!
›Z

›x
52

Z2

L
R

›Q

›x
. (11)

Additionally, evaluating (10) at y 5 Y(x, t) gives

Z2 2 2

 
Q

L2
RP

1 1

!
Z1 15

22Q
e

L2
RP

, (12)

giving Z(x, t), and therefore the current width Y(x, t),

as a function of Q(x) and h(x, Y) 5 Qe(x, t), the flux

exterior to the current. For steady solutions, Qe is a

constant and (12) gives the steady current width.

JSM use (10)–(12) to construct the form of the

variable-width steady solutions and the leading un-

steady boundary profiles for arbitrary Q(x), thus com-

pletely characterizing the ultimate evolution of the flow.

For simple source velocity profiles, they also find ana-

lytical expressions giving the full evolution of the out-

flow over time by following the characteristics of (11).

Comparison of these long-wave results with contour

dynamics simulations of the full problem show good

agreement both in the evolution of the material

boundary and in the velocity profiles. Here, a number

of these results will be used, and the implications of

(10)–(12) will be analyzed in an oceanographic context

for outflows of variable strength or with alongshore

currents.

The long-wave approximation is formally valid if the

source width L is large compared to either the current

width Y or the Rossby radius LR. However, it also ap-

pears to be accurate for narrow sources. In fact, even

with a point source (L/ 0), the interfaceY is slowly and

smoothly varying in the x direction, and JSM find that

the long-wave approximation reproduces much of the

evolution correctly. Thus, the precise details of the

source velocity profile appear to have only a weak effect

on the evolution of the outflow.

3. Constant strength sources without ambient
currents, tides, or winds

This section describes the outflow behavior over the

full range of a for the simple starting case of a constant

flux source without the complicating effects of ambient

currents, tides, or winds. If the expelled source fluid

adjusts to a deeper-level, vortex stretching will generate

positive relative vorticity. As the momentum flux is

positive (section 3d) for positive perturbation PV, the

current turns to the right. If the expelled fluid adjusts to a

shallower level, vortex squashing will generate negative

relative vorticity. For negative perturbation PV, the

momentum flux can be negative and the current can turn

to the left. The discussion here is thus split into three

cases: zero PV outflow (a5 0), cooperative positive PV

outflow, and competitive negative PV outflow. That is,

after nondimensionalization, P 5 0, 61.

a. Outflow of zero PV fluid

If the perturbation PV of the outflow fluid is zero, then

it is simply passively advected by the source flow. The

velocity field due to the source is derived in appendix B.

It gives an asymmetric outflow due to the rapid radiation

of Kelvin waves. For a point source, a universal solution

for this problem can be obtained by scaling lengths on

LR and time on L2
R/Q0 (a different scaling to that dis-

cussed earlier) and is shown in Fig. 2. The outflow turns

to the right and moves downstream in a thinning current

with edge x5 xe, downstream given very closely by xe 5
(Q0t/LR) exp(2y/LR). The flow cannot evolve to form a
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steady, constant-width current and the bulge at the

source grows indefinitely. The offshore extent of the

bulge slows from fast initial growth to grow logarith-

mically in time, as can be seen by considering (B6) for

x 5 0 and noting that for r � LR, K1(r/LR) decreases

exponentially in r. The boundary profile for small time is

given by the rigid-interface solution: a growing semi-

circle with radius r5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Q0t/p

p
.

b. Outflow of positive PV fluid

If the outflow fluid has positive PV, then there is an

additional flux of positive x momentum and the current

is further driven rightwards under the influence of its

image in the wall. The evolution of the expelled fluid

for a range of a is shown in Fig. 3. For small a (large

Kelvin number), vorticity is weak compared to the

source and a solution similar to that for zero PV (Fig. 2)

is found, except that, for nonzero a, a steady, constant-

width current always forms. This steady current is led

by a rarefying head with boundary profile accurately

given by a similarity solution to (11) (see JSM). For large

a (small Kelvin number), the flow is dominated by the

vorticity that drives the flow rightward in a steady,

constant-width current, led by a large eddy. The solution

for a5 5 is close to that for the rigid-interface limit a/‘
discussed by Johnson and McDonald (2006).

The width of the steady current, which is the final state

for all a and can be seen for t5 30 and a5 1 in Fig. 3, is

given by setting Qe 5 0 in (12) to find

Y5L
R
cosh21

 
11

Q
0

PL2
R

!
. (13)

The nondimensional steady currentwidthY 0 5Y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffijPj/Q0

p
increases monotonically with the parameter a and

tends to the limiting width of
ffiffiffi
2

p
. In Fig. 4 this analyt-

ical solution is compared to the nondimensionalized

average current widths from contour dynamics simu-

lations. For all values of a the near-source bulge stops

growing when it reaches the steady current width. At

this point, the constant-width current is progressively

established downstream, perturbed only by interfacial

Rossby waves.

Figure 5a shows a satellite radar image of the surface-

intensified outflow from the wide mouth of Chesapeake

Bay. The region occupied by the expelled fluid down-

stream of the source bears a strong resemblance to QG

positive PV outflow, shown in Figs. 5b and 5c for both a

point source and for a finite width source with uniform

outflow velocity profile, that is, y(x, 0) 5 y0. Both the

observations and simulations show a long, narrow out-

flow confined to the coast, slowly varying about a steady

boundary profile and terminating in a rounded head.

This rounded head is typical of the positive PV simula-

tions presented here (see also Stern and Pratt 1985) and

does not form for a zero PV outflow (cf. Fig. 2). Closer

to the source, the comparison is not as good, with

the Chesapeake plume displaying a localized bulge.

Such a bulge has been shown to grow in size with in-

creasing Rossby number, for example, experimentally

by Horner-Devine et al. (2006) and in a 3D primitive

equation numerical model by Fong and Geyer (2002).

Such a finite Rossby number effect is not captured in

our QG model.

A closer comparison of the observed and model ve-

locity fields in the vicinity of the head of the current is

shown in Figs. 6a and 6b, with arrows in Fig. 6a showing

observed current speed and direction from later direct

measurements, aligned to this satellite image. These

show strong downstream flow near to the coast within

the current, which weakens and turns away from the

coast at the edge of the current. There is then a backflow

of the ambient fluid around the head and back toward

the source. This is typical of a current with positive

vorticity, and although other factors such as wind may

FIG. 2. Contour dynamics results showing the boundary of a zero

PV outflow driven by a point source at the origin for non-

dimensional times t5 1, 5, 10, 15, 20. In this and all subsequent

figures, the coast is shown as a thick black line with a notchmarking

the position of the source.

FIG. 3. The boundary of a positive PV outflow driven by a point source in contour dynamics simulations forP511

and a5 0.2, 1, 5 at times t5 10, 30.
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influence the surface velocity, these results match well

with velocity vectors produced by the QG model and

displayed in Fig. 6b.

c. Outflow of negative PV fluid

For outflows of fluid with negative PV, the vorticity

contributes a flux of negative x momentum and drives

the expelled fluid to the left, opposite to the rightward

drainage pathway established by Kelvin wave radiation.

The inverse Kelvin number a measures the relative

importance of the vorticity-related momentum to the

source-expelled momentum in the momentum balance.

Thus, for small a (high Kelvin number) the fluid is ex-

pected to predominantly turn rightward and for large

a (small Kelvin number) to turn left. The evolution of

the expelled fluid boundary over time for various values

of a is shown in Fig. 7. For small a, the source dominates

and the outflow closely resembles the zero PV outflow in

Fig. 2. For large a, the vorticity dominates and the flow is

driven leftward, with the solution for a5 5 similar to the

rigid-interface solution. For moderate values of a, a bi-

directional current forms.

For a# 1, Fig. 7 shows the bulge near the source grows

indefinitely with logarithmically growing offshore dis-

placement. Thus, the source fluid is split between the

growing bulge and the leftward and rightward currents.

Steady, constant-width currents flowing both leftward

and rightward are possible, but are not observed to form

in the initial value problem for wide sources, as pre-

dicted by the long-wave theory. For narrow sources,

contour dynamics results show that a steady leftward

current can form but a steady rightward current has not

been found for a # 1. The generic behavior for these

currents is to form rarefactions, that is, thinning cur-

rents, the shape and velocity profile of which are accu-

rately described by simple solutions of (11) (see JSM for

details). Thus, for a # 1, the evolution is in general un-

steady, the only exception being a section of steady

leftward current in the case of a narrow source.

When a. 1, the interface near the source evolves to a

steady boundary profile for all outflow velocity profiles.

For wide sources this is given by the solution of (12) (see

JSM), and for narrow sources it can be efficiently com-

puted using the numerical scheme described in appendix

D. These steady solutions are led, as seen in the a 5 0.2

and a 5 1 results at t 5 30 in Fig. 7, by rarefying head

profiles to each side, given by simple solutions of (11),

again described in JSM. When a is above a critical value

ac ’ 1.82, the leftward rarefaction is overtaken and the

steady solution terminates in a vortical head, as dis-

played for a 5 5 in Fig. 7.

Outflows with negative PV closely resemble the nu-

merical results of McCreary et al. (1997), who employ a

1.5-layer, variable density model to model freshwater

outflows into a preexisting oceanic mixed layer of depth

H 5 10m. They note that freshwater outflow is analo-

gous to the source fluid having relatively low PV fluid, or

fluid having negative vorticity anomaly in the termi-

nology here. They find, in particular, upstream (left-

ward) turning of the outflow upon entering the ocean. A

direct comparison with their results is made here using

the same parameters used to produce Fig. 3 of their

FIG. 4. The analytical solution for the nondimensional steady

current width Y 0 5Y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffijPj/Q0

p
, where Y is given by (13), as a func-

tion of a (blue line) and the nondimensionalized average current

widths in contour dynamics simulations (red circles). The limit

Y/
ffiffiffi
2

p
as a/‘ is shown as a black dashed line.

FIG. 5. Comparison of the Chesapeake Bay outflow to QGoutflows. (a) A satellite radar image of the outflow from

Chesapeake Bay turning rightward and forming a coastal current reproduced from Donato and Marmorino (2002).

(b),(c) Contour dynamics simulations showing the boundary profiles of positive PV outflows from a (b) point source

and (c) a uniform velocity source distributed from x523 to x5 3 at time t5 30 for P511 and a5 2.
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paper: an inflow volume flux of 1010 cm3 s21, which upon

entering a mixed layer of depth 10m, translates here to

an area flux of Q0 5 103m2 s21. In their experimentffiffiffiffiffiffiffiffi
g0H

p
5 80 cm s21 and f 5 8 3 1025 s21, implying a

Rossby radius LR 5
ffiffiffiffiffiffiffiffi
g0H

p
/f 5 10 km. Since McCreary

et al. (1997) do not directly consider PV dynamics, the

scale for relative vorticity jPj is less straightforward to

estimate. A reasonable choice is jPj 5 2 3 1025 s21,

since it satisfies the QG requirement that jPj/f � 1 and

is compatible with relative vorticity generation by fluid

column compression (as in Fig. 1c) by DH ’ 2m gen-

erating relative vorticity of order fDH/H’ 23 1025 s21.

With this choice, the dimensional length scale isffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q0/jPjp

’ 7.1 km, the inverse Kelvin number a 5
LR/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q0/jPjp

’ 1.4, and the dimensional time scale

jPj21 ’ 0.58 days.

Figure 3 of McCreary et al. (1997), reproduced in

Fig. 8a, shows a snapshot of the depth contours of the

outflow at 40 days. To compare, the present model is run

with source fluid having negative PV and a 5 1.4 for 80

time units, or’46 days. The results are shown in Fig. 8b,

where the plots have been inverted to enable direct

comparison. The broad structures of the outflows are

remarkably similar in displaying a wider, rightward up-

stream outflow with a thinner leftward-propagating

plume driven by Kelvin wave propagation. After

40 days the outflow in Fig. 8b has spread upstream

(positive x) a distance of 20 distance units, that is,

’140 km, which is less than the ’240 km upstream

spread of the plume computed by McCreary et al.

(1997). Some of this difference may be attributed to the

choice of jPj, and also to the fact that theMcCreary et al.

(1997) model is fully nonlinear, in contrast to the QG

dynamics here. Indeed, some evidence for non-QG ef-

fects in the results of McCreary et al. (1997) are visible

in the enhanced offshore spreading of the plume in

McCreary et al. (1997), which, at 60 km after 40 days

(Fig. 8a), is more than the ’25km in Fig. 8b. McCreary

et al. (1997) also run a ‘‘quasi linear’’ version of their

model, in which momentum advection is neglected, with

the same parameter values (see their Fig. 8) in which the

maximum offshore spread of the outflow is ’30 km,

which gives further evidence for the offshore spreading

of the outflow being a non-QG effect.

d. Momentum balance and the turning of outflows

Analyzing the momentum fluxes in a coastal outflow

provides a useful tool to understand the turning of the

current and the relative importance of different factors

in controlling this. Appendix A considers a steady flow

and integrates the nonlinear x-momentum equation of

the rotating shallow water equations over the region S

bounded by the curve ›S, for either a large rectangular

region or the region bounded by the outflow boundary

›D and x 5 6R for large R, and shows that QG flow

trivially satisfies the leading-order geostrophic balance,

FIG. 6. Comparison of the head boundary profiles and velocities from (a) a satellite radar image of the head of the

ChesapeakeBay outflow reproduced fromDonato andMarmorino (2002) with white lines showing velocity vectors

from later direct measurements and (b) the head from a contour dynamics simulation of a positive PV outflow from

a point source for P511 and a5 2 at time t5 30, with velocity arrows shown in green and the largest arrow

indicating a nondimensional velocity of 0.9.

FIG. 7. Contour dynamics results showing the boundary of a negative PV outflow driven by a point source at the

origin at times t5 10, 30, for P521 and a5 0.2, 1, 5.
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but that a steady flow must also balance the momentum

fluxes through the boundaries of the domainþ
›S

uy dx5

þ
›S

u2 dy . (14)

The first term in (14) is the x-momentum flux into the

domain through the source, hereinafter labeled DMs.

The second term is the flux of momentum out of the

domain in the downstream and upstream currents,

hereinafter labeled DMc. If the x-momentum flux

through the source is positive then the current must ul-

timately turn rightward (where dy . 0); if it is negative

then the current must turn left (where dy , 0). The

current can be turned either by the effect of rotation or

the vorticity of the current. For source velocity profiles

where y(x, 0) is symmetric in x, the source momentum

will be zero and the current will be symmetric in x if

u(x, 0) 5 0 or u(x, 0) is an odd function of x, as it is for

outflows unaffected by rotation or vorticity. For flows

affected by vorticity or rotation, u(x, 0) has an even

component that gives a momentum flux at the source

and turns the current.

1) MOMENTUM FLUX DUE TO ROTATION

Appendix B derives the velocity field due to both fi-

nite width and point sources for QG flow. Equation (B8)

gives the alongshore velocity u for a QG point source

and shows that it consists of an odd singular component

(second term), a finite odd component (third term),

and a finite even component (first term). Close to the

source the flow is dominated by the odd singular part,

but the finite even component still contributes to the

momentum flux, and it is this ultimately responsible for

turning the current. For finite width sources, (B5) shows

that u has an even component equal toQ0 exp(2y/LR)/2LR

(as well as an odd component).

For a zero PV outflow, the velocity field is given by

(B8) and (B6) so, far downstream, DMc 5Q2
0/2LR and,

noting that the odd components of u contribute nothing

to the integral, DMs 5Q2
0/2LR, showing that momentum

is conserved for this steady flow. For a finite-width

symmetric source of zero PV fluid, the source flux is

also equal to Q2
0/2LR [the contribution from the first

term in (B5); the second term is odd in x, so it makes no

contribution] and the downstream flux is the same, so

this steady solution also conserves momentum.

2) MOMENTUM FLUX DUE TO VORTICITY AND

ROTATION

In section 3d(1), rotation was entirely responsible for

turning the outflow. For vortical outflows, vorticity will

also play a role in turning the outflow and for rigid-

interface flows, rotation has no effect and vorticity is

solely responsible for turning the flow.At the source, the

integral of the product of the nonsymmetric u due to the

vorticity and the singular y due to the source gives a

momentum flux into the domain. For rigid-interface

outflows, there is initially no momentum flux and the

outflow is symmetrical. Over time the vorticity-driven

cross-flow increases, increasing the momentum flux and

turning the current rightward. The flow evolves to a

steady state where the momentum fluxes at the source

and downstream in the current match.

Johnson and McDonald (2006) give the analytical

steady solution in complex variable form, written here

for P . 0:

z5
i

p
w

1
log

 
w

1
2 i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Q

0
P

p
w

1

!
2

ffiffiffiffiffiffiffiffiffi
2Q

0

P

r
1

p
, (15)

which relates the position z 5 x 1 iy to the function

w1 5 iPy 1 y 1 iu, which gives the velocity. As z / 0,

w1 / ‘, so expanding for large w1 and small z gives

z5
2iQ

0

pw
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8Q3

0P
p
3pw2

1

1O(w23
1 ) , (16)

which can be rearranged to give

w
1
5

iQ
0

pz
1

i

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8Q

0
P

q
1O(z) . (17)

This form splits the velocity at the source into the irro-

tational, singular, symmetric component due to the

FIG. 8. (a) Reproduction of Fig. 3 of McCreary et al. (1997)

showing depth contours of an outflow centered at y 5 300 km.

(b) Contour dynamics results showing the boundary of a negative PV

outflow driven by a point source at the origin at times t 5 40, 60, and

80 (equivalent to 23, 35, and 46 days) for P 5 21 and a 5 1.4.
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source (first term) and the finite component due to the

vorticity (second term), with u component equal toffiffiffiffiffiffiffiffiffiffiffiffiffi
8Q0P

p
/3. Integrating this against the delta func-

tion offshore velocity gives the momentum flux

DMs 5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8Q3

0P
p

/3. The downstreammomentum flux can

be computed by integrating the linear downstream

velocity profile u 5 P(Y 2 y), where the downstream

current width is Y5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Q0/P

p
, giving DMc 5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8Q3

0P
p

/3

and matching to the source momentum flux. Precisely

the same results, but reflected in the y axis, are found

for P , 0.

For outflows of nonzero PV for finite a, both rotation

and vorticity contribute to the source momentum flux

and the turning of the current. Themomentum fluxes for

these outflows can be computed numerically. Examples

of the evolution of the momentum fluxes over time are

shown in Fig. 9 for P 5 11 and a 5 0.5, 1, and 2. The

momentum fluxes entering at the source and leaving

downstream across the line x 5 10 are plotted sepa-

rately. When the currents reach a steady state, these two

fluxes become equal with only some small oscillation in

the downstream flux due to the interfacial Rossby

waves. Initially, there is no momentum flux due to vor-

ticity and the source and downstream fluxes are both

equal toQ2
0/2LR, the zero PV fluxes. This initial value of

DMs as a fraction of the final value shows how important

rotation is in turning the current. The moment when the

vortical current arrives at the line x 5 10 can clearly be

seen as a sharp increase in DMc from Q2
0/2LR.

3) MOMENTUM BALANCE FOR LONG-WAVE

SOLUTIONS

Appendix C calculates the momentum fluxes for

steady long-wave solutions of (12) and (10) for a domain

bounded by the outflow boundary ›D and x1 , x , x2
for arbitrary x1, x2,LR,Q0, andP and an arbitrary source

profile. The source flux is given by (C3) and the flux in

the alongshore current is given by (C5), showing that, for

all parameter values and source profiles

DM
s
(x

1
, x

2
)5DM

c
(x

2
)2DM

c
(x

1
) , (18)

and the flow conserves momentum.

The momentum imbalance paradox (Pichevin and

Nof 1997) stems from assuming u(x, 0)5 0 and therefore

neglecting the flux of momentum at the source. How-

ever, when this momentum flux is included, the paradox

is resolved and steady solutions are in fact possible.

e. Steady boundary profiles

Appendix D presents a numerical scheme for com-

puting the steady boundary of the outflow. Steady so-

lutions for positive PV calculated using this method are

shown and compared to contour dynamics results in

Fig. 10. By time t 5 30 the contour dynamics results are

very close to the steady solutions with the only differ-

ences due to the initial transience, still visible in the form

of interfacial Rossby waves moving to the right. The

results of the iterative scheme for a 5 105 were com-

pared to the exact solution in the rigid-interface limit

and found to be graphically indistinguishable.

Analytical solutions for steady boundary profiles in

the rigid-interface limit a/ ‘ were derived by Johnson

and McDonald (2006). For the limit a/ 0 and negative

PV, a steady solution is not possible, and for positive PV

and small a, rotation dominates over the vorticity and

the asymptotic solution away from the wall is h5PL2
R

within the current, h 5 0 outside, and by symmetry

h5PL2
R/2 on the boundary, so the steady solution is

given by the streamline of the flow due to the source with

h5PL2
R/2.

FIG. 9. Numerically computed horizontal momentum fluxes over

time from the source DMs (dashed) and across the line x5 10 DMc

(solid) for outflowswithQ0 5 1,P5 1, and varying a5 0:5 (blue), 1

(green), and 2 (red).

FIG. 10. A snapshot of the outflow boundary at t5 30 (solid blue line) computed with contour dynamics and the steady boundary profile

(solid red line) computed with the iterative scheme for an outflow with P511 and a5 0:2, 1, 5. The width of a steady x-independent

current is shown as a dashed black line.
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Results showing the steady contour computed using

this asymptotic solution for a point source, where the

streamfunction due to the source is given by (B7), are

compared to the iterative scheme in Fig. 11 for a 5 0.1,

0.05, and 0.01. Note that, for large x, this solution

matches to the solution for a steady, constant-width

current.

4. Unsteady sources, currents, winds, and tides

a. Variable-strength outflows

Changes in the volume flux of coastal outflows, which

can vary by as much as an order of magnitude (Horner-

Devine et al. 2015; van Maren and Hoekstra 2004), can

be represented using a source with time-dependent

strength. This section considers both strengths oscillat-

ing about an average value and those moving from one

constant value to another as illustrative examples. A

periodically varying outflow can be represented by a

source with strength varying sinusoidally between two

values Qmin and Qmax with period T, that is, a source

with strength

Q
0
(t)5

Q
max

2Q
min

2
sin

�
2pt

T

�
1

Q
max

1Q
min

2
. (19)

For zero PV outflows, the linearity of the problem

means that, by the end of a period, a variable-strength

outflow has evolved to the same boundary profile as a

constant-strength source with the same average flux.

It is only through interaction with the nonlinear vor-

tical dynamics that varying the source strength can

change the evolution across a full period. Therefore,

the source-dominated rightward rarefaction is ex-

pected to be relatively unaffected by the variable

strength.

Figure 12 shows results for a strongly varying source

(Qmin/Q0 5 1/3, Qmax/Q0 5 5/3) for a large range of

periods (T 5 40, 10, and 2) for an outflow of negative

PV fluid. The boundary profiles are plotted at t 5 40,

where they have all completed an integer number of

periods. While there is reasonable variability over an

outflow cycle, by the end of a complete period the re-

sults are very similar, even for such a strongly varying

source and such a large range of periods. The biggest

differences from the constant strength source are the

results for the longest period outflow T 5 40, but even

these are still very similar. This suggests that, at least

for QG dynamics, oscillations of outflow strength may

not be a significant dynamical factor and that models

that average this outflow flux may be providing a good

representation of the dynamics. Note that other studies

of outflows with finite Rossby number (i.e., non-QG)

have shown that the outflows can be substantially af-

fected by low-frequency (subinertial) variability. For

example, Yankovsky et al. (2001) show that the bulge,

which is primarily an effect of finite Rossby number,

may separate from the source region and be carried

downstream.

The effects of varying outflow strength can be ana-

lyzed using long-wave theory. As an example, consider

an outflow that starts at one strengthQ1 before smoothly

changing to a second constant strength Q2, that is, the

outflow with

FIG. 11. The streamline with streamfunction value h5 0:5PL2
R (blue) and an iteratively computed steady boundary profile (red) for

outflows with P511 and (left to right) a5 0:1, 0.05, 0.01, showing the steady solution converging to the streamline of the source flow as

a decreases.

FIG. 12. A snapshot at t5 40 of the boundary of the expelled fluid of outflows with strength

sinusoidally varying between Qmin 5 0:2 and Qmax 5 1 for variation periods T5 40, 10, 2

compared to a constant flux outflow of strength Q0 5 0:6. In each case P521 and a5 1.
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Provided that the time scale T is not small, the solution

for this outflow is accurately given by the long-wave

approximation and may be found analytically by in-

tegrating along the characteristics of (11) (see JSM for

the details of this procedure). An example comparing

the analytical solution to contour dynamics for a 5 0.7,

P 5 11, Q1/Q0 5 1,Q2/Q0 5 1.5, and T5 250 is shown

at time t 5 750 in Fig. 13. The period T 5 250 has been

selected to best display the long time accuracy of the

analytical solution.

The various boundary profile evolutions possible

are best understood by analyzing the wave speed

c(Z)5PLRZ(11Q/L2
RP2Z) of long waves from (11).

This has a maximum at Z5Q/2L2
RP, noting that 0 ,

Z# 1, with Z5 1 corresponding to a zero width current

and the current width increasing as Z decreases. This

wave speed is displayed for the two casesQ/L2
RP$ 1 and

Q/L2
RP, 1 with positive PV in Fig. 14. The outflow

in Fig. 13 corresponds to Q/L2
RP$ 1, where a thicker

current close to the source (point A) is connected to a

thinner current downstream (point B). As the wave

speed increases in the downstream direction between

the two, they can be joined by a rarefaction and the

forward current can be joined by a rarefaction to the

coastline (point C). If, however, the rear current was

thinner (point B), it could not join smoothly to a thicker

current downstream (point A) because the wave speed

would decrease in the downstream direction and a shock

would form. This shock would be resolved by the full

two-dimensional dynamics into a series of waves. If

Q/L2
RP, 1, then the forward thinner current (point E)

cannot connect to Z 5 0; instead, it rarefies until near

point F, where a shock forms. For Q/L2
RP, 1, it is also

possible to have smooth solutions withQ2,Q1, where a

thinner current near the source (point H) can smoothly

join to a thicker current downstream (point G). This

constant-width current cannot thin further, so it must

FIG. 13. A snapshot at t5 750 of an outflow for a5 0:7, P511

with strength varying from Q1/Q0 5 1 for t, 250 smoothly up to

Q2/Q0 5 1:5 for t. 500. The result of a contour dynamics simula-

tion is shown in blue and the analytical solution is shown in red.

Across the leading rarefaction and rear constant-width current

these are indistinguishable. Note that the axes are scaled to fit the

whole outflow.

FIG. 14. The long-wave speed c as a function of Z5 exp(2Y/LR) for the two cases Q(x)/PL2
R $ 1 and

Q(x)/PL2
R , 1.
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end in a shock. For negative PV, the wave speed can be

negative, giving leftward currents with the analysis fol-

lowing similarly.

b. Alongshore currents

Ambient alongshore currents can have significant ef-

fects on coastal outflows. Downstream currents support

the turning of the outflow and inhibit the growth of a

bulge near the source. Fong and Geyer (2002) in-

vestigated the effects of a downstream current on a

coastal outflow in a numerical model and found that

even weak downstream currents were sufficient to halt

bulge growth and confine all the outflow flux to the

coastal current. Where the ambient current is oriented

upstream, as in the case of the Columbia River outflow

(Hickey et al. 2005), a bidirectional plume can be formed

with a fraction of the outflow flowing upstream, a fraction

downstream and, in some cases, a fraction feeding a

growing bulge.

The effects of alongshore currents can be in-

corporated into the QG model by adding an additional

background current with rightward flux Qc. That is, a

current with streamfunction

h
c
5Q

c
e2y/LR . (21)

The results examined in section 3 are for the special case

Qc 5 0. The case Qc 5 2Q0, an upstream current with

flux equal to that of the source, is particularly in-

teresting. Examining (B7) shows that this case is

equivalent to the standard Qc 5 0 problem with the

source velocity profile reflected in x (a Southern

Hemisphere outflow). Thus, the outflow evolution for

negative and positive PV are reversed for this value of

Qc. That is, the outflow evolution for Qc 5 2Q0, with

generated vorticity P, is identical to the outflow for

Qc 5 0 with generated vorticity 2P, reflected in the

y axis. Thus, the earlier results for negative PV can equally

be interpreted as results for positive PVagainst an ambient

current in the Southern Hemisphere.

ForQc52Q0/2 the flow due to the source and current

combined is symmetrical, so it contributes no momen-

tum flux. Thus, as for rigid-interface outflows, the only

asymmetry is due to the vorticity, and positive and

negative PV outflows are simply reflections of each

other. A zero PV (a5 0) outflow splits and flows equally

left and right with an initially semicircular boundary

profile that flattens over time into rarefying currents to

the left and right.

For the rest of this section, just the case for positive

PV is considered (negative PV solutions can be re-

covered by reflectingQc/2Q02Qc and x/2x) and

the outflow is a two-parameter problem dependent on

a andQc/Q0. By analyzing the long-wave equations (12)

and (11), the behavior of outflows can be classified in

(Qc/Q0, a) parameter space as shown in Fig. 15. The

standard cases of a positive PV outflow without a back-

ground flow and a negative PV current without a back-

ground flow lie on the linesQc/Q0 5 0 andQc/Q0 521,

respectively. Dependent on Qc/Q0 and a there is ei-

ther a single rightward steady current (right-hand green

region), steady currents in both directions (blue re-

gion), no steady currents (red region), or a steady

leftward current (left-hand green region). The width

and velocity profiles across these steady currents are

the simple solutions to (12) and (10). These steady so-

lutions join onto constant-width currents that are led by

simple rarefying solutions to (11). The only exception is

for a$
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qc/Q0 1 1

p
(the area above the purple line in

Fig. 15), where the rightward steady current is led by a

rarefaction that terminates in a shock. This corresponds

to the situation in the second panel of Fig. 14, where a

steady current (point E) rarefies to a shock (near point F)

because the wave speed starts to decrease in the down-

stream direction. As a increases further the size of the

rarefaction decreases until there is only a shock, which is

resolved by the full two-dimensional dynamics to a head

profile as seen in, for example, the lower panels of Fig. 3

and for rigid-interface outflows.

Thus, ambient currents can have very significant ef-

fects on the outflow dynamics when the flux they carry is

comparable to the source flux. The outflow dynamics

with an ambient current form fourmain behaviors, three

of which (single rightward current, bidirectional cur-

rents, and no steady currents) have already been shown

in detail in the earlier discussion of positive and negative

PV outflows without ambient currents in section 3 (see

Figs. 3, 7). An example of the final case, a leftward

FIG. 15. A classification in (Qc/Q0, a) space of the dynamical

regimes displayed in an outflowwith an ambient current of strength

Qc. Above the purple line rightward rarefactions must end in

a shock.
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steady current, is shown in Fig. 16 forP511, a5 1, and

Qc/Q0 5 22. There is a steady boundary profile across

the source region joining on its left to a steady, constant-

width current led by a rarefaction that is accurately de-

scribed by the analytical solution as shown.

The results herematchwell to those of Fong andGeyer

(2002) and Hickey et al. (2005). Weak alongshore cur-

rents inhibit bulge growth and transfer the entire outflow

flux into the downstream current in the simulations of

Fong and Geyer (2002), corresponding to moving from

the red area with a growing bulge in Fig. 15 to the green

area Qc/Q0 . 0 when a small alongshore current is in-

cluded. The introduction of an opposing current causes a

bidirectional current to form both here and in the ob-

servations and simulations of Hickey et al. (2005).

c. Tides

Numerical models (Isobe 2005; Chen 2014) show that

one of the main effects of tides on outflows is to increase

the alongshore transport and reduce the growth of the

bulge. This is supported by observations; for example,

measurements of the strongly tidally influenced outflow

of the Changjiang (Yangtze) River found 90% of the

freshwater flux enters the coastal current (Wu et al.

2013). Isobe (2005) investigated the effect of tides and

the role of inertial instability in the growth of the bulge

in a numerical model for moderate Rossby number,

finding that tides stabilized and halted the growth of the

bulge and increased the alongshore transport. Isobe

(2005, Fig. 14) shows model results for a variety of

outflow and tidal strengths. The larger outflow results

display the classic circular, inertia-driven bulge when the

tidal forcing is weak. For stronger tidal forcing the bulge

is broken up and the results start to resemble a lower

Rossby radius outflow. For lower outflow velocity, Iso-

be’s results, which have anticyclonic vorticity, look very

similar to the QG outflows here with negative PV and

low a (see, e.g., Fig. 7, t 5 10, a 5 1).

The effects of tides can be investigated using the

present QG model by adding an additional periodically

varying ambient current of the form

h
t
5Q

t
sin(2pt/T)e2y/LR , (22)

with maximum fluxQt and period T. The term from (22)

can be thought of as horizontally varying the position in

parameter space in Fig. 15, that is, periodically varying

Qc. This contrasts to variable strength outflow that was

(see previous section) a vertical variation in (Qc/Q0, a)

parameter space, that is, varying a. Examples of solu-

tions with this tidal forcing are shown in Fig. 17 for short

and long periodsT5 1 and 20 and various tidal strengths

for a negative PV outflow.

There are many similarities to the variable strength

outflows shown in section 4a. The longer the period of

the forcing, the greater effect there is on the evolution of

the outflow. Also, the right-hand rarefaction (which is

dominated by the source) is again virtually unchanged

by the forcing, which can only affect the ultimate outflow

evolution through interaction with the nonlinear vorti-

cal dynamics. However, tides have a much more signif-

icant effect than a variable-strength outflow. Tidal

forcing spreads the outflow horizontally, particularly in

the direction of propagation due to the vorticity. This is

achieved by inhibiting the growth of the bulge near the

source. For long periods, a tide withmaximumflux equal

to that of the source is able to significantly disrupt the

outflow. For short periods, the tide needs a flux an order

of magnitude larger than the source to provide signifi-

cant disruption.

The average speed of a leftward vortical layer, as

a function of the layer width Y, is proportional to

[12 exp(2Y/LR)]
2/Y, which has a maximum at Y ’

1.25643LR. If the current width, as the outflow is spread

by tides, gets closer to this value then vorticity will drive

the current further leftward, as seen in Fig. 17. However,

if the unforced outflow is thinner than this value, then

spreading the current will slow its leftward propagation

and the tides will have less effect. An example of this

situation for a 5 5 is shown in Fig. 18. Here, a tide with

FIG. 16. A snapshot at time t5 10 of a contour dynamics simulation (blue) and the long-wave

analytical solution (red) for an outflow from a point source for P511, a5 1, with a back-

ground current of strengthQc 522. The equationQc/Q0 522 is less than the critical value of

23/2, so a steady leftward current with constant width has formed, led by a rarefaction.

FIG. 17. Simulations of outflows for P521 and a5 1, with tidal

forcing of various strengths and periods. (top)A snapshot after one

tidal period of an outflow with tidal forcing of period T5 20 and

strengthsQt/Q0 5 1 andQt/Q0 5 4 compared to the unforced case.

(bottom) A snapshot at t5 10 of an outflow with tidal forcing of

period T5 1 and strengthsQt/Q0 5 5 andQt/Q0 5 20 compared to

the unforced case.
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strength Qt/Q0 5 4 and period T 5 20 has much less

effect than it did for a 5 1 in the top panel of Fig. 17.

d. Wind forcing

Wind stress can significantly affect river plumes

through the Ekman response of the near-surface fluid.

Winds in the downstream direction push surface water

toward the coast and drive downwelling, further focus-

ing the outflow against the coast. Upstream winds have

the opposite effect, pushing water and the coastal cur-

rent away from the coast and driving upwelling. Typi-

cally, this results in currents separated from the coastline

with rounded heads as seen in the observations of Gulf

of Maine plume (Fong et al. 1997), Columbia River

outflow (Hickey et al. 1998), and the Chesapeake Bay

outflow (Dzwonkowski and Yan 2005), as well as in the

numerical simulations of Hickey et al. (2005).

Dzwonkowski and Yan (2005) traced the outflow

from Chesapeake Bay in satellite-measured ocean color

data over time under varying wind conditions. Figure 19

reproduces their Fig. 8, which shows the plume evolu-

tion over 5 days. For the first 3 days there are southward

winds driving downwelling or weak variable winds. For

the fourth and fifth days, there are northward winds

driving upwelling. Under downwelling-favorable winds,

the current remains close to the coast and evolves sim-

ilarly to the observations of Donato and Marmorino

(2002) reproduced in Fig. 5 and the QG results pre-

sented above. Under the upwelling-favorable winds,

surface water is pulled away from the coast and the

plume quickly follows, moving away from the shore and

retreating back toward the source. Its final boundary

profile is much more rounded than the alongshore nose

after day 3.

FIG. 18. A snapshot at t5 20 of simulations of a negative PV outflow forP521 and a5 5 with

(red) and without (blue) tidal forcing of strength Qt/Q0 5 4 and period T5 20.

FIG. 19. Area of the Chesapeake outflow plume over 5 days with downwelling-favorable or

varying winds becoming upwelling-favorable on the last 2 days, as measured by satellite-based

ocean color data reproduced from Dzwonkowski and Yan (2005).
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The upwelling or downwelling caused by winds can be

qualitatively represented in the present QG model by

adding a continuous source along the extent of the coast.

A source with flux per unit length Qw/LR through the

wall y 5 0 has streamfunction

h
w
5

Q
w

L
R

xe2y/LR , (23)

giving

�
u
w

y
w

�
5

 
Q

w
x/L2

R

Q
w
/L

R

!
e2y/LR . (24)

The streamfunction [(23)] is mathematically accept-

able since it satisfies the governing QG equation [(4)],

and the resulting offshore velocity [(24)] is realistic in

displaying an exponential decay with offshore distance

y. However, the alongshore component of velocity is

linear in x, which is unrealistic, but for outflows that

separate from the coast under upwelling (as happens

here) this effect is relatively small since the alongshore

velocity also decays exponentially in the y direction.

Figure 20 shows an example of simulations with various

wind strengths compared to the results without wind for

an upwelling-favorable wind. The upwelling causes the

expelled fluid to be pushed away from the coast and

form an offshore current at an angle to the coast and

with a rounded head similar to the observations shown

in Fig. 19. As the wind strength increases, the current

forms a larger angle to the coast and travels less distance

alongshore.

5. Conclusions

This paper applies a simple QG model to investigate

the dynamics of coastal outflows using contour dy-

namics simulations and the long-wave analytical solu-

tions developed by JSM. This work has four main parts:

first, the implications of the long-wave solutions are

discussed in an oceanographic context. Second, the

impacts of ambient currents, tides, winds, and variable

source flux are examined. Third, the momentum fluxes

are considered, resolving the momentum imbalance

paradox (Pichevin and Nof 1997) and showing that

steady solutions are a robust feature of coastal out-

flows. Finally, a numerical scheme to compute steady

solutions is developed. The simplicity of the model and

the accuracy of the long-wave approximation mean

that the dynamics can be fully understood and used to

interpret observations, experiments, and more sophis-

ticated and complex numerical models. Despite the

simplicity of the model, it shows good agreement in

comparisons with observations, experiments, and other

numerical models.

The results are analyzed in detail for three primary

problems: zero, positive, and negative PV, and a full

range of the inverse Kelvin number a5LR

ffiffiffiffiffiffiffiffiffiffiffi
P/Q0

p
,

which measures the relative importance of the vorticity

to the source velocity. For zero PV, the outflow boundary

profile grows offshore indefinitely with a long rarefying

head to the right. For positive PV, both the source and

the vorticity contribute positive x-momentum flux, and

for all a, steady profiles eventuate with a constant-

width coastal current led by either a rarefying head for

low a or a rounded head for larger a. Downstream from

the source, the outflow boundary profile and velocity

fields match well to observations of the Chesapeake

Bay outflow (Donato and Marmorino 2002). For neg-

ative PV, which can also be interpreted as a positive

PV outflow working against an ambient current, richer

dynamics are obtained due to the competing effects of

the positive x-momentum flux from the source driving

the flow rightward and the negative x-momentum flux

from the vorticity driving it leftward, and bidirectional

currents form. For a # 1 the near-source bulge grows

indefinitely, with rarefactions carrying fractions of the

flux leftward and rightward. For a . 1 the flow always

evolves to a steady boundary profile across the source

region, connecting to steady, constant-width currents

both leftward and rightward, which are led by a rare-

faction on the right and either a rarefaction (for

smaller a) or rounded vortical head (for larger a) on

the left.

FIG. 20. Snapshots at time t5 15 of an outflow for P511, a5 1, with wind forcing of

strengths Qw/Q0 5 0, 0.1, and 0.5.
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With an understanding of the dynamics of these pri-

mary problems, other factors are then considered. The

effects of an ambient alongshore current of strength Qc

are investigated, and the long-wave theory is extended

to fully characterize the dynamics in (Qc/Q0, a) space

and four main dynamical regimes are identified: steady

rightward currents, steady bidirectional currents, steady

leftward currents, and unsteady growth. The outflows in

each of these regimes are accurately described by

analytical long-wave solutions that demonstrate the

following interesting features: downstream ambient

currents (Qc . 0) suppress the growth of the bulge and

encourage the growth of steady, constant-width cur-

rents containing the entire fluid flux, matching well to

the results of Fong and Geyer (2002); upstream-

flowing ambient currents lead to the formation of bi-

directional steady currents as observed, for example, in

the ambient-current-forced Columbia River outflow

(Hickey et al. 2005). The results here support the

conclusion of Matano and Palma (2010) that bi-

directional currents are a feature of coastal outflows.

These are observed in outflows from the Columbia

(Hickey et al. 2005), Hudson (Chant 2011), and

Changjiang (Yangtze) (Beardsley et al. 1985) Rivers.

Outflows with variable source flux are investigated for

two illustrative problems: for a flux changing from one

constant value to another, analytical long-wave solu-

tions are found and demonstrated; and for a sinusoidally

varying source flux, it is shown that, over a complete

cycle, the outflow boundary does not vary significantly

from a constant strength outflow with the same

average flux.

A second important periodic forcing is that of tides.

Here the effects of tides were represented as a sinusoi-

dally varying alongshore current. These were found to

have significant effects on the outflow boundary, halting

the formation of the near-source bulge and spreading

the fluid alongshore, matching well to the results of

Isobe (2005). The effects of winds were also represented,

showing that, for upwelling-favorable winds, the outflow

fluid detaches from the coastline and forms a rounded

boundary profile, matching well to observations from

the Chesapeake Bay outflow (Dzwonkowski and Yan

2005) and observations and numerical simulations of the

Columbia River outflow (Hickey et al. 2005).

Examining the momentum fluxes in the model

highlights that rotation and vorticity both contribute to

the shoreward turning of the current and shows that

when the momentum flux at the source is included,

steady solutions conserve momentum and the mo-

mentum imbalance paradox (Pichevin and Nof 1997) is

resolved. This clarification enables progress toward

understandingwhen either steady solutions or indefinitely

growing bulges form from outflows. The results here

show that indefinitely growing bulges are not ubiqui-

tous, but do form in a number of cases. An almost

circular growing bulge forms when the outflow velocity

is strong and inertia enters the dynamics at leading

order. However, without inertia, it is still possible for

bulges to grow indefinitely for outflows with zero PV

or small negative PV (a # 1). The generation of vor-

ticity is a stabilizing effect that halts the perpetual

growth of bulges, leading to commonly observed

steady, constant-width currents downstream of the

source mouth.

Effects such asmixing, coastline shape, and bathymetry

are not included here. Mixing can be highly complex and

is driven by a number of factors. Some of those, such as

winds and tides, are considered here but some, such as

waves, bottom friction, and frontal processes, require

more complex modeling. Coastline shape can strongly

influence coastal currents. Klinger (1994) and Sadoux

et al. (2000) investigated outflows of buoyant water that

form geostrophic coastal currents before encountering a

cape. At the cape, the flow was able to separate and

form a growing gyre. These features may be common in

coastal currents encountering capes or stepped coastlines

(Southwick et al. 2016) and can be modeled using point

vortex dynamics (Southwick et al. 2015).

The present model is aimed at surface-advected flows

so the influence of bathymetry has not been included,

although it is possible to represent some shapes of bot-

tom topography in a QG model. An and McDonald

(2004) and An (2004) consider outflows of vortical fluid

into the coastal ocean with a shelf parallel to the coast

with contour dynamics simulations and find that the

shelf helps turn the current rightward. Thus, bathymet-

ric steering may be a third mechanism affecting the

turning of outflows.
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APPENDIX A

Integrated Momentum Balance for QG Flow

The nondimensional rotating shallow water equations

for a layer with small perturbation h to a constant depth

can be written

«
Dh

Dt
1 (a2 1 «h)= � u5 0, and (A1a)

«
Du

Dt
1 k ^ u52=h , (A1b)
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where « is the Rossby number and a5LR/L̂, for the

length scale L̂.

QG flow is obtained when « � 1 by taking an as-

ymptotic expansion of the form h 5 h0 1 «h1 1 . . .,

u 5 u0 1 «u1 1 . . . giving, at leading order,

u
0
52= ^ (h

0
k) , (A2)

and at O(«)

1

a2
D

0
h
0

D
0
t
1= � u

1
5 0, and (A3a)

D
0
u
0

D
0
t
1 k ^ u

1
52=h

1
, (A3b)

where D0/D0t5 ›/›t1 (u0 � =). Thus, the leading order

flow is geostrophic. The governing equation (conserva-

tion of PV) for h0 [(2)] is found from (A3). Equation

(A2) shows that QG flow satisfies the momentum

equation [(A1b)] to leading order trivially. However,

the next order balance in the momentum equation,

given by (A3b), can also impose a condition on the

leading-order flow.

Consider a steady outflow. Using the steadiness of the

flow and the leading-order geostrophy, (A3a) implies

that there exists a streamfunctionc1 for theO(«) flow, so

u1 52= ^ (c1k). Integrating the x component of the

momentum equation [(A3b)] over a control volume S

with boundary ›S for steady flow gives

05

ðð
S

u
0

›u
0

›x
1 y

0

›u
0

›y
2 y

1
1

›h
1

›x
dx , (A4)

5

ðð
S

›u2
0

›x
1

›u
0
y
0

›y
2

›c
1

›x
1

›h
1

›x
dx, and (A5)

52

þ
›S

u
0
y
0
dx1

þ
›S

u2
0 2c

1
1h

1
dy , (A6)

where the continuity equation (= � u0 5 0) has been

applied in the second line and Stokes’ theorem has been

applied in the third. The control volume can either be

taken to be a large rectangle2R, x, R, 0, y,H or

the shape bounded by the outer boundary (a streamline)

of the outflow,2R, x,R, 0, y,Y for largeR. Either

way, the only boundaries contributing to themomentum

fluxes are at the source and the upstream and down-

stream sections at x56R if c1 is taken to be zero at the

current edge. Where the current exits the domain, it

has a constant width and is independent of x. Therefore,

(A3b) implies that ›c1(6R, y)/›y 5 ›h1(6R, y)/›y, and

it follows that c1(6R, y) 5 h1(6R, y) as both h1 and c1

are 0 at the current edge. Note that h1 and c1 are not

equal throughout the flow, only in the downstream

sections (due to the x independence). Using this in (A6)

gives the integrated x-momentum equation for the

leading order QG flow:ð
›S

u
0
y
0
dx5

ð
›S

u2
0 dy , (A7)

which is unchanged when redimensionalized. Redi-

mensionalizing, noting that the integrals along stream-

lines contribute nothing, and dropping the subscripts

gives

ðL
2L

u(x, 0)y(x, 0) dx5

ðY(R)

0

u(R, y)2 dy

2

ðY(2R)

0

u(2R, y)2 dy. (A8)

A steady QG flow that is x independent downstream of

the source must satisfy this condition.

APPENDIX B

Flow Field due to the Source

a. General source velocity profile

The QG streamfunction h for the flow due to

the source (with zero PV) satisfies the problem

Lh5 (=2 2 1/L2
R)h5 0 with boundary conditions

h(x, 0) 5 Q(x) and =h / 0 as y / ‘. Taking the

Fourier transform (with transform variable k) in x of

Lh 5 0 gives

ĥ
yy
2

 
k2 1

1

L2
R

!
ĥ5 0. (B1)

which has the solution, satisfying the boundary

conditions,

ĥ(k, y)5 Q̂(k)e2ky , (B2)

where k5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1L22

R

p
. Taking the inverse Fourier

transform gives the streamfunction

h(x, y)5
1

2p

ð‘
2‘

Q̂(k)e2kyeikx dk . (B3)

and using u52= ^ (hk) gives the velocities

�
u(x, y)

y(x, y)

�
5

1

2p

ð‘
2‘

�
k

ik

�
Q̂(k)e2kyeikx dk , (B4)

for arbitrary Q(x) [so long as Q(x) decays to constant

values as jxj/ ‘]. These integrals can be truncated and

integrated numerically to give the velocity at any point.
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For sources with outflow velocity y(x, 0) symmetric in

x,Q(x)5Qo(x)1Q0/2, whereQo(x) is an odd function

and the velocities simplify to

"
u(x, y)

y(x, y)

#
5

Q
0

2L
R

 
e2y/LR

0

!

1
i

p

ð‘
0

Q̂
o
(k)e2ky

 
k sinkx

k coskx

!
dk , (B5)

showing that y is even in x and u is an odd in x function

plus a function independent of x.

b. Point source

For a point source outflow, a neat form for the solu-

tion is obtained by exploiting linearity ofL and rewriting

the problem for y 5 ›h/›x instead of h, giving

Ly 5 0 with boundary conditions y 5 Q0d(x) for y 5 0

and y / 0 as y / ‘. Looking for a separable solution

in terms of polar coordinates r and u, satisfying the no-

flux boundary condition and with the right singularity

gives the solution

y5
Q

0

pL
R

K
1

�
r

L
R

�
sinu , (B6)

where Kn is the modified Bessel function of the second

kind of order n. Integrating gives the streamfunction

h(x, y)5
Q

0

2
e2y/LR 1

Q
0
y

pL
R

ðx
0

K
1
(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 1 y2

p
/L

R
)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x02 1 y2
p dx0 ,

(B7)

splitting h into even (first term) and odd (second term)

parts. Thus, u(x, y) 5 2›h/›y is given by

u(x, y)5
Q

0

L
R

2
4e2y/LR

2
1

xK
1

r

L
R

� �
pr

1
1

pL
R

ðx
0

K
0

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 1 y2

p
L

R

!
dx0

3
5 . (B8)

APPENDIX C

Momentum Fluxes for Long-Wave Solutions

This appendix computes the momentum fluxes

through the control domain x1 , x , x2, 0 , y , Y(x)

for the steady analytical solutions in the long-wave

limit for arbitrary LR, P, x1, x2, and source velocity

profile Q(x).

a. Source momentum flux

The horizontal momentum flux entering the domain

from the source between two points x1 and x2 is given by

DM
s
5

ðx2
x1

u(x, 0)y(x, 0)dx

5

ðQ2

Q1

u[x(Q), 0] dQ, (C1)

since y(x, 0)5 ›Q/›x, whereQ25Q(x2) andQ15Q(x1).

The horizontal velocity at y5 0 as a function ofQ, given

by differentiating (10) and substituting Y from (12), is

u(Q)5L
R
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
11

Q

L2
RP

!2

2

 
11

2Q
e

L2
RP

!vuut , (C2)

where Qe is the constant value of the streamfunction on

the outflow edge Y(x). Substituting (C2) into (C1) gives

the momentum flux from source

DM
s
5

L3
RP

2

2
[(s1 1)m1 (2s

e
1 1) log(s1 12m)]

Q2/L
2
R
P

Q1/L
2
R
P

(C3)

using the substitution s5Q/L2
RP and se 5Qe/L

2
RP,

m5 u(Q)/LRP5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 1 2(s2 se)

p
.

b. Alongshore momentum flux

The velocity u(x, y) is found by differentiating (10) and

substituting Z from (12). Integrating the square of this

gives the horizontal momentum flux within the current

DM
c
5

ðY
0

u2 dy5 (L
R
P)2

8<
:L

R
Z

 
Q

L2
RP

1 12
Z

2

!
logZ

1
L

R

2

2
41
4
1

 
Q

L2
RP

1 12
Z

2

!2
3
5(12Z2)

9=
; .

(C4)

Using Z5 11 s2m and rearranging gives

DM
c
5

L3
RP

2

2

�
(s1 1)m1

1

2
(s

e
1 1)

1 (2s
e
1 1) log(11 s2m)

�
. (C5)

Note that this differs only by a constant, (se 1 1)/2, from

the indefinite integral in (C3), the expression for the

source momentum flux, so the increment between the

two stations x1 and x2 balances (18) and momentum is

conserved for these steady flows.
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APPENDIX D

An Iterative Scheme to Compute Steady Boundary
Profiles

If a steady solution exists then its boundary y$Y(x)

is a streamline of the flow. The problem to solve for a

steady boundary profile is

Lh5

�
0, y$Y(x)

P , 0, y,Y(x) ,
(D1)

where the operatorL 5=2 2L22
R . This is combined with

the boundary conditions that the streamfunction matches

the far-downstream behavior of a constant-width current

given by (10), h5Q(x) on y5 0, h/ 0 as y/‘, and the
additional condition that h5Qe on y5Y(x). In a finite

rectangular domain, these boundary conditions can be

applied on the edges of the domain used to solve (D1).

A solution of this problem is found iteratively. Dis-

cretize the problem with first-order centered finite dif-

ferences on a regularly spaced finite grid to give the

matrix operator A. Let hn and Pn be the vectors giving

the value of the h and P at each grid point at the nth

iteration. Now for a given free surface, Pn is known and

the streamfunction can be found as hn 5A21Pn. The

values of the streamfunction can then be used to update

Pn for the next iteration. Given hn, the location of the

boundary Y can be identified, for each value of x, by

tracking from large to small y and finding the first instance

where h.Qe. This point and all below it must be within

the expelled fluid.Denote this approach asPn11 5 x(hn).

For positive PV, Y can be a multivalued function of x so

the alternativemethod x(hn)5PH(hn), for the element-

wise Heaviside functionH [where the entries ofH(x) are

1 where the corresponding element of x is strictly positive

and 0 otherwise], is used. For improved stability, an un-

derrelaxed version of themethod can be used by updating

Pn at each time step with a fraction a based on this

method (in the results below a5 0:05 has been used)

and a fraction 12a of its previous value.

This method gives the iterative scheme

h
n
5A21P

n
, (D2a)

P
n11

5ax(h
n
)1 (12a)P

n
. (D2b)

For the initial value P1 some approximation must be

used. For positive PV the rigid-interface boundary

profile, but scaled in size to match to the steady

x-independent current, can be used, and for negative

PV a smooth monotonic function matching the left and

right steady solutions can be used. The entries ofP1 areP
if the grid point is within this contour and 0 if it is outside.
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