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Synopsis  

Operation Herrick is the codename under which all British operations in the war in 

Afghanistan have been conducted since 2002. It consists of the British contribution 

to the NATO-led International Security Assistance Force (ISAF) and support to the 

American-led Operation Enduring Freedom (OEF). Operation Herrick superseded 

Operation VERITAS and Operation FINGAL. 

The UK ceased all combat operations in Afghanistan and withdrew the last combat 

troops on the 27 October 2014.  Between 2001 and 12 December 2014, a total of 

453 British military personnel died during operations in Afghanistan and over 2116 

were injured. 

The Blast Injury Outcome Study in Armed forces Personnel (BIOSAP) began in 

2010. At that time, I was a neurosurgical trainee at the Royal London Hospital in 

North London and had recently returned to hospital-based clinical work after being 

deployed to Sangin forward operating base (FOB), Helmand province, Afghanistan, 

as a medical officer for Charlie company (C coy) of the 2nd Battalion the Royal 

Regiment of Fusiliers (2RRF).  

In 2007 through 2008, I was the Regimental Medical Officer (RMO) for 2RRF. We 

were based in Cyprus and, during my time with the Battalion, they deployed to both 

Iraq and Afghanistan. The British army posts soldiers, with their families, to many of 

its bases throughout the world. During my time in Cyprus with 2RRF, I was 

responsible for the day-to-day healthcare of the soldiers and their families. I saw first 

hand how a soldier’s ability to perform his role impacted on others around him. 

Infantry soldering requires both extraordinary physical fitness as well as mental 

robustness both in terms of cognition and emotion. Injuries, whether they are 

immediately visible, such as a traumatic limb amputation or invisible, such as a 

traumatic brain injury, have implications for the whole battalion and the family, as 

well as the individual who has been injured. 

In 2008, I deployed to Sangin, Afghanistan. There, I lived and worked with the 

soldiers from C-coy. I developed an understanding of the character required to fight 

in front line combat. I witnessed, first hand, the manner in which contacts (a sterile 

word used to describe what happens when we engage with the enemy) are fought 

and how injuries are sustained. I treated, at the point of injury, soldiers who had been 
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exposed to blast weapons and saw how the Mobile Emergency Response Team 

(MERT) recovered and treated them. 

Following my return to the UK, I became a research fellow in the Academic 

Departments of Military Surgery and Trauma (ADMST) and Emergency Medicine 

(ADMEM). At ADMEM, I catalogued the number of head injuries sustained by UK 

personnel as well as their causes and outcomes in order to understand the impact of 

head injury from an epidemiological perspective.  

In the civilian literature, head injuries in the context of polytrauma (a term used to 

describe when more than one system in the body is injured e.g. a soldier who has 

sustained both a head injury and a fracture of the femur) are associated with higher 

mortality and worse functional outcomes (Gawande 2004). This is true for military 

injuries as well. As the conflict in Afghanistan matured, the weapons systems used 

by the enemy changed from mainly small arms to explosive devices. At the same 

time our equipment, specifically personal protective equipment (PPE), and tactics, 

evolved. PPE evolved to protect against lethal injuries such as catastrophic 

haemorrhage from femoral artery injuries or penetrating head injuries. This led to an 

increasing number of soldiers surviving previously non-survivable injuries; many of 

these had been exposed to blast (Penn-Barwell 2015).  

The pathology and outcome from penetrating traumatic brain injury (TBI) have been 

well understood since the First and Second World Wars and this is true, albeit to a 

lesser extent, of blunt TBI since the 1980s. At the time BIOSAP began, there was 

very little information about the mechanism by which blast caused injury and no data 

about the mid to long-term outcome of these injuries. There was an increasing body 

of civilian literature that demonstrated endocrine dysfunction was frequently 

associated with TBI and that modern magnetic resonance (MR) imaging techniques 

could offer new insight into both structural and functional injuries. I began work at the 

Computational, Cognitive and Clinical Neuroimaging laboratory at Imperial College 

London with Dr. David Sharp (soon to become Professor Sharp) and Dr. Anthony 

Goldstone. Here we identified soldiers who had been injured in Afghanistan by 

explosive devices and, using these modern techniques, began to understand blast 

traumatic brain injury (bTBI). 



v	
	

In 2011, an opportunity to work with the Defence Science and Technology 

Laboratory (DSTL), at Porton Down, arose. In conjunction with Dr. Emrys Kirkman 

and Dr. Sarah Watts at DSTL and Professor Steve Gentleman in the Department of 

Medicine at Imperial College London, we developed a method to examine porcine 

brains that had been injured by blast. This study, as far as I am aware, is unique in 

combining both MR imaging results with neuro-pathological correlates of injury and 

early immune activation, and has come to be referred to as the Blast Injury In Pigs 

(BIIPs) study. 

I returned to Afghanistan in 2012 to work at the Role 3 field hospital in Camp Bastion 

as a trauma surgeon. By this time, media coverage had brought the subject of 

injured personnel into the spotlight. Mainstream media began to draw links between 

post-traumatic stress disorder (PTSD) and traumatic brain injury (TBI), whilst the 

academic community, drawing on animal studies and observational work in 

American National Football League (NFL) players, focused its attention on the effect 

of repetitive minor TBIs. Journalists and academics drew parallels between NFL 

players and soldiers who had suffered repetitive TBIs and the resulting debate led to 

a class action by retired NFL players and a settlement of 800 million dollars by the 

NFL (NFL 2016). Whilst the disease process is not yet fully understood, repetitive 

TBI is now thought to cause a chronic activation of the brain’s immune system that 

leads to a persistent encephalopathy. The ongoing debate has raised awareness of 

what we now call chronic traumatic encephalopathy (CTE). Although the last decade 

of research has led to advances in our understanding of TBI, outcomes from severe 

TBI remain poor and from what we generally consider mild TBI remain variable and 

difficult to predict. Many of the questions raised remain unanswered. 

This thesis is a summation of both the BIOSAP and BIIPs studies. 
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1 Blast Injury Outcome Study in Armed Forces Personnel 
(BIOSAP) and Blast Injury in Pigs Study (BIIPs) 

 

1.1 Introduction 

The brain has myriad functions, including motor and sensory information processing, 

cognition and regulation of endocrine function. By necessity the tools used to 

investigate brain injury include clinical assessment, neuropsychological and 

endocrine tests as well as computerised tomography (CT) and magnetic resonance 

(MR) radiological studies. In the following introduction I outline the prerequisite 

information in order to understand the investigative rationale we employed for this 

work. I start the chapter by discussing blast because this area may be most 

unfamiliar to some readers, before moving on to traumatic brain injury (TBI), MR 

imaging, endocrine functions of the brain and the current use of animal models in 

TBI.  

In order to appreciate the value of this research, one must first recognise why blast 

poses a significant problem for military populations and, crucially, that the blast itself 

may generate a different mechanism of injury to those seen in non-blast traumatic 

blast injury (nbTBI). 

The Blast Injury Outcome Study in Armed forces Personnel (BIOSAP) examined the 

imaging, neuropsychological and endocrine effects of moderate and severe blast 

traumatic blast injury (bTBI) in a group of soldiers injured by blast in Afghanistan and 

compared these to civilians with a similar severity of non-blast injury, as well as 

uninjured civilian controls. 

The Blast Injury In Pigs (BIIPs) study used 4.7 Tesla magnetic resonance imaging 

(MRI) scanning and immunohistopathological assessment to compare the presence, 

pattern and extent of brain injury between a group of pigs that had been exposed to 

a blast wave and one that had not. In the final section of this chapter I explain the 

utility of animal models of injury and summarise the relevant literature to date. 

This work was a collaboration between UCL, where I am a registered doctoral 

student, the Computational, Cognitive and Clinical Neuroimaging Laboratory (C3NL) 

at Imperial College London, Imperial Healthcare Trust (Charing Cross and 
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Hammersmith Hospitals), the Academic Department of Military Surgery and Trauma 

(ADMST) and the Defence Science and Technology Laboratory (DSTL) Porton 

Down.  

Injured soldiers were recruited using the injured personnel database at ADMST. 

They underwent neuropsychological testing and MR imaging in the Robert Steiner 

Unit of Hammersmith Hospital and clinical endocrine assessment at Charing Cross 

Hospital. The data was analysed at C3NL. The porcine blast injury experiment took 

place at DSTL, Porton Down. The brains were processed at DSTL and stored at 

Imperial College London. They were analysed in the Department of Pathology at 

Imperial Hospital Trust. 

Given the multi-institutional collaboration that has been involved with these studies, 

there are many individuals who have been invaluable in their assistance. In 

particular, I would like to thank Surgeon Captain Mark Midwinter, Mr. Neil Kitchen 

and Professor David Sharp for overall supervision of the projects; Robert Leech and 

Peter Hellyer for their help processing the imaging data and statistical analysis; Dr. 

Anthony Goldstone and Dr. Claire Feeney for their assistance in performing and 

interpreting the endocrine assessments; Dr. Maneesh Patel for his help interpreting 

the human and animal structural MR imaging; Dr Marina Arridge for her assistance 

designing the porcine scanning protocol; Dr Emrys Kirkaman and Dr Sarah Watts, 

who ran the porcine blast model and supported retrieval of the pig brains; Ms Ting 

Kwok who assisted with analyzing the histology specimens; and Professor Steven 

Gentlemen for his supervision of the immunohistological component of the porcine 

work. 

For the purposes of submitting this thesis it is important to clarify my role in the 

research. I identified, recruited and performed neuropsychological testing, MR 

imaging as well as some of the clinical assessment of the soldiers in the study. I 

analysed the neuropsychological and imaging data and helped to analyse the 

endocrine function results. I developed a methodology for retrieving and processing 

the porcine brains and helped to develop the scanning protocol that we used. I 

supervised an MRes student (Ting Kwok) and together we performed the 

immunohistological preparation and analysis of the specimens. 
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1.2 Blast 

Explosive devices have been used extensively in Afghanistan. They have caused 

over 66% of coalition casualties that occurred there since 2001 (Kirkman 2011). 

Improvised explosive devices (IEDs) are comprised of an activator, an initiator, a 

container, explosive and a power source (see Figures 1-1 and 1-2). IEDs designed 

to destroy vehicles contain a shaped charge that will penetrate the vehicle’s armour. 

Antipersonnel IEDs contain objects (metal casing, nails, rocks and other materials) 

that act as ballistic fragments, causing injury at greater distance than the blast alone 

would. The IEDs used in Afghanistan were primarily made from ammonium nitrate 

(which was obtained from ammonium based fertilisers) or potassium chlorate (which 

is used in match making). IEDs can be initiated by mechanical, igniferous, 

improvised, electronic or chemical methods, and triggered by either the victim (trip 

wires, pressure sensitive plates or magnetic triggers) or by an attacker (command 

wire, remote control and infrared). 

	
Figure 1-1. Different types of IED initiators (Military Annual Training Test MATT 
9 C-IED Training J) 

This figure demonstrates the variety of initiators that are used to trigger an 
explosion. The initiator produces heat energy that starts the explosive 
reaction. This is achieved by chemical reaction, electrical spark or heat energy 
from a burning fuse. 
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Figure 1-2. Components of an IED (image from http://www.inertproducts.com) 

This figure shows what the activator, initiator, container, explosive and power 
source can look like. This is a training device that is activated by a mobile 
phone call and triggered by the victim dislodging a spacer that allows the two 
parts of the clothes peg to make contact. An electronic current that has been 
generated by a battery (not shown) powers the initiator causing the explosive 
to detonate. In this example the explosive is an old munitions shell and its 
casing fragments will cause additional injury. 

Explosives are reactive materials that release energy in the form of light, heat, sound 

and pressure. They are classified by the speed at which they detonate. If the 

detonation front of the material moves faster than the speed of sound it is said to be 

a high explosive, and it will produce a shock wave. If the detonation front moves 

slower than the speed of sound it is called a low explosive. Both generate high 

temperatures and rapid release of gases, low explosives do not generate a shock 

wave. Low explosives produce subsonic explosions that spread by rapid combustion 

of materials (deflagration). In contrast, high explosives generate a supersonic 

explosion where the blast overpressure (BOP) wave expands outwards rapidly from 

the centre of detonation. The explosion generates a pulse of increased air pressure 

(the BOP peak), lasting milliseconds, it expands rapidly from the point of detonation 

and is followed by an area of negative pressure. The BOP peak is followed by an 

area of negative pressure and they are collectively known as the shock wave. The 
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magnitude of the shock wave dissipates rapidly as it expands away from the point of 

detonation by an inverse cube relation (Kirkman 2011). The rapidly expanding gases 

released by the explosion displace an equal volume of air that expands outwards at 

high velocities. This is referred to as the blast wind.  

 

	
Figure 1-3. Friedlander waveform modified from Bauman 2009 

A drawing of an ideal Friedlander wave showing the peak pressure, positive 
pressure wave and negative pressure wave. 

 

When the expanding shock wave makes contact with hard solid surfaces, such as 

the ground and walls, it is reflected and this causes amplification of the peak 

pressure and greater injury. Blast victims in buildings have a greater degree of injury 

compared to those in the open (Bauman 2009) (CDC - Explosions and Blast Injuries 

2015). 

The IEDs used in Afghanistan were primarily high explosives. The extent of the 

damage they cause was dependent on the explosive used (as this determined the 

size of the high pressure peak and its duration), the container (as this fragments and 

acts as a fragmentation weapon), the distance of the victim from the point of 

detonation, and whether the explosion was in a confined space (as this determines 

the degree of focusing and amplification of the shock wave). BOP waves are 
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normally described in kPa or psi and the range of energy that soldiers are exposed 

to is wide depending on the size of the explosive, their distance from it and their 

PPE. Exposures of 690kPa or 100psi are considered potentially lethal (Champion 

2009). 

 

1.2.1 Classification of blast injury  

Injuries sustained from blast are classified as primary, secondary, tertiary and 

quaternary. Primary blast injuries result from the initial BOP wave. A blast wind 

follows this overpressure wave and can propel objects such as shrapnel from the 

IED and other debris into the body, causing secondary effects. Tertiary injuries may 

result from rapid acceleration and deceleration as the victim is thrown and impact 

surrounding objects. Quaternary effects encompass a range of miscellaneous 

injuries, sustained from heat, toxins, chemicals and radiation given off by the blast 

(Elder 2010b, DeWitt 2009). The primary, secondary and tertiary effects of blast are 

shown in Figure 1-4. 

 

	
Figure 1-4. The primary, secondary and tertiary effects of blast 

Primary blast injury is caused by the effects of the BOP wave itself. Secondary 
blast injuries are caused by shrapnel and debris being propelled by the blast 
force. Tertiary blast injuries are caused by impact of the body with other 
objects. 
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It is difficult to tease apart the direct effects of the BOP wave from the subordinate 

injuries in human clinical data. For this reason, animals have been used to model 

blast, controlling for the other effects. The question of whether the primary BOP 

wave can indeed cause brain injury is still in contention and, if so, the mechanisms 

through which injury occurs are unknown (Champion 2009). We hope that the BIIPs 

project will offer unique insights into the effects of primary blast in a porcine model. 

 

1.2.2 Impact on the body  

When a shockwave impacts the body, most of the energy is absorbed and 

propagated while the rest is reflected (Howe 2009). This generates high-frequency 

stress waves and lower-frequency shear waves, which in turn injure the tissues by 

mechanisms including spallation, implosion, and inertial effects (Nakagawa 2011, 

Leung 2008). Spallation is the disruption that occurs between materials of differing 

densities, and the compression is reflected at the material interface, leading to 

fragmentation of the denser material.  

Implosion occurs as gas bubbles in the tissue are compressed by the shockwave. 

This inflicts damage as the tissue itself collapses and, as the gas re-expands 

following the wave passage, it impacts surrounding tissue. As the BOP propagates, 

lighter density tissues will accelerate more than the denser tissues, resulting in large 

stress forces at the interface. This is known as the inertial effect. As such, the most 

vulnerable organs affected in blast are those with air/liquid interfaces, such as the 

auditory canals, lungs and abdomen (Elder 2010b, Champion 2009). It is therefore 

thought that injuries resulting from purely primary blast effects (the BOP wave) are 

characterised by parenchymal damage to the air filled organs such as the lungs, 

inner ear and intestines. As these tend to have few external signs of injury, this may 

have led to an underestimation of the true presence and extent of injury (Cernak 

2010).  
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1.2.3 Impact on the brain  

The mechanics by which the BOP wave affects the brain are not well understood. 

Theories about how the BOP wave can cause an immediate primary brain injury 

include: direct stress wave coupling through the skull or the foramina (the orbits, 

auditory canals and sinuses) (Nakagawa 2011); mechanical acceleration or rotation 

of head impacting the brain within the cranium; the standard TBI coup-contrecoup 

injury (Svetlov 2009); and shearing of white matter (WM) regions causing diffuse 

axonal injury (DAI) as well as skull flexures that can cause direct trauma to the 

underlying brain. The skull may also reflect and amplify the shockwave increasing 

the magnitude of the BOP wave and the damage it causes (Moss 2009).  

As well as the direct impact of the shockwave passing through the head, energy may 

be transferred from elsewhere in the body. The BOP wave can compress the 

abdomen and chest, which may pressurise systemic blood and cerebrospinal fluid 

(CSF) within the spinal canal to impact brain tissue near the cerebral vessels and 

ventricular system (Courtney 2009, Bauman 2009). The effect of the shockwave on 

other parts of the body may also influence the nervous response back to the brain 

via the vasovagal response, leading to cerebral hypoxemia (Cernak 2010). In reality 

these mechanisms may co-exist (see Figure 1-5).  
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Figure 1-5. Theoretical mechanisms by which BOP wave causes primary brain 
injury 

This figure shows the different mechanism by which the BOP is theorised to 
cause primary brain injury. 1. Direct stress wave coupling through the skull or 
the foramina. 2. Acceleration or rotation of head impacting the brain within the 
cranium, the coup-contrecoup injury. 3. Shearing of WM regions causing 
diffuse axonal injury. 4. Skull flexure causing direct trauma to the underlying 
brain. 5. Reflection and amplification of the shock wave by the skull. 6. Energy 
transfer from pressurisation of systemic blood and CSF.  

 

 

Secondary brain injury can occur from the activation of the neuroendocrine-immune 

system since haemorrhage and mechanical tissue damage can reult in the release of 

pro-inflammatory cytokines into systemic circulation, which can induce apoptosis 

(Bhattacharjee 2008) (see Figure 1-6).  
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Figure 1-6. Interactions between intracranial and extracranial injuries 

This figure demonstrates the complex interaction between intracranial and 
extracranial injuries (adapted from Cernak 2010). 

 

1.3 Traumatic brain injury  

1.3.1 Definition 

Traumatic brain injury (TBI) can be defined as “an alteration in brain function, or 

other evidence of brain pathology, caused by an external force” (Menon 2010). 

Alterations in brain function include: loss of consciousness; altered level of 

consciousness; or memory loss at the time of the injury. Radiological investigations, 

including MR imaging and laboratory tests, such as lumbar puncture, can also be 

used to confirm brain damage.  

 

1.3.2 Epidemiology 

It is estimated that approximately 10 million people per year suffer a TBI worldwide 

(Hyder 2007). In Europe, about 235 per 100,000 individuals suffer a head injury each 

year leading to approximately one million hospital admissions (Tagliaferri 2006). In 
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the United Kingdom (UK) 700,000 people attend A&E departments every year with a 

TBI; 140,000 of those will be admitted for treatment (Brain injury – the facts 2015). 

 

TBI is one of the major causes of death and disability among people under the age 

of 40 years. The incidence of TBI is bimodal with peaks in the young (<19 years old) 

and old (>75). Adults over 75 years have the highest incidence of hospitalisation only 

(Langlois 2006b). In the UK, 30% of the 115,000 estimated people suffering a TBI 

per year are younger than 15 years old (Thornhill 2000). There are approximately 1 

million people in the UK currently living with the long-term effects of a brain injury 

(Brain injury – the facts 2015). Overall, males are about twice as likely as females to 

sustain a TBI, which is likely due to males engaging more often in risk-taking 

behaviour (CDC 2001). 

 

1.3.3 Aetiology 

In the UK, falls (22-43%) and assaults (20-50%) are the most common causes of 

TBI, followed by road traffic accidents (RTAs) (~ 25%) (NCCAC 2007). The rate of 

TBI secondary to falls is highest among children and adults over 75 years, and the 

rates of both RTA and assault are higher among adolescents (Langlois 2006a). 

RTAs account for a greater proportion of the more severe cases of TBI.  

Alcohol consumption increases the risk of RTAs, while risk-taking behaviour, falls 

and violence are contributory factors in many adult TBIs (Kraus 1989, Tagliaferri 

2006). 

Exposure to blasts is a leading cause of TBI among active duty military personnel in 

war zones. Veterans’ advocates in the United States (US) believe that 10 to 20% 

(150,000 to 300,000) of Iraq veterans have some level of TBI (Facts About TBI in the 

USA 2015). 

 

1.3.4 Outcomes 

TBI often results in focal neurological deficits, cognitive slowing, behavioural and 

emotional impairments, sleep disturbance, endocrine dysfunction and epilepsy 

(Langlois 2006b). Forty percent of TBI survivors in Western Europe continued to 
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have persistent disabilities (Maegele 2007). In 2010, the direct and indirect annual 

costs of TBI in Europe were estimated at €64.1 billion, representing an economic 

challenge for health care systems (Gustavsson 2011). 

The increase in survival following TBI (Fuller 2011), and in particular that it is 

younger people surviving, results in long lasting disabilities that increase the 

requirement for rehabilitation (Patel 2005). TBI represents a significant medical and 

socioeconomic burden for modern society (Murray 1997). 

Despite the knowledge of lesion location in TBI, outcomes in terms of functional 

deficit are difficult to predict. This may be because there is widespread disruption of 

WM leading to disruption of the cognitive networks they serve (Kinnunen 2011). 

 

1.3.5 Classification of TBI  

There are several ways of classifying TBI. Classification may be: by mechanism of 

injury; by severity; based on clinical examination at the time of presentation; by the 

extent of injury (focal vs diffuse); and by patho-anatomical type (extradural 

haematoma, contusion, diffuse axonal injury, subdural haematoma, subarcahnoid 

haemorrhage and diffuse swelling). Classification systems are used to help medical 

professionals communicate information consistently, as a guide to investigation and 

treatment in the acute setting, for predicting outcomes, and as a means of comparing 

the efficacy of treatments. The most commonly used TBI classification systems are: 

• Primary vs secondary 

• Blunt vs penetrating 

• Focal vs Diffuse AxonaI Injury (DAI) 

• Glasgow Coma Score (GCS) 

• Proposed patho-anatomical system 

• The Mayo Classification System 

Here, we have used the Mayo Classification System because it addresses the lack 

of reliability of using the patient’s GCS alone and can still be calculated if some of 

the initial medical documentation is missing. This is particularly important in the 

military population, who were injured in battle and where the requirement to win the 
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firefight may prevent medics from immediately recording the GCS. I describe the 

different TBI classification systems in more detail below.  

 

1.3.6 Classification of extracranial injuries 

In polytrauma, extracranial injuries modulate and are modulated by the presence of 

TBI. We have used Abbreviated Injury Score (AIS) and the Injury Severity Score 

(ISS) classification systems, which are described below.  

 

1.3.7 Primary vs secondary injury 

Primary injury is traumatic damage to the brain, caused by an external mechanical 

force and occurs at the moment of injury. It is usually caused by an object striking 

the head or by acceleration-deceleration forces causing shearing of WM tracts 

(Silver 2005). Primary injuries are currently untreatable. The secondary injury occurs 

in the hours, days and months following trauma and results from processes initiated 

by the trauma. Secondary injuries are thought to be preventable and so is the focus 

of most medical treatments. The secondary injury comprises a multitude of 

processes including; ischaemia, hypoxia, hypotension, cerebral oedema, 

hypercapnia, acidosis, infection and excitotoxicity secondary to neurotransmitter 

release. More recently, spreading waves of depolarisation on the cortex of the brain 

(Hinzman 2014, Hartings 2014) and microglial activation, causing a prolonged state 

of inflammation predisposing patients to diseases like dementia, have been 

proposed as additional mechanisms of secondary injury (Hernandez-Ontiveros 

2013). 

 

1.3.8 Blunt vs penetrating 

Blunt injuries occur when the head is struck by an object or experiences rapid 

acceleration-deceleration forces. Crucially, the skull and dura surrounding the brain 

are not penetrated. With regard to later classifications, blunt injuries can cause both 

focal and diffuse injury. Most injuries occurring in peacetime are blunt injuries 

(Prognosis in penetrating brain injury, 2001). In contrast penetrating injuries occur 

when the skull and dura are breached and the brain is directly injured. Penetrating 



14	
	

brain injuries have a higher mortality than blunt injuries (Prognosis in penetrating 

brain injury, 2001). A far greater proportion of brain injuries occurring in wartime are 

penetrating and it is this mechanism of injury that helmets are designed to protect 

against. 

 

1.3.9 Focal v diffuse axonal injury (DAI) 

Brain damage following a TBI can be described as focal or diffuse, based on clinical 

and radiological examination (Silver 2005). These mechanisms are usually found 

together.  

 

1.3.10 Focal injury 

Focal brain injuries mainly result from inertial forces, such as objects striking the 

head or the brain striking the inside of the skull, causing structural disruption of 

neural tissues (Ommaya 1974). They principally consist of micro-vascular injury 

resulting in contusions to the cortical grey matter (Gennarelli 1998). They most 

commonly occur when the brain collides with a dural ridge or bony protuberance and 

thus have characteristics locations, such as the orbitofrontal cortex and temporal 

poles, where the brain is in close proximity to the skull or a dural ridge (Gentry 1988).  

	
Figure 1-7. Common locations of intracerebral contusions 
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Schematic diagram showing the contusion location in the A, midline sagittal, 
B, lateral sagittal and C, axial planes. The areas in red are those most 
commonly affected. The areas that are most commonly affected are the orbito-
frontal cortex, the temporal lobe and adjacent parietal opercular and superior 
temporal gyrus (Morales 2015). 

 

1.3.11 Diffuse axonal injury 

Diffuse axonal injury (DAI) refers to a range of WM injury with the most severe being 

tearing of axons at the time of injury to disruption of the axon’s cytoskeleton and 

subsequent axonal death. It is the most common pathologic finding of TBI (Gentry 

1988). It can occur in the absence of impact forces and is thought to be the result of 

the rapid acceleration- deceleration forces experienced in RTAs and some falls and 

assaults (Adams 1989). DAI occurs throughout the deep and subcortical white 

matter, and is common in midline structures, such as the corpus callosum and in the 

frontal lobes (Gentry 1988). Violent head movements lead to the tearing or stretching 

and deformation of axons (Povlishock 2005). Larger neurons and those that change 

direction experience greater shearing when exposed to acceleration-deceleration 

forces (Grady 1993, Povlishock 1993, Yaghmai 1992). In addition, axons are more 

easily injured in areas of differing tissue density, such as at the subcortical grey-WM 

interface (Grady 1993, Povlishock 1993). Axonal fibres are the most vulnerable to 

these shearing forces and so are injured first. If the forces are sufficiently strong, the 

perforating blood vessels within the WM will also be damaged leading to the small 

petechial haemorrhages, known as microbleeds, that are currently the diagnostic 

sign of underlying WM injury on radiological examination (Bigler 2001). Tearing of 

the axons at the time of injury, known as “primary axotomy”, is relatively rare. In most 

cases disruption of the cytoskeleton causes a failure of axonal transport of ions 

leading to “secondary axotomy” and subsequent disconnection (Johnson 2013). 

Figure 1-8 illustrates DAI. 
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Figure 1-8. Diffuse axonal injury 

The three images on the left show the coronal slice through a porcine brain. 
The top image shows the normal position of the white matter tracts and gyri in 
the brain. The middle image shows the distortion of the normal white matter 
anatomy when the brain is subjected to large acceleration forces and the 
bottom image shows the areas of compressive strain when the brain is 
exposed to large deceleration forces. The image on the right shows post 
mortem examination of a human brain with macroscopic evidence of 
haemorrhage in the corpus callosum and brainstem (Smith 2003). 

 

1.3.12 Classification by injury severity 

1.3.12.1 Glasgow Coma Score 

The severity of brain injuries is commonly described using the modified Glasgow 

Coma Scale (GCS). As shown in Table 1-1, this 15 point scale assesses the 

patient’s best eye, motor and verbal response and has been validated as a predictor 

of in-hospital mortality (Moore 2006). Whilst being validated and reproducible, the 

GCS has been criticised for being inaccurate in intubated patients, in intoxicated 

patients and those with orbital injuries. It is mathematically weighted towards the 

motor response and lacks reliability when monitoring the level of consciousness in 
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patients with moderate brain injury (Segatore 1992). Crucially, for the previously 

mentioned reasons, it can only be performed in 61% of patients in the pre-hospital 

setting (Glasgow Coma Scale 2015). In the context of brain injury a GCS of 13-15 is 

defined as mild, 9-12 as moderate and 3-8 as severe. 
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Table 1-1. GCS scoring system  

Glasgow Coma Scale (GCS, Teasdale and Jennett 1974)  

Glasgow Coma Scale 

Eye response Open spontaneously 4 

Open to verbal command 3 

Open in response to pain 2 

No response 1 

Verbal response Talking / orientated 5 

Confused speech / disorientated 4 

Inappropriate words 3 

Incomprehensible sounds 2 

No response 1 

Motor response Obeys commands 6 

Localises to painful stimuli 5 

Withdraws from painful stimuli 4 

Abnormal flexion 3 

Extension 2 

No response 1 

 

1.3.12.2 Patho-anatomical classification 

Critics of the GCS have argued that it does not provide specific information about the 

pathophysiological mechanisms, which are responsible for neurological deficits and 

targeted by interventions. As a result the GCS alone cannot direct treatment and, by 

grouping injuries of different pathologies together, is a barrier to finding effective 

therapies (Saatman 2008). Many different types of TBI can produce the same GCS 

score (See Figure 1-9). The treatment and outcomes from these may be very 
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different and a more detailed classification system has been proposed in order to 

determine whether therapies are effective. The new patho-anatomical classification 

system is based on the premise that injuries with similar patho-anatomical features 

would share patho-physiological mechanisms (Saatman 2008). This system would 

be used in conjunction with measures of injury severity, like GCS, and look at 

specific outcome relevant to the patho-anatomic subtypes of TBI. It is currently a 

research tool whose main utility will be in the evaluation of therapies.  

 

	
Figure 1-9. Heterogeneity of TBI 

Each of these patients had a GCS of <8. However they have different 
pathologies, treatment and outcomes. CT scans of six different patients with 
severe TBI, highlighting the significant heterogeneity of pathological findings. 
CT scans represent patients with extradural haematomas (EDH), contusions 
and intraparenchymal haematomas (Contusions/Hematoma), diffuse axonal 
injury (DAI), subdural haematoma (SDH), subarachnoid haemorrhage and 
intraventricular haemorrhage (SAH/IVH) and diffuse brain swelling (Saatman 
2008). 
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1.3.12.3 The Mayo Classification System 

The Mayo Classification System for TBI severity (shown in Table 1-2) was developed 

to address the unreliability of the GCS in assessing awareness and the frequency of 

missing documentation in medical notes. It classifies patients into three groups; 

definite moderate to severe TBI, probable mild TBI (MTBI) and possible TBI. It takes 

into account episodes of loss of consciousness, the duration of posttraumatic 

amnesia as well as radiological evidence on CT scanning of injury (for example most 

commonly skull fractures and contusions) (Malec 2007).  

Using this classification system a TBI is classified as definite moderate-severe if one 

or more of the following are present: death due to this TBI, loss of consciousness of 

30 minutes or more, post traumatic amnesia (PTA) of 24 hours or more, and GCS 

<13 in the first 24 hours. In addition, if there were radiological evidence of 

neurological injury such as a contusion, then the TBI would be classified as definite 

moderate-severe. If there was a loss of consciousness for less than 30 minutes, PTA 

less than 24 hours, then the injury would be classified as probable mild. If there are 

one or more of the following symptoms: blurred vision, confusion, feeling dazed, 

dizziness, headache or nausea, the injury is classified as a probable TBI (Malec, 

2007). The Mayo classification system has been shown to have both a high 

sensitivity and specificity for moderate-severe TBI (Malec 2007). 

 

Table 1-2. Mayo Classification of TBI (Malec 2007) 

MAYO TBI Severity Classification System 

A. Moderate-Severe (Definite) TBI if 
one of more of the following 
criteria apply: 

Death due to this TBI 

Loss of consciousness of 30 minutes 

or more 

Post-traumatic anterograde amnesia 

of 24 hours or more 

Worst GCS in the first 24 hours <13 

One or more of the following is 

present;  
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• Intracerebral haematoma 

• Subdural haematoma 

• Extradural haematoma 

• Cerebral contusion 

• Penetrating TBI 

• Subarachnoid haemorrhage 

• Brain Stem Injury 

B. If none of the Criteria A apply, 
classify as Mild (Probable TBI) if 
one or more of the following 
criteria apply: 

Momentary loss of consciousness 

<30 minutes 

Post-traumatic anterograde amnesia 

less than 24 hours 

Depressed, basilar or linear skull 

fracture (dura intact) 

C. If none of Criteria A or B apply, 
classify as Symptomatic (Possible) 
TBI if one or more of the following 
symptoms are present: 

• Blurred vision 

• Mental state changes 

(confusion) 

• Dazed 

• Dizziness 

• Focal neurological symptoms 

• Headache 

• Nausea 

 

 

1.3.12.4 Injury Severity Score (ISS) and Abbreviated Injury Scale (AIS) 

It is important to consider extracranial injuries because outcomes for a given ISS 

have been shown to be worse if there is also a brain injury. In addition the outcomes 

from head injuries are worse if there is associated hypoxia or hypotension which can 
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be caused by extracranial injuries (Fuller 2011). In both civilian and military trauma, 

head injuries frequently occur in the context of polytrauma (where there is an injury 

to more than one body system). This is especially true in the context of soldiers 

injured by explosive devices, which indiscriminately injure the whole body. The Injury 

Severity Score (ISS) (shown in Table 1-3) is an anatomical scoring system originally 

developed by the automotor industry, which provides an overall score for patients 

with multiple injuries. Each injury is assigned an Abbreviated Injury Scale (AIS) score 

and is allocated to one of nine body regions (head, face, neck, chest, abdomen, 

pelvis, spine, upper and lower extremities and external, which encompasses the 

skin). Only the highest AIS score for each region is used. The AIS scores for the 3 

most severely injured body regions are squared and added together to produce the 

ISS score. The ISS score ranks injuries from 0 to 75. If an injury is assigned an AIS 

of 6 (unsurvivable injury), the ISS score is automatically assigned to 75. The ISS 

score has been shown to correlate with mortality, morbidity, hospital stay and other 

measures of severity (Injury Severity Score, Trauma.org 2015). 
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Table 1-3. Example of the Injury Severity Score for a fictional polytrauma 
patient  

This table shows how the ISS is calculated for a fictional patient who has 
suffered a head, chest, liver and spleen injury as well as a femoral fracture. 
Using the AIS classification system these injuries were scored and the top 
three were then squared and added together, giving an ISS of 50 out of a total 
possible score of 75. 
 

Region Injury description AIS Square of the 
Top Three 

Head & Neck Cerebral contusion 3 9 

Face No injury 0  

Chest Flail chest 4 16 

Abdomen Minor contusion of 

liver  

Complex rupture 

spleen 

2 

 

5 

 

 

25 

Extremity Fractured femur 3  

External No injury 0  

Injury Severity Score 50 

 

The AIS requires knowledge of the precise anatomical damage that has occurred. 

This information is often not known at the time of initial assessment. An error in AIS 

scoring increases the ISS error and, as a consequence, many different injury 

patterns can yield the same ISS score. For these reasons, the ISS is not useful as a 

triage tool. However, it has been shown to be a good method post-triage for 

describing patients with multiple injuries and evaluating their care (Baker 1974).  

The Mayo Classification System and the Injury Severity Score were both used to 

assess the subjects in this study. We chose to use the Mayo system because it 

addressed missing or inaccurate clinical information at the time of the soldiers’ injury 
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and has been shown to be more sensitive and specific in classifying severity of TBI 

when compared to single indicators such as PTA, GCS and loss of consciousness 

alone (Friedland, http://www.acnr.co.uk/2013/07/classification-of-traumatic-brain-

injury/). The ISS was used in order to make the comparisons across subjects and 

groups more accurate by taking into account extra-cranial injury. 

 

1.4 Radiological assessment 

1.4.1 Computerised Tomography (CT) 

At the initial time of injury, patients may be rapidly deteriorating from their brain injury 

or may be physiologically unstable from injuries to other body systems. These 

clinical conditions require urgent treatment and the most rapid investigations 

possible including radiological imaging. In addition, because the equipment (for 

example a ventilator) used to assess and treat unconscious patients is usually 

ferromagnetic, CT scanning is the first line imaging modality employed in TBI. 

CT scanning uses X-rays to create a two dimensional picture of the patient’s 

anatomy. X-rays are fired from an X-ray tube that rotates around the patient. The X-

rays pass through the patient’s body and are absorbed to differing degrees 

depending on the density of the tissues they passing through. The denser the tissue, 

the more X-ray radiation is absorbed and the region appears brighter on the picture 

produced. The globin molecule in haemaglobin is relatively dense and so an acute 

haemorrhage appears white on CT – thus CT provides a rapid assessment of 

structural brain injuries and an accurate means of diagnosing intracranial 

haematomas. It is available in most trauma centres or facilities where trauma 

patients are managed in the UK and is faster and cheaper than MRI. MRI is, 

however, more sensitive than CT in detecting traumatic lesions (Paterakis 2000). In 

addition, CT underestimates the severity of many forms of cerebral injury such as 

non-haemorrhagic cortical contusions, when there is little or no change in tissue 

density (Gentry 1988).  
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1.4.2 Magnetic resonance imaging (MRI) 

1.4.2.1 MRI summary 

MRI uses a magnetic field to produce images of biological tissue. It is based on the 

resonance of nuclei in a magnetic field (nuclear magnetic resonance). These nuclei 

are stimulated using oscillating radiofrequency (RF) pulses, known as pulse 

sequences, whilst in a magnetic field. When this energy is released by the nuclei, a 

signal containing spatial and structural information from the material under 

investigation can be detected. These signals are reconstructed into images. Different 

sequences detect different tissue properties and can differentiate tissues of differing 

densities such as the grey matter and WM of the brain. MR imaging has been shown 

to be more sensitive than CT for the detection of traumatic lesions (Paterakis 2000). 

MR imaging can be performed using several different sequences, which are 

sensitised to the differing properties of the tissues. Some sequences are more 

sensitive than others for investigating traumatic lesions. Susceptibility weighted 

imaging (SWI) is very sensitive to the properties of haem, making it a useful 

investigation of microbleeds. DTI is sensitive to the diffusion of water and can be 

used investigate WM integrity (Smith 2006). In the following section, I describe the 

basis of MR imaging and the main sequences (T1, T2, T2* and SWI) used. I then 

describe DTI, which is one of the main imaging techniques used in this PhD (Gentry 

1988). 

 

1.4.2.2 Nuclear Magnetic Resonance  

Nuclear magnetic resonance (NMR) describes the interaction of an externally 

applied magnetic field with the magnetic moment of the nucleus of an atom. All the 

particles of an atom spin on their own axis. The rotation of the nuclear particles 

creates a magnetic field, which is described as a magnetic moment. It is possible to 

consider these particles’ behaviour as similar to miniature magnets. In the context of 

this work, the hydrogen nucleus absorbs RF energy and then subsequently emits it. 

The NMR signal is detected as a function of time and demonstrates the presence of 

hydrogen atoms but not their location in space. 
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In a hydrogen atom, there is a single proton (1H), constituting a spinning positive 

charge. The interaction of the magnetic moments with an applied magnetic field 

generates signals that provide spatial information.  

In medical imaging, signals are usually collected from the nuclei of hydrogen (1H) 

atoms. However it is also possible to obtain signals from other elements including 
13C, 23Na and 31P, which is the basis of MR Spectroscopy. 

 

1.4.2.3 Repetition time and echo time  

There are two important factors that govern the time at which MR images are 

collected. One is the time interval between successive excitation pulses, known as 

repetition time (TR). The other is the time interval between excitation and relaxation, 

known as echo time (TE). Variations in these parameters will affect whether signal 

intensity is primarily due to T1, T2 or T2* relaxation (Figure 1-10).  

 

1.4.2.4 T1-weighted images  

T1-weighting imaging is commonly used for imaging anatomical structures. Images 

are called T1-weighted if the relative signal intensity of voxels depends upon the T1 

value of the tissue. This type of imaging requires an intermediate TR, to generate a 

contrast between the different tissue types, and a short TE, to minimise T2 contrast. 

T1-weighted images depict the spatial distribution of T1 values, so that voxels with 

short T1 values are bright and those with long T1 values are dark. Fluid appears as 

black, grey matter appears as dark grey and white matter appears as light grey. 

 

1.4.2.5 T2-weighted images  

To have an exclusive T2 contrast, the TR must be long, so that the longitudinal 

recovery is almost complete in all tissues and T1 contrast is minimal, with an 

intermediate TE. On these images, fluid appears bright, grey matter appears as light 

grey and white matter is dark. This type of image is particularly useful for 

investigating pathological conditions such as tumours and inflammation in which 

there is an increase in the water content of the tissues making the areas appear 

brighter.  
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1.4.2.6 T2*-weighted images  

T2* are generated by pulse sequences with long TR and medium TE. The pulse 

sequence uses magnetic field gradients to generate the signal echo. T2*-weighted 

images are sensitive to the amount of deoxygenated haemoglobin, iron and 

calcification present in tissues. It is the basis of gradient echo (GRE) and 

susceptibility weighted imaging (SWI) (Chavhan 2009). 

 

1.4.2.7 Susceptibility weighted images 

SWI are generated using a flow compensated, long echo and gradient recalled echo 

(GRE) pulse sequence. This technique takes advantage of the difference in 

susceptibility between tissues and uses the phase image to detect them. The 

magnitude and phase data are combined to produce an image, which is extremely 

sensitive to venous blood, haemorrhage and iron storage. 

	
Figure 1-10. T1, T2, T2* SWI image 

A, non-enhanced CT scan shows areas of low attenuation in the pons and 
bilateral brachium pontis. B, T1-weighted image shows similar hypointense 
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lesions in the pons and right hemisphere of the cerebellum. C, T2-weighted 
image shows multiple hyperintense lesions in the pons and right cerebellar 
hemisphere. D, SWI demonstrates multiple hypointense lesions in the pons 
and both hemispheres of the cerebellum. There are more lesions shown on 
SWI, illustrating its increased sensitivity for microbleeds. 

 

1.4.3 Diffusion Tensor Imaging 

Diffusion tensor imaging (DTI) is an MR technique used to reveal the microstructure 

and anatomy of the brain by characterising the diffusion of water molecules. It can be 

used to provide information about anatomical connectivity in the brain, by measuring 

the anisotropic diffusion of water in white matter tracts (Smith 2006).  

In an unrestricted environment, water molecules can move in all directions (Brownian 

motion), and the diffusion is said to be isotropic. In brain tissue, water movement is 

limited by cell membranes and myelin and the diffusion is said to be restricted or 

anisotropic. The extent of restriction depends on brain tissue type. In CSF water can 

move in all directions, and diffusion is unrestricted or isotropic. White matter tracts 

have underlying directionality because of myelinated axons, which restricts the 

movement of water molecules in the direction of the tracts producing an anisotropic 

diffusion pattern. DTI can be used to estimate axonal orientation and myelin integrity.  

 

1.4.4 Measuring water diffusion with MRI  

In diffusion weighted MRI, the detection of water diffusion is made possible by the 

use of a pair of magnetic gradient pulses. The first gradient causes protons along the 

gradient axis to dephase. The amount of dephasing is dependent on the position of 

the proton along this magnetic gradient, which allows encoding the position of the 

protons along one axis by their relative phase. The second gradient is applied after 

approximately 20-50 milliseconds (ms) along the same axis but with opposite 

polarity. This has the effect of cancelling out the dephasing induced by the first 

gradient. The second pulse should completely rephase the proton to its initial status, 

but because the amount of rephasing is also dependent on the position of the proton 

along the gradient axis, any displacement of water molecules along this axis 

occurring between the two gradients results in incomplete rephasing, which causes a 
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detectable loss in signal. The more diffusion that occurs along the direction of the 

applied gradient, the more attenuated the signal is compared to the signal obtained 

with no diffusion gradients applied (b=0). A diffusion coefficient D can thus be 

calculated for each imaging voxel in the diffusion-weighted image based on the 

change in signal intensity, using the following equation:  

S = S0e-bD  

Where S is the signal intensity in the diffusion-weighted image, S0 is the signal 

intensity in the reference image (non-diffusion-weighted or b0 image) and b is the 

diffusion-weighting gradient factor (Mori 2006).  

Importantly, diffusion weighted MRI is only sensitive to water diffusion occurring 

along the axis of the applied magnetic gradient. To detect the diffusion of water in 

different directions, the gradients must be applied along multiple axes. DTI is 

typically carried out by applying many diffusion gradients along specific directions. 

The strength of these gradients is characterised by a known parameter b (‘b-value’). 

The more directions, the better the direction of diffusion will be described.  

 

1.4.5 DTI measures  

By calculating the distance which water diffuses in a given voxel in a given amount of 

time for several (at least six) non-collinear directions, it is possible to reconstruct a 

3D ellipsoidal shape that best describes the pattern of water diffusion occurring in a 

given voxel. This ellipsoid can be mathematically described as a 3D tensor that can 

be characterised by 3 eigenvalues λ1 (major axis), λ2 (median) and λ3 (minimum).  

 

	
Figure 1-11. DTI image production 

A) Diffusion is measured along multiple axes by applying various gradients. B) 
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This allows the estimation of the shape of the diffusion ellipsoid that can be 
described by 3 eigenvalues. C) An anisotropic map can be created, in which 
regions with higher anisotropy are brighter. D) The principal orientations of 
each pixel can also be colour coded to produce an orientation map. (Adapted 
from Mori 2006). 

By employing this diffusion tensor model, several diffusion parameters can be 

derived. The most frequently used is fractional anisotropy (FA), which estimates the 

degree of diffusion directionality. FA is a function of the 3 eigenvalues characterising 

the diffusion tensor. 

An FA of 0 indicates a complete isotropic diffusion, and values can increase from 0 

to 1 with increasing diffusion anisotropy. FA provides important information about the 

composition of tissue within a voxel. In a WM bundle, reduced FA is generally 

assumed to reflect damage to the axon membrane, reduced axonal myelination, 

reduced axonal packing density, and/or reduced axonal coherence (Arfanakis 2002, 

Song 2002).  

 

1.4.6 DTI data analysis  

There are several accepted methods to compare diffusion data across subjects. 

Some researchers have summarised the diffusion characteristics (primarily FA) of 

the whole brain by performing a whole brain histogram analysis and comparing these 

values between subjects. This approach is limited because it does not take into 

account where in the brain the difference occurs (Smith 2006). Histogram analysis 

describes changes to the whole brain, but does not provide any regionally specific 

information.  

Voxel based morphometry is another method by which FA can be compared across 

subjects. Using this method each subject’s FA image is registered into a standard 

space and then statistics are carried out on each voxel to find areas that correlate. 

There is concern about the alignment of images and a lack of certainty that the 

voxels at any given standard space represent data from the same part of the same 

WM tract from each and every subject. 
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1.4.7 Region of interest (ROI) analysis  

ROI analysis can be used to test any tract or specific region and is particularly useful 

in the investigation of TBI, where specific tracts/regions are more frequently 

damaged than others. This approach simply consists of extracting averaged 

measures of diffusion (e.g. FA) from specific brain regions or WM tracts.  

 

1.4.8 Tract-based spatial statistics (TBSS)  

Voxel-based analysis can be fully automated using software such as FSL (FSL is an 

analysis tool for FMRI, MRI and DTI brain imaging data created by FMRIB, Oxford, 

UK) and hence easily reproducible. It can be used to examine the entire brain in a 

single subject and to compare groups of subjects. TBSS is a voxel-based technique 

to analyse WM structure across the whole brain (Smith 2006). TBSS allows complex 

patterns of WM disruption to be identified and their relationships (such as with 

cognitive or endocrine function) studied. TBSS analysis creates a mean FA skeleton 

at the centre of the WM tracts by thinning the mean FA image. This reduces partial-

volume confounds and reduces inter-individual variability.  

 

1.4.9 Magnetic Resonance Imaging in TBI and bTBI 

The brain has localised functions with each cerebral hemisphere having a 

contralateral relationship with the side of the body that it controls. The brain is 

divided into the Cerebrum, Cerebellum, Limbic system and Brainstem. These are 

further sub-divided. 

The cerebrum is made up of the frontal, parietal, temporal and occipital lobes. The 

frontal lobe is responsible for creative thought, problem solving, intellect, attention 

and executive function. The parietal lobe is responsible for the initiation of 

movement, orientation, recognition and perception of stimuli. The occipital lobe is 

responsible for visual processing and the temporal lobes associated with the 

perception and recognition of auditory stimuli, memory and speech. 

The cerebellum is associated with regulation and coordination of movement, posture 

and balance. More recently it has been shown to have a role in cognition, in 

particular episodic memory (Andreasen 1999).  
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The limbic system, is comprised of the amygdala, hippocampus, thalamus, 

hypothalamus, basal ganglia and cingulate gyrus. It is the emotional centre of the 

brain and is responsible for memory formation. 

The brainstem is made up of the midbrain, pons and medulla. It plays an important 

role in the regulation of cardiac and respiratory function, consciousness and the 

sleep cycle. In addition it contains nuclei that relay signals from the cerebum to the 

cerebellum and in this way acts as a vehicle for sensory information. 

Given this localisation of function, it should be relatively simple to predict the 

neurological deficits that would occur following TBI. However, the anatomical 

location of lesions in TBI does not fully explain the neurological deficits experienced 

by patients (Bigler 2001). Despite the heterogeneity in the cause, severity, and 

distribution of pathology in TBI, common neuropsychological and cognitive deficits 

are frequently observed and these are likely to result from the widespread disruption 

of WM networks that occurs in DAI (Kinnunen 2011). 

Whilst large focal haemorrhagic lesions are seen on CT and conventional T1-

weighted MR, the microbleeds associated with DAI are not (Ommaya 1971). The 

best available imaging technique to identify microbleeds is susceptibility weighted 

imaging (SWI) (Akiyama 2009). SWI is a MR technique that allows the visualisation 

of small amounts of haem (from red blood cells) products by accentuating their 

magnetic properties (Haacke 2004). The extent of SWI-identified haemorrhages has 

been shown to correlate with the initial severity of injury, duration of coma, long-term 

outcome as well as specific neuropsychological deficits (Tong 2004, Babikian 2005). 

However, the presence of microbleeds alone underestimates the extent of DAI, as 

some DAI may be non-haemorrhagic (Gentry 1994, Paterakis 2000). Therefore, in 

this study, in addition to conventional MR, we have used diffusion tensor imaging 

(DTI), a relatively new MRI modality that provides in vivo indices of WM integrity in 

order to identify otherwise undetected DAI (Arfanakis 2002, Bazarian 2007, 

Sugiyama 2009, Sharp 2011). 

CT and standard MRI structural images (T1, T2 and T2*) can demonstrate large 

focal contusions or bleeds (Van Boven 2009). Whilst CT is essential in the early 

assessment of brain injury, it has been shown to be less sensitive than MR in 

detecting intraparenchymal, shearing and haemorrhagic lesions as well as in injuries 
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of the posterior fossa (Chastain 2009). T2WI and FLAIR imaging are more sensitive 

than T1 for evaluating brain lesion (Chastain 2009) and they have also been shown 

to discriminate between good and poor outcomes by volume and number of lesions 

as well as by anatomical distribution (Chastain 2009). Standard structural MRI is not 

sensitive to DAI, which it can only detect indirectly once the injury is in the chronic 

phase and brain atrophy has occurred by measuring brain volume loss (measured 

using volumetric analysis) (Van Boven 2009). 

	
Figure 1-12. The vascular supply of a single gyrus 

The vascular supply of a single gyrus (A and B). Arterioles are depicted in red 
with venules in blue. Neural cells are considerably smaller. In (B), brain tissue 
has been removed to aid in visualising of the vasculature (from Haughton 
1998).  

Figure 1-12 shows the vascular supply to a single gyrus. The arterioles form a 

complex matrix of delicate vessels. Each of these vessels supplies even more 

delicate neurons and glial cells that cannot be seen at this magnification. Both 

nerves and blood vessels have limited elasticity, are of a fixed length and are held in 

position by other cells. Shearing forces will first damage the axonal fibres that are the 

most fragile and hence susceptible to injury. As the whole brain experiences these 

forces, the damage will be widespread and more pronounced in those areas, such 

as the corpus callosum, where the fibres are most vulnerable. This widespread 

axonal injury is referred to as diffuse axonal injury. If the shearing forces are 

stronger, then the micro-vascular supply will also be ruptured causing the vessels to 
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bleed. These small bleeds are known as microbleeds and hence are a surrogate 

marker of DAI (Bigler 2001). 

Both Gradient Echo (GE) MR and Susceptibility Weighted Imaging (SWI) can detect 

microbleeds. The Microbleed Anatomical Rating Scale has been shown to be a 

reliable tool across different MRI sequences and levels of observer experience 

(Gregoire 2009). 

SWI has a significantly higher sensitivity to haemorrhagic lesions than GE. Using 

SWI the number and volume of hemorrhagic lesions has been shown to correlate 

with the Glasgow Coma Scale score (Tong 2006) as well as with other clinical 

measures of TBI severity and with outcome at 6 to 12 months post-injury (Tong 

2004). Using GE and SWI sequences underestimates the extent of brain injury 

because they are visualising the associated haemorrhage but not the underlying 

axonal injury. 

Pathology studies examining brains with DAI have shown multifocal WM lesions that 

are occasionally associated with petechial haemorrhage (Adams 1984). DAI most 

frequently affects the WM, corpus callosum and the upper brain stem. Studies have 

linked DAI to tearing of the axons, known as “primary axotomy” and more frequently 

to focal misalignments of the cytoskeletal network and to changes of the axonal 

permeability (Povlishock 1995, Christman  1994, Grady 1993, Pettus 1994, 

Gennarelli 1997), depending on the severity of the injury, leading to disconnection, or 

“secondary axotomy” (Johnson 2013) (see Figure 1-13). 

.  

	
Figure 1-13. Secondary axonal injury 

Illustration of axonal changes secondary to cytoskeletal perturbation from 
mild TBI. A. The top neuron is healthy, in the bottom neuron neurofilamentous 
and cytoskeletal misalignment is visible a short time after injury, this impairs 
axonal transport. B. Organelles accumulate in the injured region, causing the 
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axon to swell locally and subsequently disconnect from the rest (Adapted from 
Arfanakis 2002). 

The first evidence of DAI is focal neurofilament misalignment, which becomes 

prominent within the first 6 hours post injury (Povlishock 1995, Christman 1994, 

Grady 1993, Pettus 1994, Gennarelli 1997). This misalignment causes impairment of 

axoplasmic transport and the accumulation of organelles. This continues for several 

hours after injury, causing swelling and expansion of the axon. The axon becomes 

lobulated by further swelling and becomes disconnected at 30–60 hours after injury. 

After disconnection, the segments of the axon are sealed and enveloped by a myelin 

sheath. In severe TBI the axons may be directly torn in addition to the effects 

described (Povlishock 1995, Christman 1994, Arfanakis 2002).  

These changes initially decrease the diffusion of water along axons and increase the 

diffusion in directions perpendicular to them. Over time, as the axons are sealed by 

myelin, the water is no longer able to diffuse perpendicular to the axon. These 

changes in diffusion can be detected using DTI and are the basis behind which it has 

been shown to indicate the approximate time since injury (Mac Donald 2007). 

DTI measures water diffusion in multiple directions. In tissues with underlying 

directionality such as the axonal alignment seen in white matter tracts, diffusion is 

limited to the direction of the axons. This directionality is described as being highly 

anisotropic. Anisotropy is usually expressed relative to the magnitude of the diffusion 

tensor as the fractional anisotropy. This is an index ranging from 0 to 1 (Sidaros 

2008). Intact WM fibres would have a high FA value. When axons are injured, water 

diffusion changes for the reasons described above. Diffusion can now occur in more 

directions and is said to be isotropic and the FA value would be reduced (Arfanakis 

2002).  

DTI studies have shown reductions in FA at sites of DAI and have been shown to 

correlate with both outcome (Sidaros 2008) and cognition (Kraus 2007). DTI 

provides an objective means (the FA value) for determining the relationship of 

cognitive deficits to TBI (Kraus 2007). 

 

1.5 Hypothalamic-Pituitary-Adrenal axis 

The endocrine system’s role is the maintenance of a stable internal environment 
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despite changes in the external environment (homeostasis). The hypothalamus acts 

as a master gland to this system, controlling the anterior pituitary gland and certain 

peripheral organs. It consolidates signals derived from the cortex with environmental 

cues, such as light and temperature and peripheral endocrine feedback and signals 

the pituitary gland to release hormones. Within the endocrine system, the 

hypothalamic pituitary adrenal (HPA) axis (shown in Figure 1-14) is of particular 

importance because it controls the body’s response to stress, regulates digestion, 

the immune system, metabolism and, through its connections to the limbic system, 

affects emotions. Cortisol, a hormonal end product made in the adrenal cortex, acts 

to inhibit the hypothalamus and pituitary gland in a negative feedback loop (Bowen 

2001).  

	
Figure 1-14. Hypothalamic-Pituitary-Adrenal Axis 

The hypothalamus controls anterior pituitary gland function which in turn 
controls cortisol by the adrenal cortex, both are inhibited by cortisol. 

 

1.5.1 Hypothalamic-Pituitary Axis dysfunction in TBI 

The pituitary gland (as shown in Figure 1-15) and infundibulum are contained with 

the sella turcica, a hard boney and ligamentous structure of the skull. They are 

surrounded by a friable hypophyseal portal vascular system. The hypothalamus is in 
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close proximity to the sella. It is connected to the pituitary gland by the infundibulum. 

Trauma can directly cause damage to the cell bodies within the pituitary gland or 

hypothalamus, the WM fibres of the infundibulum or the hypophyseal vessels 

supplying the gland and infundibulum. Blood in the subarachnoid space around the 

gland may cause superficial siderosis and inflammation that may impair pituitary 

function. In addition, in the context of haemorrhage associated hypovolaemia, the 

gland may become ischaemic as seen in Sheehan’s syndrome. 

TBI is a recognised cause of pituitary dysfunction, in particular growth hormone (GH) 

deficiency (Schneider 2007). Reported prevalence rates of pituitary dysfunction 

following TBI vary between 2 and 68% (Schneider 2007, Kokshoorn 2011). This 

variability is due, in part, to differences in the heterogeneity, severity and time since 

injury, as well as the normal range of the tests used (Schneider 2007, Kokshoorn 

2011, Kokshoorn 2010). In addition to adverse metabolic consequences, 

hypopituitarism causes multiple symptoms impacting on physical and psychological 

well-being that will impair recovery after TBI and thus hormone replacement 

represents an important therapeutic opportunity (Salvatori 2005, Cherrier 2009, 

Molitch 2011, Bondanelli 2007). It is unknown how often bTBI leads to pituitary 

dysfunction (Guerrero 2010). 

	
Figure 1-15 Pituitary gland 

Anatomy showing the proximity to the sella turcica and the friable portal 
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system. 

 

1.6 Animal models of traumatic brain injury  

1.6.1 Why do we need animal models of TBI? 

There is a vast body of literature on animal models of non-blast TBI. Many of these 

are post mortem pathological studies, as the imaging techniques to examine the 

brain in vivo have only been readily available in the last two decades. In part 

because of a lack of knowledge about the underlying processes that were involved in 

TBI, many studies treated TBI as a homogenous entity. We now know that this is not 

the case and there are multiple forces as well as biochemical mechanisms that 

contribute to the overall injury. Protective equipment (such as a helmet) are 

optimised to resist specific forces and therapeutic agents used to disrupt or enhance 

specific biochemical mechanisms. Therefore, the fact that therapeutic trials in TBI 

(such as the use of steroids in TBI as studied in the CRASH randomized control trial) 

(Edwards 2005) have failed to show any benefits may be, in part, because they have 

treated TBI as a homogenous disease (Saatman 2008). Since MR imaging has 

become more widely available, we now recognise that TBI is a heterogeneous group 

of pathologies. As a consequence, animal models are being developed that can 

reliably reproduce specific aspects of the injury. 

 

1.6.2 Focal injury  

In TBI, the primary injury involves mechanical tissue deformation and causes diffuse 

neuronal depolarisation and the release of excitatory neurotransmitters including 

glutamate and aspartate (Andriessen 2010, Muir 2006). These neurotransmitters 

bind to glutamate receptors and induce a massive influx of calcium ions (Lee 2004). 

Calcium activates calcium-dependent phospholipases, proteases and 

endonucleases that degrade lipids, proteins and nucleic acids. Calcium is 

sequestrated in mitochondria leading to calcium disturbance, energy deficits, free 

radical formation and initiation of apoptosis (Xiong 1997, McCall 1987). There is 

increased formation of oxygen and nitrogen reactive species that oxidise lipids, 

proteins and nucleic acids (Bains 2012). The pro-inflammatory cytokines released as 

a consequence of TBI up-regulate several transcription factors, inflammatory 
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mediators and neuroprotective genes as well as down-regulate neurotransmitter 

receptors and their release mechanisms (Raghavendra 2003). Increased expression 

of cytokines and chemokines induces brain oedema, blood–brain barrier damage 

and cell death (Ziebell 2010). The result of these complex cascades after TBI 

eventually leads to cell damage and death, causing a range of functional deficits.  

Recent work has indicated that glial cells, the immune cells of the CNS, can become 

chronically activated leading to a progressive aggregation of tau protein in the brain, 

and that this tauopathy has been implicated as the cause of chronic traumatic 

encephalopathy (CTE) (Goldstein 2012). 

 

1.6.3 Diffuse axonal injury (DAI) 

In a mouse model of DAI, Cernak et al. demonstrated an increase in the permeability 

of the blood brain barrier with associated oedema as well as apoptosis in the 

cerebral hemispheres and brain stem (Cernak 2004). 

The cerebral blood supply has the ability to adapt its arterial tone and thus maintain 

cerebral perfusion across a wide range systemic blood pressure. This mechanism is 

known as auto-regulation and has been shown to be damaged in animal models of 

TBI (DeWitt 2003, Bauman 2009), as well as being seen in soldiers with moderate to 

severe bTBI (Armonda 2006).  

 

1.6.4 Why are animal models of blast necessary? 

Under battlefield conditions, it is not possible to study human subjects in the very 

early stages of brain injury, also it is not possible to use sophisticated MR imaging 

techniques. Therefore, knowledge acquired from animal models may be important 

for understanding the basic science behind brain injury. 

Animal models can also be used to correlate pathological and physiological 

processes with imaging findings and validate other assessment tools, such as 

chemical biomarkers from the central nervous system or peripheral circulation. 

Ultimately, animal models could be used to test the efficacy of protective equipment 

(such as helmets and body armour) and novel therapies (such as substance p 

antagonists and cyclosporine A) (Vink 2002). 
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The brain may be exposed to several different forces during an explosion and so 

care must be taken to ensure that the model only exposes the animal to the 

mechanism being investigated. Animals have different sized and shaped skeletons 

and connective tissues with different mechanical properties to humans. The effect of 

blast on the thorax, and in generating whiplash injuries in humans is of particular 

concern. An identical BOP wave applied to the thorax will have a different effect on a 

person compared to a pig because the two skeletons vary greatly in their mechanical 

properties. Similarly a whiplash injury will be very different between a human and a 

pig because the human head is supported by a thin and flexible upright neck, 

whereas a pig’s head has very thick muscle support.  

It is likely that different animal models will be needed to demonstrate the different 

mechanisms occurring in blast injury. 

 

1.6.5 The current literature for animal models in bTBI 

Currently there is less research on the pathophysiology of bTBI compared to TBI. 

Recent animal studies include rodent and swine models of bTBI, most use 

blast/shock tubes (see Figure 1-16) which have varied in size depending on the size 

of the animal. In rodent models, BOP wave exposures have been tested between 30 

and 170 kPa, whilst porcine investigations have modeled BOP exposures of 1MPa 

(Ritzel 2008, Personal Communication). At the lower end of the spectrum, this range 

of BOP wave results in a mild injury with no visible injury on the animal, whereas at 

the high end, exposures can result in an immediate fatality rate of around 80%. 

Animals are evaluated after exposure for cognitive performance, pathology, changes 

in gene expression and other biochemical signatures. The animals were found to 

have blast-induced neuronal dysfunction, as well as morphological, cellular and 

behavioural changes (Cernak 2005). 

Crucially, the scientific community remains divided as to whether BOP wave can 

cause neuronal injury at the pressures experienced by soldiers. Since virtually all 

human injuries involve multiple mechanisms, animal models have been used to try to 

isolate the effect of the BOP wave. 
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Figure 1-16. An example of a blast tube 

 (a) Two-dimensional diagram of the blast tube, including the driver, expansion 
cone and conduction segments of the blast tube. The swine is positioned 20 
feet from the centre of the blast, just outside the fireball, and 44 feet from the 
end of the tube. (b) Photograph of the blast tube. (c) Front photograph of the 
blast tube during a calibration test (Bauman 2009). 
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1.6.6 What happens in a bTBI 

Acutely, blast exposure in animals causes prominent vasospasm and decreased 

cerebral blood flow along with blood-brain barrier breakdown and increased vascular 

permeability. Chronically after blast exposure there are alterations of the vascular 

extracellular matrix as well as sustained microglial and astroglial activation (Elder 

2015). Goldstein et al. (2012) demonstrated that blast-exposed mice show 

phosphorylated tauopathy, myelinated axonopathy, microvasculopathy, chronic 

neuroinflammation and neurodegeneration in the absence of macroscopic tissue 

damage or haemorrhage. Head immobilisation during blast exposure prevented 

blast-induced learning and memory deficits, indicating that head rotation may play an 

important role in generating these deficits (see Diffuse axonal injury Figure 1-8, 

earlier in this chapter). It has become increasingly clear that brain pathology, the 

underlying mechanisms and potential biomarkers associated with primary blast 

exposures may be different from those imposed by focal mechanical head trauma 

(Bhattacharjee 2008). Animal placement locations along the length of the shock tube 

(that is, inside, outside or near the exit) has an important role in the biomechanical 

loading on the animal and thereby alters the injury type, its severity and the 

probability of lethality (Sundaramurthy 2012). Considering the variations in the 

current blast injury models, comparison of the results between different laboratories 

is virtually impossible. Characterisation and implementation of relevant standard 

experimental blast models is of particular importance for understanding the 

mechanisms of blast injury, the identification of biomarkers and, eventually, the 

development of strategies for mitigating blast-induced brain injury. 

 

1.7 Chapter summary 

In this chapter I have shown that bTBI is a significant problem for the military 

population and described how it may produce WM injury through a separate 

mechanism not present in nbTBI. In reality, because of the primary, secondary, 

tertiary and quaternary effects of blast, any one injured soldier is likely to suffer a TBI 

caused by multiple mechanisms and thus studies to examine bTBI in humans will be 

inherently limited. This demonstrates the need for animal models of bTBI. 
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I have described the basic physics of MRI and how DTI can be used to identify WM 

damage with greater sensitivity than other modalities currently in use, thus explaining 

the rationale for its use in this study. 

I have shown that endocrine dysfunction is a significant problem after nbTBI, where it 

causes symptoms that impact on physical and psychological wellbeing and why this 

is likely to be true in bTBI as well. This may represent an important therapeutic 

opportunity. 

I have defined primary brain injury and the cellular processes that it initiates, leading 

to secondary brain injury (this will be expanded on in chapter 5). Importantly I have 

explained how axonal injury can lead to metabolic failure and neuronal death that in 

turn causes microglia to release cytokines which increase the blood brain barrier 

(BBB) permeability. This is the rationale for examining APP (as a marker of axonal 

injury) Ida1 (as a marker of inflammation) and Fibrinogen (as a marker of increased 

BBB permeability) in the porcine model.  

The following 3 chapters are the results of the BIOSAP study. In Chapter 2, I use a 

human case study to illustrate the limitations of current standard imaging 

investigations to detect WM damage and the variability in outcome of apparently 

similar severity TBIs. In Chapter 3, I show that DTI can be used to compare the 

location and extent of WM damage in a blast injured population with a similarly 

injured non-blast population and importantly link this to cognitive dysfunction. In 

Chapter 4, I describe the increased incidence and pattern of endocrine dysfunction 

seen in the bTBI subjects when compared to the nbTBI group.  

Chapter 5 is a summary of the results of the BIIPs. It can be considered separate, 

but parallel work, seeking to help determine if the BOP wave can cause TBI in 

battlefield conditions. I hope that the conclusions of this thesis will help draw together 

the different themes investigated and add to our understanding of bTBI. 
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2 Human Case Studies 

In the introduction I described how bTBI is a significant problem for military 

populations and, whilst conventional imaging (CT and T1 and T2* MRI) are able to 

detect acute bleeds and large structural lesions, they are not as sensitive as DTI 

when assessing WM damage. In this chapter I use a human case study to illustrate 

the limitations of current standard imaging, when investigating WM damage and the 

variability in outcome of apparently similar severity TBIs. 

 

2.1 Introduction  

This chapter describes two cases of UK soldiers of similar age injured by IEDs whilst 

travelling in vehicles in Afghanistan. Both were classified as moderate-to-severe TBI 

on the basis of their post traumatic amnesia (PTA) duration. However, their long-

term cognitive outcomes have been very different, and this was not explained by 

their initial neuroimaging assessment. Given the young age of troops and the limited 

availability of treatments to improve recovery, the impact of these long-term physical, 

cognitive, behavioural and psychological problems is a significant health burden.  

The case histories are presented to illustrate the contribution that advanced MRI can 

make to the assessment of WM damage. Historically, clinical assessment has 

concentrated on identifying the location of focal contusions within the brain, but this 

has been found to be poorly predictive of outcome (Bigler 2000) partly because a 

key factor is DAI. Although pathophysiological studies demonstrate the importance of 

DAI (Adams 1991), it has proven difficult to identify using conventional neuroimaging 

techniques. Here we show how advanced MRI techniques, particularly DTI, can be 

used to provide clinically relevant information in the context of blast TBI.  

 

2.2 Case 1  

A 28-year old male soldier was injured by an IED whilst travelling in a vehicle. He 

was wearing full personal protective equipment. His GCS was 12/15 at the scene; he 

suffered multiple long limb fractures, a left sided pneumothorax and superficial 

lacerations. He experienced six weeks of PTA and described two weeks of 

retrograde amnesia. Subjectively he reported problems with long and short-term 
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memory, difficulty concentrating and speaking as well as an increased frequency of 

headaches, more emotional lability and dizziness. The soldier had persistent 

neurological abnormalities, and neuropsychological testing revealed impaired 

executive function as measured by the Trail Making Test, and the Colour Naming 

and Word Reading indices from the Delis Kaplan Executive Function System, and 

slow processing speed on a simple computerised choice reaction task. He initially 

returned to work in a very limited capacity, but has now been medically discharged 

from the army because of persistent cognitive problems. Details of the 

neuropsychological tests can be found in Appendix 1.  

The duration of PTA and long-term disability are suggestive of a significant brain 

injury. However, conventional CT and MRI (T1) were normal (Figure 2-1(i)). Failure 

to find a neuroimaging abnormality produces uncertainty about the presence of brain 

injury. DAI results in small haemorrhages (microbleeds) in characteristic locations 

within the WM (Scheid 2003) which can be assessed using MRI techniques such as 

Gradient Recalled Echo (GRE) and Susceptibility Weighted Imaging (SWI) (Haacke 

2014). In this patient, GRE showed one microbleed in the right occipital and one in 

the right frontal lobe. Although the presence of two microbleeds in different brain 

regions suggests underlyling DAI, the true extent of WM damage is unclear as it is 

possible to have DAI without the presence of microbleeds (non-haemorrhagic DAI) 

or for the extent of injury to be much greater than demonstrated by SWI (Kinnunen 

2011).  

Many of the limitations of microbleed imaging can be addressed by the use of DTI. 

This provides a robust and quantitative measure of DAI. In this first case, DTI 

provided evidence of significant and widespread WM abnormality. This is illustrated 

in Figure 2-1(iii), which shows average measurements of FA, from a number of large 

WM tracts, compared to a normative control data (59 controls, average age 30.6 

years +/- 8.1). This automated region of interest approach provides a detailed 

assessment of WM damage in the individual patient, and demonstrates the presence 

of significant damage, with low FA in the superior longitudinal fasciculi (red columns 

>2.3 SD from the control group mean).  
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Figure 2-1. MR imaging results corresponding to Case 1 

(i) Conventional (T1) imaging was normal (ii) GRE detected the presence of two 
microbleeds (iii) DTI measures for individual tracts (iv) Z-scores of the 
comparison between this soldier’s WM tract FA and the control group. Red 
bars denote where that tract’s FA value was > 2.3 standard deviations 
(p<0.001) from the control group mean. The central white area denotes the 
area of Z < 1.64 (p > 0.01) for the control groups FA. Analysis of the WM tracts 
revealed that Case 1 had significant damage in the superior longitudinal 
fasciculi. 
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2.3 Case 2  

A 27-year old, male soldier was also injured by an IED, whilst travelling in a vehicle. 

He was wearing full personal protective equipment. His GCS was 13/15 at the 

scene; he suffered multiple long limb fractures as well as a left sided pneumothorax. 

He experienced four days of PTA and had one day of retrograde amnesia. He 

subjectively reported more difficulty balancing and increased emotional lability since 

the injury though no increased frequency of headaches, hearing loss or change in 

sleep pattern. Neuropsychological testing revealed only impaired associative 

learning and memory as measured by the People Test from the Doors and People 

Test. In contrast to our first case, he has made a good functional recovery; he was 

able to return to work and is currently studying for a Masters degree. As 

demonstrated with Case 1, conventional imaging with T1 demonstrated no evidence 

of brain injury Figure 2-2 (i). SWI showed a single microbleed Figure 2-2 (ii), 

providing some evidence of DAI. In contrast, the tract-based DTI assessment of WM 

damage showed no evidence of DAI, with all FA measurement within the normal 

range Figure 2-2 (iv).  

	
Figure 2-2. MR imaging results corresponding to Case 2 

 (i) Conventional (T1) imaging was normal and (ii) SWI detected the presence 
of one microbleed (iii) DTI measures for individual tracts (iv) Analysis of the 
WM tracts revealed that Case 2 did not have any significant WM damage. 
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2.4 Discussion 

DAI is a key factor determining clinical outcome after TBI. Until recently, it has been 

difficult to study the location and the extent of DAI. CT and conventional MRI do not 

provide specific diagnostic information (Van Boven 2009), but microbleed imaging 

and DTI are more sensitive (Mac Donald 2007). The two cases of blast TBI 

presented here illustrate the highly variable clinical outcomes that are common after 

moderate/severe TBI, with neither conventional neuroimaging nor microbleed 

imaging using SWI providing an explanation for this difference. However, evidence 

for WM tract abnormalities was only seen in Case 1 using the advanced MR 

technique, DTI, which is increasingly being used in TBI as a research tool. In this 

soldier the technique demonstrated DAI, which is believed to account for his 

persisting and significant cognitive damage and ongoing disability.  

DTI provides a measure of water molecule diffusion within the brain (Assaf 2008). 

Within the WM, the direction of this diffusion is strongly determined by the 

predominant orientation of axons. Following brain trauma, the organisation of axons 

is disrupted and results in a reduction in the direction of water diffusion. DTI is often 

analysed by fitting a tensor model to the acquired data. This allows the asymmetrical 

pattern of diffusion in the WM to be described quantitatively, as fractional 

anisotrophy (FA). Animal studies demonstrate that FA measurements from the WM 

become abnormal quickly after brain injury and evolve dynamically over time (Mac 

Donald 2007); hence DTI provides a way of sensitively studying DAI.  

DAI causes disruption to the connectivity of the brain networks that support cognitive 

function, and this appears to be an important factor in the development of long-term 

disability (Sharp 2011, Bonnelle 2011). In the civilian population, abnormalities have 

been shown to be related to persistent cognitive and neuropsychiatric problems 

(Kinnunen 2011). These impairments are common and influence outcome (Whitnall 

2006). As a result, being able to diagnose them accurately and identify this type of 

brain injury is crucial.  

Soldiers exposed to blast often have persistent cognitive and neuropsychiatric 

problems (Tanielian 2008), but the cause is often unclear. Where there is no obvious 

brain injury on standard imaging, a purely psychiatric cause may be proposed. An 

important question is whether these problems result in part from the presence of 
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previously unrecognised DAI. Previous work has demonstrated the presence of DTI 

abnormalities following mild blast TBI (Mac Donald 2011). The two cases we discuss 

illustrate that DTI abnormalities can be present after more severe blast exposure, but 

also that there is variability in the amount of WM abnormality, which we believe is 

associated with the two very different clinical outcomes.  

The cases shown here illustrate that DTI can provide clinically useful information in 

single cases of TBI. The challenge is to establish the optimal way of using this 

neuroimaging method in routine clinical practice, although there are a number of 

obstacles that need to be overcome. First, DTI is a quantitative neuroimaging 

method, that requires accurate processing once acquired, and this needs to be 

standardised. Second, the individual patient data must be compared to an 

appropriate control population, and this is a major current limitation. Finally, all 

controls and patients were scanned on a single scanner, allowing straightforward 

comparison, but methods need to be developed to allow comparison of DTI data 

acquired on different scanners.  

In summary, this chapter reports the clinical and radiological findings in two soldiers 

who experienced blast TBI as a result of IEDs during the conflict in Afghanistan. Both 

soldiers were injured by blast, had a similar initial clinical presentation and normal 

CT and standard structural MR imaging. Despite the apparent similarities, Case 2 

showed a good functional recovery while Case 1 reported persistent long-term 

cognitive and emotional problems. Their clinical outcomes were very different and 

we believe that this was due to the degree of DAI experienced by the soldiers. When 

we examined the white matters tracts using DTI, Case 1 showed significantly 

reduced FA in the superior longitudinal fasciculus. This level of DAI was not 

identifiable using standard structural MRI, and we have therefore shown how DTI 

can be used to identify WM damage in a single subject.  

In the next two Chapters, I report the results of the BIOSAP study. In Chapter 3, we 

use DTI to examine the differences at the group level, in both extent and location of 

WM damage sustained as a result of bTBI versus nbTBI. In Chapter 4, we look at the 

incidence in endocrine dysfunction in a group of blast injured soldiers compared to a 

group of civilians with nbTBI.  
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3 White matter damage and cognitive dysfunction after 
blast traumatic brain injury 

 

3.1 Introduction 

This chapter reports the results of the neuroimaging component of the Blast Injury 

Outcome Study of Armed Services Personnel (BIOSAP), a study of the effects of 

blast injury in United Kingdom personnel injured whilst on operations in Afghanistan. 

Soldiers suffering a moderate or severe TBI secondary to blast exposure were 

investigated using advanced MRI, including diffusion tensor imaging. Scan results 

were compared to a matched cohort of civilian traumatic brain injury, taken from a 

large cohort study investigated using the same scanner.  

This study extends previous studies investigating the long-term effects of bTBI in a 

number of important ways. By comparing patterns of brain injury across blast and 

non-blast TBI investigated with the same neuroimaging protocol, we are able to 

directly test the hypothesis that blast TBI produces a unique pattern of WM injury, 

with more damage within the posterior fossa. Building on previous work in nbTBI 

(Kinnunen 2011, Bonnelle, 2012, Bonnelle, 2011), this study investigated in detail 

the relationship between WM damage and persistent cognitive impairment after 

bTBI.  

We tested a number of specific hypotheses: 

a. that damage to the fornices correlates with associative memory 

performance;  

b. that damage to frontal lobe connections correlate with impairments of 

executive function; and  

c. that widespread damage to the WM correlates with impairments of 

information processing speed.  

A voxelwise approach to the analysis of WM injury (tract based spatial statistics 

(Smith 2006)), which has a number of important advantages over a region of interest 

approach, was also used for this study of TBI. This approach allows the effect of 
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bTBI on all large WM tracts to be studied without making an a priori assumption 

about the location of injury (Kinnunen 2011). 

 

3.2 Background 

The recent conflicts in Iraq and Afghanistan have seen significant numbers of 

soldiers exposed to bomb blasts, often the result of improvised explosive devices. 

Up to 20% of the 1.64 million deployed US troops are estimated to have suffered a 

bTBI (Tanielian 2008), which has been termed the “signature” injury of the Iraq and 

Afghanistan conflicts (Benzinger 2009). Many soldiers exposed to blast have 

persistent cognitive and neuropsychiatric problems (Schneiderman 2008), but the 

causes for these problems are still poorly understood. Clearly there are direct effects 

of brain injury but other factors, such as psychiatric problems including PTSD, may 

interact with this (Schneiderman 2008). Some soldiers have focal brain injuries that 

are clearly visible on conventional CT or MRI investigations, but frequently these 

injuries do not predict clinical outcomes (Bigler 2001). Conversely, those with normal 

appearing scans can have persistent and disabling problems. This discrepancy leads 

to significant diagnostic uncertainty, and often results in an assumption that 

symptoms are primarily produced by psychiatric or other factors unrelated to a 

structural brain injury produced at the time of the blast (Bitonte 2016).  

One possible explanation for the diagnostic confusion is the presence of 

unrecognised DAI. DAI can be produced by a variety of types and severities of TBI 

(Adams 1989, Blumbergs 1994), including blast exposure (Elder 2009). Long-

distance WM tracts within the brain are vulnerable to the biomechanical effects of 

trauma. Diffuse multifocal WM injury can be produced by rapid changes in 

acceleration and deceleration, which impart shear, compressive and tensile strains 

to axons (Smith 2003, Johnson 2013). Axons usually remain intact, but long-lasting 

damage commonly occurs to the axolemma, disrupting axonal transport, and to the 

myelin sheath. DAI is almost universally present in cases of fatal brain injury 

(Gentleman 1995) and in nbTBI shows a characteristic distribution, with the corpus 

callosum and brainstem WM frequently affected (Adams 1989). 

The function of damaged axons is impaired, resulting in a partial disconnection of the 

brain networks that are connected by these tracts (for review see Bonnelle 2011). In 
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the context of civilian TBI, DAI is an important predictor of long-term outcome 

(Adams 1989, Sidaros 2008). Therefore, DAI may contribute significantly to 

persistent disability after bTBI. 

Conventional CT or MRI often under-estimates the extent of this WM injury after TBI 

(for review see Bonnelle, 2011). Advanced MRI techniques, in particular diffusion 

MRI, provide a sensitive way of identifying WM pathology (Alexander 2007). Water 

molecules tend to diffuse along the direction of large WM tracts, and this anisotropic 

diffusion can be quantified by diffusion tensor imaging (DTI) (Mori 2006). TBI 

commonly leads to abnormal DTI measures, such as reduced FA (Mac Donald 

2007). These measures have been validated as a method of identifying axonal injury 

in animal models of both nbTBI (Mac Donald 2007) and bTBI (Calabrese 2014). 

Using a shock tube model in rats, Calabrese and colleagues showed areas of 

reduced FA, particularly within cerebellar WM, after double blast exposure. They 

performed DTI analysis using voxelwise methodology, and the results of histological 

analysis correlated well with DTI results. Significant reductions in FA after blast 

exposure were associated with severe and consistent evidence of axonal injury 

provided by silver staining (Calabrese 2014).  

In humans, diffusion MRI has been widely used in the assessment of civilian TBI 

(Sidaros 2008, Kinnunen 2011) and has begun to be applied to study bTBI (Mac 

Donald 2011, Jorge 2012). MacDonald and colleagues investigated US military 

personnel within 90 days of mild bTBI (Mac Donald 2011). All had normal CT 

imaging, yet compared to non-injured soldiers, almost a third had abnormalities on 

DTI consistent with traumatic axonal injury, which persisted at follow-up 6 to 12 

months later. Other studies have also shown areas of abnormally low FA following 

mild bTBI, with increasing abnormality associated with soldiers with longer PTA 

(Jorge 2012). Using a different MRI diffusion technique (High Angular Resolution 

Diffusion Imaging – HARDI), Morey et al also showed evidence for WM injury in mild 

TBI in veterans, which correlated with the degree of loss of consciousness (Morey 

2013). However, this group was heterogenous with respect to the type of injury, with 

only around a third of soldiers having been exposed to blast. The results with 

diffusion MRI assessments of mild bTBI have not always been completely 

consistent, as Levin et al. did not demonstrate WM changes in veterans and service 

members with mild to moderate TBI despite symptoms and difficulty with verbal 
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memory (Levin 2010). However, this may have been because of the heterogeneity of 

the subjects: firstly, by looking at the mild end of the spectrum they may have 

included subjects without brain injury; secondly, subjects were recruited on the basis 

of self-reported injury severity which was not confirmed at the time of injury; and 

thirdly many soldiers were referred for persisting symptoms which may have in fact 

been PTSD. 

An important issue is to what extent neuroimaging abnormalities produced by blast 

exposure are specific to the effects of a BOP wave or wind. It is very rare for soldiers 

to receive injuries from an isolated blast wave, as other types of secondary or tertiary 

injuries almost always occur (Mac Donald 2011). This means the neuroimaging 

abnormalities observed are likely to be a combination of a number of different injury 

mechanisms, so identifying any specific effects of the blast wave or wind is usually 

not possible. Computational modeling using a finite element model of the brain has 

been used to predict the effects of blast exposure (Taylor 2009). This model 

suggests that WM injury would be likely in regions not usually affected by other types 

of TBI, such as the cerebellum and its connections.  Mac Donald and colleagues 

provide evidence that converges with the predictions of this computational modeling 

(Mac Donald 2011, Mac Donald 2014) suggesting that cerebellar peduncle damage 

may be a relatively specific effect of bTBI. However, studies have not usually 

included a control group consisting of non-blast TBI investigated in the same way, so 

it is unclear whether WM damage is specific to blast exposure, or due to other 

associated mechanisms of injury. 

Although the location of WM injury is usually diffuse, damage to certain WM tracts 

produces impairment in the associated cognitive domain. This has previously been 

studied in civilian TBI. Previous work by our group has demonstrated that increasing 

damage within the fornix correlates with associative memory impairment (Kinnunen 

2011), damage within the cingulum bundle with sustained attention impairment 

(Bonnelle 2011), and frontal lobe damage to a tract connecting nodes of the Salience 

Network correlates with impairments of executive function (Bonnelle 2012). 

Therefore, one would predict that the amount and distribution of DAI after bTBI 

would correlate with persistent cognitive impairment in veterans. Jorge and 

colleagues reported that the number of patches of low FA within the corpus callosum 

correlated with executive function in a group with mild bTBI (Jorge 2012). However, 
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a detailed assessment of the relationship between the location and severity of DAI, 

as measured by diffusion MRI and cognitive impairments in bTBI, has not previously 

been reported, hence the rationale for this part of the BIOSAP study. 

 

3.3 Materials and Methods 

Twenty soldiers with moderate to severe bTBI in the post-acute phase (20 males, 

mean age ± SD: 29.8 ± 5.9 years) were recruited. The nbTBI group consisted of 20 

civilians taken from a civilian cohort and matched for age and brain injury severity 

(20 males, mean age ± SD 30.3 ± 7.6 years). An age matched group of 31 healthy 

controls (31 males, mean age ± SD 30.6 ± 6.7 years) were also recruited amongst 

Imperial College London laboratory workers and their social and professional 

contacts. Soldiers and civilians were matched for time since injury (for soldiers mean 

time ± SD 14.6 ± 5.9 months, for civilians mean time ± SD 12 ± 12.7 months).  

Amongst the soldiers all injuries were as a result of exposure to explosive devices. 

Amongst the civilian group, injury was secondary to falls (42%), assaults (34%), road 

traffic accidents (19%), and sports related injuries (5%). Soldiers were identified by 

the author’s monthly review of the academic department of military emergency 

medicine's (ADMEM) injury database. The civilians were recruited from the Imperial 

Healthcare traumatic brain injury service to which they had been referred because of 

the presence of functional impairments following their TBI. Access to these civilians 

has been previously reported (Kinnunen 2011, Baxter 2013).  

All cases of military and civilian injury were categorised as moderate or severe 

based on the Mayo Classification System for Traumatic Brain Injury Severity, relating 

to the duration of loss of consciousness, the length of PTA, the lowest recorded GCS 

in the first 24 hrs and/or CT or MRI result (Malec 2007).  

Exclusion criteria were as follows: penetrating brain injury, neurosurgery, except for 

intracranial pressure monitoring; a history of psychiatric or neurological illness prior 

to head injury; a history of previous TBI; anti-epileptic medication; current or previous 

drug or alcohol abuse; or contraindications to MRI. All participants gave written 

informed consent according to the Declaration of Helsinki; no subject without 

capacity could enter the study. The study was approved by the Hammersmith, 

Queen Charlotte’s and Chelsea Research Ethics Committee. 
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3.3.1 Neuropsychological assessment 

All participants completed a standardised neuropsychological test battery sensitive to 

cognitive impairment associated with TBI (Kinnunen 2011). The cognitive functions 

of specific interest were indexed by:  

a. current verbal and non-verbal reasoning ability via the Wechsler 

Abbreviated Scale of Intelligence (WASI) Similarities and Matrix 

Reasoning subtests (Wechsler 1999);  

b. associative learning and memory via the immediate recall score on the 

People Test from the Doors and People Test (Baddeley 1994);  

c. the executive functions of set-shifting, inhibitory control, cognitive flexibility 

and word generation fluency via the Trail Making Test (Reitan 1958), 

alternating-switch cost index (time to complete alternating letter and 

number Trails B minus time to complete numbers-only Trail A) and two 

indices from the Delis–Kaplan Executive Function System (Delis 2001), 

namely the inhibition/switching minus baseline score from the Color–Word 

subtest (high scores indicating poor performance) and the total score on 

Letter Fluency; and  

d. information processing speed via the median reaction time for accurate 

responses on a simple computerised choice reaction task (Prof. Jane 

Powell, Goldsmiths, UK, personal communication). 

 

3.3.2 Structural imaging 

Each patient had standard high-resolution T1 and gradient-echo (T2*) imaging to 

assess focal brain injury and evidence of microbleeds. MRI was performed on a 

Philips 3T Achieva scanner (Philips Medical Systems, The Netherlands) using a 

body coil. The T1 and T2*-weighted images were obtained prior to DTI. For DTI, 

diffusion-weighted volumes with gradients applied in 16 non-collinear directions were 

collected in each of the four DTI runs, resulting in a total of 64 directions. The 

following parameters were used: 73 contiguous slices, slice thickness = 2mm, field of 

view 224 mm, matrix 128 x 128 (voxel size = 1.75 x 1.75 x 2 mm3), b value = 1000 

and four images with no diffusion weighting (b=0s/mm2). The images were registered 
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to the b=0 image by affine transformations to minimise distortion due to motion and 

eddy currents and then brain-extracted using the Brain Extraction Tool from the 

Oxford functional MRI of the brain (FMRIB) neuroimaging research facility Software 

Library image processing toolbox. FA maps were generated using the Diffusion 

Toolbox. 

 

3.3.3 Diffusion tensor imaging data analysis 

Voxelwise analysis of the FA was carried out using Tract Based Spatial Statistics 

(TBSS) in the FMRIB Software Library (vide supra). Image analysis using TBSS 

involved a number of steps:  

a. non-linear alignment of each subject’s FA images into common FMRIB58 

FA template space (see Appendix 1);  

b. affine-transformation of the aligned images into standard MNI152 1mm 

space;  

c. averaging of the aligned FA images to create a 4D mean FA image;  

d. thinning of the mean FA image to create a mean FA ‘skeleton’ 

representing the centre of all WM tracts, and in this way removing partial-

volume confounders; and  

e. thresholding of the FA skeleton at FA ≥ 0.2 to suppress areas of extremely 

low mean FA and exclude those with considerable inter-individual 

variability.  

Non-parametric permutation-based statistics were employed using Randomise with 

threshold-free cluster enhancement and 5000 permutations. A statistically significant 

threshold of p ≤0.05 was then applied on the results, to correct for multiple 

comparisons. Age was included as a covariate of no interest in all TBSS analyses 

(Smith 2006).  

In civilian TBI it has previously been shown that there are increased DTI 

abnormalities in patients with microbleed evidence of DAI (Kinnunen 2011). 

Therefore we performed additional analyses on subgroups of patients with and 

without microbleeds. We also performed a more targeted region of interest (ROI) 

analysis of FA, which was informed by the results of previous work. ROI masks were 
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created in the MNI152 one mm space that were then applied to the aligned brain 

images, and mean FA assessed within this region for each subject. The regions 

investigated were the anterior and posterior internal capsule, cingulum, body, genu 

and splenium of the corpus callosum, cerebral peduncles, middle cerebellar 

peduncles, the orbito-frontal WM and uncinate fasciculi bilaterally (see Figure 3-1). 

	
Figure 3-1. ROI Masks 

Regions of interest used for determination of FA in both soldiers and civilians 
traumatic brain injury. Individual color masks overlaid onto group average FA 
map for soldiers with bTBI (n=19) registered into standard MNI space. (A) 
anterior internal capsule, (B) posterior internal capsule, (C) cingulum, (D) 
corpus callosum, (E) cerebral peduncles, (F) middle cerebellar peduncles (G) 
orbitofrontal WM, (H) uncinate fasciculi. 

3.3.4 Analysis of WM structure and cognitive function 

The relationship between WM structure and cognitive function was investigated 

within the framework of a general linear model in the FMRIB Software Library. The 

effect of group was modelled, allowing analysis of the relationship between WM 

structure and cognitive function across voxels. Overall correlations across both 

groups, correlations within each group and group interactions were examined. 

Analysis was focused on the neuropsychological domains previously investigated in 

civilian TBI (Kinnunen 2011).  
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As detailed in the introduction, analysis was carried out using:  

a. WASI similarities and matrix reasoning to assess intellectual ability;  

b. the People Test immediate recall to assess associative memory; 

c. the Trail Making Test A and B as well as the Colour naming and Word 

reading to assess Processing speed; 

d. the Trail Making Test Trails B minus A to assess the alternating-switch 

cost component of Executive function;  

e. inhibition switching and inhibition switching minus a baseline of colour 

naming and word reading to assess cognitive flexibility as a measure of 

Executive function;  

f. Letter Fluency as a measure of the word generation fluency component of 

Executive function; and  

g. the choice reaction time as a measure of processing. 

Permutation-based significance testing was carried out as described above. For 

illustrative purposes, FA values from the peak voxels of the significant clusters of 

interest were then extracted for each participant from their skeletonised images and 

plotted against the cognitive scores. 

 

3.4 Results 

3.4.1 Standard neuroimaging showed no significant difference between blast 
and non-blast groups 

Standard T1 MRI was normal in 70% of soldiers with bTBI, and in 40% of civilians 

with nbTBI. Gradient echo imaging showed intraparenchymal microbleeds, indicative 

of DAI in 45% of those suffering bTBI and 50% of the nbTBI group. Only 20% (4) of 

the bTBI group had evidence of focal damage on T1/Flair imaging. This was located 

mainly in the left frontal and temporal lobes (Figure 3-2). In contrast, 60% of the 

nbTBI group, had evidence of focal damage which was in a similar fronto-temporal 

distribution. There was no overlap in location of contusions between the two groups 

(Figure 2). Of the bTBI group, 15 showed no contusions compared with 8 of the 

nbTBI group. The mean volume of contusions in the bTBI group was 2.7cm3, 
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compared to 5.3 cm3 in the nbTBI group (p=0.07). MRI evidence of superficial 

siderosis was found in 20% of those with bTBI and in 36% of the nbTBI group. 

	
Figure 3-2. Location of contusions of (A) civilians with nbTBI and (B) soldiers 
with bTBI 

The colour bar indicates the number of lesions at each site. Green indicates 
where a contusion was present in three subjects, red where a contusion was 
present in two subjects and blue where a contusion was found in one subject 
only. 

3.4.2 The bTBI group showed impaired cognitive function relative to nbTBI 
and controls 

Both TBI groups showed a pattern of cognitive impairment characteristic of TBI 

(Ponsford 1992). Compared to the healthy control group, soldiers showed cognitive 

impairments across a range of tasks including:  

a. processing speed measured using the Trail Making Test A and B, 

naming/reading on the STROOP colour naming task and response speed 

on the choice reaction time task; and  
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b. impaired executive functioning assessed using the Trail Making Test B 

minus A, inhibition switching minus a baseline of colour naming and word 

reading, and the word generation fluency task (Table 3-1).  

There was also a borderline impairment across the group in memory performance on 

a test of associative memory, the Doors and People test.  

Similarly, the nbTBI group showed evidence of impairments in:  

a. processing speed (Trail Making Test A and B, and naming/reading as 

measured by the STROOP colour naming task); and  

b. impaired executive functioning assessed using the Trail Making Test B 

minus A, inhibition switching minus a baseline of colour naming and word 

reading and word generation fluency (Table 3-1).  

The nbTBI group had higher average current intellectual ability as measured by the 

WASI test, although there was no significant difference in this estimate of IQ 

between the bTBI and controls. 

Using standard neuroimaging, the bTBI group showed less damage than the nbTBI. 

Despite this, the bTBI group showed more impairment of cognitive function relative 

to the nbTBI group. The bTBI group showed worse: 

a. processing speed (naming and reading speed on the STROOP word 

reading task;  

b. executive functioning assessed with the Trail Making Test B minus A; and  

c. impaired information processing speed tested on the choice reaction task 

(Table 3-1). 
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Table 3-1. Neuropsychological test results by group 

Cognitive 
Domain 

Cognitive 
Variable 

bTB
I 

nbT
BI 

Contr
ols 

bTBI 
vs. 
nbTB
I 

bTBI 
vs. 
Contr
ols 

nbTBI 
vs. 
Contr
ols 

 Mea
n 
+/- 
SD 

Mea
n 
+/- 
SD 

Mean 
+/- SD 

 

Intellectual 

ability: 

verbal/non-

verbal 

WASI 

similarities 

31.2

1 +/- 

6.24 

37.7

2 +/- 

4.01 

31.05 

+/- 

6.22 

0.000

3** 0.47 

0.0002

** 

 

WASI matrix 

reasoning 

24.8

4 +/- 

6.75 

26.3

3 +/- 

5.78 

25.24 

+/- 

5.03 0.24 0.42 0.27 

Memory: 

associative 

memory 

People Test 

immediate 

recall 

24.1

6 +/- 

7.04 

24.4

4 +/- 

6.06 

27.48 

+/- 

6.79 0.45 0.07 0.08 

Processing 

speed: 

visual  

search/com

plex 

Trail Making 

Test Trail A (s) 

24.8

4 +/- 

6.04 

23.9

6 +/- 

7.98 

18.24 

+/- 

3.88 0.35 

0.0001

** 

0.003*

* 

 

Trail Making 

Test Trail B (s) 

49.7

9 +/- 

13.7

4 

60.3

6 +/- 

30.6

6 

42.41 

+/- 

11.98 0.09 0.04* 0.01* 
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Processing 

speed: 

naming/read

ing 

Colour naming 

(s) 

38.3

2 +/- 

19.4

5 

33.8

9 +/- 

10.6

4  

23.72 

+/- 

6.67 0.20 

0.001*

* 

0.0004

** 

 

Word reading 

(s) 

28.3

7 +/- 

10.9

1 

21.3

9 +/- 

4.05 

23.57 

+/- 

7.52 0.01* 0.06 0.14 

Executive 

function: 

alternating-

switch cost 

Trail Making 

Test Trails B 

minus A (s) 

24.9

5 +/- 

11.9

6 

36.3

9 +/- 

27.7

6 

24.17 

+/- 

10.46 0.05* 0.05* 0.03** 

Executive 

function: 

cognitive 

flexibility 

Inhibition/switc

hing (s) 

75.5

3 +/- 

26.6

9 

63.6

1 +/- 

17.4

3 

54.91 

+/- 

18.48 0.06 

0.003*

* 0.07 

 

Inhibition 

switching 

minus a 

baseline of 

colour naming 

and word 

reading (s) 

28.8

9 +/- 

16.1

3 

35.3

1 +/- 

14 

18.24 

+/- 

15.1 0.10 0.02* 

0.0004

** 

Executive 

function: 

word 

generation 

fluency 

Letter Fluency 

F+A+S total 

37.7

9 +/- 

11.3

6 

40.6

1 +/- 

11.3

2 

28.67 

+/- 

16.04 0.23 0.02* 0.01* 
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Both bTBI and nbTBI performed worse than controls in several domains, 
showing a pattern of cognitive impairment typical after TBI. The bTBI group 
had worse processing speed, executive function and information processing 
speed. 

* p value is significant at <0.05 

** p value is significant at <0.005 

 

 

3.4.3 Widespread WM abnormalities are present in both the blast and non-
blast groups using advance imaging techniques 

The bTBI group showed widespread evidence of WM damage (Figure 3-3). The 

comparison of soldiers with bTBI with the age-matched controls demonstrated 

evidence of WM disruption in the majority of the WM assessed, as indicated by a 

lower FA.  There was a similar pattern of widespread WM damage in the nbTBI 

group.  

In both injured groups, lower FA was found in both commissural inter-hemispheric 

fibres (the forceps minor and major and corpus callosum) and intra-hemispheric 

association fibres of the uncinate fasciculi, inferior and superior longitudinal fasciculi, 

inferior fronto-occiptal fasciculi and the cingulum bundle. Lower FA was also found in 

the projection fibres of the corticopontine and corticospinal tracts, as well as in the 

fornices, the anterior and posterior thalamic radiations, the anterior and posterior 

limbs of the internal capsule, the external capsule and the corona radiata.  

Processing: 

choice 

reaction 

time 

Choice 

reaction task 

median 

reaction time 

(ms) 

0.48 

+/- 

0.14 

0.42 

+/- 

0.06 

0.40 

+/- 

0.05 0.05* 0.03* 0.29 
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Figure 3-3. Widespread white matter disruption following traumatic brain injury 

Axial slices show a comparison between the bTBI vs controls and nbTBI vs 
controls. The contrasts are overlaid on a standard Montreal Neurological 
Institute 152 T1 1 mm brain and the mean fractional anisotropy skeleton (in 
green) with display thresholds set to range from 0.2 to 0.8. The results are 
thresholded at p≤0.05, corrected for multiple comparisons. Tracts in red 
indicate where FA is significantly lower in the bTBI or nbTBI group. 

 

3.4.4 Evidence for increased WM damage in a subgroup of more severely 
injured bTBI soldiers compared to the nbTBI group 

A direct whole-brain comparison between the bTBI and nbTBI groups did not reveal 

significant differences in FA. Recent work has reported lower FA in the middle 

cerebellar peduncles, the right orbito-frontal WM and the cingulum bundles in mild 

bTBI (Mac Donald 2011). Therefore the study went on to perform a targeted region 

of interest (ROI) analysis to investigate these specific regions, as well as a number 

of other regions that commonly show DAI after TBI. As expected for both TBI groups, 

FA in all regions studied was lower than in controls. A ROI analysis comparing the 

whole bTBI and nbTBI groups did not reveal significant differences in FA. However, 
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in patients with microbleeds, i.e. those with a high probability of DAI, there was lower 

FA in the anterior internal capsules and the middle cerebellar peduncles (p≤0.06 and 

p≤0.05 respectively) (Figure 3-4). 

	
Figure 3-4. White matter damage in those soldiers and civilians with 
microbleeds 

The graph shows the average FA within WM ROI for those with microbleeds in 
each of the groups (bTBI, nbTBI) and controls. There was significantly more 
WM damage in the Anterior Internal Capsule and Middle Cerebellar Peduncles 
in the bTBI vs. nbTBI groups.  

* indicates a significant p value 
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Figure 3-5. Amongst the bTBI group there was more widespread WM damage 
in those with microbleeds 

The graph shows the average FA within WM ROI for those in the bTBI groups 
with microbleeds vs those without and controls. 

* indicates a significant p value 

 

3.4.5 More severe WM damage in patients with microbleed evidence of DAI 

Within the bTBI group the study went on to compare patients with and without 

microbleed evidence of DAI, expecting that those with microbleeds would show more 

WM damage. A whole-brain comparison between the bTBI sub-groups showed no 

significant difference, which may have been because of small group sizes (n= 9 

(microbleed) and 11 (non-microbleed). However, the ROI analysis showed lower FA 

in the uncinate fasciculi (p≤0.09) with a trend to lower FA in the anterior internal 

capsule, the cingulum and the middle cerebellar peduncles (p≤0.065, p≤0.065 and 

p≤0.06 respectively. 
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3.4.6 WM damage is associated with cognitive impairment in soldiers with 
blast TBI  

3.4.6.1 Associative memory 

Previous work in civilian TBI demonstrated evidence that WM damage was 

correlated with worse associative memory performance (Kinnunen 2011). In 

BIOSAPS, this research was extended by exploring this relationship in bTBI. The 

structure of a large part of the WM showed a strong correlation with memory function 

across all subjects. Average FA across the bTBI and nbTBI groups was significantly 

correlated with memory function, such that decreasing FA in a large number of WM 

tracts was related to worsening memory function (Figure 3-6A). Tracts demonstrating 

this relationship included the fornices, where we have previously reported the 

correlation, as well as the corticospinal tracts, the anterior thalamic radiations, the 

inferior longitudinal fasciculi, the inferior fronto-occipital fasciculi, the uncinate 

fasciculi, the corpus callosum, and the superior longitudinal fasciculi.  

The structure of some parts of the frontal WM was more significantly correlated with 

memory function in the bTBI than the nbTBI group. A direct comparison of the 

strength of correlation in the two groups showed that parts of the right orbito-frontal 

WM, uncinate fasciculi and anterior corpus callosum were strongly related to 

memory function only in the bTBI group (Figure 3-6B). A direct comparison of the 

bTBI group with the control group also demonstrated a trend towards a stronger 

relationship between memory and FA in the fornices, the forceps minor, the forceps 

major, the stria terminalis, the cingulum, inferior fronto-occipital fasciculi, the corpus 

callosum and the corona radiata (p<0.1 cluster corrected threshold).  
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Figure 3-6A and B. The results of the TBSS regression analysis of associative 
memory (People test immediate recall) by FA across (A) both TBI groups and 
(B) bTBI group 

 (A) Areas where the average FA across both the bTBI and TBI groups was 
positively correlated with the People Test (PT) recall score. (B) Areas of frontal 
WM that were more strongly correlated with memory in the bTBI rather than 
the nbTBI group. The results are overlaid on a standard Montreal Neurological 
Institute 152 T1 one mm brain and the mean FA skeleton (in green). For display 
purposes the result is displayed with a multiple comparisons threshold of 
p≤0.1. The graph shows individual data points in all groups for People Test 
recall score against FA in the peak voxel. A regression slope is shown. 

 

3.4.6.2 Executive function 

In the bTBI group, there was also a significant correlation between frontal WM 

structure and a measure of executive function (alternating switch cost from the Trail 

Making Test). Decreasing FA within the left orbito-frontal and transcallosal fibres was 
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associated with increasing switch cost (Figure 3-7). This relationship was not 

observed in the nbTBI or control subjects. Analysing all three groups together, there 

was no overall relationship between WM structure and executive function, and there 

were no areas where the relationship was significantly stronger for the bTBI group 

than nbTBI or controls in a direct comparison. 

	
Figure 3-7. The results of the TBSS regression analysis of executive function 
(Trail Making Test B minus A) between the bTBI and control groups 

 (A) Shows the whole brain analysis with the areas in red being significant for 
interaction effect for FA. The results are thresholded at p≤0.01, corrected for 
multiple comparisons and overlaid on a standard Montreal Neurological 
Institute 152 T1 one mm brain and the mean FA skeleton (in green). The graph 
illustrates a linear regression slope for the bTBI groups and individual data 
points for alternating switch cost against FA in the peak voxel of the 
interaction effect. 
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3.4.6.3 Information processing speed  

At the voxel level, WM structure was not correlated with information processing 

speed, as measured by median reaction time for accurate responses on the Choice 

Reaction Task, either across the whole group or in separate group analyses. 

 

3.5 Discussion 

Presented here are the neuroimaging findings of the Blast Injury Outcome Study of 

UK Armed Services Personnel (BIOSAP). Soldiers who have suffered bTBI often 

have persistent cognitive problems despite often having normal standard brain 

imaging. This leads to considerable uncertainty about the cause of their symptoms 

and the correct treatment. There are several possible aetiologies for persistent 

neurological problems after trauma. These include primary psychiatric problems, 

such as PTSD, which has been the focus of much research into bTBI (Rosenfeld 

2013). However, it is possible that structural brain injury produced by bTBI may not 

be identified by standard brain imaging, and our work provides evidence that DAI is 

common after moderate/severe bTBI, and may account for cognitive impairments 

that are prominent in this patient group. The bTBI patient group had lower FA, in 

large parts of their WM, providing evidence for widespread DAI that is not apparent 

on standard MRI or CT imaging. This study also provides evidence for a correlation 

between the amount of DAI and cognitive function, which was more prominent in 

bTBI than nbTBI. In addition, the work is a pioneering study investigating, for the first 

time, brain injury in UK troops exposed to blast, and complementing previous studies 

in US soldiers.  

Recent work has focused on comparing soldiers exposed to blast with uninjured 

controls (Mac Donald 2011). This work provides clear evidence that bTBI can 

produce WM injury, but the degree to which the neuroimaging abnormalities 

observed are specific to blast exposure is uncertain. Explosive injuries cause a 

complex mixture of primary, secondary tertiary and quaternary injuries (Elder 2010b), 

and it is very rare for soldiers to have an isolated blast injury (Chapman 2014). 

Therefore, imaging abnormalities could result from non-blast mechanisms of injury 

such as head impacts or the rotational forces that often produce DAI in civilian TBI 

(Johnson 2013). By comparing our bTBI group with a matched group of nbTBI, we 
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are able to investigate the specificity of WM injury to blast exposure. The most 

striking aspect of these results is the similarity in widespread DTI abnormalities seen 

in both the bTBI and nbTBI groups. This suggests firstly, that there is widespread 

WM pathology present after moderate/severe bTBI; and secondly, that this is mainly 

not specifically related to blast exposure. This similarity is likely to reflect the 

complex mechanisms of injury that are present in most cases of bTBI. Soldiers are 

not only exposed to the effects of the primary blast wave and wind, but also to 

secondary and tertiary damage produced by fragments and debris propelled by the 

explosion, and the effects of the head impacting on other objects. This produces a 

mix of biomechanical effects that overlap with those seen in civilian injuries such as 

road traffic accidents, falls and assaults, which make up the majority of our nbTBI 

group.  

Although patterns of WM injury were generally similar across bTBI and nbTBI, these 

results do provide some support for the proposal that the cerebellum is particularly 

vulnerable to the effects of blast exposure. In soldiers with microbleeds, i.e. those 

very likely to have underlying axonal injury, FA was lower within the middle 

cerebellar peduncles than in the nbTBI group. This builds on previous computational 

modeling by Taylor et al. who predicted that the blast pressure wave would cause 

focal injury in the posterior fossa and orbit-frontal WM and also by Brody and 

colleagues who have reported damage to the cerebellar WM in soldiers with a mixed 

mechanism of injury (Taylor 2009) (Mac Donald 2011), as well as in a small number 

(N=3) with isolated primary blast exposure leading to mild bTBI (Mac Donald 2014). 

In addition, Jorge et al. reported increasing WM damage after mild nbTBI was 

associated with increasing impairments of executive function (Jorge 2012). Brain 

metabolism measured using fluorodeoxyglucose positron emission tomography 

(FDG-PET) in 12 Iraqi veterans with post-concussion syndrome (PCS) following 

blast exposure showed hypometabolism in the cerebellum, brain stem and temporal 

lobe compared with 12 controls. Possible reasons that regions within the posterior 

fossa may be more at risk from injury by blast are that pressure wave interactions 

occur in these areas as a result of the shape and physical properties of the cranium 

and its contents, that the pressure wave may sensitise these areas of the brain to 

subsequent injury, and that the direction of the blast favours damage to these areas 

(Peskind 2011). 
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Previous work on patients with bTBI has tended to focus on examining a limited 

number of brain locations (regions of interest) (Mac Donald 2011). Although this is a 

sensitive method of identifying WM damage, it suffers from two main limitations. 

Firstly, TBI produces a complex pattern of DAI at various locations across individuals 

and so any attempt to decide “a priori” where to look is likely to fail to identify WM 

damage elsewhere in the brain. Secondly, as the cognitive functions commonly 

affected after TBI depend on the underlying WM connectivity, a ROI approach limits 

the analysis of the structural causes of cognitive impairment. To overcome these 

limitations, we have used Tract-based spatial statistics (TBSS), which is a voxel-

based approach to analysing WM structure across the whole brain. It allows complex 

patterns of WM disruption to be identified and their relationship with cognitive 

dysfunction to be studied. Statistical calculations are performed at each voxel within 

the individual’s WM “skeleton,” allowing for a comprehensive analysis of tract 

structure to be performed. TBSS has been used to show the relationship between 

WM structure and cognitive function in other neurological conditions including civilian 

TBI (Bonnelle 2011, 2012).   

Memory and executive function are commonly impaired following bTBI (Karr 2014). 

Results presented here show a strong relationship between the location of WM 

damage and cognitive dysfunction in these areas, suggesting that DAI may cause 

persistent symptoms produced by these problems. These findings build on previous 

work in nbTBI demonstrating a correlation between the structure of the fornix and 

memory function (Kinnunen 2011). It is likely that the diffuse injury seen in both blast 

and non-blast injury has affected distributed brain networks involved in supporting 

higher cognitive function. These results show a much stronger relationship between 

cognitive function and WM damage in the bTBI group, which in the case of executive 

function showed a specific relationship in the frontal WM regions. Given that 

computational models and human studies looking at mild blast traumatic brain injury 

have previously identified this region (Taylor 2009, Mac Donald 2011), this provides 

evidence that moderate/severe bTBI is likely to impair executive function through 

damage to frontal WM tracts. 

Animal models confirm that reduced FA is a marker of axonal injury in both blast 

(Calabrese 2014) and nbTBI (Mac Donald 2007). In a mouse model of contusional 

brain injury, Mac Donald and colleagues showed that FA and axial diffusivity reduced 
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in the early hours following injury, reflecting axonal injury (Mac Donald 2007). Over 

time macrophage infiltration, tissue oedema and demyelination were accompanied 

by an increase in radial and mean diffusivity, with a persistently low FA. A similar 

relationship between reduced FA and axonal injury has been demonstrated in a rat 

model, albeit only after double blast exposure (Calabrese 2014). To date, most 

animal studies have been performed in rodents, and studies in larger animals such 

as pigs are important in providing information about the relationship between 

histology and DTI measures in brains that are more similar to humans (Cernak 

2005). Another limitation of the animal work is that studies are performed in the 

acute or subacute phase after exposure, whereas in humans studies, imaging is 

typically performed longer from the initial injury. As the DTI changes evolve, this 

adds complexity to understanding the relationship between DTI and histology. 

However, studies to date have shown that FA remains relatively stable over time. 

A possible limitation of human studies is that they are not able to measure the forces 

that the brain was exposed to and thus quantify the level of blast exposure. This 

criticism is particularly true of those studies that used self-reporting of blast 

exposure. Only including those who have suffered moderate to severe injury as a 

result of a single exposure to an explosion limits the impact of this problem. 

Estimates obtained (but not yet publishable) of the size explosive device used as 

well as the victim’s proximity to it clearly demonstrate a significant blast exposure in 

each case. A possible limitation of the method of imaging analysis used is 

inaccuracy caused by registration of the subjects’ brains into a common space. This 

is particularly important when structures are in close proximity to cerebrospinal fluid 

containing spaces and hence may be subject to partial volume effects. Using 

skeletonisation of the WM, focusing on the central portion of the tracts in relatively 

young patients who are less likely to have brain atrophy, limits the likelihood of 

sampling from adjacent ventricles. The selection process excluded soldiers who had 

suffered intracranial lesions causing a mass effect, and in fact the blast group had 

fewer and smaller volume contusions than the civilian controls.  

To conclude, this study found widespread WM damage in soldiers exposed to blast 

when compared to uninjured controls. Using a region of interest approach, it was 

found that the anterior internal capsules and middle cerebellar peduncles showed 

more evidence of injury of borderline significance. In the context of similar findings by 
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computational models and human studies, this may indicate that these areas are 

more vulnerable to blast injury.  

 

3.6 Summary 

In this chapter I have shown that widespread WM abnormalities demonstrated by 

reduced FA were observed in blast injured soldiers, relative to controls. These were 

not visible on conventional brain imaging. A similar distribution of damage was 

observed in the non-blast TBI patient group, suggesting that most of the observed 

WM abnormalities are not specific to blast exposure. In patients with microbleed 

evidence of DAI, greater WM damage was observed in the posterior fossa, in 

keeping with previous work. A clear relationship was observed between WM 

pathology and both memory and executive function. Decreasing FA was correlated 

with increasing impairment in these domains, with parts of the frontal lobe WM 

showing a specific relationship with executive function in soldiers exposed to blast. 

These results provide evidence for widespread DAI in soldiers exposed to blast 

injury that may be missed by standard neuroimaging. Most of the changes are not 

specific to blast exposure, although the posterior fossa WM tracts may be particularly 

vulnerable to this type of injury. Persistent memory and executive function problems 

after blast may result from injury to the WM tracts as a result of DAI, and screening 

these patients using diffusion tensor imaging will add important diagnostic 

information. 

In the next Chapter, I describe the prevalence of pituitary dysfunction in this bTBI 

population in comparison to a different civilian nbTBI population matched for age, 

injury severity and time since injury. I will then use neuropsychological tests as well 

as the MRI techniques described in the previous chapters to describe this group 

further. 
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4 Endocrine dysfunction, cognitive function and 
structural brain imaging in blast injury 

 

4.1 Introduction 

This chapter addresses the investigation of: 

a. the prevalence and consequences of pituitary dysfunction following moderate-

severe bTBI; and 

b. potential associations with particular patterns of brain injury.  

It describes a study in which 19 male soldiers who suffered a moderate or severe 

TBI secondary to blast exposure (bTBI), and 39 male controls with moderate-severe 

nbTBI, underwent comprehensive endocrine assessment between 2 and 48 months 

after injury. We then went on to explore the relationship between pituitary 

dysfunction, cognition and WM damage secondary to blast by performing structural 

brain magnetic resonance imaging, including DTI, and cognitive assessment on the 

bTBI group.  

We hypothesized:  

That bTBI would be associated with pituitary dysfunction and that DTI would reveal 

more WM damage in those soldiers with pituitary dysfunction after bTBI than without. 

 

4.2 Background 

The use of IEDs has characterised the Iraq and Afghanistan conflicts with bTBI 

described as a ‘signature injury’ (Benzinger 2009) of these wars. Blast injuries in 

Afghanistan have fatally wounded over 450 soldiers from the UK and 2,000 soldiers 

from the USA since 2001 (Chesser 2012). 19.5% of the 1.64 million troops from the 

USA deployed in both conflicts are estimated to have suffered a probable bTBI 

(Tanielian 2008). Soldiers are usually young meaning that the long-term impact of 

their physical, cognitive and psychological problems represents a significant health 

burden. There are currently no pharmaceutical treatments that improve recovery 

following TBI (Ruff 2012). 
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In non-blast TBI, GH deficiency (Schneider 2007) is a recognised cause of pituitary 

dysfunction. The reported prevalence of pituitary dysfunction following nbTBI varies 

between 2 and 68% (Schneider 2007, Kokshoorn 2011). This variability is due, in 

part, to differences in the injury severity of the subjects, their time since injury and 

the normal ranges and dynamic endocrine tests used (Schneider 2007, Kokshoorn 

2011¸ Kokshoorn 2010). As hypopituitarism causes multiple symptoms that can 

impact on physical and psychological well-being as well as adverse metabolic 

consequences, that will impair recovery after TBI, hormone replacement represents 

a significant therapeutic opportunity (Salvatori 2005, Cherrier 2009, Molitch 2011, 

Bondanelli 2007). Before this work, one study had investigated the prevalence of 

pituitary dysfunction after mild bTBI (Wilkinson 2012). However, methodological 

issues including, the authors' reliance on basal hormone measurements, the 

definition of normal ranges, and the non-standard assessment of posterior pituitary 

function make their results difficult to interpret. The prevalence of pituitary 

dysfunction following moderate to severe bTBI was not known (Guerrero 2010). 

As explained in earlier chapters, DTI is a sensitive MR technique that can assess the 

presence and severity of WM damage after TBI (Mac Donald 2007, Kinnunen 2011). 

TBI alters the pattern of water diffusion within WM resulting in the abnormal diffusion 

characteristics of measures such as FA. DTI abnormalities in several brain regions, 

including the orbitofrontal WM and the middle cerebellar peduncles, have been 

reported in soldiers following mild bTBI (Mac Donald 2011). We hypothesised that 

bTBI would be associated with pituitary dysfunction and that DTI would reveal more 

WM damage in those soldiers with pituitary dysfunction after bTBI than without.  

This chapter reports further findings from the Blast Injury Outcome Study of Armed 

Forces Personnel (BIOSAP). It investigates the prevalence and associations of 

pituitary dysfunction in soldiers after moderate-severe bTBI compared to a control 

group of patients after nbTBI. 

 

4.3 Methods 

From the 20 soldiers that we recruited in the first study 19 bTBI patients were 

recruited into the endocrine study. Using the Academic Department of Military 

Emergency Medicine (Birmingham, UK) trauma database to identify soldiers from the 
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UK, injured between December 2009 and March 2012. This group represented 

10.4% of the 183 UK soldiers who had survived a moderate-severe bTBI in 

Afghanistan during this 27 month period. In total, the war lasted 13 years, and a total 

of 453 UK personnel lost their lives. We compared this bTBI group with an age-

matched and gender-matched control group of 39 patients who had suffered nbTBI. 

The nbTBI group were all identified and recruited from the Traumatic Brain Injury 

clinic at Charing Cross Hospital, London, UK. We included in the nbTBI group, all the 

patients assessed in the multi-disciplinary TBI clinic who met the inclusion and 

exclusion criteria and who were within the age range of the bTBI group. We recruited 

the nbTBI group between August 2009 and March 2012. We performed an identical 

endocrine assessment, to the bTBI group, as part of their routine clinical care. All 

subjects gave informed consent. This study received ethical approval from the 

Hammersmith, Queen Charlotte's and Chelsea Research Ethics Committee.  

We aimed to recruit subjects who mainly had primary blast injury, and to minimise 

the influence of secondary, tertiary and quaternary injuries. The inclusion criteria for 

the bTBI group were a moderate-severe brain injury that was directly caused by a 

single blast exposure.  

We excluded subjects from the bTBI group if they:  

a. had haemorrhagic blood loss requiring a massive blood transfusion; 

b. had an intracranial lesion causing a mass effect on acute imaging; or  

c. had post-traumatic stress disorder (PTSD).  

PTSD, in isolation from TBI, is associated with endocrine disturbance (Pervanidou 

2010, van Liempt 2011). We diagnosed PTSD by an interview with a psychologist 

and, if they suspected the diagnosis, subsequent self-reported symptom ratings from 

the PTSD Checklist–Military (PCL-M) version derived from DSM-IV criteria (Wilkins 

2011). Many of the soldiers with bTBI described: loss of memory of the event, 

anhedonia, social isolation, sleep disturbance, emotional lability and poor 

concentration. However, they did not report additional symptoms required for the 

diagnosis of PTSD. These symptoms include "recurrent and intrusive distressing 

recollections of the event; affecting their thoughts or perceptions," "behaving or 

feeling as though the traumatic event were recurring," and "physical reactions like 
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palpitations, shortness of breath or sweating when reminded of the past stressful 

experience" (Friedman 2011). 

The inclusion criteria for both bTBI and nbTBI groups were:  

a. male gender; 

b. >2 and <48 months from a single TBI; 

c. moderate-severe brain injury using the Mayo classification criteria (Malec 

2007);  

d. ongoing cognitive and/or psychological symptoms.  

Exclusion criteria were:  

a. diabetes mellitus; 

b. pre-TBI history of psychiatric disorder; 

c. current or previous drug or excess alcohol use; 

d. reversed sleep-wake cycle; and  

e. craniotomy following injury.  

We excluded subjects who had had craniotomies to avoid difficulties in brain image 

registration that result from gross changes in the shape of the brain. Both bTBI and 

nbTBI subjects underwent clinical assessment and completed quality of life (QoL) 

and symptom questionnaires (see Supplementary Methods in Appendix 2). 

Additionally, we calculated their Abbreviated Injury Scores (AIS), and total Injury 

Severity Score (ISS).   

 

4.3.1 Endocrine testing 

We used the algorithm shown in Table 4-1 (see Supplementary Methods in Appendix 

2) to define pituitary dysfunction. All patients had their basal serum anterior pituitary 

hormones measured followed by dynamic endocrine testing. Initial screening for 

growth hormone (GH) and adrenocorticotropic hormone (ACTH) deficiency was 

performed using the glucagon stimulation test (GST) (Leong 2001, Cegla 2012). We 

confirmed the diagnosis of GH deficiency with either second-line growth hormone 

releasing hormone (GHRH) Arginine or an insulin tolerance (ITT) test (Molitch 2011, 
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Colao 2009, Yuen 2009). The diagnosis of ACTH deficiency was confirmed with an 

ITT or metyrapone stimulation test, and a cortisol day curve (Cegla 2012, Grossman 

2010). If subjects had symptoms of diabetes insipidus, they were investigated with a 

water deprivation test.  
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Table 4-1. Diagnostic algorithm for pituitary dysfunction 
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4.3.2 Cognitive function assessment 

Each soldier with bTBI completed a standardised neuropsychological test array that 

is sensitive to cognitive impairment following TBI (Kinnunen 2011). The tests looked 

at the cognitive domains of: 

a.  current verbal and non-verbal reasoning; 

b.  associative memory and learning;  

c. executive functions; and  

d. information processing speed (see Supplementary Methods in Appendix 2). 

In addition, we used the quality of life assessment of growth hormone deficiency in 

adults (QoL – AGHDA). The AGHDA consists of 25 yes/no self-administered 

questions which looks at seven areas of concern in growth hormone deficiency, 

namely: 

a. body image (fat distribution); 

b. energy level; 

c. concentration; 

d. memory;  

e. irritability; 

f. strength and stamina; and 

g. coping with stress. 

A high AGHDA score indicates the patient suffers from many symptoms and thus a 

worse quality of life.  

We also used the Beck Depression Inventory (BDI-II), which is a self-administered 

21-question multiple choice assessment of depression.  A high BDI-II score indicates 

a higher level of depression.  

4.3.3 Structural brain imaging 

We performed standard T1, gradient-echo (T2*) and SWI MRI on each subject in the 

bTBI group to look for focal brain injury, microbleeds, superficial siderosis, gliosis, 

contusions, as well as DTI. Most patients who were found to have pituitary 

dysfunction went on to have an MRI of the pituitary gland with gadolinium contrast to 
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look for more specific hypothalamic-pituitary abnormalities. Patients with nbTBI had 

radiological imaging as part of routine clinical practise which was usually a CT brain 

scan if required during the acute presentation or a standard T1/T2 brain MRI 

requested in the TBI clinic. DTI analysis of WM tracts combined tract-based spatial 

statistics (TBSS) and region of interest (ROI) approaches (FSL, FMRIB, Oxford, UK), 

focussing on regions previously shown to be sensitive to damage in bTBI and nbTBI 

(Figure. S1 and Supplementary Methods in Appendix 2) (Kinnunen 2011, Mac 

Donald 2011). We used this to perform a regional assessment of FA, which is a 

measure of axonal injury.  

4.3.4 Statistical analyses 

We compared the different groups (nbTBI vs. bTBI; and bTBI with pituitary 

dysfunction vs. bTBI without pituitary dysfunction) using Fisher's exact test for 

prevalence data, and unpaired Student t-test (FA and neurocognitive variables), or 

Mann-Whitney U test (other variables) for continuous data (SPSS v19.0). We defined 

significance as p<0.05. A group x ROI repeated measure ANOVA was performed to 

assess the overall effect of pituitary dysfunction on FA.   
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4.4 Results 

4.4.1 Patient characteristics 

All of the soldiers in the bTBI group had been injured by IEDs and had been wearing 

full personal protective equipment. They required immediate transfer to Camp 

Bastion for emergency medical treatment, and were repatriated to the UK within 48 

hours. Detailed information about the blast exposure was known, but for operational 

security reasons, these are not reported. In the control nbTBI group, injuries were 

secondary to RTA (43%), assaults (32%), falls (23%) and sporting injuries (2%). 

Three subjects in the nbTBI group had multiple TBIs (one subject had a mild TBI 

from an RTA and a second from an assault while another had one mild TBI from a 

fall and another TBI of unknown severity from an assault).  

The blast and non-blast TBI groups were matched well in most characteristics (Table 

4-2). There were no significant differences in age, whole body injury severity (ISS), 

skull/facial fractures (15.8 vs. 15.4%) or the incidence of post-traumatic seizures 

(10.5 vs. 7.7%) between the two groups. The bTBI group had a longer period of PTA 

(median 5.5 days vs. 0.5 days, p=0.01), as well as more injuries requiring surgery to, 

or causing loss of function of, extracranial organs (57.9 vs. 7.7%, p=0.002), and 

more amputations (36.8 vs. 0%, p<0.001). The increased incidence of extracranial 

injury was in keeping with a higher proportion using strong opiates (47.3 vs. 7.7%, 

p=0.001). In the bTBI group, there was a significantly longer time interval between 

the TBI to performing endocrine function testing (median 15.2 vs. 5.8 months, 

p=0.001).  
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Table 4-2. Patient characteristics 

Category  

Max 

Score/  

units 

All nbTBI  All bTBI 
p 

value 

bTBI: No 

Pituitary 

Dysfunctio

n 

bTBI: 

Pituitary 

Dysfunction 

p 

value 

n   39 19   13 6   

Age at 

TBI         years 

31.3 [22.5-

35.7] 

26.7 

[26.1-

30.9] 0.40 

26.6 [24.6-

30.6] 

29.3 [25.8-

36.6] 0.35 

    17.2 - 44.8 

19.0 - 

43.5   19.0 - 36.3 25.0 - 43.47   

Age at 

testing  years 

32.3 [23.1-

36.7] 

28.3 

[26.8-

32.2] 0.40 

28.0 [25.3-

31.4] 

30.3 [27.4-

38.3] 0.35 

    19.9 - 45.1 

19.6 - 

44.7   19.6 - 37.6 26.3 - 44.7   

Time 

since TBI 

month

s 5.8 [3.1-11.0] 

15.2 

[10.8-

19.3] 0.001 

1.27 [0.7-

1.4] 1.5 [1.0-1.7] 0.35 

    1.9-41.2 4.1 - 23.6   0.34 - 1.97 0.41 - 1.83   

ISS  75 25 [16-32] 

33.0 

[20.0-

45.0] 0.17 

24.0 [14.5-

40.5] 

35.5 [27.0-

51.3] 0.21 

    1-75 9-70   9-45 9-70   

AIS Head  6 5.0 [4-5] 

4.0 [3.0-

5.0] 0.04 

4.0 [2.5-

4.0] 5.0 [3.0-5.3] 0.05 

    1-6 0-6   0-5 0-6   

AIS 

Chest  6 0 [0-0] 0 [0-2] 0.11 0 [0-3] 0 [0-2.3] 0.76 

    0-6 0-4   0-4 0-3   

AIS 

Abdomen  6 0 [0-0] 0 [0-2] 0.02 0 [0-2] 0 [0-2.3] 0.96 

    0-3 0-3   0-2 0.3   
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Category  

Max 

Score/  

units 

All nbTBI  All bTBI 
p 

value 

bTBI: No 

Pituitary 

Dysfunctio

n 

bTBI: 

Pituitary 

Dysfunction 

p 

value 

GCS 15 

14.0 [6.0-

14.0]a 

3.0 [3.0-

14.5]b 
0.24 

14.0 [3.0-

15.0] 3.0 [3.0-3.0] 0.17 

    3-15 3-15   3-15 3-3   

PTA  days 0.5 [0-7.3]c 

5.5 [0.8-

22.8] 0.01 3.0 [0-19.3] 

15.5 [6.3-

31.5] 0.13 

    0-42  0-84   0-84 4-42   

PTA>24 
hrs   20 (51.3%) 

13 

(72.2%) 0.70 7 (58.3%) 6 (100%) 0.48 

BMI  

BMI 

(kg/m2

) 

24.7 [22.4-

29.4] 

26.7 

[24.5-

28.9] 0.28 

26.6 [24.5-

28.7] 

25.5 [22.4-

32.0] 0.71 

    17.0-33.4 21.7-33.7   23.6-29.4 21.7-33.7   

Limp 

Amputati

on   0 (0%) 8 (42.1%) 0.0008 6 (46.1%) 2 (33.3%)  0.99 

Major 

Organ 
Damage   3 (7.7%) 

11 

(57.9%) 0.002 7 (53.9%) 4 (66.7%) 0.99 

Skull/faci

al 

fracture   6 (15.4%) 3 (15.8%) 1.0 0 (0%) 3 (50.0%)  0.10 

Opiate 

Use   3 (7.7%) 9 (47.3%)  0.02 6 (46.2%) 3 (50.0%) 1.00 

Antidepr

essant 

Use   5 (12.8%) 9 (47.3%) 0.08 6 (46.2%) 3 (50.0%)  1.00 

Seizures 
post TBI   3 (7.7%) 2 (10.5%) 1.0 1 (7.7%) 1 (16.7%) 0.99 

Primary 

Hypogon   1 (2.6%) 4 (21.1%) 0.24 4 (30.8%) 0 (0%) 0.26 
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Category  

Max 

Score/  

units 

All nbTBI  All bTBI 
p 

value 

bTBI: No 

Pituitary 

Dysfunctio

n 

bTBI: 

Pituitary 

Dysfunction 

p 

value 

adism 

All data expressed as median [interquartile range], range or n (%) 

P values from Mann-Whitney U test or Fisher's exact test between groups. 

Data available for a n=16, b n=9, c n=38, and due to amputations: f n=7, g n=4 

For analgesic purposes only in h n=5 (12.8%), i n=5 (26.3%), j n=3 (23.1%), k n=2 

(33.3%) 

For depression itself in h n=0 (0%), i n=4 (21.1%), j n=3 (23.1%), k n=2 (16.7%) 

On anti-epileptic drugs in l n=3, m n=1, n n=0, o n=1 

p not due to trauma, q due to perineum trauma 

 

4.4.2 Prevalence of pituitary dysfunction in bTBI and nbTBI cohorts 

Six of the 19 soldiers with bTBI (31.6%) had anterior pituitary dysfunction compared 

to only one out of 39 (2.6%) subjects with nbTBI (p=0.004, Figure 4-1 and Table S1-

S3 in Appendix 2). Two soldiers (10.5%) had monomeric hyperprolactinaemia 

(without secondary hypogonadism), one (5.3%) had isolated ACTH deficiency, two 

(10.5%) had isolated GH deficiency, and one (5.3%) had combined ACTH, GH and 

gonadotrophin deficiencies. The only pituitary dysfunction noted in one patient with 

nbTBI was isolated GH deficiency following a single TBI. No patients in either group 

had TSH deficiency or diabetes insipidus. 
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Figure 4-1. Prevalence of pituitary dysfunction in non-blast and blast traumatic 
brain injury 

The greater prevalence of anterior pituitary dysfunction in subjects after (right) 
blast TBI than (left) non-blast TBI. No subjects had TSH deficiency or diabetes 
insipidus.  

 

The three soldiers with GH deficiency had IGF-1 levels in the low normal range (see 

Supplemental Results, Table S2 in Appendix 2). The two soldiers with ACTH 

deficiency had normal early morning cortisol levels on their initial assessment of 287-

292 nmol/L, 10.3-10.5 µg/dL (NR >150 nmol/L, >5.4 µg/dL) (see Supplemental 

Results, Table S3 in Appendix 2). However, on subsequent cortisol day curves, both 

subjects with ACTH deficiency had low cortisol levels (<100 nmol/L, 3.62 µg/dL) at 

either 0900 or 1200 h on a day curve consistent with the diagnosis (see 

Supplemental Results, Table S3 in Appendix 2). To reduce the risk of seizures we 

occasionally used the metyrapone test, instead of the gold standard ITT, to confirm 

test or exclude ACTH deficiency, and the findings were always compatible with the 

baseline or day curve cortisol levels. There was no history of hypotension, 

hypoglycaemia or hyponatraemia in any of the soldiers with ACTH deficiency. 

We found primary hypogonadism due to perineal/testicular injury in four out of 19 

soldiers with bTBI (21.2%); none of these subjects had pituitary dysfunction. All were 

already receiving testosterone replacement (see Supplemental Results, Table S1 in 

Appendix 2). 
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4.4.3 Comparison of bTBI with vs. bTBI without pituitary dysfunction 

We did not find a significant difference in age at the time of TBI, the time since injury, 

ISS, abdominal AIS, BMI, prevalence of amputations, seizures, use of anti-

depressants or prevalence of depression, or strong opiate use between bTBI 

patients with vs. without pituitary dysfunction (Tables 4-2, S6 and S7 in Appendix 2). 

We could not accurately assess the BMI in the eight soldiers with bTBI who had limb 

amputations, but on clinical examination none was obese. 

In those soldiers with pituitary dysfunction, there were trends for higher AIS head 

injury scores (p=0.06), and longer duration of PTA (median 15.5 vs. 3.0 days, 

p=0.10) when compared to those without. 

We diagnosed one soldier (M08) with multiple pituitary deficiencies. At the time of 

diagnosis, he was taking opiates, so both GH and ACTH deficiency were confirmed 

once these drugs had been discontinued using an ITT. 

 

4.4.4 Neuroimaging results 

The soldiers with pituitary dysfunction had a greater prevalence of skull/facial 

fractures when compared to those without (50% vs. 0%, p=0.02). We found 

contusional brain injury in three out of the six (50.0%) soldiers with pituitary 

dysfunction, compared to only one out of the 13 (7.7%) soldiers without pituitary 

dysfunction on MRI brain scans (p=0.07). One soldier with pituitary dysfunction had 

two contusions while the remainder had one contusion (Figure S2 in Appendix 2). 

The total volume of the contusion(s) was <10 cm3 in all cases. The soldier without 

pituitary dysfunction had the smallest contusion volume.   

There were no significant differences in the prevalence of extradural, subarachnoid 

or intraventricular haemorrhage, microbleeds, superficial siderosis or gliosis, 

between those soldiers with vs. without pituitary dysfunction (Table S4 in Appendix 

2). We did not identify any hypothalamic-pituitary abnormalities on the MRI scans of 

any of the soldiers in the bTBI group, and there were no abnormalities seen on the 

dedicated MRI pituitary scans in the 4 with pituitary dysfunction (M01, M08, M10, 

M14).  
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In the bTBI group, we then investigated the association between WM damage and 

pituitary dysfunction. DTI analysis showed reduced FA in distinct regions indicating 

greater WM damage, in those soldiers with pituitary dysfunction compared to those 

without (p=0.14 effect of group, p=0.02 group x ROI interaction). We found 

significantly lower FA values within the cerebellum (p<0.05), and body/genu (p<0.05) 

and splenium (p=0.01) of the corpus callosum for those soldiers with pituitary 

dysfunction (Figure 4-2).  

	
Figure 4-2. Pituitary dysfunction and WM damage in bTBI 

Lower FA in a priori WM tract regions of interest in soldiers after blast TBI with 
pituitary dysfunction (black, n=6) compared to those without pituitary 
dysfunction (white, n=13). Data expressed as mean ± SD. *p<0.05 (unpaired t-
test). Cap: Capsule 

 

4.4.5 Symptoms, quality of life and cognitive function 

Measured using the Nottingham Health Profile questionnaire, the bTBI group had 

significantly worse scores for physical activity and daily living problems than the 

control nbTBI group, consistent with their higher prevalence of polytrauma and 

amputations. There was no difference in measures of depression and emotional 
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well-being between bTBI and nbTBI (Table S5, Supplemental Results in Appendix 

2).  

In the bTBI group with pituitary dysfunction, there was a tendency towards worse 

measures of quality of life and symptom scores in several domains around emotional 

and social functioning, fatigue and mood compared to those without pituitary 

dysfunction; however, these did not reach significance (Table S5, Supplemental 

Results in Appendix 2).  

There was significantly worse average current verbal intellectual ability in bTBI 

subjects with pituitary dysfunction than those without pituitary dysfunction, although 

there was no significant difference in their pre-injury measure of intelligence 

(Wechsler Test of Adult Reading). There was also significantly worse cognitive 

impairment in processing speed, verbal fluency and information processing in the 

bTBI group with pituitary dysfunction (Figure 4-3). 

	
Figure 4-3. Pituitary dysfunction and cognitive function in bTBI 

Worse cognitive function in soldiers after blast TBI with pituitary dysfunction 
(n=6) compared to those without pituitary dysfunction (n=13). Data expressed 
as mean ± SD. *p<0.05, **p<0.005 (unpaired t-test).  
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4.5 Discussion 

This study demonstrates a high prevalence of pituitary dysfunction following 

moderate-severe blast TBI. Nearly one-third of soldiers with bTBI had anterior 

pituitary abnormalities. In comparison, just 2% of age- and gender-matched civilians 

with moderate-severe non-blast TBI had pituitary dysfunction. GH deficiency was the 

most common pituitary abnormality in bTBI, followed by hyperprolactinemia, ACTH 

and Gn deficiency. One patient had multiple hormone deficiencies. 

We were careful to avoid over-diagnosis of pituitary dysfunction. We achieved this by 

using identical diagnostic algorithms in both groups, excluding the presence of 

macroprolactin, applying strict normal ranges for diagnosing testosterone and TSH 

deficiency, performing two stimulation tests to confirm ACTH or GH deficiencies, and 

adjusting for the confounders of age and obesity in diagnosing GH deficiency (Colao 

2009). This enabled us to be confident in reporting the prevalence of pituitary 

dysfunction in both groups (Kokshoorn 2011¸ Kokshoorn 2010). 

The results presented here suggest that all patients after moderate-severe bTBI 

should undergo endocrine assessment. Unlike TSH and gonadotrophin deficiency, 

GH and ACTH deficiency cannot be excluded or confirmed by basal IGF-1 or cortisol 

measurements and dynamic endocrine testing is required. The clinician must take 

into account contraindications, such as seizures, for use of the ITT, as well as the 

advantages and disadvantages of each test (specificity/sensitivity, age/obesity-

adjusted normal ranges, resource implications, local expertise and drug availability) 

when choosing their investigations (Kokshoorn 2010, Cegla 2012, Yuen 2009). 

Differences in age, gender and BMI did not explain the presence of pituitary 

dysfunction after bTBI. The observed difference in demographics would, if anything, 

have reduced the prevalence of pituitary dysfunction. As pituitary dysfunction can 

resolve over time, the longer time from injury to testing in the bTBI group compared 

to the nbTBI group should reduce the chance of over-diagnosis and certainly not 

increase the prevalence (Aimaretti 2005). Opiates can have complex neuroendocrine 

effects, including hypogonadotrophic hypogonadism, and potentially decreasing 

ACTH secretion but increasing GH secretion (Vuong 2010). 

There was greater use of opiates in the bTBI as a whole compared to the nbTBI 

group, but the individual pituitary dysfunction seen in each soldier within the bTBI 



92	
	

group was not explicable by opiate use. The use of opiates and other medications 

does not explain these results. 

Although there were a higher proportion of soldiers with bTBI and polytrauma than in 

the nbTBI group, there was no significant difference in the incidence of polytrauma 

between those with and without pituitary dysfunction in the bTBI group.  

As discussed in earlier chapters blast can cause brain injury through several 

mechanisms. The BOP wave may generate shearing forces in the head that result in 

the primary injury; fragmentation from projectiles or debris causes the secondary 

injury; and the acceleration and deceleration forces that occur when a subject 

impacts nearby structures cause the tertiary injury (Cernak 2010, Goldstein 2012). 

Each of these different mechanisms could damage the hypothalamus, pituitary gland 

or stalk, resulting in damage to cell bodies or WM connections. Damage to the 

hypophyseal vessels could cause local superficial siderosis, and haemorrhage from 

extracranial polytrauma could cause hypovolaemic ischemic damage to the pituitary 

gland, similar to that seen in Sheehan's syndrome. The systemic inflammatory 

response seen following trauma may affect pituitary gland function (Brøchner 2009). 

The imaging findings show increased damage in the corpus callosum and the 

posterior fossa of soldiers with pituitary dysfunction after bTBI. Injury to the corpus 

callosum occurs in DAI (Adams 1982) whilst WM damage in the posterior fossa has 

been previously demonstrated in mild bTBI (Mac Donald 2011). These findings 

suggest that pituitary dysfunction in bTBI is in part caused by increased severity of 

brain injury, as in nbTBI (Schneider 2007). The increased prevalence of skull and 

facial fractures, a trend for more cerebral contusions and longer period of PTA 

support this interpretation. These results do not provide clear evidence about the 

precise mechanism of hypothalamic-pituitary injury, nor was there a WM injury 

pattern that could predict pituitary dysfunction. There was no proof of focal damage 

to the hypothalamus or pituitary or superficial siderosis. However increased damage 

in the posterior fossa is indicative of a mechanism of injury unique to blast. 

Our study looked at subjects with a single episode of moderate-severe bTBI. There 

is currently a lot of academic interest in repetitive mild bTBI, and we do not know if 

pituitary dysfunction is made worse following multiple injuries, this is a realistic 

concern as there is evidence that multiple bTBIs may worsen neurological deficits 
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(Ruff 2012). Our work builds on the previous study by Wilkinson et al. that suggested 

mild bTBI can produce endocrine disturbance (Wilkinson 2012).  

Soldiers with bTBI and pituitary dysfunction had a trend for worse fatigue, emotional 

symptoms, social problems and mood. Worse underlying brain injury and their 

endocrine deficiencies may be the cause of these differences. These symptoms are 

well-recognised features of GH deficiency, and cortisol and testosterone deficiency 

are known to cause lethargy (Salvatori 2005, Cherrier 2009, Webb 2008). Similarly, 

the cognitive impairment we have demonstrated could be the result of either, or both, 

the more severe bTBI or the hormone deficiency (Kinnunen 2011, van Dam 2005, 

Bonnelle 2011).  

The findings of this study led to changes in clinical management. The soldier with 

hypogonadotrophic hypogonadism received treatment with long-acting intra-

muscular testosterone and both soldiers with ACTH deficiency commenced 

hydrocortisone replacement. We gave all three soldiers with GH deficiency 

replacement therapy, given their neuropsychological symptoms which had persisted 

for over one year despite replacement of other pituitary hormones. 

At the time of writing, two of the three soldiers on GH replacement therapy had 12-

month follow-up data. They both showed an improvement in their symptoms. The 

AGHDA score fell from 19 to 14 (out of 25), and BDI-II score from 36 to 18 (out of 

63) in 1 (subject M14), and AGHDA from 14 to 3, and BDI-II from 20 to 16 in another 

(subject M08) during this period.  This indicated an improvement in quality of life and 

reduction of symptoms of depression.  

The soldiers with mild hyperprolactinaemia did not require treatment as secondary 

hypogonadism was absent.  

In conclusion, this study demonstrated a high prevalence of anterior pituitary 

dysfunction after moderate-severe bTBI that was significantly greater than in a 

matched group of civilian nbTBI. This difference suggests that pituitary dysfunction is 

a particular problem after blast exposure. The imaging findings supported the 

hypothesis that soldiers with pituitary dysfunction would have more widespread WM 

injury than those without. The increased damage found in the posterior fossa of 

soldiers with pituitary dysfunction will continue to fuel speculation that the primary 

blast overpressure wave (BOP) may damage the brain through a unique mechanism 
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(Mac Donald 2011). Some of the worsened cognitive function and 

neuropsychological symptoms associated with pituitary dysfunction following bTBI 

improve with hormone replacement therapy, demonstrating the importance of 

diagnosis and treatment. There were no imaging findings that were diagnostic 

predictors of pituitary dysfunction in bTBI, and we recommend that all soldiers with 

moderate-severe bTBI undergo routine and comprehensive pituitary function testing 

during rehabilitation. 

 

4.6 Summary 

In this chapter, I have demonstrated that symptomatic pituitary dysfunction is 

prevalent after bTBI and represents a treatment opportunity. Although the MR 

imaging findings show widespread WM damage following blast similar to that seen in 

non-blast TBI, the findings also suggest that the posterior fossa is particularly 

vulnerable to blast injury. Our study selected soldiers who had mainly been injured 

by primary blast. However, it is likely that these soldiers also suffered secondary and 

tertiary effects, resulting in the complex pattern of injuries shown by the MR imaging. 

Given the nature of combat, it is difficult to identify soldiers who have been exposed 

only to primary blast, and not also its secondary and tertiary effects, and therefore 

isolate the effects caused by primary blast only. For this reason, we extended our 

study to an animal model so that we could simulate, isolate and study the primary 

blast effect.  

The following chapter describes the method, results and discussion of this porcine 

study. 
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5 Blast injury in pigs 

The previous chapters have shown that soldiers who suffer bTBIs have persisting 

cognitive symptoms and endocrine abnormalities. MR imaging revealed widespread 

WM abnormalities similar to those seen in nbTBI but with increased damage in the 

middle cerebellar peduncles suggestive of a mechanism of injury unique to blast.  

The nature of combat means that soldiers will suffer a mixture of primary, secondary, 

tertiary and quaternary brain injuries making it difficult to study the effects of the BOP 

wave in isolation. We used a porcine model to assess the impact of a primary blast 

in the context of polytrauma. We performed histopathology to investigate structural 

changes, axonal degeneration and the early microglial immune response. We also 

used standard MR imaging and DTI techniques to assess WM damage. This study 

aimed to identify accurate and robust correlates between neuroimaging and 

histopathology findings, strengthening the use of neuroimaging as a reliable 

diagnostic tool in human blast injuries.  

This work was in collaboration with DSTL Porton Down, Imperial College London 

and UCL. DSTL developed the porcine blast injury model and conducted the animal 

injury and resuscitation phases. I attended the experiments and retrieved the brains 

once the animals were sacrificed. I developed the imaging protocols with Marina 

Arridge at the Brain Imaging Centre at Imperial College London and performed the 

DTI analysis. With Professor Steve Gentleman, I co-supervised Ting Kwok perform 

the immunohistological preparation and I recorded and analysed the data with her. 

  

5.1 Introduction 

As discussed earlier in Chapter 1, IEDs have become a major contributor to mortality 

and morbidity in the conflicts in Afghanistan and Iraq. Following discharge, veterans 

often present with symptoms consistent with mild TBI (Terrio 2009, Okie 2005). 

While the neuropathology underlying this cognitive impairment is currently unknown, 

it has been linked to a condition called chronic traumatic encephalopathy (Goldstein 

2012), previously known as dementia pugilistica, in which chronically activated 

microglia cause a tauopathy in axons. This topic is important as blast injuries 
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continue to be the main threat to troops around the world whilst survival rates of blast 

victims are improving (Penn-Barwell 2015).  

 

5.1.1 Pathophysiology of TBI 

To fully understand the histopathology results, it is necessary to describe what 

happens at a cellular level when an injury to an axon occurs. In the healthy brain, 

glutamate is produced by neurons and taken up by astrocytes. These astrocytes 

then convert the glutamate into glutamine and return it to the neurons where it is an 

alternative energy source. Injured neurons overproduce glutamate and, if they die, 

release glutamate into the extracellular space. When there is too much glutamate for 

the astrocytes to remove, it binds to neuronal receptors (such as NMDA) and 

induces an influx of Ca2+ and Na+ and an efflux of K+.  This ionic imbalance causes 

the cell membrane to depolarise. Intracellular Ca2+ levels rise leading to 

mitochondrial dysfunction, reduced ATP formation (see Figure 5-1), energy failure 

and ultimately cell death. Mitochondrial dysfunction leads to a release of reactive 

oxygen and nitric oxide species which cause oxidative stress and damage to 

membrane lipids, proteins and DNA. Free Ca2+ activates enzymes (calpains) that 

disrupt the axon's cytoskeletal filaments. This disruption causes impaired axonal 

transport and a build up of amyloid precursor protein (APP) (Rosenfeld 2012, 

Gentleman 1993). 
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Figure 5-1. Pathophysiology of brain injury 

Acute - The cycle of cellular events that occur when a neuron is injured and 
which leads to APP accumulating in the axons, microglial activation and 
fibrinogen leakage from blood vessels. Chronic - The activated microglia 
modulate tau metabolism leading to beta-amyloid plaque (different to APP 
accumulation) deposition and neurofibrillary tangles (McKee 2009). 

 

Microglia are the immune cells of the central nervous system.  Signals emitted from 

injured neurons activate microglia which then change shape (Figure 5-2). If there are 

dead cells present, the microglia become phagocytes. Activated microglia 

accumulate at the injury site and secrete inflammatory cytokines, chemokines that 

stimulate the migration of activated leucocytes into the brain. Infiltrated neutrophils 

maintain the immune response to injury, impairing the blood brain barrier's integrity 

which in turn leads to fibrinogen leakage into tissues, increased extracellular fluids, 

cell swelling and brain oedema. In the long term, for an unknown reason, in some 

individuals activated microglia remain in the brain and can cause chronic traumatic 

encephalopathy by modulating tau protein metabolism (Goldstein 2012). In this 

study, we looked for APP as a marker of axonal injury, fibrinogen as an indicator of 
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blood-brain barrier permeability and Iba1 (a microglia-specific calcium binding 

protein) to assess microglial morphology (Rosenfeld 2012, DeWitt 1995). 

 

	
Figure 5-2. Functional plasticity of microglial (Streit 1999) 

Injured or diseased neurons cause resting microglia to become activated by 
emitting injury signals. The degree of microglial activation varies with the 
severity of the neuronal injury. The mildest injuries may only cause hyper-
ramification of microglia, but most types of neuronal damage will cause 
resting microglia to become reactive microglia. If neurons die, microglia 
transform into brain macrophages and remove the dead cells. If an injured 
neuron recovers, hyper-ramified and reactive microglia may revert to the 
resting form. Microglia-derived brain macrophages probably do not revert to 
the resting state, but may undergo cell death (Streit 1999). 
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5.1.2 Haemorrhagic shock and resuscitation 

Isolated blast injury is very uncommon and it usually occurs in the context of 

polytrauma. Approximately 4% of soldiers suffered from both TBI and haemorrhagic 

shock (HS) (Okie 2005) in combat operations in Iraq and Afghanistan. The presence 

of HS is known to worsen the morbidity and mortality significantly from TBI (Wald 

1993). The worsened morbidity and mortality seen in TBI with HS may be due to 

secondary ischaemic damage as well as the effect of the loss of cerebral 

autoregulation. The current treatment for soldiers and civilians suffering from both 

TBI and HS is the infusion of crystalloid fluids, such as saline to restore BP and 

tissue perfusion. However, there is some evidence that this may worsen cerebral 

oedema causing intracranial hypertension and a reduction of brain compliance 

(Teranishi 2012, Hariri 1993).   

Our injury model was designed to replicate the effects of battlefield polytrauma and 

the journey from injury and first-aid (Role 1), through evacuation (Role 2) to a 

medical facility (Role 3) (Garner 2009).  The term "Role" or "Echelon" is used by 

NATO to describe the stratification of tiers of medical support. Role 1 medical 

support is integrated into a unit and includes the capabilities for providing first aid 

and immediate lifesaving measures such as stopping the haemorrhage. Role 2 is 

typically provided at a larger unit level, usually Brigade size, though it may be 

provided farther forward, depending upon the operational requirements. In general, it 

provides evacuation from Role 1 facilities. Role 3 is at Division level and above. It 

incorporates additional resources, including diagnostic equipment such as CT 

scanners, as well as specialist surgical and medical capabilities (NATO 1997). The 

resuscitation strategies and timelines used in this study replicate these echelons of 

medical support. 

 

5.1.3 The porcine model 

Animal models examining pathological changes have improved understanding of the 

fundamental pathophysiology underlying blast trauma. However, findings from these 

studies cannot be readily translated to humans. Most animal studies of bTBI have 

used rodents (Xiong 2013). However, there are a number of limitations to using 

these types of animals. Rodent brains are smaller and have a porencephalic 
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structure; this limits the applicability of their findings to humans.  The human brain 

has a gyrencephalic structure. The convolutions of the sulci and gyri will interact 

differently with any force acting on the brain and create a different pattern of injury. 

	
Figure 5-3. Comparison of rodent, pig and human brain 

A porencephalic rodent brain and the gyrencephalic pig and human brain. The 
folds on the brain's surface will influence the transmission of energy and the 
location of the injury (adapted from Gholipour 2014, Heteroherent 2011).  

 

In chronic traumatic encephalopathy following blast exposure, there is a predilection 

for injury at the base of the sulci, this illustrates the way that sulcal and gyral 

anatomy influence the location of damage (McKee 2014). Garner et al. (2009) 

developed a large-animal porcine model to address some of these limitations. Pigs 

have a gyrencephalic brain structure that is similar to the human and also have 

comparable glial-to-neuron ratios, myelin levels and water content. Also, 

experiments have shown that pigs' brain tissue is analogous to human brain tissue 

when assessed biomechanically (Thibault 1998, Manley 2006).  

We used a porcine model developed by Garner et al. (2009) to investigate the 

structural and early immune effects of military blasts. We gave ten pigs a peripheral 

injury, exposed them to either sham or blast conditions, limiting the secondary and 

tertiary blast effects, before controlled haemorrhages. Both groups of pigs were then 

given normal saline corresponding to Role 1 care, prior to being assigned to one of 
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two resuscitation strategies. The early resuscitation group received packed red blood 

cells (PRBC) and fresh frozen plasma (FFP) one h after injury, corresponding to 

Role 2 care, these were continued in the late phase of the resuscitation 

(corresponding to Role 3). The late resuscitation group continued to receive 

crystalloid fluid to maintain BP whilst at Role 2 before receiving PRBC and FFP once 

at Role 3. 

	
Figure 5-4. Timelines for fluid resuscitation in the early and late groups 

An overview of the injury model showing the different fluids used by the early 
and late resuscitation strategies and their corresponding timelines. This model 
replicates the timelines to Role 1, Role 2 and Role 3 medical care as set out by 
NATO. 
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5.2 Methods 

All blast experiments were conducted by the Defence Science and Technology 

Laboratory (Dstl) at Porton Down. Garner et al. 2009 provides a detailed account of 

the development of this injury model, which combines blast, controlled haemorrhage 

and a soft tissue injury in a reproducible animal model, in order to carry out detailed 

physiological testing.   

The study was conducted on 10 terminally anaesthetised large white pigs in 

accordance with the Animal Scientific Procedures Act (1986). The pigs were 

anaesthetised with Isoflurane (5%) in O2N2O (FiO2 0.3) followed by Alfaxan 

(SaffanTM), before experimentation. Arterial blood and central venous pressures 

were recorded throughout the experiment via intravascular cannulation.  The injury 

and resuscitation model was divided into three phases: the shock phase, the pre-

hospital phase and the in-hospital phase, to realistically simulate the experience of 

an injured soldier.  

 

5.2.1 Shock phase (Pre Role 1) 

After a 60 min recovery period following induction of anaesthesia, blood gases and 

cardiovascular measurements were made and the animal was randomly allocated to 

receive blast or sham (non-blast) treatment. The animals were wrapped in a Kevlar 

blanket to protect from secondary and tertiary blast effects and positioned outdoors 

on a trolley 2.15 m from a cylindrical charge of EDC1S explosive (2.2 kg), which was 

detonated remotely. 

 

	
Figure 5-5. Blast Rig 
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The animal is seen here, on the right, wrapped in a Kelvar blanket on a sliding 
rail, which protected it from secondary and tertiary injuries. The high explosive 
charge was placed on top of the tube on the left. 

 

Animals subjected to the sham blast were treated identically but not exposed to the 

blast. All animals then received a haemorrhage of approximately 30% blood volume 

loss and blunt injury to the muscle of the right thigh. The animal was then left to enter 

a 30 min shock phase during which a capped amount of 500 ml saline was given to 

prevent cardiovascular collapse and maintain the hypotensive target. 

 

5.2.2 Pre-hospital phase (Role 1) 

The treatment groups diverged at this point, those in the early resuscitation strategy 

group received up to 4:4 units of PRBC:FFP, which had been both forward and back 

cross-matched to the recipients. Animals in the late-resuscitation strategy group 

received saline to the same hypotensive BP target. At this stage, oxygen was used 

(at least FiO2 0.3) to maintain an arterial concentration of 98%. 

 

5.2.3 In-hospital phase (Role 2+) 

After a 60 min simulated pre-hospital resuscitation phase, animals in the late-

resuscitation group then received fluid to a maximum of 6:6 PRBC:FFP to reach and 

maintain a normotensive BP  target, while a similar BP target was also employed in 

the early-resuscitation group. This resuscitation was continued for a further 150 min 

by which time all animals were sacrificed humanely with an overdose of 

pentobarbital (150 mg/kg i.v) and the heads removed for further analysis. 

 

5.2.4 Tissue preparation 

The heads of the animals were immediately removed and the soft tissues and 

mandible were separated from the skull. The skull was perforated with a 1 cm cranial 

perforator in the frontal and occipital bones and diffusion fixed in 2% 

paraformaldehyde solution for two weeks. Perfusion and diffusion fixation are both 
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accepted methods for fixing whole brains. Perfusion fixation requires 

paraformaldehyde to be pumped continuously through the arterial supply to the head 

(Dyrby 2011) whilst diffusion fixation is performing by submerging the brain in 

paraformaldehyde for a predetermined period of time (Miller 2011).  

Diffusion fixation was chosen as perfusion with paraformaldehyde would have 

invalidated the concurrent investigations into porcine physiology following trauma. In 

addition, the effectiveness of diffusion fixation has been demonstrated in larger, 

human brains. After two weeks, the brains were surgically extracted from the skulls 

and then examined for apparent external damage. They were then suspended in 

TechAgar and stored at 4°C and scanned in a 4.7 Tesla MRI scanner. We performed 

MR imaging on 8 of the 10 brains (five blast and three sham animals).  

 

5.2.5 Immunohistochemistry 

We used a standard haematoxylin and eosin (H&E) staining procedure. Antibodies 

against Iba1, APP and fibrinogen, had not previously been used with porcine tissue, 

so the protocol was derived using experiments with antigen retrieval techniques and 

exposure times (see Supplementary Methods in Appendix 3). A Consultant 

Neuropathologist blinded to the group and resuscitation strategy of the animal 

examined the slides for structural damage, microbleeds, axonal pathology and 

microglial activation.  

 

5.2.6 H&E stain  

We examined all of the slices for structural changes, including oedematous 

pathology, alterations in cell morphology, and ependymal stripping. We looked for 

the presence of perivascular oedema, denoted by fibrous cavities surrounding the 

vessels in several regions including the orbitofrontal WM, hippocampus, corpus 

callosum, pons, medulla and cerebellum.  

 

5.2.7 Fibrinogen 

We used the presence of fibrinogen immunoreactivity to assess BBB permeability. In 

healthy subjects, fibrinogen is observed only within the vasculature. Increased BBB 
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permeability leads to leakage of fibrinogen into the parenchyma, seen as a brown 

blush surrounding the vessel. We chose three standard sections throughout the 

brains and recorded all the cases of vascular leakage observed at 2 x magnification. 

We marked the presence and location onto a standardised outline of a porcine brain 

using graphics editing software (http://brainmuseum.org).  

 

5.2.8 Amyloid Precursor Protein (APP)  

We used APP to assess for the presence of axonal injury. When axons are injured 

axonal transport is interrupted and APP accumulates making the axon swell.  We 

looked in the WM in the same three sections for each animal. We defined a focus as 

a distinct clustering of axonal bulbs and recorded their presence and location of the 

identified Foci onto a standardised outline of a porcine brain using graphics editing 

software (http://brainmuseum.org). 

 

5.2.9 Iba 1  

We stained the tissue with anti-Iba1 to observe changes in density and morphology 

of microglia. Semi-quantitative analysis of microglial profiles was performed to 

determine the locality and extent of the immunoreactive response. A severity scale of 

low (*), moderate (**) and severe (***) was set out, judged on intensity of clustering 

and degree of morphology change (Table 5-1), as shown in Figure 5-6. 
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Table 5-1. Severity scale of damage to microglia 

Low (*)  Moderate (**) Severe (***)  

Microglia are mostly in a 

ramified state, with little 

retraction of processes 

and low density of cells 

Microglia have slightly 

thickened and retracted 

processes but cells are 

evenly distributed, 

suggestive of early 

activation and little 

migratory response 

Microglia have 

thickened and retracted 

processes, looking more 

like macrophages. 

Activated cells are often 

clustered indicative of 

widespread activation 

with proliferative and 

migratory responses 

 

	
Figure 5-6. Visual impressions of the semi-quantitative rating of microglial 
activation: A) low (*); B) moderate (**); C) severe (***) 20 x magnification 

 

5.2.10 Neuroimaging 

We developed an ex vivo neuroimaging protocol (see Supplementary Methods in 

Appendix 3) to create high-resolution MPRAGE (T1) and gradient-echo (T2*) and 

DTI images to assess the extent of focal brain injury and haemorrhage. A Consultant 

Neuroradiologist, blinded to the pigs’ blast injury status and resuscitation strategy, 

reviewed each of the standard structural scans (T1 and T2*sequences).  
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5.2.11 DTI analysis  

Using a region of interest (ROI) approach we investigated FA within specified WM 

regions. We created ROI masks based on WM anatomy, in T1 space, for each 

animal. These regions were whole brain WM, the orbitofrontal WM, and the anterior 

internal capsule. These regions provide a representative measure of the degree of 

WM tract damage and are frequently disrupted by DAI (Mac Donald 2011). Informed 

by the histopathological results, we also created masks for the regions where we 

saw APP pathology. We extracted the mean FA value within the masks for each 

subject. SPSS was used to compare the mean FA in each of the regions between 

the blast and non-blast animals. 

 

5.3 Results 

5.3.1 Histopathology 

5.3.1.1 Ependymal stripping 

Stripping of the ependyma was identified in 4 of the six blast-exposed pigs, denoted 

by oedematous pathology underneath the ependyma (Table 1, Supplementary 

Figure 4 – see Appendix 3), with long fibrous attachments.  

	
Figure 5-7. Ependymal stripping 

 (A) Normal ependymal compared with (B) Ependymal stripping  
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5.3.1.2 Hippocampal oedema 

Two bTBI animals had hippocampal oedema that was not seen in the sham animals. 

One animal (B2) showed bilateral oedematous appearances in the dentate gyrus 

(DG) of the ventral hippocampi, and another (B10) had unilateral changes in the DG 

of the ventral hippocampus. In both animals with hippocampal oedema, there was 

associated microglial activation in the adjacent brain (Figure 5-8). 

 

	
Figure 5-8. Hippocampal oedema with concurrent microglial activation 

(A) and (C) are the slices from the same section through the hippocampus in 
pig B2. (A) H&E stained section showing fibrous structural pathology denoting 
oedema and (B) was stained with anti-Iba1 (brown colour) to show activation 
of microglia. (B) (D) Sections from animal B5 in which the oedema and 
microglial activation are not present.  
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5.3.1.3 Perivascular oedema 

We observed perivascular oedema in both groups throughout the whole brain (Table 

1, Supplementary Figure 4 – see Appendix 3). Although in five of the six blasted pigs 

there were no microbleeds found, there were several microbleeds (extravascular 

erythrocytes indicating haemorrhage) found in the medulla of one of the blasted 

animals (Supplementary Figure 1, Appendix 3). This extravasation was associated 

with fibrinogen leakage. Both bTBI and sham groups displayed widespread 

fibrinogen leakage. There was no discernible pattern to the leakage, with this 

abnormality seen throughout the brains of all the animals (see Figure 5-9).  

 

	
Figure 5-9. Fibrinogen leakage 

 (A) The brown blush around the blood vessel indicates fibrinogen leakage 
compared to (B) a typical vessel. 

 

5.3.1.4 Amyloid Precursor Protein (APP)  

All the pig brains, both blast and non-blast, displayed some APP immunoreactivity, 

with 8 out of 10 pigs showing widespread positive axonal varicosities. Axonal 

varicosities were mainly seen in the mid-coronal slice below the lateral ventricles, 

and in the internal capsule extending into the thalamus as shown in Figure 5-10 (also 

see Supplementary Table 2). 
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Figure 5-10. APP immunostaining at (A) 20x mag and (B) 10x mag compared to 
(C) normal WM without axonal injury 

 

5.3.1.5 Iba 1 

In animals exposed to a blast, there was evidence of focal microglial activation in 

areas of ependymal stripping as well as widespread activation of microglia in the 

sub-ependymal region (Figure 5-11). There was no evidence of sub-ependymal 

microglial activation in the sham animals. However microglial activation was seen in 

both bTBI and sham groups in other apparently undamaged parts of the brain, 

suggesting that a component of the injury model separate to blast caused microglial 

activation (Supplementary Table 3). 

 

 

	
Figure 5-11. Microglial activation 

 (A) subependymal microglial activation and accumulation were seen in the 
blast pig (B1) without concomitant ependymal stripping; (B) subependymal 
microglial activation in the blast pig (B10) with ependymal stripping; (C) 
normal ependyma with ramified microglia. 
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5.3.2 Neuroimaging 

The Gradient-echo and MPRAGE sequences showed no discernible difference 

between the two groups when reviewed (see Figure 5-12).  

 

	
Figure 5-12. MR imaging in a pig brain 

MPRAGE (T1) and Gradient Echo images of a pig brain in the (A) coronal, (B) 
saggital and (C) axial planes. 

 

When the whole brain FA was compared for blast vs non-blast, we found a 

significantly lower FA in pigs with blast exposure (p=0.04), suggesting a difference in 

the WM integrity of the two groups (Table 5-2). However, no difference in FA was 

found between the two injury statuses in the ROI comparisons of the corpus 

callosum, the anterior internal capsule and the orbitofrontal WM (p=0.4, p=0.4 and 

p=0.2 respectively). Guided by the APP immunohistological results, we created ROI 

masks bilaterally in the internal capsule/thalamic areas. The more targeted analysis 

in this ROI yielded a significant FA difference between blast and non-blast brains, 

with a lower FA indicative of axonal injury being seen in the blast group when 

compared to the non-blast group (p=0.016) (see Table 5-2). 
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Table 5-2. Comparison of WM in blast vs. non-blast whole brain 

 

ROI 

Injury 
status 

Pig 
Whole 
brain 

Corpus 
Callosum 

Orbitofrontal 

WM 

Anterior 
internal 
Capsule 

Pathology 
led ROI 

Blast 

B2 

B3 

B8 

B9 

B10 

0.509 

0.493 

0.498 

0.531 

0.508 

0.431 

0.385 

0.395 

0.455 

0.515 

 

0.450 

0.352 

0.311 

0.408 

0.325 

 

0.271 

0.386 

0.452 

0.479 

0.536 

0.402 

0.294 

0.326 

0.344 

0.379 

Non-
blast 

B5 

B6 

B7 

0.531 

0.514 

0.539 

 

0.434 

0.398 

0.493 

 

0.329 

0.365 

0.342 

0.434 

0.409 

0.445 

0.399 

0.424 

0.480 

Average 
blast FA 

 

0.508 

 

0.436 0.369 0.425 0.349 

Average 
non-blast 
FA 

0.528 0.442 0.345 0.430 0.434 

t-test p-
value 

0.049 0.444 0.266 0.469 0.016 
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5.4 Discussion 

The purpose of the blast injury in pigs study (BIPs) was to examine the effects of a 

primary BOP wave on the brain in a porcine model of polytrauma. The study has 

shown evidence that primary blast causes ependymal stripping with associated 

inflammation in the region of the lateral ventricles, helping to confirm that an isolated 

primary blast wave can cause brain injury. We found activation of the microglial cells 

throughout the brains of all animals raising important questions about the effects of 

polytrauma on the CNS and its treatment. Importantly the imaging results have 

confirmed that even at 4.7 Tesla, standard structural MR is not as sensitive to WM 

damage as DTI. More work is needed to develop DTI as a tool for use in trauma (see 

Recommendations Chapter). 

 

5.4.1 Neuropathology 

5.4.1.1 Ependymal stripping 

We found evidence of ependymal stripping in the region of the lateral ventricles. 

There was oedematous change underlying the areas of stripping as well as early 

activation of microglial cells indicating that the injury happened while the animals 

were alive. This finding supports previous work that has shown microglia activation 

within six hours of injury (Hoogland 2015). 

De Lanerolle et al. (2011) demonstrated periventricular axonal injury and astrocyte 

infiltration two weeks after blast exposure in a porcine model of mild blast TBI (de 

Lanerolle 2011). Similar to our study, de Lanerolle and colleagues did not observe 

any obvious injury such as haemorrhage in these animals. Other authors have 

shown an association between ependyma injury and localised microglial cell 

activation (Sarnat 1995). These findings suggest that the blast-induced ependymal 

damage we observed triggers early immune activation.  

There are several proposed mechanisms by which blast could cause brain injury, 

including spallation, implosion, and inertial effects (Nakagawa 2011, Leung 2008). 

Spallation is the disruption that occurs between materials of differing densities. As 

the BOP wave travels between materials, the compression component is reflected at 

the material interface, leading to fragmentation of the denser material. Implosion 

occurs when gas bubbles in the tissue are compressed by the shockwave. The 
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tissues collapse as the gas re-expands following the wave passage, the surrounding 

tissue is damaged. While the BOP wave propagates, lighter density masses will 

accelerate more than denser ones, resulting in large stress forces at the interface. 

This is known as the inertial effect. As such, the most vulnerable organs affected in 

the blast are those with air/liquid interfaces, such as the auditory canals, lungs and 

abdomen (Elder 2010b, Champion 2009). Previous investigators have hypothesised 

that pressure waves could be transmitted through the CSF spaces of the brain and 

spinal canal (Courtney 2009, Bauman 2009). The ependymal stripping that we have 

observed at the interface between the CSF-filled ventricles and the ependymal of the 

lateral ventricles supports the pressure wave transmission theory.   

 

5.4.1.2 Clinical implications of ependymal stripping 

The ependymal lining of the lateral ventricles has a role in controlling the 

composition and production of CSF as well as providing a reservoir of neural stem 

cells that can proliferate and migrate to areas of nervous tissue injury (Johansson 

1999). The apical surface of the ependymal cells of the central nervous system have 

been shown to absorb and regulate the composition of CSF and the tight junction 

between ependymal cells act as a semi-permeable barrier to nervous tissue. 

Modified ependymal cells form the choroid plexus that produces CSF. Damaged 

ependymal may no longer be able to regulate the transport of fluid, ions and small 

molecules causing hydrocephalus. Tearing of the ependymahas been shown to 

leave discontinuities that become filled with the processes of subventricular 

astrocytes and can lead to extensive gliotic nodules (Sarnat 1995). Gliosis may 

change the compliance of the ventricular wall also leading to hydrocephalus. At the 

time of injury, a discontinuity in the tight junctions between the ependymal cells may 

predispose to infection, and ependymitis and ventriculitis are known to have high 

mortality rates (Lu 1998, Berk 1980). The loss of the neural stem cell reserve may 

have implications for neuroregeneration. Future research should be undertaken to 

determine if bTBI causes an ependymal injury in humans and if so whether there are 

higher rates of central nervous system infection and hydrocephalus. If future work 

confirmed ependymal injury, this would have significant implications for the design of 

personal protective equipment and the treatment of these injuries. 
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5.4.1.3 Hippocampal oedema 

We also observed hippocampal oedema in two of the animals exposed to blast. This 

is in keeping with evidence from other studies which showed that the hippocampi are 

particularly susceptible to the effects of blast exposure (de Lanerolle 2011, Goldstein 

2012, Miller 2015). Hippocampal injury is a well-documented consequence of nbTBI 

as well (Hicks 1993, Kotapka 1991). This vulnerability may be for several reasons: 

firstly, the hippocampus contains a large proportion of the CA1 fields of the cornu 

ammonis which are sensitive to trauma (Duvernoy 1988); secondly, the fronto-basal 

parts of the brain, which have extensive hippocampal projection fibres (Cavada 

2000), are frequently damaged in moderate to severe TBI (Gennarelli 1998). This 

orbitofrontal damage may therefore result in transneuronal hippocampal cell death. 

In bTBI, damage to the hippocampi might be a direct result of the BOP wave, or 

could be secondary to hypoxia or impaired perfusion due to hypovolaemia. Previous 

studies looking at patients with hippocampal damage from epilepsy have found that 

they have poor memory (Addis 2007). Future research should be conducted to 

determine if these effects occur in trauma. 

 

5.4.1.4 Perivascular oedema and generalised microglial cell activation 

We saw perivascular oedema with fibrinogen leakage and widespread microglial 

activation in bTBI animals, but also in the sham group who had a soft tissue injury 

and IV fluid resuscitation but no exposure to blast. This suggests that these changes 

arose from another aspect of the injury model unrelated to the blast. Tissue oedema 

has been shown to occur in peripheral tissues following administration of IV fluids 

(Scallan 2010) and so it is possible that the changes we have observed are a result 

of the resuscitation strategy. Future research should be conducted to determine if 

the relationship between perivascular oedema and IV fluid resuscitation as this could 

potentially worsen TBI outcome by increasing cerebral oedema, intracranial 

hypertension and reducing brain compliance (Hariri 1993, Teranishi  2012).  

Widespread microglial cell activation in both blast and sham groups is another 

interesting observation that resulted from an aspect of the model unrelated to blast 

exposure. Hoogland et al. 2015 conducted a systematic review of 51 animal studies 

and showed that peripheral inflammatory stimuli can cause microglial cell activation. 
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It is possible that inflammatory stimuli (cytokines) released by the soft tissue injury 

that the animals sustained activated the microglial cells in both groups. 

 

5.4.1.5 Amyloid precursor protein 

We found that both blast and sham pig brains showed early APP immunoreactivity, 

indicating that this result was not due to blast. However, there were some significant 

differences in the extent and location of reactivity seen between the two groups. The 

blasted pigs showed more extensive pathology in the orbitofrontal WM, the regions 

of the internal capsule and thalamus (Supplementary Table 2). This suggests that 

although blast is not the cause of the APP pathology it may exacerbate WM damage.  

De Lanerolle et al. (2011) noted similar pathology in pigs treated in a similar blast 

paradigm two weeks following a blast. Our finding of APP within four hours of blast is 

consistent with previous studies in nbTBI that has shown APP accumulation within 

three hours following injury (Sherriff 1994). The absence of a control group of pigs 

that had not received fluid resuscitation is an important limitation of the BIIPs study. 

The animals were sacrificed four hours after injury, if a longer survival time before 

sacrifice were possible, more APP accumulation may be detected, producing a 

clearer picture of the axonal injury. Future work should be conducted, comparing pig 

brains subjected to an isolated blast exposure and a group of normal pig brains to 

determine the role of the resuscitation strategy in APP pathology.  

All histopathological analysis is subjective and, therefore, vulnerable to inter-

observer variability and bias. In the BIIPs study, we limited our observations to 

describing the presence or absence of individual pathologies and using semi-

quantitative rating scales to make the results as reproducible as possible.  

 

5.4.2 Imaging 

Even at 4.7 Tesla, standard structural imaging did not reveal any areas of damage in 

any of the brains. Using DTI, however, we observed that the blasted pigs had a 

lower whole brain FA than the sham animals. Areas of the brain found to have more 

APP accumulation drove this difference in FA. FA and APP are markers of axonal 

injury (Warner 2010, Zhu 2014) (Gentleman 1993) and our work supports these 

findings. The absence of injury on structural MRI supports the previously stated view 
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that standard structural imaging is not as sensitive as DTI when investigating WM 

damage and more work should be carried out to make DTI a readily available tool in 

the assessment of TBI. The imaging was performed on ex vivo brains and this may 

make the results difficult to translate into live human subjects. Also, the numbers of 

animals studied were small meaning that the findings need to be confirmed using a 

larger number of pigs and with a control group that had not received fluid 

resuscitation. High field strength MRI, using a 7 Tesla MRI demonstrates a 

hyperintense rim around the ventricles on FLAIR sequences (van Veluw 2015) and 

this may have a role in assessing ependymal integrity in the future. 

Only one of the blasted pigs brains showed evidence of extravasation of 

erythrocytes, indicating haemorrhage in several areas of the medulla. These 

haemorrhages are analogous to microbleeds. Future work should be carried out to 

determine if there were factors, such as abnormal coagulation, that influenced this 

result. 

 

5.4.3 Porcine model 

We used a porcine model to examine the effects of blast on the brain because of 

similarities in gyral anatomy, glial-to-neuron ratios and the analogous behaviour of 

the tissues (Thibault 1998, Manley 2006). However there are significant differences 

in skull composition (Bauman 2009), size, shape and integrity (Nakagawa 2011), 

which mean the findings may be different in humans. Pigs have thicker skulls and a 

different hindbrain orientation as well as larger sub-arachnoid spaces (Manley 2006), 

which may absorb and reflect energy differently. The neck of a pig is much thicker 

than that of a human, meaning that the whiplash-like forces that act on the head will 

be greater in humans. Pigs have hypercoagulable blood in comparison to humans 

and haemodilution further modulates coagulation. Therefore, the resuscitation 

targets used in this model may not produce the same effect in humans (Calzia 

2012). Finally for practical reasons, we chose to diffusion fix the brains rather than 

perform perfusion fixation. Diffusion of paraformaldehyde throughout the brain would 

not have been instantaneous and so the cellular changes that we have observed 

may have occurred later than four hours after the blast injury.  
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5.5 Summary 

In summary, we studied the effects of primary blast exposure in a porcine model of 

polytrauma. We found that an isolated BOP wave produces ependymal stripping with 

associated microglial cell activation within four hours of injury, as well as 

hippocampal damage in a subgroup of blasted animals. Standard MR imaging did 

not identify any structural abnormalities which mean that these injuries may be 

unrecognised. DTI identified the internal capsule and thalamus as areas with lower 

FA indicating more axonal injury. 

In the next chapter, I will bring together the results from the three experiments that 

make up this thesis and discuss the implications that they have on research in this 

field as a whole. 
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6 Discussion 

 

6.1 Potential methodological limitations 

6.1.1 Group size 

A potential limitation of this study is the relatively small number of subjects. The 

analysis of WM integrity and its relationship with cognition described in Chapter 3 

examined data from 20 soldiers, 20 civilians and 31 controls.  These subject 

numbers are comparable to similar published work (Kinnunen 2011, Bonelle 2011). 

Furthermore, even with our small numbers, we were able to demonstrate a 

statistically significant effect of blast between the groups. This study was thus able to 

provide useful information about the impact of blast on the brain although, of course, 

larger numbers would have provided more accurate measures of the effect of blast. 

We excluded subjects with penetrating brain injury, previous neurosurgery; a history 

of psychiatric or neurological illness; previous TBI; anti-epileptic medication; drug or 

alcohol abuse; or contraindications to MRI, in order to better isolate the effects of 

primary blast thus reducing the number of potential subjects. At the time this work 

was conceived, there was no knowledge of the size of the effect that we were 

looking for and so a formal power calculation was not possible. Work published 

around the same time in nbTBI used numbers between 12 and 28 with a similar 

numbers of controls. We therefore chose to examine 20 soldiers with bTBI, 20 

civilians who had suffered a nbTBI and 31 uninjured controls. We believed that this 

would generate data around the effect that could be used in power calculations in 

later studies. 

In the porcine study, again the relatively small number of subjects is a limitation. Of 

the 10 porcine brains, we were only able to analyse DTI data on eight, due to data 

corruption on two of the brains.  

 

6.1.2 Group selection 

Inherent within any study comparing military and civilian populations is the potential 

limitation of group selection. Soldiers operating on the frontline are by definition 

young males with high levels of physical fitness. The environment in which they 
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operate is highly kinetic, and the physiological and environmental stresses that they 

experience are different to civilians. The civilians in contrast mainly came from north-

west London, which is an affluent area and had a high level of education as 

demonstrated by their assessment of premorbid intelligence (see Chapter 3 and 

Appendix 1). We controlled for these group differences by matching the civilian TBI 

and control groups for sex and age, but there are certain differences in premorbid 

education, IQ, nutrition and social class that should be considered when interpreting 

our results. 

 

6.1.3 Multiple comparison errors 

The problem of undertaking multiple comparisons is that some fraction will be 

significant at the p<0.05 level due to chance alone. Thus in my study when 

measuring FA in the ~ 20,000 voxels in each brain, the differences observed which I 

determined to be statistically significant, might have resulted from the multiple 

comparisons made and led me into the error of rejecting the null hypothesis despite 

it being true. This potential error might also have resulted when investigating 

cognition differences between the groups. 

To address this potential problem, we used threshold-free cluster correction in 

FMRIB Software Library (FSL) to correct for the number of possible independent 

observations in the spatially smoothed data. In FSL, the Gaussian Random Field 

Theory is used to implement a cluster-based correction for multiple comparisons. 

Another option would have been to use the Bonferroni correction. However, this 

assumes that there is no relationship between individual voxels (which there is in the 

case of WM tracts) and thus is very stringent, risking falsely rejecting real differences 

(a type II error). We did not correct for multiple comparison errors when analysing 

the cognition test results. This is a valid limitation but as this was an exploratory 

study with relatively small numbers we believe this is an accepted approach. Future 

analysis with larger numbers should be carried out correcting for this 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS). 
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6.1.4 Quantification of blast forces 

As described in Chapter 1, the BOP wave rapidly dissipates energy as it expands 

from the centre of an explosion. Also, reflections from surrounding structures can 

cause amplification of the pressure wave leading to a wide variation in the pressure 

(Psi) experienced by subjects, depending on their proximity to the explosion, the 

presence of surrounding structures and the effectiveness of personal protective 

equipment. In the human study (BIOSAP) we could only approximate the size of the 

blast exposure and the individual contributions of primary, secondary and tertiary 

effects to the overall injury. This was the motivation for going on to conduct the 

animal work (BIIPs). Other published studies have used self-reporting of blast 

exposure (Mac Donald 2011), but this potentially includes soldiers who have not 

suffered the primary effects of blast. We attempted to control for this by only 

including soldiers with a moderate to severe bTBI secondary to a single blast 

exposure, and those that did not have lesions causing mass effect on imaging. 

Towards the end of the conflict in Afghanistan, some US troops were provided with 

helmets fitted with accelerometers that could quantify the forces they were exposed 

to if injured. However, I am not aware of any published work to date in the field of 

bTBI relating to this. 

As described in Chapter 5, we used an existing model of porcine polytrauma 

opportunistically to investigate the effects of the BOP wave on WM integrity. This 

work is valuable in that it has shown that primary blast causes ependymal injury in 

this model. However, the fact that both blast and sham animals received a soft tissue 

injury and had different fluid resuscitation interventions means that further work 

needs to be carried out to isolate the effects of each of these.  

As discussed in the previous chapter, the widespread fibrinogen leakage seen in 

both blast and sham animals, has highlighted a potentially deleterious effect of fluid 

resuscitation in bTBI. I address this further below.  
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6.2 Discussion of the results 

6.2.1 The location of WM damage suggests a mechanism of injury unique to 
blast 

Explosive injuries cause a complex mix of primary, secondary, tertiary and 

quaternary injuries (Elder 2010b), and it is very rare for soldiers to have an isolated 

primary blast injury (Chapman 2014). Therefore, imaging abnormalities could result 

from non-blast mechanisms of injury such as head impacts or the rotational forces 

that often produce DAI in civilian TBI (Johnson 2013). In this work, when the more 

severely injured sub-group was analysed, we saw more damage in the anterior 

internal capsule and middle cerebellar peduncles in the bTBI group. This supports 

previously theoretical work that predicted damage to these areas from direct stress 

wave coupling secondary to blast (Taylor 2009) and human studies that found injury 

in the middle cerebellar peduncles and orbitofrontal WM in mild bTBI (Mac Donald 

2011) suggesting a mechanism of harm unique to blast. 

 

6.2.2 WM damage and cognition 

Results presented in Chapter 3 show a strong relationship between the location of 

WM damage and cognition (executive function and memory).  Impaired executive 

function was associated with damage to the orbito-frontal WM, which is in keeping 

with current understanding about the role of the frontal lobes. Impairment in 

associative memory was correlated with damage to a large number of WM tracts; 

some like the fornices are known to have a role in memory whilst others, like the 

corticospinal tracts, are not. It is likely that the diffuse injury seen in both blast and 

non-blast injury has disrupted distributed brain networks that support higher cognitive 

function to produce these symptoms. Interestingly, the cerebellum that has 

traditionally been considered to be primarily dedicated to motor functions has been 

shown to have a role in cognition, especially in episodic memory (Andreasen 1999). 

The link between posterior fossa damage in bTBI and cognitive dysfunction as 

shown in my study is thus an area for further research. 
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6.2.3 DTI has identified previously unrecognised WM damage 

Soldiers who have suffered bTBI often have persistent cognitive problems despite 

often having normal standard brain imaging and this can lead to uncertainty about 

the cause of their symptoms and the correct treatment. There are several possible 

causes for neurological problems after TBI, including functional causes. However, it 

is possible that the structural brain injury that we have demonstrated in bTBI may be 

missed using standard brain imaging. Our work using DTI which provides evidence 

that DAI is common after moderate/severe bTBI, may thus account for the cognitive 

impairments that are prominent in this patient group, possibly including psychiatric 

disorders such as PTSD. The bTBI patient group had lower FA, in large parts of their 

WM, providing evidence for widespread DAI that is not apparent on standard MRI or 

CT imaging. 

 

6.2.4 Increased prevalence of endocrine dysfunction in bTBI 

Our study found that nearly one-third of soldiers with bTBI had hypothalamic-pituitary 

axis dysfunction. The most common pituitary abnormality was GH deficiency 

followed by hyperprolactinemia, ACTH and Gn deficiency. Only 2% of the nbTBI 

group had hypothalamic pituitary axis dysfunction. The differences in age and BMI 

between the bTBI and nbTBI groups did not explain this difference. Although there 

was a longer time from injury to testing of the bTBI group, this difference would have, 

if anything, reduced the prevalence in this group as pituitary dysfunction can resolve 

over time (Aimaretti 2005). The data suggests that the increased prevalence of 

pituitary dysfunction is a result of a more severe head injury as seen by the 

increased prevalence of skull and facial fractures seen on CT and the increased 

damage to the corpus callosum and WM of the posterior fossa seen on DTI. 

Interestingly, the dedicated pituitary MRI scans did not show evidence of focal 

damage to the hypothalamus or pituitary or evidence of superficial siderosis, 

supporting the earlier statement that standard structural MRI misses a significant 

proportion of brain injury. In contrast to much of the current literature, we found that 

only 2% of age- and gender-matched civilians with moderate-severe non-blast TBI 

had pituitary dysfunction. The higher prevalence found in other studies may be 

secondary to the different diagnostic tests and the normal laboratory ranges used. 
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6.2.5 Porcine results 

6.2.5.1 Ependymal stripping supports the theory that primary blast has a 

unique mechanism of injuring the brain 

Histopathological examination of the pig brains revealed ependymal stripping in 4 of 

the 6 animals exposed to a blast. There was no evidence of ependymal stripping in 

any of the sham animals. This finding supports the theory that primary blast can 

cause injury by transmission of a transient pressure gradient through the CSF 

spaces of the brain with damage occurring at the fluid tissue interface. The 

ependymal damage was not visible on 4.7T MRI scanning reinforcing the point that 

even at this field strength MRI only detects a proportion of the whole injury. It is not 

surprising therefore that we did not see evidence of ependymal injury on 1.5T MRI in 

the soldiers with bTBI. The pig brain has a different hindbrain orientation to the 

human brain giving reason to think that primary blast would cause ependymal injury 

in a different location. In humans, the region around the fourth ventricle may be most 

vulnerable to a pressure wave transmitted through the spinal canal. Interestingly the 

middle cerebellar peduncles, which seem to be preferentially damaged by blast in 

humans, form the lateral boundaries of the fourth ventricle 

(http://radiopaedia.org/articles/fourth-ventricle). 

 

6.2.5.2 Ependymal injury has important implications for neuroregeneration 

Work by Johansson et al. presented evidence that some ependymal cells are neural 

stem cells that generate neurons that migrate to the olfactory bulb and can 

subsequently differentiate into astrocytes that have a role in scar formation in 

response to injury. If it is found that a similar ependymal injury occurs in humans as 

was seen in our porcine model there may be implications for human brain growth 

and recovery. For example, if the cellular mechanisms that direct the proliferation 

and differentiation of ependymal cells are understood it may be possible to reduce 

gliotic scarring by astrocytes and stimulate neurogenesis following injury (Johansson 

1999). 
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6.2.5.3 Widespread microglial activation in both blast and sham animals 

We found evidence of widespread microglial activation across the brains of both 

blast and sham animals evidenced by Iba 1 immunohistochemistry, indicating that 

this was caused by a component of the injury model separate to blast. Previous work 

by Hoogland et al. has shown that peripheral inflammatory stimuli (that is also 

observed in the systemic inflammatory response syndrome seen in trauma) can 

cause central immune activation of microglia (Hoogland 2015).  Furthermore, there is 

now a substantial body of literature implicating activated microglial in the 

development of chronic traumatic encephalopathy. Our findings support this previous 

work and have implications for the investigation and treatment of CTE and repetitive 

mild TBI. 

 

6.2.5.4 Fibrinogen leakage throughout the brains of both blast and sham 

animals 

We saw perivascular oedema and increased BBB permeability throughout the brains 

of both blast and sham animals. This has important implications if the same is found 

in humans because oedema causes an increase in intracranial pressure that can 

lead to a decrease in cerebral perfusion pressure and worsens outcome following 

TBI (Narayan 1981). The systemic inflammatory response syndrome seen in 

peripheral trauma may increase BBB permeability and make the brain more 

susceptible to oedema. As crystalloid fluid resuscitation is common practice in much 

of the world, this represents a significant area for future research.   

 

6.2.5.5 Amyloid Precursor Protein was found in both blast and sham animals 

We found that both blast and sham pigs showed evidence of early APP 

immunoreactivity indicating that this result was not due to blast. However, there were 

differences in the location of APP accumulation between the groups with blasted 

animals showing more extensive activity in the orbitofrontal WM as well as in the 

internal capsule and thalamus. 
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In the final two Chapters, I outline my recommendations for the future research that 

is required to answer questions that arise from this work, as well as help to translate 

the findings contained here into clinical practice. 
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7 Conclusions 

The BIOSAP and BIIPs projects have provided valuable information about the nature 

of TBI following exposure to a blast and its cognitive and endocrine consequences. 

Some of the results of this work are concordant and have allowed me to draw the 

conclusions stated below.  

 

7.1 Standard structural MRI is not a sensitive technique to identify WM 
damage, and DTI provides more information 

The majority (70%) of the standard structural MR scans performed in soldiers with 

bTBI were normal. However, a number of the soldiers had a range of cognitive 

symptoms that the presence of microbleeds alone did not predict. Also, pituitary MRI 

performed in those with endocrine dysfunction did not reveal evidence of 

hypothalamic or pituitary injury. Even using a 4.7T MRI, structural scans were not 

able to demonstrate the ependymal injury that we observed on histopathological 

examination of the pig brains.  At the group level, DTI revealed widespread WM 

damage, supporting previous work that found standard MR is not sensitive to WM 

damage (Kumar 2009). In the human case studies chapter, we were able to 

demonstrate a method of using DTI on an individual basis to identify those with WM 

injury. 

 

7.2 Explosive injuries cause a complex mix of primary, secondary and tertiary 
injury, however, in humans, primary blast appears to damage the middle 
cerebellar peduncles and anterior internal capsule preferentially 

Explosions cause a heterogeneous mix of brain injuries, and many of the imaging 

changes result from non-blast mechanisms such as head impact and rotational 

forces. Our analysis of the more severely injured subset of soldiers who had suffered 

bTBI suggests that there is a unique mechanism of injury associated with blast that 

preferentially affects the middle cerebellar peduncles and the anterior part of the 

internal capsule. This finding supports previous human (Mac Donald 2011) and 

computational (Taylor 2009) work that identified these areas as vulnerable to blast 

injury. 
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7.3 There is a correlation between WM integrity and associative memory and 
executive function 

 

We found a positive correlation between executive function and integrity of the left 

sided orbitofrontal and transcallosal WM. This finding supports previous work by our 

group that shows a relationship between damage to the WM of the frontal lobes and 

impaired executive function (Kinnunen 2011). We also found a positive correlation 

between damage to a large numbers of WM tracts, including the fornices and 

impaired associative memory. This finding reinforces prior work that showed 

cognitive impairment can result from disruption of brain networks (Bonnelle 2011), 

and gives weight to the idea that we should no longer only think about the brain in 

terms of regionalised function but also regarding network connectivity. 

 

7.4 Extensive WM damage is associated with worse cognitive function and 
endocrine dysfunction 

The BIOSAP study showed that widespread WM damage is associated with worse 

cognitive and endocrine function. This may be an indication of increased severity of 

injury. 

 

7.5 High prevalence of hypothalamic-pituitary axis dysfunction in bTBI 

There is a high prevalence (~30%) of hypothalamic-pituitary axis dysfunction in 

soldiers who have suffered moderate to severe bTBI which has implications for 

screening, treatment and follow-up of these individuals. In contrast we found a lower 

prevalence (2%) of endocrine dysfunction in the civilians with nbTBI than the current 

literature suggests. This finding leads us to question the recommendations to screen 

all patients who have suffered a moderate to severe nbTBI for hypothalamic-pituitary 

axis dysfunction. 

 

7.6 Primary blast causes ependymal injury in a porcine model of injury 
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We found ependymal stripping in the region of the lateral ventricles in four of the six 

pig brains. Importantly it was associated with activation of microglia, indicating that 

the injury occurred in vivo. This finding supports the theory that primary blast can 

cause damage through the transmission of a transient pressure gradient that injures 

the brain at the fluid/brain interface.  

 

7.7 Extracranial trauma is associated with widespread microglial activation 

The results of the BIIPs project have shown that in a porcine model of bTBI, 

extracranial injury is associated with widespread microglial activation. This 

observation supports the findings of previous work (Hoogland 2015) that has shown 

peripheral inflammatory stimuli can cause microglial activation. If a similar 

mechanism exists in humans, it has important implications for brain research and 

possible disease management. 

 

7.8 Our porcine model of injury produced widespread fibrinogen leakage of 
unknown aetiology 

We saw extensive fibrinogen leakage in both the blast and sham groups. This 

suggests that the other variables (soft tissue trauma or fluid resuscitation) were 

responsible. The soft tissue trauma may initiate a systemic inflammatory response 

that alters blood-brain barrier permeability, or the resuscitation strategy may have a 

role in the development of perivascular oedema. The two mechanisms may co-exist. 

As it has important implications for the effect of resuscitation strategy on the 

outcome following TBI, this needs further research.  

 

7.9 Further investigation needs to be carried out to determine the cause of the 
accumulation of APP 

We found widespread accumulation of APP in both blast and sham animals; while 

some of its location can be explained by the WM injury we have identified using DTI, 

more work is required to understand why we observed APP accumulation in both 

groups of animals.  
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This chapter has outlined the conclusions that I have reached from the BIOSAP and 

BIIPs studies. In the next chapter, I discuss my recommendations for future 

research. 
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8 Recommendations for future research 

 

8.1 Use a larger group size 

To address the limitations that small numbers place on research future, we should 

seek opportunities to collaborate with other nations, including the United States, who 

have sustained greater numbers of injuries. Collaboration would require 

standardisation of data collection methods and MR scanning paradigms. Also, in the 

event of future conflicts, we should immediately set up a prospective study to look at 

the neurological effects of blast 

 

. 

 

8.2 Control for additional group factors 

Although some of the issues around group selection in the military population are 

unavoidable, two variables have been identified in recent literature which should be 

controlled for in future work. Dunst et al. have shown that higher FA in the corpus 

callosum is associated with increased intelligence (Dunst 2014) whilst Takao et al. 

have shown a relationship between intracranial volume and DTI measures (FA and 

MD) (Takao 2011). We did not know of these relationships at the time of the BIOSAP 

study, but future work should aim to control for these variables.  

 

8.3 Quantify the forces involved in an explosion 

Knowledge of the size and nature of the forces that soldiers experience during an 

explosion will be immensely useful in the development of personal protective 

equipment. Accelerometers placed in the helmets of soldiers will provide valuable 

information but, by necessity, will be opportunistic; further animal work may provide 

the adequate information more promptly.  

 

8.4 Use diffusion tensor imaging in bTBI 
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Most soldiers had normal structural MR imaging (T1, T2* and GRE) of the brain 

despite DTI revealing WM damage. Also, the dedicated pituitary MRI scans did not 

reveal any abnormalities in soldiers with hypothalamic-pituitary dysfunction. Future 

work should be carried out to develop DTI as a tool that can be used at the individual 

level to identify WM injury. 

 

8.5 Assess all symptomatic soldiers who have suffered a bTBI 

Given the association between extensive WM damage, worse cognitive and 

endocrine function and the fact that standard MRI does not reveal the true extent of 

injury, it may be appropriate to examine all soldiers with psychiatric or cognitive 

problems who have suffered a bTBI to determine if there is underlying WM damage. 

 

8.6 Determine if there is a mechanism of injury unique to blast 

The work carried out in the BIOSAP study should be extended to look at a larger 

group of soldiers with bTBI to determine if there is a mechanism of injury unique to 

blast, if so there may be implications for body armour design. There are several 

possible methods to investigate the theory that a transient pressure wave gradient is 

responsible for some of the injuries seen, including further animal work using 

primates or computational modeling of the brain. 

 

8.7 Investigate symptomatic soldiers for hypothalamic-pituitary axis 
dysfunction 

The high prevalence of hypothalamic-pituitary dysfunction seen in the bTBI group 

leads us to recommend screening of all symptomatic soldiers who have suffered a 

bTBI for endocrine dysfunction. Preliminary follow-up data has shown improvements 

in the assessments of quality of life in those soldiers on hormone replacement 

therapy, and we will follow their response to treatment. 

 

Porcine 

8.8 Determine if the ependymal injury seen in pigs occurs in humans 
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Given the potentially harmful effects on CSF circulation and the ability of the brain to 

recover from injury, humans should be investigated with a different strategy used 

thus far (such as high field MRI or CSF sampling) to determine if ependymal damage 

occurs following a blast. 

 

8.9 Explore the long-term effect of activation of microglial cells 

Given the implications for recovery from brain injury and development of chronic 

traumatic encephalopathy, the link between extracranial polytrauma and central 

activation of microglial cells needs to be explored in humans.  

 

8.10 Determine the cause of the observed increase in permeability in the 
blood-brain barrier 

Future work should isolate the effects of extracranial polytrauma, and IV fluid 

administration to determine the cause of the observed increase in permeability of the 

blood-brain barrier. This work may yield immediate results by enabling us to improve 

the resuscitation strategy used in TBI, potentially improving outcomes. At present, 

another doctoral student has taken over investigations using the porcine model; 

importantly they are looking at a control group of animals without a soft tissue injury 

or IV fluid administration. We hope that this will shed light on the observed changes 

in vascular permeability and determine the cause of the widespread amyloid 

precursor protein accumulation. 
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9 Appendix 1 

In support of Chapter 3 

 

A1.1 Neuropsychological assessment 

I used a detailed neuropsychological battery that has previously been found to be 

sensitive to cognitive impairments following TBI (Kinnunen 2011, Bonelle 2012) to 

assess cognitive function in the bTBI group. Current verbal and non-verbal reasoning 

ability was assessed using the Wechsler Test of Adult Reading and the Wechsler 

Abbreviated Scale of Intelligence Similarities and Matrix Reasoning subtests 

(Wechsler, 1999). Verbal Fluency, Letter Fluency and Colour-Word (Stroop) tests, 

from the Delis-Kaplan Executive Function System, were used to assess cognitive 

flexibility, inhibition and set-shifting (Delis 2001). The Trail Making Test (A and B) 

was used to further assess executive functions (Reitan 2004). Working memory was 

assessed via The Digit Span subtest of the Wechsler Memory Scale-Third Edition 

(WMS-III) (Wechsler 1997). The Logical Memory I and II subtests of the WMS-III 

were used to measure immediate and delayed verbal recall. The People Test from 

the Doors and People Test battery was used as a measure of immediate and 

delayed associative learning and recall (Baddeley 1994). 

 

Table 1. Cognitive domains and the neuropsychological tests used to assess 
them 

 

Cognitive 
Domain 

Cognitive Subset Test 

Intellectual ability Pre-morbid 

intelligence 

Wechsler Test of Adult Reading 

 Verbal WASI Similarities 

 Non-verbal WASI Matrix reasoning 

Memory Working memory WASI Digit span 
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 Associative memory People Test; Logical memory I 

and II (immediate recall) 

  People Test; Logical memory I 

and II (delayed recall) 

Executive 
function 

Cognitive flexibility D-KEFS Colour word interference 

test (Stroop) 

 Alternating switch 

cost 

D-KEFS Trail Making Test B 

minus A 

 Word generation 

fluency 

D-KEFS Letter fluency F+A+S 

total 

Processing 
Speed 

Visual search 

complex 

D-KEFS Trail Making Test A (s) + 

Trail Making Test B (s) 

 

 

 

A1.2 Delis-Kaplan Executive Function System 

The Delis-Kaplan Executive Function System (D-KEFS) (Delis 2001) is a set of 

standardised tests for comprehensively assessing higher-level cognitive function. 

The tests were designed to assess mild brain damage and specifically frontal-lobe 

involvement (Swanson 2005). The complete D-KEFS comprise nine tests that 

measure a range of verbal and non-verbal executive functions. Subjects in this thesis 

were assessed using the D-KEFS Trail Making Tests A and B and the D-KEFS 

colour word interference test (Stroop) sub-tests to assess processing speed and 

mental flexibility. These two sub-tests are described below.  

 

A1.3 Trail making tests A and B  

The Trail Making Test (TMT) (Figure 1) tests frontal lobe function in particular the 

dorsolateral prefrontal cortex and the medial prefrontal cortex (Moll 2002). The test is 

administered in two parts, A and B:  A tests visual scanning, numeric sequencing, 
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and visual-motor speed; whilst B assesses cognitive demands including visual-

motor, visual spatial abilities, working memory and mental flexibility. A validated 

indicator of executive function can be obtained by subtracting the TMT B score form 

the TMT A score (TMTB – TMTA) (Sanchez-Cubillo 2009). The TMT A and TMT B 

are validated for use in organic brain injury (Reitan 2004). However, the test is 

biased towards individuals with higher education and previous work has found that 

education level affects TMT scores (Tombaugh 2004).  

Figure 1. The Trail Making Test A and B 

In part A of the test the subject must draw a line connecting the numbers in 
ascending order (i.e. 1-2-3-4). In part B the subject must draw a line connecting 
the numbers in ascending order whilst switching between drawling a line 
connecting letters, in alphabetical order (i.e. 1-A-2-B-3-C-4-D). The subject is 
instructed to perform the task as quickly and accurately as possible without 
lifting the pen from the paper. Errors are pointed out to the participants and 
adversely affect their scores. 
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A1.4 Colour-word interference test (Stroop test)  

The colour-word interference test, also known as the Stroop test after the name of 

the effect that it is based on, evaluates inhibition and cognitive flexibility (Stroop 

1935). The test measures a subject’s ability to inhibit an over-learned verbal 

response (i.e. reading printed words) and to generate the conflicting response of 

naming the dissonant ink colours in which the words are printed (Figure 2). It was 

designed to evaluate both cognitive flexibility and ability to inhibit perseverative and 

unplanned impulsive verbal responses.  

 

Figure 2. The Colour-word interference test 

The Colour-word interference test is a timed test made of four parts. In the 
first, the subject is asked to name the colour, secondly they are asked to read 
the words, thirdly they must say the colour of the ink that the word is printed 
in (in the example on the first line above the correct answer would be red and 
blue) and finally they must switch between naming the colour of the ink and 
reading the word if a black box surrounds the word (in the example on the first 
line, third word along the correct answer is green). 
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10 Appendix 2 

In support of Chapter 4 

 

A2.1 Supplemental Figures 

Figure S1. White matter tract regions of interest 

 

 

Regions of interest (ROIs) used for determination of fractional anisotropy (FA) 
in soldiers after blast traumatic brain injury (bTBI). Individual colour masks 
overlaid onto group average FA map for soldiers with bTBI (n=19) registered 
into standard MNI space (using MNI coordinates). ROIs are: (A) anterior 
internal capsule, (B) posterior internal capsule, (C) cingulum, (D) corpus 
callosum, (E) cerebral peduncles, (F) middle cerebellar peduncles, (G) 
orbitofrontal WM, (H) uncinated fasciculi. FA was sampled from areas within a 
WM skeleton (not shown) produced by tract based spatial statistics (TBSS). 
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Figure S2. Intra-cerebral contusions following bTBI 

 

 

 

High resolution T1 brain scans (axial sections) in subject space showing 
contusions (arrows) in soldiers after blast TBI (A) without pituitary 
dysfunction, and (B-D) with pituitary dysfunction. Total contusion volumes for 
these patients were: (A) 0.2, (B) 9.1, (C) 0.6, (D) 1.0 cm3. 
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A2.2 Supplemental Tables 

Table S1. Blast TBI Baseline Pituitary Function Results: 
Gonadotrophic/Thyroid/Prolactin Axes 

 

 

Abnormal values indicated by grey shading. * on testosterone replacement, # 
calculated from 100 x total testosterone/SHBG, a) to convert to µg/mL divide 
by 3.467, 

b) to convert to µg/dL divide by 12.87, c) to convert to µg/dL divide by 15.36, d) 
remained elevated on repeat measurement with negative macroprolactin. P 
values from Mann Whitney U test or Fisher’s exact test between groups. 

 

 

Subjects (bTBI)
Summary 
Pituitary 

Dysfunction
                              GONADOTROPHINS          THYROID PROLACTIN

LH                         FSH                     Testosterone SHBG                 Free Androgen 
Index�

Primary 
Hypogonadis

m
Free T4                    Free T3               Prolactin                               

Units IU/L IU/L nmol/L nmol/L pmol/L pmol/L mU/L
Normal Range 2-12 1.7-8.0 10.0-30.0 15-55 30-150 9.0-26.0 2.5-5.7 75-375

No Pituitary Dysfunction n=13
M02 Nil 2.4 1.1 23.7 55.0 43.1 No 15.6 4.4 97
M04 Nil 4.7 3.9 21.0 33.0 63.6 No 12.2 5.7 146
M05 Nil 4.4 2.5 15.5 18.0 86.1 No 15.3 3.2 118
M09 Nil 1.2 4.8 39.5 * 18.0 219.4 Yes 13.4 5.8 219
M11 Nil 1.6 0.7 12.5 18.0 69.4 No 14.0 4.4 285
M12 Nil 18.5 36.4 6.2 * 10.0 62.0 Yes 15.5 3.5 177
M13 Nil 5.8 9.6 13.1 10.0 131.0 No 13.2 5.2 240
M15 Nil 40.3 60.3 11.6 * 18.0 64.4 Yes 14.0 6.6 136
M16 Nil 5.5 4.9 22.3 24.0 92.9 No 13.4 4.4 200
M17 Nil 4.7 3.3 25.2 39.0 64.6 No 16.9 5.2 131
M18 Nil 0.0 0.1 12.3* 19.0 64.7 Yes 18.5 4.8 312
M19 Nil 2.3 1.5 22.0 28.0 78.6 No 15.0 4.7 183
M20 Nil 3.8 3.6 28.8 32.0 90.0 No 13.2 4.6 330

Median [IQR] or n (%) 4.4 [2.0-5.6] 3.6 [1.3-7.3] 15.5 [0-23.0] 19.0 [18.0-32.5] 69.4 [64.0-91.5] 4 (30.8%) 14.0 [13.3-15.6] 4.7 [4.4-5.5] 183 [134-263]
Range 0-40.3 0.1-60.3 0-28.8 10.0-55.0 43.1-219.4 12.2-18.5 3.2-6.6 97-330

Pituitary dysfunction n=6

M01 PRL 1.8 2.5 21.7 27.0 80.4 No 17.3 4.6 619

⌃

M03 ACTH 1.5 1.2 23.8 35.0 68.0 No 16.0 5.5 126
M07 GH 3.7 2.4 13.1 24.0 54.6 No 14.4 4.9 172
M08 ACTH/GH/Gn 1.3 1.8 2.0 18.0 11.1 No 15.5 4.3 199
M10 PRL 2.6 1.3 22.8 26.0 87.7 No 10.8 4.7 439

⌃

M14 GH 6.5 3.9 22.4 33.0 67.9 No 12.9 4.0 216

Median [IQR] or n (%) 2.2 [1.5-4.4] 2.1 [1.3-2.9] 22.1 [10.3-23.1] 26.5 [22.5-33.5] 68.0 [43.7-82.2] 0 (0%) 15.0 [12.4-16.3] 4.7 [4.2-5.1] 208 [161-484]
Range 1.3-6.5 1.2-3.9 2.0-23.8 18.0-35.5 11.1-87.7 10.8-17.3 4.0-5.5 126-619

P 0.37 0.28 0.42 0.42 0.47 1.00 0.90 0.70 0.47

Key:
Abnormal value

GH Growth hormone deficiency
ACTH ACTH deficiency
Gn Secondary hypogonadism
PRL Hyperprolactinaemia

* On testosterone replacement 

� Calculated by: 100 x total testosterone/SHBG⌃

Repeated elevated measurement
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Table S2. Blast TBI: Dynamic Growth Hormone results and IGF-1  

 

 

Abnormal values indicated by grey shading. a) to convert to ng/mL divide by 
0.131, * using age and BMI normal ranges with BMI 25-30 kg/m2 if not 
calculable due to amputation. P values from Mann Whitney U test between 
groups.  

 

 

 

 

 

 

 

 



143	
	

Table S3. ACTH-cortisol axis in bTBI 

 

 

Abnormal values indicated by grey shading. To convert to ng/dL: divide a by 
27.59, b by 28.86. P values from Mann Whitney U test between groups. ND: not 
done. 
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Table S4. Pituitary dysfunction and structural neuroimaging abnormalities in 
bTBI 

 

 

Data given as n (%). P values from Fisher’s exact test between groups.  

 

 

 

 

 

 

 

 

 

 

 

 

 

No pituitary dysfunction Pituitary dysfunction P
n 13 6

Acute CT brain
EDH 0 (0%) 0 (0%) n/a

SDH 0 (0%) 0 (0%) n/a

tSAH/IVH 0 (0%) 0 (0%) n/a

Diffuse swelling 1 (7.7%) 1 (0%) 0.26

Study MRI brain
Contusion 1 (7.7%) 3 (50.0%) 0.02

Siderosis 3 (23%) 1 (16.6%) 0.41

Microbleeds 7 (53%) 3 (50%) 0.50

Gliosis 0 (0%) 1 (16.6%) 0.06

Hypo-pituitary damage 0 (0%) 0 (0%) n/a

MRI pituitary with contrast ND 3 normal, 3ND n/a
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Table S5. Quality of life and symptom questionnaires in nbTBI and bTBI 

 

All data expressed as median [IQR]   Abbreviation NHP-Nottingham Health 
Profile, SF-36- Short Form 36 Health Survey, n/a-not available. 

a  Data available n=37 b  Data available n=17 c Data available in 36 d Data 
available n=31 e  Data available n=27 f  Data available n=25 g  Data available 
n=26 

 

 

 

 

 

 

 

 

 

 

 

Quality of Life Assessment All nbTBI (n=38*) All bTBI (n=18*) bTBI: No Pituitary 
Dysfunction (n=12)

bTBI: Pituitary 
Dysfunction (n=6) 

P no pit dys vs 
pit dys

Assessment of GH Deficiency in Adults (AGHDA) 9.5 [5.8-14.5]a 16.0	[4.0-18.5]b 14.0	[3.0-17.0] 17.5	[16.0-19.5] 0.10
Beck Depression Inventory Score (BDI-II) 11.0 [7.0-20.0]c 21.5	[4.0-25.3] 11.5	[1.8-21.8] 24.5	[20.3-26.3] 0.08
Epworth Sleepiness Scale 7.0 [2.0-12.0]d 7.0	[2.5-11.0] 6.0	[1.5-10.5] 10.0	[3.0-16.5] 0.25
Pittsburgh Sleep Index n/a 9.0	[3.0-16.0] 4.5	[2.0-16.3] 12.0	[8.0-15.5] 0.37
NHP Energy Levels        61.0 [0-100]e 51.0	[0-82.0] 51.0	[6.0-100] 31.5	[0-76.0] 0.39
NHP Pain                   100 [52-100]e 71.5	[47.5-90.3] 76.0	[49.0-86.0] 64.0	[45.5-100] 0.96
NHP Emotional Reactions 80.0 [5.0-90.0]e 67.5	[44.5-93.3] 85.0	[53.8-100] 46.0	[32.3-75.0] 0.10
NHP Sleep       78.0 [27.0-100]e 45.0	[45.0-100] 70.0	[6.8-100] 36.0	[0-68.3] 0.29
NHP Social Isolation  100 [55.0-100]e 79.0	[41.0-100] 100	[51.5-100] 71.0	[31.0-78.8] 0.13
NHP Physical Activity        100 [78.2-100]e 73.5	[58.0-89.0] 73.5	[58.0-86.8] 73.0	[39.3-100] 0.96
NHP Average             78.0 [59.0-94.6]e 58.5	[44.8-84.5] 71.5	[45.0-90.5] 51.5	[44.8-61.3] 0.25
NHP Daily Living Problems (0-7) 2.0 [0-5.0]f 4.5	[3.0-6.0] 4.5	[2.3-5.8] 4.5	[3.8-6.3] 0.62
SF-36 Physical functioning 85.0 [60.0-95.0]e 52.5	[37.5-81.3] 52.5	[41.3-58.8] 60.0	[27.5-88.8] 0.82
SF-36 Role limitations due to physical health 12.5 [0-62.5]g 12.5	[0-75.0] 25.0	[0-93.8] 0	[0-18.8] 0.10
SF-36 Role limitations due to emotional problems 67.0 [0-100]g 67.0	[24.8-100] 83.5	[33.0-100] 50.0	[0-100] 0.49
SF-36 Energy/Fatigue 50.0 [35-60]e 42.5	[33.8-66.3] 52.5	[36.3-70.0] 37.5	[26.3-47.0] 0.15
SF-36 Emotional well being 64.0 [52.0-80.0]e 60.0	[51.0-81.0] 68.0	[53.0-83.0] 58.0	[31.0-66.3] 0.34
SF-36 Social functioning 63.0 [38.0-75.0]e 50.0	[38.0-75.0] 56.5	[41.0-84.8] 44.0	[22.0-63.0] 0.18
SF-36 Pain 55.0 [33.0-88.0]e 45.0	[30.5-70.5] 68.0	[35.5-75.5] 33.0	[23.0-58.8] 0.21
SF-36 Health change 50.0 [38.0-75.0]e 32.5	[25.0-50.0] 25.0	[25.0-50.0] 45.0	[25.0-56.3] 0.49
SF-36 General health 50.0 [25.0-75.0]e 50.0	[25.0-61.3] 50.0	[27.5-63.8] 40.5	[18.8-61.3] 0.55
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Table S6. Characteristics of soldiers with bTBI 

 

All data expressed as median [interquartile range] or n (%). P values from 
Mann Whitney U test or Fisher’s exact test between groups. 

Footnotes: 

a Data available for n=16 

b Data available for n=9 

c Data available for n=38 

* For analgesic purposes 

** On antiepileptics 

 

 

 

 

 

 

 

 

 

 

 

Subjects Age at TBI  Age at GST Time since TBI ISS AIS Head AIS Chest AIS Abdo GCS PTA BMI PTA>24 hrs Limb 
Amputation

Major organ 
damage

Skull/facial 
fracture

Opiate use Antidepressa
nt Use

Seizures 
Post TBI

Primary 
Hypogonadis

m

Units Years Years Months Days kg/m2
Maximum Score 75 6 6 6 15
All nbTBI n=39 31.3 [22.5-35.7] 32.3 [23.1-36.7] 5.8 [3.1-11.0] 25 [16-32] 5.0 [4-5] 0 [0-0] 0 [0-0] 14.0 [6.0-14.0]a 0.5 [0-7.3]c 24.7 [22.4-29.4] n (%) 20 (51.3%) 0 (0%) 3 (7.7%) 5 (12.8%) 3 (7.7%) 5 (12.8%) 3 (7.7%) 1 (2.6%)

17.2 - 44.8 19.9 - 45.1 1.9-41.2 1-75 1-6 0-6 0-3 3-15 0-42 17.0-33.4

All bTBI n=19 26.7 [26.1-30.9] 28.3 [26.8-32.2] 15.2 [10.8-19.3] 33.0 [20.0-45.0] 4.0 [3.0-5.0] 0 [0-2] 0 [0-2] 3.0 [3.0-14.5]b 5.5 [0.8-22.8] 26.7 [24.5-28.9] n (%) 13 (72.2%) 8 (42.1%) 11 (57.9%) 3 (15.8%) 9 (47.3%) 9 (47.3%) 2 (10.5%) 4 (21.1%)
19.0 - 43.5 19.6 - 44.7 4.1 - 23.6 9-70 0-6 0-4 0-3 3-15 0-84 21.7-33.7

P vs nbTBI 0.40 0.40 0.001 0.17 0.04 0.11 0.02 0.24 0.01 0.28 0.70 0.0008 0.002 1.0 0.02 0.08 1.0 0.24
bTBI No pituitary dysfunction 
M02 36.3 37.6 15.2 20 4 0 2 3 1 25.4 No No No No Yes Yes No No
M04 26.4 27.6 14.2 24 0 4 0 n/a 4 27.7 Yes No Lung/eye No No No No No
M05 27.3 28.6 15.2 24 0 4 0 n/a 28 24.5 Yes No No No Yes No No No
M09 19.0 19.6 6.7 45 4 0 2 n/a 4 n/a Yes Yes Perineum No Yes Yes* No Yes
M11 19.3 20.9 16.6 25 5 0 0 3 84 26.6 Yes No No No No No Yes No
M12 30.2 30.5 4.1 33 2 0 2 n/a 0 n/a No Yes Perineum No Yes Yes* No Yes
M13 22.8 23.7 10.8 45 4 0 0 n/a 21 n/a Yes Yes Eye/Skin No No Yes* No No
M15 26.4 26.8 4.1 45 4 0 2 15 0 n/a No Yes Eye/Skin/perineum No Yes No No Yes
M16 34.7 36.7 23.7 24 4 2 0 15 0 28.7 No No No No Yes Yes No No
M17 26.6 28.0 16.6 9 3 0 0 14 0 23.6 No No No No No No No No
M18 26.7 28.3 20.2 36 4 4 2 n/a 14 n/a Yes Yes Lung/colon/perineum No No No No Yes
M19 26.6 27.7 13.6 9 3 0 0 n/a n/a n/a n/a Yes Skin No No No No No
M20 30.9 32.2 15.4 9 3 0 0 n/a 2 29.4 Yes No No No No Yes No No

n=13 26.6 [24.6-30.6] 28.0 [25.3-31.4] 15.2 [8.4-16.8] 24.0 [14.5-40.5] 4.0 [2.5-4.0] 0 [0-3] 0 [0-2] 14.0 [3.0-15.0] 3.0 [0-19.3] 26.6 [24.5-28.7] n (%) 7 (58.3%) 6 (46.1%) 7 (53.9%) 0 (0%) 6 (46.2%) 6 (46.2%) 1 (7.7%) 4 (30.8%)
19.0 - 36.3 19.6 - 37.6 4.1 - 23.6 9-45 0-5 0-4 0-2 3-15 0-84 23.6-29.4

Pituitary dysfunction 
M01 (PRL) 30.0 30.4 4.9 33 5 0 0 3 4 21.7 Yes No No Yes Yes Yes* Yes** No
M03 (ACTH) 25.0 26.3 15.9 70 6 0 3 3 17 n/a Yes Yes Spleen/Liver Yes No Yes* No No
M07 (GH) 34.3 36.2 21.9 38 5 3 0 3 7 26.7 Yes No Lung No No No No No
M08 (ACTH/GH/Gn) 43.5 44.7 14.7 45 4 2 0 n/a 42 n/a Yes Yes No No Yes No No No
M10 (PRL) 28.5 30.1 19.3 33 5 0 2 n/a 28 24.3 Yes No Eye/Liver/lung Yes No No No No
M14 (GH) 26.1 27.7 19.6 9 0 1 0 3 14 33.7 Yes No Skin No Yes Yes No No

n=6 29.3 [25.8-36.6] 30.3 [27.4-38.3] 18.0 [12.0-20.4] 35.5 [27.0-51.3] 5.0 [3.0-5.3] 0 [0-2.3] 0 [0-2.3] 3.0 [3.0-3.0] 15.5 [6.3-31.5] 25.5 [22.4-32.0] n (%) 6 (100%) 2 (33.3%) 4 (66.7%) 3 (50.0%) 3 (50%) 3 (50%) 1 (16.7%) 0 (0%)
25.0 - 43.47 26.3 - 44.7 4.9 - 22.0 9-70 0-6 0-3 0.3 3-3 4-42 21.7-33.7

P vs no pit dys 0.35 0.35 0.35 0.21 0.05 0.76 0.96 0.17 0.13 0.71 0.48 0.99 0.99 0.10 1.00 1.00 0.99 1.00
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Table S7. Medications used by soldiers with bTBI 

 

 

 

 
  

Subjects Medications

No pituitary dysfunction (n=13)

M02 Diclofenac, Sertraline, Tramadol
M04 C0-codamol
M05 Diclofenac, Tramadol
M09 Amitriptyline, MST, Nebido, Pregabalin
M11 None
M12 Amitriptyline, Diclofenac, Nebido, Pregabalin, Ranitidine, Sildenafil, Tramadol
M13 Amitriptyline, Baclofen, Pregabalin
M15 Amitriptyline, Nebido, Pregabalin, Tramadol
M16 Mirtazepine, Paracetamol, Pregabalin, Tramadol, Zopiclone
M17 None
M18 Nebido
M19 Diclofenac, Pregabalin, Ranitidine
M20 Sertraline, Zopiclone

Pituitary dysfunction (n=6)

M01 (PRL) Amitriptyline, Diclofenac, MST, Phenytoin
M03 (ACTH) Amitriptyline, Erythromycin, Gabapentin
M07 (GH) None
M08 (ACTH/Gn)Diclofenac, Lansoprazole, MST, Paracetamol, Pregabalin, Tramadol
M10 (PRL) Betnovate ointment, Co-codamol
M14 (GH) Amitripyline, Diclofenac, Fluoxetine, Mirazepine, MST, Paracetamol, Pregabalin, Salbutamol inhaler, Zopiclone
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A2.3 Supplemental Results 

A2.3.1 Non-pituitary endocrine diagnoses in bTBI and nbTBI cohorts 

Other non-pituitary endocrine disorders were diagnosed in both groups. Primary 

hypogonadism due to perineum/testicular blast injury had been found in 4 out of 19 

soldiers (21.2%), none of whom had pituitary dysfunction (Table 2 and S1). Although 

at the time of our assessment all these subjects were already on testosterone 

replacement, 3 had documented increased gonadotophins before its initiation (Table 

S1). One of these (M12) was under-replaced with testosterone at the time of 

assessment. A high prevalence of perineal blast injury has previously been reported 

in soldiers exposed to IED (Mossadegh 2012). One control patient with nbTBI had a 

pre-existing diagnosis of primary hypothyroidism, and another had previously 

undiagnosed primary hypogonadism of unknown cause unrelated to their nbTBI. 

 

A2.3.2 IGF-I levels in bTBI patients with GH deficiency 

IGF-I levels were within the normal range in all those soldiers with GH deficiency. 

When comparing those soldiers with bTBI who had GH deficiency (n=3) to those 

without GH deficiency (n=16), absolute IGF-I levels tended to be lower in those with 

than without GH deficiency (median [IQR] 18.2 [16.7-22.3] vs. 27.1 (19.9-31.6], 

p=0.11). However IGF-I relative to median of age-related reference range were 

similar between groups (0.66 [0.60-0.73] vs. 0.79 [0.63-1.00], p=0.40) (Table S1). 

 

A2.3.4 Symptoms, quality of life and cognitive function 

In our cohort of soldiers with bTBI, subjective symptoms included worsening of their 

memory (70%), changes in mood (70%), difficulty concentrating (65%), difficulty 

sleeping (55%), headaches (45%), and dizziness (30%). 

Consistent with their higher prevalence of polytrauma and amputations, the soldiers 

with bTBI had significantly worse scores for physical activity (p=0.02) and daily living 

problems (p=0.04) from the Nottingham Health Profile (NHP) questionnaire, with a 

tendency for worse NHP pain scores (p=0.08) and change in health from the Short 

Form-36 (SF-36) QoL questionnaire 16 (p=0.06), than the control nbTBI group 

(Table S5). However there were no significant differences in measures of depression 
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and emotional well-being (from Beck Depression Inventory-II), NHP and SF-36 

questionnaires) between the bTBI and nbTBI groups (p=0.30-0.71) (Table S5). 

In the bTBI group, soldiers with pituitary dysfunction had trends towards worse 

measure of QoL and symptom scores in several domains compared to those without 

pituitary dysfunction (Table S5). Soldiers after bTBI with pituitary dysfunction had 

trends for higher AGHDA QoL score (p=0.10), worse scores for emotional reactions 

(NHP, p=0.10), social isolation (NHP, p=0.13), role limitations due to physical health 

(SF-36, p=0.10), energy/fatigue (SF-36, p=0.15), and social functioning (SF-36, 

p=0.18), and higher depression scores (BDI-II, p=0.10), though none had symptoms 

suggesting severe depression (all scores <28/63). 

 

 

A2.3.5 Interpretation of metyrapone test 

Although the metyrapone test is not a commonly used test for ACTH deficiency 

(Grossman 2010), it was only needed for the confirmatory diagnosis in one soldier 

(M03). Furthermore that subject also had very low cortisol levels throughout their day 

curve .50 nmol/L (.1.81 ƒÊg/dL) confirming the diagnosis of ACTH deficiency. The 

second soldier with ACTH deficiency (M10) failed their cortisol response to insulin-

induced hypoglycaemia (peak 268 nmol/L), and also had low cortisol levels (<100 

nmol/L, <3.62 ƒÊg/dL) at 1200h on their day curve supporting the diagnosis. Other 

soldiers who initially had low cortisol responses to glucagon stimulation, 

subsequently had ACTH deficiency excluded on the basis of normal responses to 

ITT (M02) or metyrapone test (M10), but both also had subsequent high basal 

morning cortisol levels (M02, M10, >400 nmol/L, 14.50 ƒÊg/dL). Previous studies 

comparing the metyrapone test to more commonly used tests for ACTH deficiency 

have demonstrated the metyrapone test to have specificity, sensitivity and 

concordance (accuracy) rates of 77-100%, 64-89%, 74-84% (n=17-32) and 86, 91, 

87% (n=87) with the ITT and ACTH stimulation test respectively (Fiad 1994, 

Courtney 2000, Giordano 2008). 

Furthermore in a recent audit of patients from our endocrine clinics suspected of 

having ACTH deficiency (n=24, excluding soldiers with bTBI from this study), we 

have found an overall 92% concordance rate between results of a metyrapone test, 
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and the ACTH stimulation test (n=12, normal response >480 nmol/L or 17.40 

ƒÊg/dL, using alignment of the previous 550 nmol/L cut-off to the new Architect 

i2000 assay) or ITT (n=13) (unpublished observations). In this analysis, all patients 

failing the metyrapone test (n=5) also failed an ITT. The overall specificity for the 

metyrapone test in diagnosing ACTH deficiency was 100% and sensitivity was 71% 

(unpublished observations). 
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A2.4 Supplemental Methods 

A2.4.1 Recruitment 

Ethical approval was granted by the Ealing and West London Hospitals Research 

Ethics Committee. Studies were performed according to the Declaration of Helsinki 

and all soldiers gave informed written consent. 

Inclusion of a military combat nbTBI group would have been a useful in addition to 

the civilian nbTBI group to control for active military service in an identical theatre. 

However in UK soldiers experiencing nbTBI in Afghanistan, the majority are due to 

gunshot wounds that are either fatal or complicated by penetrating brain injury often 

requiring surgery. The lower prevalence of military non-penetrating nbTBI, primarily 

due to RTAs, precluded endocrine assessment of a sufficient number of such 

soldiers to be included in this study. 

Both bTBI and nbTBI subjects had clinical assessment, calculation of their AIS for 

each body region including brain, and total ISS (Baker 1974, Hawley 1996), and 

completed QoL and symptom questionnaires: Assessment of Growth Hormone 

Deficiency in Adults (QoL-AGHDA); Beck Depression Inventory-II (BDI-II); 

Nottingham Health Profile (NHP); Short Form 36 Health Survey (SF-36), Pittsburgh 

Sleep Quality Index and Epworth Sleepiness Scale (Hunt 1985, Buysse 1989, Johns 

1991, Ware 1992, Beck 1996, McKenna 1999). Soldiers were excluded if they had 

needed massive blood transfusion so as to exclude pituitary dysfunction secondary 

to hypovolaemic shock (Stainsby 2006). 

 

A2.4.2 Endocrine Testing 

Endocrine assessment included baseline measurement of serum anterior pituitary 

hormones: TSH, free T4, free T3, prolactin, FSH, LH, testosterone (Abbott Architect 

Ci8200), ACTH, cortisol, GH, IGF-I (Immulite® 2000) and sex hormone binding 

globulin (SHBG). Free androgen index was calculated as 100 x total testosterone / 

SHBG. 

A diagnosis of hyperprolactinemia was made on the basis of two consecutively 

raised prolactin readings (above upper reference range, Table 1) and a negative 

macroprolactin, an immunological artefact leading to misdiagnosis of 
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hyperprolactinemia (assessed by PEG precipitation) (Smith 2007). Subjects who met 

these criteria had MRI of the pituitary including gadolinium contrast to rule out an 

incidental pituitary tumour. 

A diagnosis of gonadotrophin deficiency was made on the basis of a low morning 

testosterone <10 nmol/L (<2.9 ng/mL) with low or non-elevated LH (NR 1.7-12.0 

IU/L) and FSH (NR 1.7-8.0 IU/L). If sex hormone binding globulin (SHBG) was low 

(<15 nmol/L), then FAI needed to be <30 for the diagnosis. Primary hypogonadism 

was defined as a low morning testosterone or FAI with elevated FSH and/or LH. 

Growth hormone (GH) deficiency was defined as failure on 2 dynamic endocrine 

tests performed in the morning: (i) Glucagon Stimulation Test (GST) used as initial 

screening test and (ii) a confirmatory 2nd line test, either the GHRH-Arginine Test or 

an Insulin Tolerance Test (ITT). Similarly, a diagnosis of ACTH deficiency was made 

on the basis of failure on 2 dynamic endocrine tests performed in the morning: (i) a 

GST, and (ii) an ITT or an overnight Metyrapone Stimulation Test (MST). A 5 point 

Cortisol Day Curve (CDC) was also used to help confirm or exclude ACTH 

deficiency, and assess the need for maintenance hydrocortisone replacement as 

opposed to just during intercurrent illness. 

An ITT was not routinely performed because of the prevalence of relative and 

absolute contraindications in this population. In our cohort 10.5% of soldiers after 

bTBI and 10.3% of controls after nbTBI had an absolute contraindication (history of 

seizures, ischemic heart disease, cardiac arrhythmias, abnormal ECG), whilst an 

additional 21.1% and 53.8% had a relative contraindication (intra-cerebral contusion, 

intra-cranial haemorrhage). If further confirmatory testing was required because of 

equivocal findings on the second dynamic test (e.g. difficulty calculating BMI in 

soldiers with amputations), and no contraindications were present, an ITT was 

carried out in addition to the glucagon test and GHRH-Arginine or metyrapone test. 

Diabetes insipidus was screened for on the basis of symptoms (polyuria and 

polydipsia) and measurement of paired random clinic urine and plasma osmolalities. 

If clinically indicated, a Water Deprivation Test was performed (n=6 controls with 

nbTBI, n=1 soldier with bTBI). 
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All dynamic endocrine tests were carried out in an in-patient facility at Charing Cross 

Hospital, London or St. Mary’s Hospital, London. A summary of the algorithm used to 

define pituitary dysfunction is shown in Table 1. 

 

A2.4.3 Glucagon Stimulation Test (GST) 

Following an overnight fast, patients had basal blood samples. Glucagon 

(GlucaGen™, Novo Nordisk Pharmaceuticals, Crawley, UK 1 mg, or 1.5 mg if weight 

>90 kg) was administered intramuscularly. Blood samples for glucose, serum cortisol 

and GH were taken at 90, 120, 150 and 180 mins after glucagon administration from 

an IV cannula. The majority of subjects (89% soldiers and 70% controls) also had 

samples taken at 210 and 240 mins. An abnormal response was defined as a peak 

GH <5 µg/L and cortisol <350 nmol/L (<12.7 µg/dL) during the test (Yuen 2009, 

Cegla 2013). Subjects who failed to reach these thresholds underwent at least one 

additional confirmatory dynamic test. 

The method for cortisol determination was changed in August 2010 from the 

Immulite® 2000 assay (Siemens) to a chemiluminescence immunoassay with the 

Architect i2000 (Abbott, UK). To assure comparability, quality controls and linear 

regression analysis were performed (data not shown) and results from the Immulite 

assay were aligned with the Architect i2000 assay. The Architect assay has 

coefficients of variation <10% for cortisol levels of 83–967 nmol/L (3.0-35.0 µg/dL). 

 

A2.4.4 GHRH-Arginine Test 

Following an overnight fast, patients had blood samples taken for GH and IGF-I 

measurement at 0 minutes. GHRH (Somatorelin, Ferring) 1 µg/kg was given as a 

bolus IV injection into one arm followed by the IV infusion of 0.5g/kg L-arginine 

monohydrochloride (Stockport Pharmaceuticals) as a 10% solution (30 g/300 mL up 

to a maximum of 30 g) in normal saline over 30 mins (Colao 2009). Further blood 

samples for GH estimation were taken at +30, 60, 90, 120 and 150 mins after the 

start of the arginine infusion. 

GH cut offs to confirm GH deficiency varied according to age and BMI. For age 

groups 15-25 years old, 26-65 years old and older than 65 years, GH cut-offs were 
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respectively <15.6, <11.7, and <8.5 µg/L, <11.8, <8.1, and <5.5 µg/L, and <9.2, <6.1, 

and <4.0 µg/L, respectively, in lean (BMI <25.0 kg/m2), overweight (BMI 25.0-30.0 

kg/m2) and obese (BMI >30.0 kg/m2) subjects (Colao 2009). If amputations 

precluded accurate determination of BMI then cut-offs in the overweight range were 

used. 

 

A2.4.5 Insulin Tolerance Test (ITT) 

Following an overnight fast, basal blood samples were taken and IV insulin Actrapid 

(NovoNordisk) administered (0.15 U/kg). Blood samples were taken for GH, cortisol 

and glucose at 0, 30, 60, 90, and 120 mins. Blood glucose was also measured 

simultaneously. Once adequate hypoglycaemia (<2.2 mmol/L, <39.6 mg/dL) was 

achieved, hypoglycaemia was reversed with oral glucose and at least two further 

blood specimens were taken before test completion. 

Abnormal cortisol response was defined as peak cortisol of <450 nmol/L (<16.3 

µg/dL) providing adequate hypoglycaemia was achieved (using alignment of the 

previous 500 nmol/L cut-off to the new Architect i2000 assay). Severe GH deficiency 

was defined as a peak GH <3 µg/L (Plumpton 1969, Fish 1986, Molitch 2011). 

 

A2.4.6 Cortisol Day Curve 

Blood samples were taken from an IV cannula for serum cortisol estimation at 

0900h, 1200h, 1500h, 1800 h and 2100 h (Immulite ® 2000 assay (Siemens) or 

Architect i2000 (Abbott, UK), and plasma ACTH at 0900h. Results helped confirm 

(cortisol <100 nmol/L or 3.62 µg/dL at 0900 or 1200h), or exclude (cortisol >400 

nmol/L or 14.50 µg/dL at 0900h) ACTH deficiency, and assess the need for 

maintenance hydrocortisone replacement as opposed to just during intercurrent 

illness (Grossman 2010). 

 

A2.4.7 Metyrapone Stimulation Test 

Patients were given oral metyrapone (Metopirone™, Alliance Pharmaceuticals, 

Chippenham, UK) (30 mg/kg), at midnight with a snack, according to their body 

weight (<70 kg 2.0 g, 70-90 kg 2.5 g, >90 kg 3.0 g) (Steiner 1994, Cegla 2013). At 
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0900 h the following morning, blood samples were taken for serum cortisol, 11-DOC 

(Biosource, Oxford Biosystems, UK) and plasma ACTH (Immulite® 2000, Siemens). 

Hydrocortisone 10 mg was given orally to counteract hypocortisolism and the 

patients were discharged. 

Metyrapone causes inhibition of 11 β-hydroxylase (used in the conversion of 11-

deoxycortisol to cortisol) and cortisol suppression to <200 nmol/L (7.25 µg/dL) is the 

desired threshold to stimulate ACTH drive. Subjects were considered to be ACTH 

sufficient if 11-DOC was >200 nmol/L or, if the 11-DOC was unavailable, if ACTH 

>60 ng/L (Steiner 1994, Cegla 2013). 

 

A2.4.8 Water Deprivation Test 

This was carried out in two stages on non-fasted subjects (Vokes 1988). In Stage 1, 

patients drank no fluid from 0830-1630 h. Weight and urine volume (after urine 

passed and discarded at t=0) were recorded hourly. The test was stopped if >3% 

weight was lost. Urine specimens were taken for osmolality from the total hourly 

sample passes over 0830-0930 h (U1), 1130-1230 h (U2), 1430-1530 h (U3) and 

1530-1630 h (U4). Blood samples were taken for osmolality and plasma sodium at 

0900 h (P1), 1200 h (P2), 1500 h (P3) and 1600 h (P4). 

In Stage 2, at 1630 h following the dehydration stage, Desmopressin (DDAVP 2 µg 

IM or 20 µg intra-nasally) was administered. Urine volumes were recorded and urine 

specimens for osmolality measurement were taken every hour until test completion 

at 2030 h. 

Central diabetes insipidus was defined as plasma concentration to >300 mosmol/kg 

with inappropriately hypotonic urine (U3:P3 or U4:P4 ≤1.9) or urine osmolality <350 

mosmol/kg. In addition, urine was required to concentrate to >150% of previous 

highest value following DDAVP administration. 

 

A2.4.9 Neuropsychological Assessments 

Each soldier completed a standardised neuropsychological test battery previously 

shown to be sensitive to cognitive impairment associated with TBI (Kinnunen 2011). 

The cognitive functions of specific interest were indexed by: (i) current verbal and 
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non-verbal reasoning ability via the Wechsler Abbreviated Scale of Intelligence 

Similarities and Matrix Reasoning subtests (Wechsler 1999); (ii) associative learning 

and memory via the immediate recall score on the People Test from the Doors and 

People Test (Baddeley 2011); (iii) the executive functions of set-shifting, inhibitory 

control, cognitive flexibility and word generation fluency via the Trail Making Test 

alternating-switch cost index (time to complete alternating letter and number Trails B 

- time to complete numbers only Trail A) and two indices from the Delis-Kaplan 

Executive Function System (Reitan 1958, Delis 2001), namely the 

inhibition/switching minus baseline score from the Colour-Word subtest (high scores 

indicating poor performance) and the total score on Letter Fluency; and (iv) 

information processing speed via the median reaction time for accurate responses 

on a simple computerised choice reaction task (Kinnunen  2011). The Wechsler Test 

of Adult Reading (WTAR) was also administered as a measure of pre-morbid 

intelligence (Green 2008). 

 

A2.4.10 Structural Imaging 

Each soldier had standard high-resolution T1 and gradient-echo (T2*) (1.75 x 1.75 x 

2 mm3) imaging to assess focal brain injury and evidence of microbleeds, superficial 

siderosis, presence and location of contusions and gross pituitary injury. All 

structural MR scans were reviewed by a single experienced consultant 

neuroradiologist. Contusion volume was calculated by converting the T1 images into 

standard 1 mm MNI brain space using FLIRT (FMRIB, University of Oxford, UK) and 

manually drawing a mask in the z plane. 

MRI was performed on 3T Achieva scanner (Philips Medical Systems, Netherlands) 

using an 8 channel head coil. The T1 and T2*-weighted images were obtained prior 

to DTI. For DTI, diffusion weighted volumes with gradients applied in 16 non-

collinear directions were collected in each of the four DTI runs, resulting in a total of 

64 directions. The following parameters were used: 73 contiguous slices, slice 

thickness 2 mm, field of view 224 mm, matrix 128 x 128 (voxel size 1.75 x 1.75 x 2 

mm3), b value 1000 and four images with no diffusion weighting (b=0s/mm2). 

The images were registered to the b0 image by affine transformations to minimise 

distortion due to motion and eddy currents and then brain-extracted using Brain 
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Extraction Tool (Smith 2002) from the FMRIB Software Library image processing 

toolbox (Smith 2004, Woolrich 2009). FA maps were generated using the Diffusion 

Toolbox (Behrens 2003). 

 

A2.4.11 DTI Analysis 

DTI analysis used TBSS and non-parametric permutation based statistics for whole 

brain and ROI analysis (FMRIB software, FSL, University of Oxford, UK). 

Voxelwise analysis of the FA, was carried out using TBSS in the FMRIB Software 

Library (Smith 2004, Smith 2006). Image analysis using TBSS involved a number of 

steps: (i) non-linear alignment of all subjects’ FA images into common FMRIB58 FA 

template space; (ii) affine-transformation of the aligned images into standard MNI152 

1mm space; (iii) averaging of the aligned FA images to create a 4D mean FA image; 

(iv) thinning of the mean FA image to create a mean FA ‘skeleton’ representing the 

centre of all WM tracts, and in this way removing partial-volume confounds; and (v) 

thresholding of the FA skeleton at FA 0.2 to suppress areas of extremely low mean 

FA and exclude those with considerable inter-individual variability. Non-parametric 

permutation-based statistics were employed using randomise with threshold-free 

cluster enhancement and 5000 permutations (Nichols 2002, Smith 2009). A 

threshold of p <0.05 was then applied on the results, corrected for multiple 

comparisons. Age was included as a covariate of no interest in all TBSS analyses. 

ROI were defined using the John Hopkins University (JHU) WM atlas. We chose 10 

areas that represented WM regions throughout the whole brain and have been 

shown to be damaged in nbTBI as well as mild bTBI (Kinnunen 2011, MacDonald 

2011). These regions were: anterior and posterior internal capsules, cingulum, 

body/genu and splenium of the corpus callosum, cerebral peduncles, middle 

cerebellar peduncles, and uncinated fasciuli (Figure S1). In addition a cerebellum 

ROI mask was drawn manually and an orbitofrontal WM ROI mask made using the 

Washington University, St Louis criteria from the standard MNI152 1 mm T1 brain 

(Mac Donald 2011). A repeated measures ANOVA was performed to assess the 

overall significance effect of pituitary dysfunction on FA, including group, ROI and 

group x ROI interaction as independent variables, with post-hoc two-tailed t-tests for 

comparison of FA in individual ROIs between groups. 
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11 Appendix 3 

In support of Chapter 5 

 

Supplemental Methods  

A3.1 Animal Blast Model  

The study was conducted on 10 of terminally anaesthetised large white pigs in 

accordance with the Animal Scientific Procedures act 1986. Anaesthesia was 

induced with Isofluarane (5%) in O2N2O (FiO2 0.3). The left common carotid artery 

was cannulated for arterial blood pressure monitoring and sampling for blood gas 

analysis. The left internal jugular brain was cannulated for saline and drug infusion. 

Once venous access had been obtained anaesthesia was continued with Alfaxan 

(SaffanTM) and the Isoflurane discontinued. The right internal jugular vein was 

cannulated for recording the pulmonary arterial pressure, central venous pressure 

and mixed venous blood sampling using a balloon tipped arterial catheter. The left 

femoral artery art and vein were cannulated for late haemorrhage and resuscitation 

respectively. The bladder was cannulated and the spleen removed via a midline 

laparotomy. At the end of the surgery all surgical wounds were sutured. Arterial 

blood and central venous pressures were recorded throughout the experiment, the 

details of which were not provided for this project.  

 

A3.2 Neuroimaging Data Acquisition 

All MRI experiments were performed using 4.7T Direct Drive Agilent MR 

spectrometer with 40 Gauss/cm max gradient coil and Vnmr console (v0.1). We used 

72 mm volume transmit/receive RF coil (m2m Imaging, Ohio,USA). The protocol 

included: localiser pilot for planning; FASTMAP shimming; anatomical 3D T1 

weighted scan, gradient echo 3D scan for SWI, and Multi-slice, spin echo EPI with 

diffusion gradients for DTI. 3D T1K weighted scan was performed using MPRAGE 

sequence with the following parameters: FOV:80 x 80 x 90 cm transverse slab, 

matrix size: 256 x 256 x 192 (zero filled to 256), TR for invertion was 1.5 s, invertion 

time was TI=0.579 s; TE=2.08 ms. For SWI images, 3D gradient-echo sequences 

were acquired with the following parameters: same slab as for 3D T1-weighted; 80 x 
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80 x 90 cm transverse slab, matrix size 256 x 256 x 256; TR=30ms; TE=20 ms. Spin 

echo EPI with diffusion for DTI was acquired with the following: 60 transverse, 1.2 

mm thick slices (acquired in two steps: 30 slices with 1.2 mm gap, and then again 30 

slices with 1.2 mm gap but shifted by 1 slice, so that they could be combined to give 

continuous slices). FOV;80 cm x 80 cm; matrix 128 x 128; multishot spin echo EPI 

sequence; TE=30.0; TR=3.5s; 2 averages; 32 directions, b=0 and b=1000.  

 

A3.3 Structural MRI and SWI analysis  

The standard structural scans for each pig were reviewed by a consultant 

neuroradiologist, who was blinded to the pigs’ blast injury status and resuscitation 

strategy. The clinical assessment of the scans involved a whole brain review of the 

MPRAGE and Gradient-echo sequences, as well as a second review, which looked 

at regions known to be predisposed to TBI damage: the orbitofrontal white matter, 

the corpus callosum, the hippocampus, brain-stem and cerebellum.  

 

A3.4 Tissue preparation 

Whole brain blocks were harvested coronally for the cortex and sagittally for the 

brainstem and cerebellum. The blocks were dehydrated with ethanol, washed with 

xylene and then embedded in paraffin wax. Immunocytochemistry was carried out on 

corresponding whole-brain sections throughout each brain. Serial cross-sections 

were cut to 6µm using a rotary microtome and then mounted on albumen coated 

glass slides to increase binding efficacy and then oven-dried at 60°C overnight. We 

mounted larger whole-brain slices on super mega (76 x 52 mm) slides, while the 

smaller slices were mounted on regular 25 x 75 mm slides.  

All procedures were carried out at a constant room temperature unless otherwise 

indicated. We used Phosphate buffered saline solution (0.1 M PBS; pH 7.3) for all 

washes and dilutions. We dewaxed Slide-mounted tissue sections using two washes 

in xylene of 30 secs each and rehydrated through graded alcohol steps, in the order 

100%, 100%, 90% and 70% industrial methylated spirits (IMS) for two mins each, 

before placing in distilled water.  
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We then incubated the tissue in 3% hydrogen peroxide (H2O2) in PBS for 30 mins to 

remove endogenous peroxidase activity, and then immersed it in distilled water.  

 

A3.5 Haematoxylin and Eosin stain  

The tissue was stained in Harris's Haematoxylin for eight mins then rinsed with tap 

water. We then differentiated them in 1% acid alcohol for 5 secs and blued in tap 

water. We applied a counterstain using 1% Eosin for 2 mins and differentiated in 

running tap water. The slides were then dehydrated by immersion in graded alcohol 

washes of 70%, 90% and 100% IMS for 5mins each, before being cleared in 2 

washes of xylene for 5 mins each. Coverslips were then placed on top of the tissue 

using the xylene-based mountant, DPX, and left to dry overnight.  

 

A3.6 Immunohistochemistry  

For the immunohistochemistry staining for Iba1, APP and fibrinogen, the following 

methodology was used. Since the antibodies had not been previously used with 

porcine tissue, the appropriate protocols had to be derived by experimenting with 

various antigen retrieval techniques and exposure times. The concentrations were 

optimised for each polyclonal rabbit antibody using dilution series and human TBI 

tissue as a positive control.  

To facilitate antigen retrieval, slides were treated with citrate buffer (pH 6.0) and 

heated in a steamer for 20 mins, then cooled in an ice bath before one wash in 

distilled water and three washes in PBS of 5 mins each. 

The primary antibodies were prepared by diluting in primary diluent (490ml PBS, 

1.5ml Triton X-100, 1.5 g sodium azide & 10 ml Bovine serum albumin (BSA)). 

Following the optimisation procedure, the resulting dilutions used: 1:12000 for the 

anti-fibrinogen antibody (Dako), 1:4000 for anti-Iba1 (Wako), 1:50000 for anti-APP 

(Millipore). The slides were blotted with paper towel at the back and sides to remove 

excess fluid and a circle was drawn around each section with a hydrophobic PAP 

pen to create a barrier to prevent applied fluids from leaving the slide. The slides 

were placed in moist incubation chambers. Tissue was covered with 150 µl (regular 



161	
	

slide) and 450 µl (super mega slide) of the appropriate antibody and left overnight at 

4°C.  

Visualisation of the bound antibodies was performed using a Super Sensitive kit 

(BioGenex), which is based on polymer-HRP complex formation, according to the 

manufacturer's instructions. Briefly, the tissues were washed twice in PBS, incubated 

with for 20 mins with the enhancer, washed twice in PBS again, then incubated for a 

further 30 mins with the supersensitive reagent intensifier. The tissue was washed 

again using 3 PBS baths for 5 mins each before visualisation of the antigen of 

interest by exposure to a substrate of 0.1% 3-3'-diaminobenzidine-tetrahydrochloride 

(DAB) made up with DAB buffer. After 5 min, the reaction was terminated by rinsing 

twice in distilled water. Counterstain of Harris's Haematoxylin was applied for 3 secs 

before bluing the slides in running tap water. Finally, the slides were dehydrated, 

cleared and mounted with coverslips as described above. 

 

A3.7 Histopathology analysis  

Analysis was performed examined using an Olympus BX50 microscope and 

photographs were obtained using an Olympus Vanox AHBT3microscope equipped 

with a MicroPublisher 3.3 RTV digital camera. The slides were assessed while 

blinded to the blast treatment and resuscitation strategy used on each pig and was 

examined for structural damage, microbleeding, axonal pathology and microglial 

activation. Various coronal and sagittal sections were chosen in order to inspect 

particular areas of interest: namely the orbitofrontal, parietal, hippocampal, cerebellar 

and brainstem regions.  
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A3.8 Supplementary Data  

  

Supplementary Figure S1. H&E stain of the medulla of pig B2. Several areas 
were seen with extravascular erythrocytes 
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Supplementary Figure S2. H&E stain of the Hippocampus of pig B10. There is 
some evidence of oedematous character between the pyramidal cells and 
molecular layer 
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Supplementary Figure S3 – Iba1 immunostaining showing perivascular 
activation of microglia 

 

 

Supplementary Figure S4 – example of perivascular oedema (A) compared 
normal vessels (B) 
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Supplementary Table S1. Summary of results from structural H&E stain 

Pig 

Epen
dyma
l 

Strip
ping 

Hipp
ocam
pal 
Oede
ma 

 

Regions of the brain with Perivascular Oedema 

Corpu
s 
Callos
um 

Orb
itofr
ont
al  

WM 

Hippo
campu
s 

Occipi
tal 
Lobe 

Cerebel
lum 

Pon
s 

Medu
lla 

Bla
st 

B1 

B2 

B3 

B8 

B9 

B1
0 

+ 

+ 

+ 

- 

- 

+ 

- 

+ 

- 

- 

- 

+ 

+ 

+ 

+ 

- 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

- 

- 

- 

- 

- 

n/a 

n/a 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

n/a 

n/a 

No
n-
bla
st 

B4 

B5 

B6 

B7 

- 

- 

- 

- 

- 

- 

- 

- 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

- 

- 

- 

- 

- 

 

+ 

+ 

+ 

+ 

 

+ 

- 

+ 

+ 

*change is not extensive enough to rule as definite pathology 

n/a: the brainstem sections of pigs B9 and B10 were cut coronally through the 
pons rather than sagittally, thus the cerebellum and medulla were not 
assessed. 
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Supplementary Table S2. Summary of APP staining 

Pig 
Orbital 
WM 

Mid-frontal 
Internal 
Capsule/ 
Thalamus 

Parietal 
Cortical WM 

Blast 

B1 

B2 

B3 

B8 

B9 

B10 

- 

+ 

-* 

-* 

-* 

- 

- 

-* 

- 

-* 

-* 

-* 

+ 

+ 

+ 

+ 

+ 

-* 

- 

+ 

- 

+ 

+ 

- 

Non-
blast 

B4 

B5 

B6 

B7 

- 

-* 

-* 

-* 

-* 

-* 

-* 

-* 

+ 

+ 

+ 

-* 

+ 

-* 

+ 

- 

*isolated bulbs of accumulation observed 
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Supplementary Table S3. Summary of Iba1 immunoreactivity 

 

(-): no activation; (+): activation; Severity rating scale: (*): low; (**): moderate; 
(***): severe; PV: perivascular 

Pig 

Severity rating of 

activated microglia 
Hippoc

ampus 

Basal 

ganglia 

Corpus 

Callosu

m 

General localisation 

Frontal 

Mid-

fronta

l 

Parieta

l 

B1 ** ** ** + + + PV, throughout WM 

B2 ** ** ** + + + 
Co-localised with APP 

pathology 

B3 *** ** ** - + + Cortical WM 

B4 ** ** *** + - + Cortical WM, PV 

B5 * ** ** - - + 

Posterior cortical WM, 

co-localised with APP 

pathology 

B6 * * ** - + + 

Posterior lateral WM, 

co-localised with APP 

pathology 

B7 ** ** ** - - + PV, cortical WM 

B8 ** ** ** - + + 

Cortical WM, co-

localised with APP 

pathology 

B9 *** ** ** + + + 

Throughout WM (esp 

main WM tracts), PV, 

co-localised with APP 

pathology 

B10 *** *** *** + + + 

Throughout WM, PV, 

co-localised with APP 

pathology 
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Supplementary Figure S5. Schematic demonstrating the localisation of APP 
pathology mapped onto a standardised space 
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Supplementary Figure S6. Schematic demonstrating the localisation of 
fibrinogen leakage mapped onto a standardised space  
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