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Support vector regression (SVR) has long been proven to be a successful tool to predict financial
time series. The core idea of this study is to outline an automated framework for achieving a faster
and easier parameter selection process, and at the same time, generating useful prediction uncertainty
estimates in order to effectively tackle flexible real-world financial time series prediction problems. A
Bayesian approach to SVR is discussed, and implemented. It is found that the direct implementation
of the probabilistic framework of Gao et al. returns unsatisfactory results in our experiments. A novel
enhancement is proposed by adding a new kernel scaling parameter μ to overcome the difficulties
encountered. In addition, the multi-armed bandit Bayesian optimization technique is applied to
automate the parameter selection process. Our framework is then tested on financial time series
of various asset classes (i.e. equity index, credit default swaps spread, bond yields, and commodity
futures) to ensure its flexibility. It is shown that the generalization performance of this parameter
selection process can reach or sometimes surpass the computationally expensive cross-validation
procedure. An adaptive calibration process is also described to allow practical use of the prediction
uncertainty estimates to assess the quality of predictions. It is shown that the machine-learning
approach discussed in this study can be developed as a very useful pricing tool, and potentially a
market condition change detector.Afurther extension is possible by taking the prediction uncertainties
into consideration when building a financial portfolio.

Keywords: Support vector machines regression; Kernel scaling; Machine learning; Bayesian
inference; Multi-armed bandit Bayesian optimization; Gaussian process

JEL Classification: C44, C45, C61

1. Introduction

Support vector regression (SVR) has been one of the most
popular Machine-learning algorithms for over a decade. Its
ability to predict financial time series has been demonstrated
in various studies (Müller et al. 1997, Tay and Cao 2001, Cao
and Tay 2003, Kim 2003, Lu et al. 2009, Gündüz and Uhrig-
Homburg 2011) with satisfactory empirical results. Although
the base assumption of most machine-learning models requires
i.i.d. data, there is literature (Mohri and Rostamizadeh 2008,
Ralaivola et al. 2010) suggesting non-i.i.d. data can be used to
train the statistical learning system by increasing sample sizes.
This supports SVR as a relevant tool for time series prediction.
Comparing to other linear time series models, which require
careful designing of inputs, SVR allows flexible mapping of
high dimensional features to capture non-linear relationships
and at the same time with a regularization technique to reduce
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over-fitting. However, on the other hand, financial experts in
the industry may step back from using this algorithm for two
reasons: (1) it is not easy, and sometimes computationally
expensive to determine the parameters for the algorithm, (2) it
does not provide an estimate of prediction uncertainties.

We propose to investigate extensions to the approach that
make up for these two disadvantages by generalizing it within
a Bayesian approach. This allows a more efficient parameter
selection procedure as well as the derivation of a prediction un-
certainty estimate. This is particularly important in the financial
context to avoid decisions based on unreliable predictions. A
Bayesian approach to SVR (Gao et al. 2002) is discussed, and
implemented. It is found in our experiments that direct imple-
mentation of the probabilistic framework proposed by Gao et
al. (2002) gives unsatisfactory results. A novel enhancement
is proposed by adding a new kernel scaling parameter μ to
overcome the difficulties encountered. In addition, because the
gradient optimization approach proposed by Gao et al. (2002)
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is found to be impractical, we develop an alternative opti-
mization method. Multi-arm bandit Bayesian optimization has
been gaining popularity in recent years (Shahriari et al. 2016),
mainly for its capability to actively and efficiently search for
the global optimum for a complex or even unknown function.
We make use of this technique to fully automate the parameter
selection process.

We test our framework to predict financial time series of
various asset classes to ensure its flexibility. The generaliza-
tion performance from models selected by different param-
eter selection approaches (cross-validation, grid search, and
Bayesian optimization) are compared. The practicality of the
proposed framework is further examined by generating daily
predictions, aiming to allow a thorough investigation of the
prediction uncertainty estimates derived. A calibration process
is established to show how these uncertainty estimates may be
utilized to significantly improve predictions as well as to detect
market condition changes.

The paper is organized as follows: section 2 gives an over
view of SVR. Section 3 discusses the Bayesian probabilistic
framework (Gao et al. 2002), and the rationale behind our novel
enhancement to the probabilistic framework. Section 4 covers
the theoretical background of the multi-armed bandit Bayesian
optimization algorithm. In section 5, the implementation and
results of various experiments are explained with the introduc-
tion of an adaptive calibration process. Section 6 concludes the
findings and discusses possible research extensions.

2. Support Vector Regression

The concepts of support vector machine (SVM) can naturally
be applied to handle regression problems. Instead of classifying
testing examples into one of the two outcomes (class 1 or
class 2), it is used to address target variables with real values.
The ε-Support Vector Regression (ε-SVR) can be considered
similar to the approach of applying a linear regression in the
feature space. In contrast to the squared loss function used in
the least squares regression, the error function for ε-SVR is the
ε-insensitive loss function. This dictates that the errors smaller
than ε are ignored. Figure 1 demonstrates this intuition. This
method leads to sparsity similar to SVMs meaning that the
form of the regression depends only on the support vectors.

Consider we have training examples x1, . . . , xn ∈ R, and
a target variable yi ∈ R for each xi . The ε-insensitive loss
function has the form

|y − f (x)|ε := max{0, |y − f (x)| − ε}
To estimate the linear regression f (x) = w · x + b with this

loss function, we minimize

1

2
‖w‖2 + C

n

n∑
i=1

|yi − f (xi )|ε (1)

While the second term of equation (1) is the ε-insensitive loss
function, the first term is considered the regularization con-
straint to prevent the ε-SVR from over-fitting. The parameter
C controls the trade-off between the complexity of the model
and the error. Introducing the “slack variables” (ξ+

i , ξ−
i ) into

this optimization problem, it becomes

min
w,b

1

2
‖w‖2 + C

n∑
i=1

(ξ+
i + ξ−

i )

subject to yi − w · xi − b ≤ ε + ξ+
i

w · xi + b − yi ≤ ε + ξ−
i

ξ+
i , ξ−

i ≥ 0 ∀i (2)

This optimization is very similar to the one for SVMs. Smola
and Schölkopf provide detailed derivation on how the dual
problem can be obtained using the Lagrange multiplier method
(Smola and Schölkopf 2004).

max
α+,α− W (α+,α−) = −ε

n∑
i=1

(α+
i + α−

i ) +
n∑

i=1

yi (α
+
i − α−

i )

− 1

2

n∑
i, j=1

(α+
i − α−

i )(α+
j − α−

j )K (xi , x j )

subject to 0 ≤ α+
i , α−

i ≤ C,

n∑
i=1

(α+
i − α−

i ) = 0 (3)

Calculating the partial derivative of the Lagrangian L with
respect to w, we can calculate the optimal w using the optimal
α+,α−.

w =
n∑

i=1

(α+
i − α−

i )φ(xi )

For a new data point z, the regression estimate can be ob-
tained using the formula

f (z) = w∗ · φ(z) + b∗ =
n∑

i=1

(α+∗
i − α−∗

i )K (x j , z) + b∗

Similar to SVMs, this optimization problem satisfies the KKT
conditions. The dual complementarity condition suggests that
α+

i , α−
i ≥ 0 only when | f (xi ) − y| ≥ ε, which equivalently

means the corresponding training examples on or outside of
the ε band. These training examples are the support vectors.

3. Probabilistic Framework for SVR

The selection of parameters has always been one of the most
important tasks when training supervised learning algorithms,
and SVR is no exception. In order to achieve good gener-
alization performance, a process is required to fine tune the
parameters in order to balance the trade-off between variance
and bias. Traditionally, the multi-fold cross-validation pro-
cess is employed. This process is generally very effective, but
usually computationally heavy. In this section, a probabilistic
framework for SVR is investigated aiming to accelerate the
parameter selection process. Gao et al. (2002) demonstrates
how MacKay’s evidence framework (MacKay 1992) is used
to determine the parameters. Also, the approximation of an
error bar formula for the SVR predictions is derived.

We propose a new parameter μ in addition to the SVR
probabilistic framework of Gao et al. (2002). This parameter
μ scales the kernel, and is defined to be the a priori estimate
of the output variance. We show that adding such a parameter
does not affect the SVR quadratic programming problem, but
may act as a scaling parameter to allow the evidence function
to be more flexible when handling data with different ranges.
Because error bar estimate derived by Gao et al. (2002) is solely
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Figure 1. The loss function of ε-SVR.

from the kernel features, this parameter also adjusts the level of
this variance to better match the range of the SVR prediction.

3.1. Bayesian Evidence Framework

In this section, the Bayesian evidence framework for SVR
proposed by Gao et al. (2002) is discussed. SVR can be inter-
preted as a maximum a posteriori (MAP) solution to inference
problems with Gaussian priors and an appropriate likelihood
function based on a probabilistic interpretation. Gao et al.
(2002) derived the evidence formula, and the error bar ap-
proximation under this framework.

In regression problems, the functional dependency f (·) be-
tween a set of sampled points X = {x1, x2, . . . , xn} taken from
R

d , and target values Y = {y1, y2, . . . , yn} with yi ∈ R is
defined as follows. The training data D = {X, Y } are collected
by randomly sampling from the model:

yi = f (xi ) + δi i = 1, 2, . . . , n

where f (·) is the underlying function, and δi are independent,
identically distributed (i.i.d.) random noise. Regression aims
to estimate the function f from the data-set D. In the Bayesian
approach, the function f is regarded as the realization of a
random field with a known a priori probability. Let f =
[ f (x1), f (x2), . . . , f (xn)]T . The a posteriori probability of
f given the training data D can then be derived by Bayes’
theorem:

P( f |D) = P(D| f )P( f )

P(D)
(4)

where P( f ) is the a priori probability of the random field,
and P(D| f ) is the conditional probability of the data D given
the function values f . This conditional probability P(D| f ),
which is also the likelihood, can simply be interpreted as the
noise model. P(D| f ) is evaluated by:

P(D| f ) =
n∏

i=1

P(δi ) =
n∏

i=1

P(yi − f (xi ))

Gao et al. (2002) suggested that the likelihood function be
written as:

P(D| f ) = [G(C, ε)]n exp

(
−C

n∑
i=1

Lε(yi − f (xi ))

)
(5)

where G(C, ε) = C
2(εC+1)

is the corresponding normalizing
constant. For ε-SVR, as mentioned in section 2, the ε-insensitive
loss function is given by:

Lε(yi − f (xi )) =
{

0, for|y − f (x)| < ε,

|y − f (x)| − ε, otherwise.

The a priori distribution P( f ) is assumed to be a multi-
variate Gaussian with a zero mean and covariance function
K (·, ·).

P( f ) = 1√
det 2π K X,X

exp

{
−1

2
f T K −1

X,X f
}

(6)

where K X,X = [K (xi , x j )] is the covariance matrix at the
training points X . Following Bayes’ theorem given in equation
(4), the a posteriori distribution is determined by combining
equation (5) and (6).

P( f |D) = [G(C, ε)]n√
det 2π K X,X P(D)

× exp

{
−C

n∑
i=1

Lε(yi − f (xi )) − 1

2
f T K −1

X,X f

}
(7)

where G(C, ε) = C
2(εC+1)

, and P(D) is the evidence which
is explained later in the section. The MAP estimate of f is
computed by maximizing the a posteriori distribution provided
in equation (7), which is the same as minimizing the risk
function as follows:

R( f ) = C
n∑

i=1

Lε(yi − f (xi )) + 1

2
f T K −1

X,X f (8)

This is equivalent to the primal problem for SVR (equation
(2)) when 1

2 f T K −1
X,X f = 1

2‖w‖2, which is suggested in the
Lagrangian condition. As per the SVR optimization problem,
the model that minimizes the risk function is defined as:

f ∗ =
n∑

i=1

(α+
i − α−

i )K (xi , x) (9)

With respect to the optimal solution f ∗, the training dataset
X are divided into four parts:

X0 = {xi |
∣∣yi − f ∗(xi )

∣∣ < ε with α+
i = α−

i = 0}
XC = {xi |

∣∣yi − f ∗(xi )
∣∣ > ε with α+

i = C, α−
i = 0,

or α+
i = 0, α−

i = C}
X M− = {xi | f ∗(xi ) − yi − ε = 0 with 0 ≤ α−

i ≤ C}
X M+ = {xi |yi − f ∗(xi ) − ε = 0 with 0 ≤ α+

i ≤ C}
(10)
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For later derivation, let us define X M = X M+ ∪ X M− , and
the support vectors Xsv = X M ∪ XC . Also, denote that X̄ M =
X\X M .

In order to determine how to use the probabilistic framework
to select the best parameters, the evidence P(D) has to be
determined. The evidence is simply defined as the marginal
likelihood of the data for a particular model, and can be ob-
tained by integrating the a posteriori distribution over the
parameter space f .

P(D) =
∫

P( f )P(D| f )d f (11)

However, inserting equation (5) and (6) into (11) leads to
analytically intractable integrals. Gao et al. (2002) used the
Laplace method for approximation, and the detailed proof is
provided in their study.

ln P(D) ≈ − C
∑

xi ∈XC

Lε(yi − f ∗(xi ))

− 1

2
(α+

i − α−
i )T KSV,SV (α+

i − α−
i )

+ l ln G(C, ε) − 1

2
ln det(2π K X M ,X M )

+
∑

xi ∈X M

ln
C

|αi |(C − |αi |) (12)

To find the ‘best’ parameters for the SVR problem, the log-
arithmic evidence ln P(D) from different combinations of pa-
rameters are compared. Under this evidence framework, the
set of parameters which give the optimal logarithmic evidence
is determined to form the ‘best’ model. The number of support
vectors required is implicitly fixed by the parameter selection
under the Bayesian framework. In the study of Gao et al.
(2002), this evidence formula is differentiated with respect
to the parameter of interest and set to zero in order to find
the optimal parameters. However, we realize that finding the
gradient of equation (12) is nontrivial. The count and location
of support vectors are implicitly related to the set of param-
eters selected, which implies that the terms that include the
kernel K X M ,X M , KSV,SV or the loss function

∑
xi ∈XC

Lε(yi −
f ∗(xi )) must be taken into account when taking the deriva-
tives, and these are not considered in the original study. Such
gradient approach to find the optimal parameters may not be
practical, and we suggested using other optimization methods
to maximize the log evidence of the model.

3.2. Error bar estimation

Gao et al. (2002) also introduced an error bar estimate for the
SVR predictions under the evidence framework described in
the previous section. It was suggested that the prediction error
is made up of two terms. One of them is from the posterior
uncertainty of the model f , and the other is due to random
noise in the data. The prediction model of a new test data point
z is defined to be:

t = f (z) + e(z) (13)

where t is the target prediction, f (z) is the model output, and
e(z) is random noise, which is independent of f (z). The goal
is to find the variance of the target t on the new test data
point z.

Gao et al. (2002) derives the estimate of the variance due to
model uncertainty, let f (X) be the trained model with training
data X , and the predictive distribution of f (z) corresponding
to a new data point z is defined to be

P( f (z)|D) = 1

P(D)

∫
p(D| f (X))P( f (X), f (z))d f (X)

∝
∫

p(D| f (X))P( f (X), f (z))d f (X) (14)

The covariance matrix K of the training dataset X = X M ∪
X̄ M is defined as

K X,X =
(

K X M ,X M K X M ,X̄ M

K T
X M ,X̄ M

K X̄ M ,X̄ M

)
and the covariance matrix between the training data X and the
new test data z is

K[X,z],[X,z] =
(

K X,X K X,z

K T
X,z K z,z

)
Similar to the evidence approximation derivation, Gao et al.

(2002) again suggested to use the Laplace method to approxi-
mate the integral in equation (14). While the detailed steps can
be found in their study, the predictive distribution has the form

P( f (z)|D) ∝ exp

{
− 1

2

(
f (z) − f (z)∗

)
×
(

K z,z − K T
X M ,z K −1

X M ,X M
K X M ,z

)−1

(
f (z) − f (z)∗

)}
which has the form of a Gaussian distribution with mean f ∗(z),
and variance

σ 2
f (z) = K z,z − K T

X M ,z K −1
X M ,X M

K X M ,z (15)

Regarding the variance of the random noise e(z), Gao et al.
(2002) made use of the noise model suggested in equation (5),
which is interpreted as P(e(z)) ∝ exp {−C Lε(e(z))} with

E(e(z)) = 0 and Var(e(z)) = σ 2
e (z) = 2

C2
+ ε2(εC + 3)

3(εC + 1)
(16)

Considering the prediction model suggested earlier in equa-
tion (13), the model and noise components are additive. By
combining equation (15) and (16), the prediction variance is

σ 2
t (z) = σ 2

f + σ 2
e

= K z,z − K T
X M ,z K −1

X M ,X M
K X M ,z

+ 2

C2
+ ε2(εC + 3)

3(εC + 1)
(17)

3.3. New scaling parameter μ

The effort of deriving this evidence framework by Gao et al.
(2002) is highly appreciated. Not only does it give a very
good methodology to choose the ‘best’ parameters, but also it
provides an error bar estimate of the SVR prediction. This is im-
plemented in our study, but the results were rather unsatisfying,
which lead to our idea of introducing a new scaling parameter
μ to the evidence framework. The problems observed, as well
as the rationale behind this new parameter μ is explained in
this section.
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Let us begin this discussion by cracking open the final loga-
rithmic evidence formula derived by Gao et al. (2002) as given
in equation (12). It is not difficult to notice that the first part of
the formula is equivalent to negative of the the optimal value
from the objective function in the SVR optimization problem.

ln P(D)

≈ −(optimal objective value of SVR optimization problem)

+ l ln
C

2(εC + 1)
− 1

2
ln det(2π K X M ,X M )

+
∑

xi ∈X M

ln
C

|αi |(C − |αi |) (18)

The level of the optimal objective value heavily depends two
main factors: the model structure, and the level of the slack
variables ξ+

i , ξ−
i . While the model structure is what we want

to determine through the evidence framework, the level of
slack variables has huge impact on the parameters in order
to compute the ‘best’ model. For example, if the range of the
target variable in the training data is wider than the one of
the kernel features, which is quite common because inputs are
usually normalized, the level of the slack variables is high.
In such case, the level of the parameter C has to be large in
order to bring up the level of the kernel features to match the
target variable given the 0 ≤ α+

i , α−
i ≤ C constraint in the

optimization problem. Therefore, the optimal objective value
of the optimization problem is inflated. When observing the
remaining terms in the logarithmic evidence formula, there
are no other terms to balance such effect. This implies that if
the data experiment is set up such that the level of the target
variable is much higher than the features, the evidence formula
may not be able to handle the scale difference. As a result, the
evidence formula may be dominated by the objective value of
the optimization problem, and therefore not be able to select
the ‘best’ model.

The same scaling effect is also observed in the error bar
estimation. Equation (15) provides a very nice formula to esti-
mate the variance of the SVR prediction. However, it is solely
derived from the kernel features. This means that if the range
of the target variable is different from the one of the kernel
features, the prediction error obtained from the formula is only
going to be proportional to the estimated variance.

Given the above observations, we introduces a new scaling
parameter μ to the evidence framework, aiming to handle such
effect caused by the data, with a view to enhance the evidence
framework. This scaling parameter is simply a scalar to inflate
the kernel such that

K̃ = μ · K

where μ > 0 is a scalar interpreted as a priori of the output
variance, and K is the kernel matrix in the SVR problem. First
of all we show that adding such a parameter results in the
same SVR quadratic programming problem. Consider the dual
problem of SVR given in equation (3), scaling the kernel K
with the parameter μ result in the following:

max
α+,α−W̃ (α̃

+
, α̃−) = −ε

n∑
i=1

(̃α+
i + α̃−

i ) +
n∑

i=1

yi (̃α
+
i − α̃−

i )

− 1

2

n∑
i, j=1

(̃α+
i − α̃−

i )(α+
j − α̃−

j )K̃ (xi , x j )

subject to 0 ≤ α̃+
i , α̃−

i ≤ C̃,

n∑
i=1

(̃α+
i − α̃−

i ) = 0

(19)

where α̃i = αi
μ

, C̃ = C
μ

, and W̃ (α̃
+
, α̃−) = 1

μ
· W (α+,α−).

The new objective function W̃ is simply a scaled version of
the original W , which means that the optimization problem
has exactly the same solution. Adding such a parameter does
not change the MAP estimate computation, but has an impact
when introduced into the evidence formulation. Consider the
logarithmic evidence formula shown in equation (12), intro-
ducing μ results in the following.

ln P(D) ≈ − 1

μ

[
C
∑

xi ∈XC

Lε(yi − f ∗(xi ))

− 1

2
(α+

i − α−
i )T KSV,SV (α+

i − α−
i )

]
+ l ln

C

2(εC + μ)
− 1

2
ln det(2πμ K X M ,X M )

+
∑

xi ∈X M

ln
μC

|αi |(C − |αi |) (20)

By simply observing the new evidence function, the first
part of the formula, which is the optimal objective value of
the SVR optimization as discussed earlier, is scaled by the
parameter μ. However, μ is also in the remaining terms, so its
impact to the overall evidence formulation is not obvious. Note
that equation (20) is only used to demonstrate the impact of μ

when comparing to the original evidence function. In practice,
the parameters are implicitly altered once the kernel is scaled,
and the new logarithmic evidence function for implementation
is simply equivalent to the original one with the scaled kernel
and parameters as below.

ln P(D) ≈ − C̃
∑

xi ∈XC

Lε(yi − f ∗(xi ))

− 1

2
(̃α+

i − α̃−
i )T K̃SV,SV (̃α+

i − α̃−
i )

+ l ln G(C̃, ε) − 1

2
ln det(2π K̃ X M ,X M )

+
∑

xi ∈X M

ln
C̃

|̃αi |(C̃ − |̃αi |)
(21)

Same as the original evidence framework, the parameters with
the largest evidence value is chosen to give the ‘best’ model.
On top of the original parameters, the ‘best’ scaling parameter
μ is also determined through maximizing the evidence value.
We test this altered evidence framework in our experiment, and
the performance is found to be much better than the original
evidence derivation. The results of the experiments are shown
in section 5. Similarly, this new parameter μ also has its in-
fluence on the error bar estimation. Consider introducing μ to
the original error bar estimation as shown in equation (17), the
new error bar estimate becomes:
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σ̃ 2
t (z) = σ̃ 2

f + σ̃ 2
e

= μ
(

K z,z − K T
X M ,z K −1

X M ,X M
K X M ,z

)
+ 2μ2

C2
+ ε2(εC + 3μ)

3(εC + μ)
(22)

From simply observing the new error bar estimate in equa-
tion (22), the prediction error is scaled by the parameter μ when
comparing to the original formulation. Therefore, we interpret
μ as the a priori variance of the output to scale the kernel
features to match the variance of the target variable. Similarly,
equation (22) is only provided for the purpose of illustrating the
impact of μ when comparing to the original error bar estimate.
In practice, the parameters are implicitly altered once the kernel
is scaled, and the new error bar formulation for implementation
is simply equivalent to original one with the scaled kernel
and parameters as follows, and the results are discussed in
section 5.

σ̃ 2
t (z) = σ̃ 2

f + σ̃ 2
e

= K̃ z,z − K̃ T
X M ,z K̃ −1

X M ,X M
K̃ X M ,z

+ 2

C̃2
+ ε2(εC̃ + 3)

3(εC̃ + 1)
(23)

Preprocessing the target variable may be an alternative ap-
proach to the problem, but it requires careful reverse engineer-
ing of the output to ensure appropriate interpretability. Building
the new parameter into the Bayesian framework avoid this
extra step, and therefore fit better to the idea of developing an
automated flexible prediction framework.

4. Bayesian optimization for parameters selection

In section 3.1, we demonstrated that using the gradient method
to optimize the log evidence is impractical, and seeking for
another optimization method is necessary. Recently, the popu-
larity of Bayesian optimization has grown significantly in the
artificial intelligence and machine learning community
(Srinivas et al. 2010, Shahriari et al. 2016). Its capability to
actively and efficiently search for the global optimum for a
complex or even unknown function greatly enhance the au-
tomatic tuning process for many powerful machine learning
algorithms (Snoek et al. 2012). In this study, we borrow such
technique to optimize the log evidence function in order to ob-
tain the ‘best’ parameters. Bayesian optimization is explained
in this section, and are used in our experiments.

4.1. Multi-armed Bandit

Multi-armed bandit (MAB) problem is a problem in which
a gambler faces k slot machines, a.k.a. ‘one-armed bandits’.
Each machine has unknown probability of winnings. The gam-
bler is allowed to play one machine each round, and eventually
has to define strategy to maximize the total winnings. The key
here is to trade-off between exploration (try a new machine),
and exploitation (continue to play with an already observed
winning machine). This problem has been widely studied in
various areas such as machine learning, operational research
and control etc.

Recently, the task of globally optimizing a complex, some-
times unknown function is being formulated in a MAB setting

(Srinivas et al. 2010). The problem becomes a sequential op-
timization of an objective function f : D → R, considering
each input as one of k arms in the data D. In each time step
t, an input xt ∈ D is chosen, and observe the corresponding
noisy function value yt = f (xt) + δt , where δt is the noise
perturbation. The goal is to maximize the ‘sum of rewards’∑T

t=1 f (xt) as rapidly as possible, which is essentially search-
ing for x∗ = argmaxx∈D f (x).

To efficiently perform the trade-off between exploration and
exploitation, the dependencies across arms are assumed and
modelled (Dorard et al. 2009). Such dependencies allow ex-
ploration to be faster. When an arm is explored, knowledge
is gained on that arm as well as similar arms. The rewards
of arms are assumed to be correlated, which means that the
resulting rewards are similar if the arms pulled are similar.
The correlations are modelled by assuming that f is a function
drawn from a Gaussian Process (GP).

The GP prior distribution is initialized with mean μ0 and the
correlation between arms are described by the GP covariance
matrix. Each entry (i, j) of the matrix specifies the covariance
between arm i and j. The covariance can be defined using a
kernel to measure the similarity between data points.After each
inputs point is drawn, the corresponding reward is observed,
and the GP posterior distribution is updated. An acquisition
function is then used to determined the next point to examine.
The algorithm iterates until a near optimal value is reached.
A few common acquisition functions are listed in section 4.3.
Figure 2 provides a clear overview of the process, and the
pseudo code is listed in algorithm 1.

Algorithm 1: Pseudo-code for Bayesian optimization
Input: Input space D0; GP Prior μ0, 
0
for t = 1, 2, . . . do1

Select new xt+1 by optimizing acquisition function α2

xt+1 = argmax
x∈Dt

α(x; Dt )
3

Query objective function to obtain yt+14

Augmented data Dt+1 = {Dt , (xt+1, yt+1)}5

Perform Bayesian update to obtain μt+1 and 
t+16

end7

4.2. Gaussian process

GP is a widely used method in machine learning. It defines a
distribution over the function f , which maps some input space
X to R. For n input data points x1:n , the corresponding function
values and noisy observations are respectively fi := f (xi ),
and yi , with i = 1, 2, . . . ., n. In the GP regression setting, the
function value f := f1:n is assumed to be jointly Gaussian
with mean m and covariance K .

P( f |X) = N (m, K ) (24)

Suppose noisy observations are samples from the distribution

over the function perturbed by noise δi
i id∼ N (0, σ 2). The

noisy observations y are normally distributed given f , and
the likelihood is

P( y| f ) =
n∏

i=1

N ( fi , σ
2) = N ( f , σ 2 I) (25)
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Figure 2. GP Bayesian optimization (Shahriari et al. 2016).

Equation (24) represents the prior distribution p( f ) with mean
mi := μ0(x0) and Ki, j = k(xi , x j ), and Ki, j is a posi-
tive definite kernel to measure the covariance between point i
and j . The likelihood is given in equation (25). The posterior
distribution is proportional to the product of equations (24)
and (25).

P( f | y, X) ∝ P( y| f ) P( f , X) (26)

Since the function is assumed to be jointly Gaussian, the
joint distribution over the observations y and a new test point
f ∗ can be defined as

P

(
y
f ∗
)

= N
(

m
μ(x∗)

,

[
K (X, X) + σ 2 I K (X, x∗)

K (x∗, X) K (x∗, x∗)

])
(27)

Given the conditioning property of a joint Gaussian distri-
bution, the predictive posterior distribution for the test point
f ∗ is derived to be

P( f ∗|x∗, y, X) =
∫

P(f∗| f , x∗, y, X) P( f | y, X) d f

= N (
μ∗, 
∗)

where,

μ∗ = μ(x∗) + K (x∗, X)
(

K (X, X) + σ 2 I
)−1

( y − m)


∗ = K (x∗, x∗) − K (x∗, X)
(

K (X, X) + σ 2 I
)−1

K (X, x∗)
(28)

In the context of Bayesian optimization as described in sec-
tion 4.1, the process begins by fitting a GP on the function

values from a small subset of inputs, and sequentially add
points to the input set while updating the posterior distribu-
tion. The Bayesian updating process iterates until the function
optimum is reached. The order of sequence in selecting input
points is decided by the acquisition function that is going to be
discussed in section 4.3.

4.3. Acquisition method

The acquisition function, which is also the expected utility
in decision theory, is the key to define the order of sequence
in selecting input points. It is designed to trade off explo-
ration of the search space and exploitation of the currently
known area. The inputs that correspond to the optimum of
the acquisition function are usually the location of the next
input. Some widely used acquisition function in the current
academic and industrial research including but not limited to
probability of improvement (PI), expected improvement (EI),
upper confidence bound (UCB), and Thompson sampling (TS).

PI is a policy that makes use of the mean μn and variance
σn of the GP posterior distribution to define the highest proba-
bility in leading to an improvement over the best current value
f (xbest), thus, becomes the next input to be selected in the
sequence. � is the standard normal cumulative distribution
function.

αP I (x; Dn) = �(γ (x))

γ (x) = μn(x) − f (xbest)

σn(x)

While PI is proven to exploit quite aggressively in some
cases (Bergstra and Bengio 2012), EI is a great alternative.
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Because the random variable f (x) is normally distributed, the
expectation can be computed analytically (Brochu et al. 2010).
φ is defined to be the standard normal probability density
function.

αE I (x; Dn)

=
{

(μn(x) − f (xbest)) � (γ (x)) + σn(x) φ (γ (x)) , if σn > 0.

0, if σn = 0.

UCB is relatively more recent approach to trade off explo-
ration and exploitation (Srinivas et al. 2010). It is constructed
to minimize regret for the optimization. κ is a user-defined
parameter to balance exploration against exploitation.

αUC B(x; Dn) = μn(x) + κσn(x)

While conceptually different from other acquisition methods
mentioned, recently TS has gained wide interest among the
MAB community. Multiple theoretical and empirical evalua-
tions have been performed (Chapelle and Li 2011, Scott 2010,
Agrawal and Goyal 2013, Kaufmann et al. 2012, Russo and
Van Roy 2014), and there are claims about its advantage over
the other methods. A sample of the reward function is drawn
from the posterior distribution, and the arm with the highest
simulated reward is selected. This is the method employed in
the experiments of this study.

αT S(x; Dn) = f (n)(x)

where f (n) ∼ G P(μ0, k|Dn)

5. Experiments

SVR has long been proven to have good prediction perfor-
mance. The focus of this study is to outline a Bayesian proba-
bilistic framework for the algorithm mainly for two purposes.
(1) Multi-fold cross validation process is well known to be
an effective method to select parameters for machine learning
algorithms, but is usually computationally expensive. Bor-
rowing the MAP approach from Bayesian statistics, it may
be possible to achieve similar performance as the original
SVR with less computation to select the ‘best’ parameters. (2)
Introducing the probabilistic framework allows assessment of
prediction uncertainties. This is extremely important especially
in the financial context, where decisions are better based on
predictions with some level of confidence.

Before describing the implementation details, it may be use-
ful to provide an overview of the prediction system to bring
the proposed methodologies together. Figure 3 presents the
complete setup of the prediction process. The SVR model is
first trained with the parameters defined (i.e. CV, Grid Search or
BayesOpt). Under the Bayesian framework, while making use
of the model output, the predictive mean and variance are then
computed. The quality of the prediction is evaluated using the
corresponding error bar. This, at the same time, is interpreted
as an assessment of whether the market condition has changed.
This complete process is iterated in a rolling window manner.

5.1. Data

Eight financial time series from various asset classes (i.e.
Equity Index, CDS spreads, Bond yields, Commodity Futures)

are used in this study to assess the performance and flexibility
of the Bayesian SVR framework proposed in this study. The
details of each time series are listed in appendix 1. They are
gathered from the Reuters Eikon platform at the Thomson-
Reuters Laboratory, University College London. Daily quotes
are used in the analyses. The time frame used for each time
series may vary slightly depending on the availability of data.

5.2. Implementation

In this first set of experiments, the original RBF kernel SVR
algorithm is first trained and tested with parameters selected
through five-fold cross validation. The MATLAB package lib-
svm (Chang and Lin 2011) is used for SVR implementation.
The results are used as the benchmark performance when com-
paring to the ones from the Bayesian SVR where parameters
are selected through the MAP approach. The following com-
bination of parameters is used for all experiments that involve
cross validation procedure to select parameters.

C = 2(−3,−1,1,3,5,7,9,11,13,15) ε = 2(−9,−8,−7,−6,−5,−4,−3)

γ = 2(−8,−7,−6,−5,−4,−3,−2,−1)

The original Bayesian probabilistic framework by Gao et al.
(2002) is implemented. However, for the theoretical reasons
explained in section 3.3, the results are poor. We have therefore
not included these results. The same sets of data are then
processed using the amended Bayesian probabilistic frame-
work with parameters selected by optimizing the logarithmic
evidence formula suggested in equation (21). As mentioned
previously, the gradient method to optimize the log evidence is
impractical, and seeking for another optimization method was
necessary. The easiest optimization method is grid search. Al-
though grid search is still quite computationally expensive, and
its performance is highly dependent on the design of the grid,
it is very easy to implement and the results are easy to assess.
In section 3.3, we introduces the new parameter μ to scale the
RBF kernel K . This new parameter is incorporated into the grid
search process in maximizing the evidence. Note that because
the parameter μ is a factor that scales the kernel, we control
the kernel width parameter γ to be a fixed small value in order
to avoid the interactive effect of these two parameters within
the probabilistic framework. In our experiments, the small γ

value chosen works consistently, and the same value is used in
all experiments. The parameters C and ε values are the ones
considered in the cross validation process.

C = 2(−3,−1,1,3,5,7,9,11,13,15) ε = 2(−9,−8,−7,−6,−5,−4,−3)

μ = 2(−3,−1,1,3,5,7,9,11,13,15,17,19) γ = 2(−8)

Lastly, a similar exercise is carried out with the logarithmic
evidence formula being optimized with the multi-armed ban-
dit Bayesian optimization approach, aiming to automate and
accelerate the parameter selection process, while achieving
comparable performance. The MATLAB package bayesopt
(Martinez-Cantin 2014) is used. TS is used as the acquisition
method for our experiments, and observation noise (σ 2 in
equation (28)) for the GP is chosen to be a very small number
(1e-14) to reflect the fact that the log evidence is a deterministic
function. For Bayesian optimization, only the upper and lower
bound of the parameter search space is required.
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Figure 3. Overview of the proposed methodologies setup.

C = 2(−3:15) ε = 2(−9:−3)

μ = 2(−3:19) γ = 2(−8)

To reduce the computational cost, algorithms are trained
with 2.5 years of data (630 quotes), and tested on the following
0.5 year (125 quotes), assuming 252 trading days in a year.
Predictions are performed and assessed in a rolling window
manner to cover the entire time series.

In the second set of experiments, only Bayesian SVR with
Bayesian optimization selected parameters is examined. Be-
cause of the reduction in computational cost for the parameters
selection process, the algorithm is trained with 3 months of data
(63 quotes), and tested daily. Providing the rapid-changing na-
ture of financial time series, this greatly enhances the sensitivity
of predictions and their uncertainty measures. The error bar
estimates are computed using equation (23). These are closely
examined and practical applications are discussed.

In all the above mentioned experiments, quotes from the last
14 days are chosen to capture the patterns in order to predict
a one day ahead quote. The same 14-day window was used in
another study (Gündüz and Uhrig-Homburg 2011), which we
follow the same approach. However, the Bayesian SVR frame-
work proposed is generalizable to use any reasonable features.
This study aims to define a flexible framework for the algorithm
rather than to provide the best features for predictions. It is also
important to mention that each input variable in the training
samples are linearly scaled to the range [0, 1] by

zi j = xi j − min(xi )

max(xi ) − min(xi )

where xi j is the j th sample of the i th input variable, and zi j is
the corresponding scaled input value. The testing samples are
also scaled in the same manner use the maximum and minimum
from the training set.

MeanAbsolute Percentage Errors (MAPE) are used to assess
the prediction performance.

MAPE(%) = 1

T

T∑
t=1

∣∣∣ŷ pred
t − yobs

t

∣∣∣
yobs

t
(29)

where ŷ pred
t is the predicted quote of the asset on day t , and

t = 1, . . . , T is the number of prediction days. This metric
is computed in all experiments to compare prediction perfor-
mances.

5.3. Results

In the first set of experiments, the original RBF kernel SVR
algorithm is first trained and tested with parameters selected
through five-fold cross validation. The results are then used as
the benchmark performance when comparing to the ones from
the Bayesian SVR where parameters are selected through the
evidence maximization approach using grid search or Bayesian
optimization. MAPEs (equation (29)) are computed to assess
the predictive performance of each model for each times series.
Algorithms are trained with 2.5 years of data (630 quotes),
and test on the following 0.5 year (125 quotes), assuming 252
trading days in a year. Predictions are performed and assessed
in a rolling window manner to cover the entire time series.
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Figure 4. MAPE for SVR(Cross Validation), BSVR(Grid Search), and BSVR(BayesOpt).

The bars in figure 4 show the averaged MAPEs for all the
rolling windows, and the arm describes the corresponding
coefficient of variation (CoV) which is computed by dividing
the mean by the standard deviation (SD). CoV acts as the SD
standardized by the level of the mean, which allows compari-
son across different models and assets. The longer CoV arms
suggest prediction performance inconsistencies in some of the
rolling windows.

Figure 4 shows that the predictive performance varies across
assets mainly due to difference in individual behaviour such
as volatility level, regime change etc. The MAPE values are
provided in appendix 2. It is interesting to observe that with
S&P500 (SPX), the original SVR with five-fold cross vali-
dation shows inconsistent prediction performance. It may be
a sign suggesting, in this case, cross-validation is incapable
to generalize the training data distribution to the testing data.
It may be fixed by fine tunes such as changing the size of
training or testing window, using different number of folds in
the cross-validation process etc. This is purposely left unfixed
to ensure the consistency in our experiments as well as to
demonstrate that evidence maximization approach in Bayesian
SVR may sometimes allow better parameter selection than
cross validation. Other than SPX, the models generated from
the three different parameters selection methods give compa-
rable performance in most of the cases. This is encouraging
as it suggests that it may be worthwhile to generalize SVR to
Bayesian SVR to gain the additional features such as a faster
and easier parameter selection process, as well as an estimate
of prediction uncertainty, without sacrificing much predictive
performance.

Results from the last experiment provide initiatives to spend
more effort in examining further the performance and use of
Bayesian SVR. It is shown that Bayesian optimization accel-
erates the log evidence optimization process while retaining
similar performance as using grid search. Hence, in the sec-
ond set of experiments, only Bayesian SVR with Bayesian
optimization selected parameters is applied. S&P500 Equity
Index is used as an example to demonstrate the practical use
of this Bayesian SVR framework. Since the computational
cost for the parameters selection process has been significantly
reduced, we are able to increase the number of iterations by
training the algorithm with three months of data (63 quotes),
and testing daily. This greatly enhances the sensitivity of pre-
dictions and their uncertainty measures in better adapting to
the rapid-changing nature of financial time series.

The S&P500 Equity Index time series is examined. The
prediction error drops from roughly 1.5% to 1.2%. While this
is quite encouraging, the more important findings are yet to
be discussed. In figure 5, the top graph shows the actual vs.
predicted quotes as well as the predictive variance. The mid-
dle graph provides the log return of the daily asset quotes to
display the volatility in different regimes. At the bottom, the
graph plots the prediction error of everyday quotes. It is quite
obvious that the Bayesian SVR predictions are less reliable
during the high volatility regimes. This matches expectation
as the data distribution may not be well represented in the
training data during high volatility circumstances. Therefore,
it is important to take into account prediction uncertainties to
assess the quality of predictions.
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Figure 5. Actual quotes vs predicted quotes (S&P500 Equity Index).

(a) (b)

Figure 6. The absolute relative error and the prediction CoV (S&P500 Equity Index).

As mentioned previously, another useful functionality of
Bayesian SVR is prediction uncertainty estimation. In the top
graph of figure 5, some dotted lines are found. These are the er-
ror bar estimates for the SVR predictions provided in equation
(23). These are used to assess the level of confidence for the
predictions made by the Bayesian SVR algorithm. Given the
scale of the figure, the relationship between the error bar
estimates and the corresponding predictive performance can
hardly be observed. A better demonstration is provided in
figure 6.

In figure 6(a), the absolute value of the relative errors
(|Predicted/Actual−1|) is the vertical bars plotted on the left

axis, and the prediction coefficient of variance (σpred/μpred )
is the dotted line overlaid on the right axis. The coefficient of
variance is used instead of the error bar estimates to account
for the different level of prediction mean across the time series.
It is easy to see that when the coefficient of variance is high,
the prediction errors are higher. Similarly, figure 6(b) shows a
scatter plot of the absolute value of the relative errors against
the coefficient of variance, and the Pearson correlation is 34.06%
with p-value close to zero. This suggests a significant relation-
ship between size of the error bars and the prediction quality.
In the financial context, when higher coefficient of variance
is observed, the quote prediction may not be as reliable, and
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Figure 7. Actual Quotes with identifier of ‘Reliable’ predictions (S&P500 Equity Index).

careful considerations should be made before basing decisions
on such predictions.

5.4. Calibration

It is definitely useful to have such prediction uncertainty esti-
mates. However, again because of the rapid changing nature
of financial time series, it is not easy to identify one coefficient
of variation cut-off value that is suitable to consistently distin-
guish ‘reliable’ predictions over time. It is equally difficult to
identify such a value across different time series. Therefore,
we introduce an automated calibration procedure to hopefully
define this cut-off value adaptively in order to best utilize the
prediction uncertainty estimates.

We begin by defining a rolling window procedure similar to
the one in the previous experiments. In this case, to be consis-
tent, three months of data (63 quotes) are used as training data,
and are applied one day forward. The predictions generated
in the last three months are assessed. A criterion is arbitrary
defined suggesting that only the predictions that have error
less than the average daily change in quotes are considered
‘reliable’. Among these prediction points, considering that the
CoV and prediction error are not perfectively correlated, the
cut-off value is set to be the 80th percentile of all CoV values
to exclude outliers.

The closing quotes of the S&P500 Equity Index in the past
10 years are plotted in the top graph of figure 7. The prediction
points that are considered ‘unreliable’are coloured in red, while
the rest are in black. The bottom graph shows the corresponding
log return of the quotes as a demonstration of market volatility.
It is quite easy to spot that the predictions are coloured in red

when the training data are not reflecting the current market
condition. This is particularly obvious during 2008 financial
crisis, when there is high volatility and prediction is extremely
difficult. Some red points are also spotted when there are sud-
den changes in the market. If the ‘unreliable’ predictions are
neglected, the prediction error drops further to about 1.1%,
while keeping 77% of the predictions. The calibration not only
allows one to avoid basing decisions on unreliable predictions,
it can possibly act as a market condition change detection
tool. However, it is important to note that the algorithm, in
its current form, is only capable to detect when the market
condition deviates from the training period. Without further
modifications, it is not a tool to cluster the time series into
different regimes (i.e. ‘high’ or ‘low’ volatility etc.).

There are two user-defined parameters in this calibration
procedure. The first parameter is the reliability criteria defini-
tion. We define predictions to be considered ‘reliable’ when
error is less than the average daily quote changes in the last
three month. However, this can be adjusted based on the user’s
preference. For example, if this prediction is used as part of a
trading strategy, this reliability criteria can be defined as some
minimum return of the strategy over a period of time. The
second parameter is the quantile used to exclude the outliers in
the coefficient of variation estimates. The parameter may vary,
but can be easily optimized by setting an objective function to
consider other factors such as the number of predictions to be
included, the target magnitude of error reduction, etc. While
this calibration process is efficient and simple to implement,
other clustering methods (i.e. KNN, Naive Bayes, SVM, Lo-
gistic Regression etc.) may be considered to differentiate the
‘reliable’ and ‘unreliable’ predictions.
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6. Conclusions and future extensions

With the intention to adopt the powerful SVR in predicting
financial time series, this study introduces a framework to
generalize the algorithm with a Bayesian approach. This gives
a more efficient parameter selection procedure as well as a
prediction uncertainty estimate. A Bayesian approach to SVR
(Gao et al. 2002) is discussed, and implemented. It is found that
direct implementation of the probabilistic framework proposed
by Gao et al. (2002) returns poor results in our experiments. A
novel enhancement is proposed by adding a new kernel scaling
parameter μ to overcome the difficulties encountered. In addi-
tion, the multi-armed bandit Bayesian optimization technique
is applied to automate the parameter selection process.

The framework is then tested on financial time series of
various asset classes to ensure its flexibility. In the experi-
ments, it is shown that the generalization performance of the
model selected through our framework can reach or sometimes
surpass the ones from the model selected through the computa-
tionally more expensive cross-validation process. While taking
advantage of the reduction in computational cost, iterations are
increased to generate daily predictions. It is shown with the
S&P500 Equity Index that the prediction error has decreased,
while generating a sensible prediction uncertainty estimate.
An adaptive calibration process is then presented to demon-
strate the practical use of the prediction uncertainty estimates
to identify ‘unreliable’ predictions, which greatly enhances
the prediction performance. The machine learning approach
discussed in this study can be developed as a pricing tool, and
possibly as a market condition change detector.

While the framework is quite effective as it is, there are
a few directions that may justify further investigations. The
multi-armed bandit optimization technique employed at the
moment is sequential. Although it is quite efficient, it can be
further improved by parallelizing the algorithm. This has been
discussed in a few studies (Ginsbourger and Riche 2011 Snoek
et al. 2012 Desautels et al. 2014). Also, as mentioned, the cali-
bration process introduced is efficient and simple to implement.
However, it may be interesting to find out if other clustering
algorithms give better results, or possibly lead to a regime clus-
tering algorithm. Furthermore, it may be interesting to relax
the Gaussian prior distribution assumption of the probabilistic
framework proposed by Gao et al. (2002) .Agood example is to
extend the SVR model to a Multi-Kernel Learning formulation
which assumes a non-Gaussian prior distribution. However,
this may lead to significant complexity in the reconstruction of
the Bayesian evidence approximation. From the financial point
of view, the prediction uncertainty estimates may be extended
as inputs to build financial portfolios.
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Appendix 1. Financial time series dataset

Asset class Symbol Name Start date End date

Equity Index FTSE FTSE 100 02 September 2005 22 January 2016
Equity Index SPX S&P 500 02 September 2005 22 January 2016
Commodity Futures BRENT ICE BRENT Crude Oil Front Month Futures 02 September 2005 22 January 2016
Commodity Futures GOLD CME GOLD Front Month Futures 02 September 2005 22 January 2016
Bond Yield GB10YR UK Gilt 10YR 02 September 2005 22 January 2016
Bond Yield US10YR US Treasury 10YR 02 September 2005 22 January 2016
CDS Spread IBM-CDS INTERNATIONAL BUSINESS MACHINES COR-

PORATION 5YR
21 July 2008 21 January 2016

CDS Spread WMT-CDS WAL-MART STORES INC. 5YR 21 July 2008 21 January 2016

Appendix 2. MAPE (630 quotes training, 126 quotes test-
ing)

Symbol SVR (Cross-Validation) BSVR (Grid Search) BSVR (BayesOpt)

FTSE 1.88 (3.69)† 1.76 (1.25) 1.88 (1.40)
SPX 3.34 (8.69) 1.50 (1.24) 1.52 (1.23)
BRENT 2.03 (1.16) 1.96 (1.06) 1.98 (1.06)
GOLD 1.37 (0.89) 1.48 (0.54) 1.61 (0.58)
GB10YR 1.85 (0.82) 1.94 (0.86) 1.95 (0.79)
US10YR 2.13 (1.34) 2.21 (1.25) 2.27 (1.35)
IBM-CDS 1.34 (0.36) 1.34 (0.37) 1.36 (0.37)
WMT-CDS 1.29 (0.41) 1.22 (0.36) 1.29 (0.42)

†Average of MAPEs from all rolling windows with standard devi-
ation within parentheses.
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