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Abstract

This thesis consists of four projects regarding numerical optimisation and financial
derivative pricing.

The first project deals with the calibration of the Heston stochastic volatility
model. A method using the Levenberg-Marquardt algorithm with the analytical
gradient is developed. It is so far the fastest Heston model calibrator and meets the
speed requirement of practical trading.

In the second project, a triply-nested iterative method for the implementation of
interior-point methods for linear programs is proposed. It is the first time that an
interior-point method entirely based on iterative solvers succeeds in solving a fairly
large number of linear programming instances from benchmark libraries under the
standard stopping criteria.

The third project extends the Black-Scholes valuation to a complex volatility
parameter and presents its singularities at zero and infinity. Fractals that describe
the chaotic nature of the Newton-Raphson calculation of the implied volatility are
shown for different moneyness values. Among other things, these fractals visualise
dramatically the effect of an existing modification for improving the stability and
convergence of the search. The project studies scientifically an interesting problem
widespread in the financial industry, while revealing artistic values stemming from
mathematics.

The fourth project investigates the consistency of a class of stochastic volatility
models under spot rate inversion, and hence their suitability in the foreign exchange
market. The general formula of the model parameters for the inversion rate is given,
which provides basis for further investigation. The result is further extended to the
affine stochastic volatility model. The Heston model, among the other members
in the stochastic volatility family, is the only one that we found to be consistent
under the spot inversion. The conclusion on the Heston model verifies the arbitrage
opportunity in the variance swap.
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Chapter 1

General Introduction

This thesis deals with four projects regarding numerical optimisation and financial
derivative pricing. In this chapter, we briefly describe each project, give directions
to available preprints and programmes, and outline the thesis.

1.1 Content in brief

Project 1. The first topic is the calibration of the Heston stochastic volatility
model. Although the Heston model has been widely used in the financial industry,
there is no universal way of calibrating it: the current approaches are either compu-
tationally expensive or ad hoc with many assumptions on the parameters. In this
work, we express the calibration as a nonlinear least squares problem. We originally
derive the explicit form of the gradient which is crucial in the computation of the
descent direction. We exploit a suitable representation of the Heston characteris-
tic function and modify it to avoid discontinuities caused by branch switching of
complex functions. Using this representation, we obtain the analytical gradient of
the price of a vanilla option with respect to the model parameters, which is the key
element of all variants of the objective function. The interdependency between the
components of the gradient enables an efficient implementation. The explicit gradi-
ent avoids the difficulty in deciding the finite difference that is always encountered
when using the numerical gradient and is around ten times faster than a numerical
gradient. We choose the Levenberg-Marquardt method to calibrate the model and do
not observe multiple local minima reported in previous research. Two-dimensional
sections show that the objective function is shaped as a narrow valley with a flat
bottom. Our method is the fastest calibration of the Heston model developed so far
and meets the speed requirement of practical trading.

Project 2. We develop an implementation of interior-point method for linear pro-
gramming (LP) problems that has a wider application and is not restricted to com-
putational finance. Many financial problems such as static hedging and portfolio
optimisation can be formulated as large scale LP problems and thus require fast and
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accurate solution. However, the commonly-used direct methods such as Cholesky
decomposition tend to break down for large sparse problems even with modifications.

We apply novel inner-iteration preconditioned Krylov subspace methods to the
interior-point algorithm for LP. Inner-iteration preconditioners recently proposed
by Morikuni and Hayami enable us to overcome the severe ill-conditioning of linear
equations solved in the final phase of interior-point iterations. The employed Krylov
subspace methods do not suffer from rank-deficiency and therefore no preprocess-
ing is necessary even if rows of the constraint matrix are not linearly independent.
Extensive numerical experiments are conducted over diverse instances of 125 LP
problems including Netlib, Qaplib, and Mittelmann collections. The largest
problem has 434,580 variables. It turns out that our implementation is more stable
and robust than the standard public domain solvers SeDuMi (Self-Dual Minimiza-
tion) and SDPT3 (Semidefinite Programming Toh-Todd-Tütüncü) without increas-
ing CPU time. As far as we know, this is the first time that an interior-point method
entirely based on iterative solvers succeeds in solving a fairly large number of LP
instances from benchmark libraries under standard stopping criteria.

Project 3. Usually, in the Black-Scholes-Merton pricing theory the volatility is a
positive real parameter. In this project we explore what happens if it is allowed to
be a complex number. The function for pricing a European option with a complex
volatility has essential singularities at zero and infinity. The singularity at zero
reflects the put-call parity. Solving for the implied volatility that reproduces a given
market price yields not only a real root, but also infinitely many complex roots in
a neighbourhood of the origin. The Newton-Raphson calculation of the complex
implied volatility has a chaotic nature described by fractals.

Project 4. We investigate the consistency of a class of stochastic volatility models
under spot inversions, and hence their applicability in the foreign exchange market.
We give the general result for the parameters of the model for the inverse rate. The
Heston model, among the other members in the stochastic volatility family, is the
only one that we found to be consistent under the spot inversion. The conclusion
on the Heston model verifies the arbitrage opportunity in the variance swap. The
result is further extended to the affine stochastic volatility model.

1.2 Preprints and programmes

We provide the following information on the preprints and programmes for the
projects discussed in the thesis.

The manuscript of Project 1 was accepted with minor revisions by European
Journal of Operational Research. A preprint can be found on arXiv [26].

Talks on this work was given at
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• 12th Joint Meeting of Special Interest Groups, Session on Mathematical Fi-
nance, JSIAM (The Japan Society for Industrial and Applied Mathematics),
University of Kobe, 4th March 2016,

• QFW2017, the XVIII Workshop on Quantitative Finance, University of Milano-
Bicocca, Milano, 25th January 2017.

Since we received many requests on the code for the calibrator from both industry
and academia, we distributed under the terms of the GNU General Public License
our programme, coded in C++, which contains:

• a pricer for vanilla options under the Heston model,

• a calibrator of the Heston model,

• an example of using the calibrator to find the presumed optimal parameter.

The manuscript of Project 2 was submitted to SIAM Journal on Scientific Com-
puting. A preprint can be found on arXiv [27].

Talks on this work were given at

• JSIAM Joint Meeting of Special Interest Groups, Session on Solution of Matrix
and Eigenvalue Problems and Applications, University of Tokyo, 25 December
2014 and University of Kobe, 4th March 2016,

• 22nd ISMP (International Symposium on Mathematical Programming), Ses-
sion on Advances and Applications in Conic Optimisation, Pittsburgh, 17th
June 2015,

• GRIPS (National Graduate Institute for Policy Studies) Research Meeting:
"Optimisation: Modelling and Algorithms", GRIPS, Tokyo, 22nd March 2016,

• Workshop on Advances in Optimisation, TKP Shinagawa Conference Centre,
12th August 2016,

• 5th IMA (Institute of Mathematics and its Applications) Conference on Nu-
merical Linear Algebra and Optimisation, University of Birmingham, 7th Septem-
ber 2016.

We plan to publicise the rest of our code when the paper is published. The
implementations of AB- and BA-GMRES with inner iterations, coded in Fortran
90/95 and in C for Matlab-MEX can be found on the co-author Dr Morikuni’s
homepage http://researchmap.jp/KeiichiMorikuni/Implementations/.

The manuscript of Projects 3 is going to be submitted in 2017. The journal is yet
to be decided. We distributed under the terms of the GNU General Public License
our programme, coded in Matlab, which contains:

• a Newton-Raphson calibrator of the Black-Scholes-Merton model,

http://researchmap.jp/KeiichiMorikuni/Implementations/
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• a script for plotting the Newton-Raphson fractal of complex Black-Scholes-
Merton implied volatility.

The manuscript of Project 4 is going to be submitted in 2017. The journal is yet
to be decided.

1.3 Outline

To aid the reader, we finish the introduction with an outline of the thesis.

Chapter 1. An introduction to the thesis and a list of URLs for available preprints
and programmes.

Chapter 2. We introduce the stochastic volatility model and review the previous
calibration methods. We formulate the calibration problem as a nonlinear least
squares problem and derive the explicit form of the gradients. We present the
algorithm based on Levenberg-Marquardt method and the numerical results
of the proposed calibrator.

Chapter 3. We introduce the interior-point method for LP and propose the meth-
ods for computing the interior-point steps. Extensive numerical experimental
results are given in the end.

Chapter 4. We present an extension of the Black-Scholes-Merton implied volatility
to the complex plane by the means of basin of attraction and fractals.

Chapter 5. We give the definition of model consistency under spot inversion which
is of importance in the foreign exchange market. We examine the consistency
of several stochastic volatility models and the results are presented as theorem
and corollaries. The result is extended to the affine-jump diffusion model.

Chapter 6. We conclude the paper and summarize the contributions. A few re-
marks and future work are stated.



Chapter 2

Full and Fast Calibration of the
Heston Stochastic Volatility
Model

2.1 Stochastic volatility models

A sophisticated model may reflect the reality better than a simple one, but usually
is more challenging to implement and calibrate. This is especially true with math-
ematical models for the pricing of derivatives and the estimation of risk. The most
basic model, introduced by Black and Scholes [12] and Merton [84] (BSM), assumes
that the underlying price follows a geometric Brownian motion with constant drift
and volatility. The price of a vanilla option is then given as a function of a single
parameter, the volatility. However, the BSM model does not adequately take into
account essential characteristics of market dynamics such as fat tails, skewness and
the correlation between the value of the underlying and its volatility. It has also
been observed that the volatility starts to fluctuate when the market reacts to new
information [65]. Thus, several extensions of the BSM model were suggested there-
after, including the family of stochastic volatility (SV) models, which introduces a
second Brownian motion to describe the fluctuation of the volatility. We study one
of the most important SV models; it was proposed by Heston [63] and is defined by
the system of stochastic differential equations

dSt = µStdt+√vtStdW (1)
t , (2.1a)

dvt = κ(v̄ − vt)dt+ σ
√
vtdW (2)

t , (2.1b)

with
dW (1)

t dW (2)
t = ρdt, (2.1c)

where St is the underlying price and vt its variance; the parameters κ, v̄, σ, ρ are
respectively called the mean-reversion rate, the long-term variance, the volatility of
volatility, and the correlation between the Brownian motions W (1)

t and W
(2)
t that
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drive the underlying and its variance; moreover there is a fifth parameter v0, the
initial value of the variance.

Model calibration is as crucial as the model itself. Calibration consists in de-
termining the parameter values so that the model reproduces market prices as ac-
curately as possible. Both the accuracy and the speed of calibration are important
because practitioners use the calibrated parameters to price a large number of com-
plicated derivative contracts and to develop high-frequency trading strategies.

Throughout this chapter, we use bold uppercase letters for matrices, e.g. J , and
bold lowercase letters for column vectors, e.g. θ; a superscript ᵀ for the transpose
of a matrix or vector; e for a vector of all ones [1, . . . , 1]ᵀ; E[·] for expectations;
1A(·) for the indicator function of the set A; Re(·) for the real part and Im(·) for the
imaginary part of a complex number; ‖ · ‖ for the l2-norm; ‖ · ‖∞ for the l∞-norm;
log for the natural logarithm.

2.2 Previous research on Heston model calibration

In the literature, there are two main approaches to calibrate the Heston model:
historical and implied. The first fits historical time series of the prices of an option
with a fixed strike and maturity, typically by the maximum likelihood method or
the efficient method of moments [3, 40, 66]. The second fits the volatility surface
of an underlying at a fixed time, i.e., options with several strikes and maturities,
to obtain the implied parameter set. Our work follows the second approach, as
that is what is used in real-time pricing and risk management. In the following, we
survey obstacles and existing methods for the Heston model calibration related to
the second approach.

2.2.1 Recognised difficulties

Firstly, the calibration is in a five-dimensional space. There is no consensus among
researchers on whether the objective function for the Heston model calibration is
convex or irregular. The results of some proposed methods [16, 51, 85] depend on
the initial point, which was attributed to a non-convex objective function, but might
simply reflect on the inadequacy of the methods. To find a reasonable initial guess,
short-term or long-term asymptotic rules are used; see Jacquier and Martini [67] for
a detailed review. However, recently Gerlich et al. [49] claimed a convergence to
the unique solution independent of the initial guess and suggested that the Heston
calibration problem may have some inherent structure leading to a single stationary
point. On the other hand, dependencies among the parameters do exist. For exam-
ple, it is known that σ and κ offset each other: the long-term distribution of the
volatility depends only on the ratio σ2/κ, so that a parameter set with large values
of σ and κ gives a fit comparable to a set with small values of σ and κ. Intuitively,
the fact that different parameter combinations yield similar values of the objective
function could be due to the objective function being flat close to the optimum; see
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Section 2.5 in this paper.
Secondly, the analytical gradient for the Heston calibration problem is hard to

find and has not been available so far because it was believed that the expression
of the Heston characteristic function is overly complicated to provide an insightful
analytical gradient: of course, a gradient can be obtained with symbolic algebra
packages, but the resulting expressions are intractable. Instead, numerical gradients
obtained by finite difference methods have been used in gradient-based optimisation
methods; however, numerical gradients have a larger computational cost and a lower
accuracy.

2.2.2 Existing methods

We review some heuristics to reduce the dimension of the calibration and then the
optimisation methods that have been applied so far.

2.2.2.1 Heuristics for dimension reduction

Since the Heston parameters are closely related to the shape of the implied volatility
surface [21, 48, 51, 69] (v0 controls the position of the volatility smile, ρ the skew-
ness, κ and σ the convexity, and κ times the difference between v0 and v̄ the term
structure of implied volatility), efforts have been made to simplify the calibration
to a lower dimension by presuming some of the parameter values based on knowl-
edge available for the specific volatility surface. The initial variance v0 is usually
set to the short-term at-the-money (ATM) BSM implied variance, which is based
on the term structure of the BSM implied volatility in the Heston model [48, p. 34-
35]. A practical calibration experiment [16, p. 29-30] verified the linearity between
the initial variance and the BSM implied variance for maturities in the range of 1
to 2 months. Clark [21, Eq. (7.3)] suggested the heuristic assumption κ = 2.75/τ
and v̄ = σATM(τ), where σATM(τ) is the ATM BS implied volatility with time to
maturity τ . Chen [16] proposed a fast intraday recalibration

by fixing κ to the same as yesterday’s and v0 to the 2-month ATM implied
volatility, which are heuristics actually adopted in the industry. These assumptions
help with an incomplete calibration, but may misguide the iterate to a limited
domain and thus to a wrong convergence point.

2.2.2.2 Stochastic optimisation methods

Researchers who believed that a descent direction is unavailable have devoted their
attention to stochastic optimisation methods, including Wang-Landau [16], differ-
ential evolution and particle swarm [52], simulated annealing [90], etc. To increase
the robustness, a deterministic search such as Nelder and Mead using the MAT-
LAB function fminsearch is often combined with these stochastic optimisation al-
gorithms. Almost all research using stochastic techniques reports issues with per-
formance. GPU technology has been applied with simulated annealing to speed up
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the calibration of the SABR model, a member of the family of SV models. Using 2
nVIDIA Geforce GTX470 GPUs it took 421.72 seconds to calibrate 12 instruments
achieving a 10−2 maximum error [41], which is still too slow for real-time use.

2.2.2.3 Deterministic optimisation methods

Deterministic optimisation solvers available with commercial packages have been
proved to be unstable as the performance largely depends on the quality of the ini-
tial guess: this applies to the Excel built-in solver [85] and to the MATLAB solver
lsqnonlin [9, 47, 90]. Gerlich et al. [49] adopted a Gauss-Newton framework and
kept the feasibility of the iterates by projecting to a cone determined by the con-
straints. The gradient of the objective function was calculated by finite differences
and thus costs a large number of function evaluations.

To sum up, existing calibration algorithms are either based on ad hoc assump-
tions or not fast or stable enough for practical use. In this work, we will focus on
deterministic optimisation methods without any presumption on the values of the
parameters.

2.3 Problem formulation and gradient calculation

The idea of calibrating a volatility model is to minimise the difference between the
vanilla option price calculated with the model and the one observed in the market.
In this section, we first formulate the calibration problem in a least squares form.
Then, we present the pricing formula of a vanilla option under the Heston model with
four algebraically equivalent representations of the characteristic function, discussing
their numerical stability and suitability for analytical derivation. We calculate the
analytical gradient of the objective function which can be used in any gradient-based
optimisation algorithm.

2.3.1 The inverse problem formulation

Denote by C∗(Ki, τi) the market price of a vanilla call option with strike Ki and
time to maturity τi := Ti− t, C(θ;Ki, τi) the price computed via the Heston analyt-
ical formula (2.9) with the parameter vector θ := [v0, v̄, ρ, κ, σ]ᵀ. We assemble the
residuals for the n options to be calibrated

ri(θ) := C(θ;Ki, τi)− C∗(Ki, τi), i = 1, . . . , n (2.2)

in the residual vector r(θ) ∈ Rn, i.e.,

r(θ) := [r1(θ), r2(θ), . . . , rn(θ)]ᵀ . (2.3)

We treat the calibration of the Heston model as an inverse problem in the non-
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linear least squares form
min
θ∈Rm

f(θ), (2.4)

where m = 5 indicates the dimension, and

f(θ) := 1
2‖r(θ)‖2 = 1

2r
ᵀ(θ)r(θ). (2.5)

Since there are many more market observations than parameters to be found, i.e.,
n� m, the calibration problem is overdetermined.

Our objective function is the sum of squared differences of price on a set of strikes
and maturities. The precise choice of objective function is a non-trivial matter and,
in an accounting sense, ultimately depends on the trade population on an actual
trading book. The choice of strikes and maturities is also non-trivial. For example,
choosing the same strikes (even as a percentage of spot as in [19, Table 1]) will lead
to these strikes being more OTM for shorter than for longer dated maturities which
could lead to miscalibration of the longer dated smile and computational underflow
problems in the calculation of shorter ended options. To remedy this we use the
standard approach in foreign exchange (FX) which is to use strikes defined by given
Deltas, namely ATM, and 25 and 10 Delta1 call and put options (see [21, Section
3.3]). With regards to the actual objective function, other possibilities have been
considered (see [20] for a review) which according to loc. cit. can lead to different
solutions. One such function used in industry is the sum of squared differences
of implied volatilities [22, Section 13.2]. As stated in [22] this quantity can be
approximated by dividing the difference in price by the Vega2 and it is relevant
when the price bid/offer spread in volatility terms is independent of strike. Note
that this is not always the case as less liquid OTM options will be quoted with a
wider bid/offer spread in volatilities. Calibrating to implied volatility will cause
OTM options, with lower Vega, to weigh more in the objective function and so the
resulting calibration, compared to the one based on the price, will privilege OTM
over ATM options. As our algorithm also approximates Vega it might also help
exploring the optimization problem in terms of implied volatility as a subject of
future work. Since the gradient will be derived from the pricing formula, for us it
is most straightforward and consistent to minimise the pricing error in the current
work.

Before applying any technique to solve the problem (2.4)–(2.5), one needs to bear
in mind that the evaluation of C(θ;Ki, τi) is expensive for the purpose of calibration;

1The sensitivity of BSM European option price with respect to spot price.
2The sensitivity of European option price with respect to volatility. Note that there are several

possible notions of Vega. For instance, Vega used in hedging positions, or “trader Vega”, is the
result of bumping actual market data prior to calibration and pricing. In FX, the market practice
is to quote OTM options as Risk Reversal and Strangle volatilities, sensitivity to these quantities
is often called Rega and Sega. For the purposes of calibration to implied volatilities, the relevant
Vega is what is sometimes referred in industry as the “fenics Vega” defined by the BSM expression
for Vega evaluated on the implied volatility. Another Vega that occurs is the sensitivity of prices
to model parameters that reflect the overall level of the smile, such as v0 in the Heston model, this
is sometimes alluded to as “model Vega”. The hope is that all these different measures are roughly
comparable.
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hence, one would like to minimise the number of computations of Eq. (2.9) when
designing the algorithm. Moreover, the explicit gradient of C(θ;Ki, τi) with respect
to θ is not available in the literature as it is deemed to be overly complicated. This
is indeed true if one starts from the commonly used expressions for the characteristic
function by Heston [63, Eq. (17)] or Schoutens et al. [105, Eq. (17)]. However, as
shown in the next section, a more convenient choice of the functional form of the
characteristic function by del Baño Rollin et al. [35, Eq. (6)] eases the derivation of
its analytical gradient.

2.3.2 Pricing formula of a vanilla option and representations of the
characteristic function

For a spot price St, an interest rate r and a dividend rate q, the price of a vanilla
call option with strike K and time to maturity τ := T − t is

C(θ;K, τ) = e−rτE[(ST −K)1{ST≥K}(ST )] (2.6a)

= e−rτ
(
E[ST1{ST≥K}(ST )]−KE[1{ST≥K}(ST )]

)
(2.6b)

= Ste
−qτP1(θ;K, τ)− e−rτKP2(θ;K, τ). (2.6c)

In the Heston model, P1(θ;K, τ) and P2(θ;K, τ) are solutions to certain pricing
PDEs [63, Eq. (12)] and are given as

P1(θ;K, τ) = 1
2 + 1

π

∫ ∞
0

Re

e−iu log K
S0

iu

φ(θ;u− i, τ)
φ(θ;−i, τ)

du, (2.7)

P2(θ;K, τ) = 1
2 + 1

π

∫ ∞
0

Re

e−iu log K
S0

iu
φ(θ;u, τ)

 du, (2.8)

where i is the imaginary unit, φ(θ;−i, τ) = Ste
(r−q)τ =: F is the forward price and

φ(θ;u, τ) is the characteristic function of the logarithm of the stock price process
with u the counterpart of logarithm of price in the Fourier space. Thus, the formula
for pricing a vanilla call option becomes

C(θ;K, τ) = 1
2Ste

−qτ − 1
2e
−rτK

+ e−rτ

π

∫ ∞
0

Re

e−iu log K
S0

iu
φ(θ;u− i, τ)

 du

−K
∫ ∞

0
Re

e−iu log K
S0

iu
φ(θ;u, τ)

 du

 . (2.9)

The characteristic function was originally given by Heston as [63, Eq. (17)]

φ(θ;u, τ) := E
[
exp

(
iu log St

S0

)]
= exp

{
iu log F

S0
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+κv̄

σ2

[
(ξ + d)τ − 2 log 1− g1e

dτ

1− g1

]
+ v0
σ2 (ξ + d) 1− edτ

1− g1edτ

}
, (2.10)

where

ξ := κ− σρiu, (2.11a)

d :=
√
ξ2 + σ2(u2 + iu), (2.11b)

g1 := ξ + d

ξ − d
. (2.11c)

Kahl and Jäckel [72] pointed out that when evaluating this form as a function
of u for moderate to long maturities, discontinuities appear because of the branch
switching of the complex power function Gα(u) = exp(α logG(u)) with G(u) :=
(1 − g1e

dτ )/(1 − g1) and α := κv̄/σ2, which appears in Eq. (2.10) as a multivalued
complex logarithm. This depends on the fact that G(u) has a shape of a spiral as u
increases, and when it repeatedly crosses the negative real axis, the phase of G(u)
jumps from −π to π. Then the phase of Gα(u) changes from −απ to απ, causing a
discontinuity when α is not a natural number.

Albrecher et al. [4] found that this happens when the principal value of the com-
plex square root d is selected, as most numerical implementations of these functions
do, but can be avoided if the second value is used instead. They proved that this
alternative representation, originally proposed by Schoutens et al. [105, Eq. (17)],
is continuous and gives numerically stable prices in the full-dimensional and unre-
stricted parameter space:

φ(θ;u, τ) = exp
{
iu log F

S0

+ κv̄

σ2

[
(ξ − d)τ − 2 log 1− g2e

−dτ

1− g2

]
+ v0
σ2 (ξ − d) 1− e−dτ

1− g2e−dτ

}
, (2.12)

where
g2 := ξ − d

ξ + d
= 1
g1
. (2.13)

Another equivalent form of the characteristic function was proposed later by del
Baño Rollin et al. [35, Eq. (6)]. We correct the expression in that paper by adding
the term −κv̄ρτiu/σ to the exponent, resulting in

φ(θ;u, τ) = exp
(
iu log F

S0
− κv̄ρτiu

σ
−A

)
B2κv̄/σ2

, (2.14)

where

A := A1
A2
, (2.15a)

A1 := (u2 + iu) sinh dτ2 , (2.15b)

A2 := d

v0
cosh dτ2 + ξ

v0
sinh dτ2 , (2.15c)
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B := deκτ/2

v0A2
. (2.15d)

Del Baño Rollin et al. introduced their expression to analyse the log-spot density,
and since then it has not been used for any other purpose. It was obtained by
manipulating the complex moment generating function; besides being more compact,
it replaces the exponential functions in the exponent with hyperbolic functions,
which makes the derivatives easier. Therefore, we will use this expression to obtain
the analytical gradient.

However, the same discontinuity problem pointed out by Kahl and Jäckel appears
here too. It comes from the factor B2κv̄/σ2 , or more specifically from the denominator
of B, i.e., A2. Fig. 2.1a shows a trajectory of γ(u) := (A2(u) log log |A2(u)|)/|A2(u)|.
The double-logarithmic scaling of the radius compensates the rapid outward move-
ment of the spiralling trajectory of A2(u) [4, 72]. For the curve we adopt the same
hue h ∈ [0, 1) as Kahl and Jäckel [72], h := log10(u + 1) mod 1, which means that
segments of slowly varying colour represent rapid movements of A2(u) as a function
of u.

-4 -2 2 4

-4

-2

2

4

Re γ(u)

Im γ(u)

(a) γ(u), u ∈ [0, 500].
Re logA2(u)

23.5 24 24.5 25

Im
lo
g
A

2
(u
)

-4

-2

0

2

4

6

8

logA2 =
dt

2 + log
(

d+ξ
2v0

+ d−ξ
2v0

e−dt

)

logA2 = log( d

v0
cosh dt

2 + ξ
v0
sinh dt

2 )

(b) logA2(u), u ∈ [0, 4].

Fig. 2.1: Trajectories of γ(u) and two equivalent forms of logA2(u) in the complex
plane. The curves were generated using the parameters in Table 2.1 with time to
maturity τ = 15.

Table 2.1: Parameters specification.

Model parameters Market parameters
κ 3.00 S0 1.00
v̄ 0.10 K 1.10
σ 0.25 r 0.02
ρ −0.80 q 0
v0 0.08
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We thus modify the representation by rearranging logA2 to

logA2 = log
(
d

v0
cosh dτ2 + ξ

v0
sinh dτ2

)
(2.16a)

= log d(edτ/2 + e−dτ/2) + ξ(edτ/2 − e−dτ/2)
2v0

(2.16b)

= log (d+ ξ)edτ/2 + (d− ξ)e−dτ/2
2v0

(2.16c)

= log
[
edτ/2

(
d+ ξ

2v0
+ d− ξ

2v0
e−dτ

)]
(2.16d)

= dτ

2 + log
(
d+ ξ

2v0
+ d− ξ

2v0
e−dτ

)
. (2.16e)

Fig. 2.1b shows the trajectories of the two equivalent formulations of logA2. The
rearrangement (2.16e) resolves the discontinuities arising from the logarithm with
Eq. (2.15c) as an argument. Then we insert Eq. (2.16e) into logB and denote the
final expression as D:

logB = log d

v0
+ κτ

2 − logA2 (2.17a)

= log d

v0
+ (κ− d)τ

2 − log
(
d+ ξ

2v0
+ d− ξ

2v0
e−dτ

)
=: D. (2.17b)

So we propose a new representation of the characteristic function which is alge-
braically equivalent to all the previous expressions and does not show the disconti-
nuities of Eqs. (2.10) and (2.14) for large maturities:

φ(θ;u, τ) = exp
(
iu log F

S0
− κv̄ρτiu

σ
−A+ 2κv̄

σ2 D

)
. (2.18)

u

0 1 2 3 4

R
e
φ
(θ
;u

,
τ
)

-0.5

0

0.5

1

Heston, Eq.(10)
Schoutens et al., Eq.(12)
del Baño Rollin et al., Eq.(14)
Cui et al., Eq.(18)

Fig. 2.2: Four equivalent representations of the Heston characteristic function. The
curves were generated using the parameters in Table 2.1 with maturity T = 15.
Eq. (2.10) jumps at u = 1, Eq. (2.14) jumps at u = 2, while Eqs. (2.12) and (2.18)
are continuous.

We have discussed four equivalent representations of the Heston characteristic
function, three from previous research and one newly proposed here by us. We
compare them in Fig. 2.2: the plot of our expression is continuous and overlaps
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Table 2.2: Properties of the four representations of the Heston characteristic func-
tion.

Numerically continuous Easily derivable
Heston 7 7

Schoutens et al. 3 7

del Baño Rollin et al. 7 3

Cui et al. 3 3

Schoutens et al.’s, while the other two exhibit discontinuities due to the multivalued
complex functions. Moreover our expression, like the one by del Baño Rollin et al.
from which it was obtained, has the advantage of being easily derivable, as shown
in the next section. These properties are summarised in Table 2.2.

2.3.3 Analytical gradient

We use ∇ = ∂/∂θ for the gradient operator with respect to the parameter vec-
tor θ and ∇∇ᵀ for the Hessian operator. For convenience, we omit to write the
dependence of the residual vector r on θ.

2.3.3.1 The basic theorem of the analytical gradient

Let J = ∇rᵀ ∈ Rm×n be the Jacobian matrix of the residual vector r with elements

Jji =
[
∂ri
∂θj

]
=
[
∂C(θ;Ki, τi)

∂θj

]
, (2.19)

and H(ri) := ∇∇ᵀri ∈ Rm×m be the Hessian matrix of each residual ri with
elements

Hjk(ri) =
[
∂2ri
∂θj∂θk

]
. (2.20)

Following the nonlinear least squares formulation (2.4)–(2.5), one can easily write
the gradient and Hessian of the objective function f as

∇f = Jr, (2.21a)

∇∇ᵀf = JJᵀ +
n∑
i=1

riH(ri). (2.21b)

Theorem 2.1. Assume that an underlying asset S follows the Heston process (2.1).
Let θ := [v0, v̄, ρ, κ, σ]ᵀ be the parameters in the Heston model, C(θ;K, τ) be the
price of a vanilla call option on S with strike K and time to maturity τ . Then the
gradient of C(θ;K, τ) with respect to θ is

∇C(θ;K, τ) = e−rτ

π

∫ ∞
0

Re

e−iu log K
S0

iu
∇φ(θ;u− i, τ)

du
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− K

∫ ∞
0

Re

e−iu log K
S0

iu
∇φ(θ;u, τ)

du

 , (2.22)

where ∇φ(θ;u, τ) = φ(θ;u, τ)h(u), h(u) := [h1(u), h2(u), . . . , h5(u)]ᵀ with elements

h1(u) = −A
v0
, (2.23a)

h2(u) = 2κ
σ2D −

κρτiu

σ
, (2.23b)

h3(u) = −∂A
∂ρ

+ 2κv̄
σ2d

(
∂d

∂ρ
− d

A2

∂A2
∂ρ

)
− κv̄τiu

σ
, (2.23c)

h4(u) = 1
σiu

∂A

∂ρ
+ 2v̄
σ2D + 2κv̄

σ2B

∂B

∂κ
− v̄ρτ iu

σ
, (2.23d)

h5(u) = −∂A
∂σ
− 4κv̄

σ3 D + 2κv̄
σ2d

(
∂d

∂σ
− d

A2

∂A2
∂σ

)
+ κv̄ρτiu

σ2 ; (2.23e)

ξ, d,A,A1, A2, B,D, φ(θ;u, τ) are defined in Eqs. (2.11a), (2.11b), (2.15), (2.17b)
and (2.18), respectively.

Proof. Eq. (2.22) is a direct result from the vanilla option pricing function (2.9).
Then the problem reduces to the derivation of the gradient of the characteristic
function φ(θ;u, τ). Starting from Eq. (2.14) and following the chain rule, one can
get ∇φ(θ;u, τ) as discussed below.

Since v0 and v̄ are only in the exponent and are not involved with the definition
of A or B, we directly obtain

∂φ(θ;u, τ)
∂v0

= −A
v0
φ(θ;u, τ), (2.24)

∂φ(θ;u, τ)
∂v̄

= 2κ logBφ(θ;u, τ)
σ2 . (2.25)

Next we derive the partial derivative with respect to ρ, since it provides some terms
that can be reused for the rest. We have

∂φ(θ;u, τ)
∂ρ

= φ(θ;u, τ)
(
−κv̄τiu

σ
− ∂A

∂ρ

)
+ φ(θ;u, T )2κv̄

σ2
1
B

∂B

∂ρ
(2.26a)

= φ(θ;u, τ)
[
−κv̄τiu

σ
− ∂A

∂ρ
+ 2κv̄
σ2d

(
∂d

∂ρ
− d

A2

∂A2
∂ρ

)]
(2.26b)

= φ(θ;u, τ)
[
−∂A
∂ρ

+ 2κv̄
σ2d

(
∂d

∂ρ
− d

A2

∂A2
∂ρ

)
− κv̄τiu

σ

]
, (2.26c)

where

∂d

∂ρ
= −ξσiu

d
, (2.27a)

∂A2
∂ρ

= −σiu(2 + tξ)
2d

(
ξ cosh dt2 + d sinh dt2

)
, (2.27b)

∂B

∂ρ
= eκt/2

( 1
A2

∂d

∂ρ
− d

A2
2

∂A2
∂ρ

)
, (2.27c)
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∂A1
∂ρ

= − iu(u2 + iu)tξσ
2d cosh dt2 , (2.27d)

∂A

∂ρ
= 1
A2

∂A1
∂ρ
− A

A2

∂A2
∂ρ

. (2.27e)

By merging and rearranging terms, we find that

∂A

∂κ
= i

σu

∂A

∂ρ
, (2.28a)

∂B

∂κ
= i

σu

∂B

∂ρ
+ Bτ

2 , (2.28b)

which are inserted into

∂φ(θ;u, τ)
∂κ

= φ(θ;u, τ)
(
−∂A
∂κ

+ 2v̄
σ2 logB + 2κv̄

σ2B

∂B

∂κ
− v̄ρτ iu

σ

)
(2.29)

to reach the expression (2.23d). Similarly, Eq. (2.23e) can be obtained by applying
the chain rule to Eq. (2.14), and the intermediate terms for ∂φ(θ;u, τ)/∂σ can be
written in terms of those for ∂φ(θ;u, τ)/∂ρ, that is

∂d

∂σ
=
(
ρ

σ
− 1
ξ

)
∂d

∂ρ
+ σu2

d
, (2.30a)

∂A1
∂σ

= (u2 + iu)τ
2

∂d

∂σ
cosh dτ2 , (2.30b)

∂A2
∂σ

= ρ

σ

∂A2
∂ρ
− 2 + τξ

v0τξiu

∂A1
∂ρ

+ στA1
2v0

, (2.30c)

∂A

∂σ
= 1
A2

∂A1
∂σ
− A

A2

∂A2
∂σ

. (2.30d)

In the end, we replace logB appearing in Eqs. (2.25) and (2.29) with D, defined in
Eq. (2.17b), to ensure the numerical continuity of the implementation.

Next we discuss the computation of the integrands in Eq. (2.22) and their con-
vergence.

2.3.3.2 Efficient calculation and convergence of the integrands

All integrands have the form Re
(
φ(θ;u, τ)hj(u)(K/S0)−iu/(iu)

)
and hj(u) is a

product of elementary functions depending on which parameter is under consid-
eration. It has been pointed out in the original paper by Heston [63] that the term
Re
(
φ(θ;u, τ)(K/S0)−iu/(iu)

)
is a smooth function that decays rapidly and presents

no difficulties; its product with elementary functions decreases fast too. A visual
example is shown in Fig. 2.3, with parameters given in Table 2.1. In our time units,
τ = 1 is a trading year made of 252 days.

Denote as ū the value of u for which all integrands are not larger than 10−8. For
our testing parameter set, we observe in Figs. 2.3 and 2.4 that ū decreases when
τ increases. This is due to the fact that the more spread-out a function is, the
more localised its Fourier transform is (see the uncertainty principle in physics): as
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τ increases, the probability density of ST stretches out, while its Fourier transform
φ(θ;u, τ) squeezes. More specifically, if X and U are random variables whose prob-
ability density functions are, apart of a constant, Fourier pairs of each other, the
product of their variances is a constant, i.e., Var(X)Var(U) ≥ 1.

Denote as ū the value of u for which all integrands are not larger than 10−8. For
our testing parameter set, we observe in Figs. 2.3 and 2.4 that ū decreases when T
increases. This is due to the fact that the more spread-out a function is, the more
localised its Fourier transform is (see the uncertainty principle in physics): as T
increases, the probability density of ST stretches out, while its Fourier transform
φ(θ;u, T ) squeezes. More specifically, if X and U are random variables whose prob-
ability density functions are, apart of a constant, Fourier pairs of each other, the
product of their variances is a constant, i.e., Var(X)Var(U) ≥ 1. Based on this
observation, one can adjust the truncation according to the maturity of the option
and hence do fewer integrand evaluations for options with longer maturities.

In order to obtain the integrands in Eq. (2.22), one only needs to compute
φ(θ;u, τ) and h(u). After rearranging and merging terms, we find that calculating
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(d) 252 days to maturity.

Fig. 2.3: Convergence of the integrands: Re
(
φ(θ;u, τ)(K/S0)−iu/(iu)

)
in the Hes-

ton pricing formula for C(θ;K, τ) (dark blue) and Re
(
φ(θ;u, τ)h(u)(K/S0)−iu/(iu)

)
in the components of its gradient ∂C/∂θ (other colors); hj(u), j = 1, . . . , 5 are re-
spectively relevant for ∂C/∂θj . The black circle indicates the value ū where all
integrands are below 10−8.
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h(u) can be boiled down to obtaining the intermediate terms (2.27), (2.28) and
(2.30).

log τ
3 3.5 4 4.5 5 5.5 6

lo
g
ū

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

Fig. 2.4: As the time to maturity τ increases, the value ū for which all integrands
evaluate to 10−8 or less decreases.

Algorithm 2.3.1. Vectorised integration in the Heston gradient.
1 Specify N grid nodes {uk}Nk=1 and N corresponding weights {wk}Nk=1.
2 for k = 1, 2, . . . , N do
3 Compute h(uk).
4 end
5 for j = 1, 2, . . . , 5 do
6 Compute

∫∞
0

K−iu

iu φ(θ;u, τ)hj(u)du ≈∑N
k=1

K−iuk

iuk
φ(θ;uk, τ)hj(uk)wk.

7 end

It is a favorable result that the components of h(u) share these common terms be-
cause then the gradient ∇C(θ;K, τ) can be obtained by vectorizing the quadrature
for all the integrands as illustrated in Algorithm 2.3.1. Due to the interdependence
among components of h(u), this scheme is faster than computing and integrating
each component hj(u) individually. Next, we discuss the choice of the numerical
integration method and of the key parameters N , uk and wk, but we point out that
this vectorised quadrature is compatible with any numerical integration method.

2.3.3.3 Integration scheme

The computation of the integrals in the pricing function (2.9) and the gradient
function (2.22) dominates the cost of calibration. Thus, we discuss the proper choice
of the numerical integration scheme. Specifically, we compare the trapezoidal rule
(TR) and the Gauss-Legendre rule (GL). In Figs. 2.5a and 2.5b, we plot the error
of the integral evaluation respectively in the pricing formula and its gradient. The
horizontal axis is the number of quadrature nodes N and the vertical axis is the
log10 scale of the absolute error of integration, which is defined as

εintegration := |Φ(N)− Φ(Nmax)|, (2.31)
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Fig. 2.5: Comparison between TR (full blue for mean and dotted purple for maxi-
mum and minimum) and GL (full red for mean and dotted pink for maximum and
minimum) for the error of the integral evaluation under the Heston model.

where Φ(N) is the value of the integration with N nodes, N is selected equidistantly
in the range [10, 100], Nmax should be ∞ and is chosen as 1000 in our case. For the
plots we use 40 options with different strikes and maturities. More details on these
options are given in Section 2.5.

The error converges faster for GL than TR and has always a smaller variation
when more options are involved. In order to achieve an average accuracy of 10−8,
GL requires 40 nodes and TR requires 70. In order for the integrations for all the
options to achieve an accuracy at 10−8, GL requires 60 nodes and TR requires much
more than 100.

Besides the fast convergence of the integral error, GL is advantageous in its
selection of nodes. GL rescales the domain of integration to [−1,+1], selects nodes
that are symmetric around the origin, and assigns the same weight to each symmetric
pair of nodes. Thus, a further reduction in computation can be achieved by making
use of the common terms of a node and its opposite. Based on these benefits,
we choose the GL integration scheme with about 60 nodes to calibrate the Heston
model.

2.3.3.4 Comparison with numerical gradient

Previous calibration methods approximate the gradient by a finite difference scheme.
A central difference scheme is the approximation

∇C(θ;K, τ) ≈ C(θ + ε;K, τ)− C(θ − ε;K, τ)
2ε , (2.32)

where ε := εe and ε is small. Different values of the increment ε could be chosen
for each component θj ; for simplicity we have taken it constant. The size of the
difference, ε, has a non-trivial effect on the approximation. An excessively small
value of ε is not able to reflect the overall function behaviour at the point and may
lead to a wrong moving direction. Moreover the numerical gradient naturally has an
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error and one cannot expect to find a solution with a better accuracy than that of
the gradient. In most cases, the iteration stagnates when the error of the objective
function is roughly the same size as the error of the gradient.

Besides the instability caused by an inappropriate choice of ε, a numerical gra-
dient has a higher computational cost than an analytical gradient. Recall that the
evaluation of one option price C(θ;K, τ) requires the evaluation of two integrals as
in Eq. (2.9). Let n be the number of options to be calibrated. At each iteration, one
needs to compute 20n integrals if using the finite difference scheme while only 2n
integrals if using the analytical form with the vectorised integration scheme. To give
a more intuitive comparison between the two methods, we perform a preliminary
experiment with ε = 10−4 and n = 40 using the MATLAB function quadv with an
adaptive Simpson rule for the numerical integration.

In Table 2.3, we report the CPU time as an average of 500 runs and the number
of calls of the integral function for each method. In order to give a relative sense
of speed that is independent of the machine, the CPU time for analytical gradient
is scaled to unity, and that for numerical gradient results about 16 times longer.
Considering the 94% of saving in computational time and the exempt from deciding
ε, we propose to use the analytical Heston gradient with vectorised quadrature in a
gradient-based optimisation algorithm to calibrate the model.

2.4 Calibration using the Levenberg-Marquardt method

In this section, we present the algorithm for a complete and fast calibration of the
Heston model using the LM method [91].

The LM method is a typical tool to solve a nonlinear least squares problem like
Eq. (2.4). The search direction is given by

∆θ = (JJᵀ + µI)−1∇f, (2.33)

where I is the identity matrix and µ is a damping factor. By adaptively adjusting µ,
the method alternates between the steepest descent method and the Gauss-Newton
method. That is, when the iterate is far from the optimum, µ is given a large value
so that the Hessian matrix is dominated by the scaled identity matrix

∇∇ᵀf ≈ µI; (2.34)

Table 2.3: A comparison between numerical and analytical gradients for n = 40
options.

Computational cost Numerical gradient Analytical gradient
CPU time (arbitrary units) 15.8 1.0
Number of integral evaluations 800 80
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when the iterate is close to the optimum, µ is assigned a small value so that the
Hessian matrix is dominated by the Gauss-Newton approximation

∇∇ᵀf ≈ JJᵀ, (2.35)

which omits the second term∑n
i=1 riH(ri) in Eq. (2.21b). The approximation (2.35)

is reliable when either ri or H(ri) is small. The former happens when the problem
is a so-called small residual problem and the latter happens when f is nearly linear.
The viewpoint is that the model should yield small residuals around the optimum
because otherwise it is an inappropriate model. The Heston model has been known
to be able to explain the smile and skew of the volatility surface. Therefore, we
conjecture it to be a small residual problem and adopt the approximation of the
Hessian in Eq. (2.35) as converging to the optimum. There are various implementa-
tions of the LM method, such as MINPACK [36], LEVMAR [76], sparseLM [77] etc. We
adopt the LEVMAR package which is a robust and stable implementation in C/C++
distributed under GNU. Although it has never been used in computational finance,
LEVMAR has been integrated into many open source and commercial products in other
applications such as astrometric calibration and image processing. See Algorithm
2.4.1.

Algorithm 2.4.1. Levenberg-Marquardt algorithm to calibrate the Heston
model.
1 Given the initial guess θ0, compute ‖r(θ0)‖ and J0.
2 Choose the initial damping factor µ0 = τ max {diag(J0)} and ν0 = 2.
3 for k = 0, 1, 2, . . . do
4 Solve the normal equations (2.33) for ∆θk.
5 Compute θk+1 = θk + ∆θk and ‖r(θk+1)‖.
6 Compute δL = ∆θkᵀ(µk∆θk + Jkr(θk)) and δF = ‖r(θk)‖ − ‖r(θk+1)‖.
7 if δL > 0 and δF > 0 then
8 Accept the step: compute Jk+1, µk+1 = µk, νk+1 = νk.
9 else

10 Recalculate the step: set µk = µkνk, νk = 2νk and repeat from line 4.
11 end
12 if the stopping criterion (2.36) is met then
13 Break.
14 end
15 end

In lines 1 and 5 of Algorithm 2.4.1, the option pricing function is evaluated. In
lines 1 and 8, the gradient function is evaluated. The values of µ0 and ν0 in line 2 are
the default choice of LEVMAR. In line 4, a 5×5 linear system is solved; in LEVMAR this
is done by an LDLT factorization with the pivoting strategy of Bunch and Kaufman
[13] using the LAPACK [8] routine.

The stopping criterion for the LM algorithm is when one of the following is
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satisfied:

‖r(θk)‖ ≤ ε1, (2.36a)

‖Jke‖∞ ≤ ε2, (2.36b)
‖∆θk‖
‖θk‖

≤ ε3, (2.36c)

where ε1, ε2 and ε3 are tolerance levels. The first condition (2.36a) indicates that
the iteration is stopped by a desired value of the objective function (2.4)-(2.5). The
second condition (2.36b) indicates that the iteration is stopped by a small gradient.
The third condition (2.36c) indicates that the iteration is stopped by a stagnating
update.

2.5 Numerical results

In this section, we present our experimental results for the calibration of the Heston
model. We first describe the data and then report the performance of our calibration
method in comparison with the fastest previous method. We examine the Hessian
matrix at the optimal solution which reveals the reason of the multiple optima
observed in previous research. In the end, we test on three parameterisations that
are typical for certain options. The result justifies the computational efficiency and
robustness of our method for practical problems.

2.5.1 Data

In order to check whether the optimal parameter set found by the algorithm is the
global optimum, we first presume a parameter set θ∗ specified in Table 2.1, and then
use it to generate a volatility surface that is typically characterised by these options:
the ∆10 call and put options, ∆25 call and put options, and ∆50 (i.e., ATM) call
options with maturity from 30 to 360 days. Here ∆ := ∂C(θ;K, τ)/∂S is the BS
greek, i.e., the sensitivity of the option price with respect to the movement of its
underlying spot. In Table 2.4, we give the BSM implied volatilities of 40 options

Table 2.4: Implied volatility surface for calibration.

Maturity in days ∆put
10 ∆put

25 ∆call
50 ∆call

25 ∆call
10

30 2.5096 1.4359 0.2808 0.2540 0.2369
60 2.4351 1.3216 0.2847 0.2606 0.2417
90 2.3823 1.2955 0.2878 0.2660 0.2489

120 2.3383 1.2677 0.2904 0.2699 0.2548
150 2.2996 1.2407 0.2925 0.2745 0.2598
180 2.2619 1.2166 0.2943 0.2777 0.2641
252 2.1767 1.1671 0.2975 0.2837 0.2722
360 2.0618 1.1136 0.3007 0.2897 0.2803
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that are generated by θ∗. This is a quoting style of the volatility surface commonly
used in the financial industry, where ∆ is a measure equivalent to the strike K. We
denote call and put options using superscripts, respectively as ∆call and ∆put. The
target is thus to find a parameter set θ† that can replicate the volatility surface in
Table 2.4. If θ† is far from θ∗ or in other words, depends on the initial guess θ0,
then one concludes that local optimal parameter sets exist. Otherwise the problem
presents only a global optimum.

We validated our method using different optimal parameters and initial guesses
in a reasonable range given in Table 2.5. The procedure is described in Algorithm
2.5.1.

Table 2.5: Reasonable ranges to randomly generate Heston model parameters and
the average absolute distance between the initial guess θ0 and the optimum θ∗.

Range for model parameters Absolute deviation from θ∗

κ (0.50, 5.00) |κ0 − κ∗| 1.5097
v̄ (0.05, 0.95) |v̄0 − v̄∗| 0.2889
σ (0.05, 0.95) |σ0 − σ∗| 0.2875
ρ (−0.90,−0.10) |ρ0 − ρ∗| 0.2557
v0 (0.05, 0.95) |(v0)0 − v

∗
0 | 0.3063

Algorithm 2.5.1. Validation procedure.
1 for i = 1, 2, . . . , 100 do
2 Generate a vector of optimal parameters θ∗i , each component of which is

an independent uniformly distributed random number in the interval
specified in Table 2.5.

3 for j = 1, 2, . . . , 100 do
4 Generate an initial guess θ0j , each component of which is an

independent uniformly distributed random number in the interval
specified in Table 2.5.

5 Validate Algorithm 2.4.1 using the initial guess θ0j to find θ∗i .
6 end
7 end

Following this procedure, we validated Algorithm 2.4.1 with 10 000 test cases.
An average of the distances between the initial guesses θ0 and the optima θ∗ is given
in Table 2.5. The results of the tests are discussed in the next section.

2.5.2 Performance

The computations were performed on a MacBook Pro with a 2.6 GHz Intel Core
i5 processor, 8 GB of RAM and OS X Yosemite version 10.10.5. The pricing and
gradient functions for the Heston model were coded in C++ using Xcode version
7.3.1. We use LEVMAR version 2.6 [76] as the LM solver and the tolerance in (2.36)
is specified as ε1 = ε2 = ε3 = 10−10. However, in our experiments the LM iteration
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was always stopped by meeting the condition on the objective function (2.36a). We
use GL integration with N = 64 nodes and for simplicity we truncate the upper
limit of the integration in Eq. (2.22) at ū = 200 which shall be enough for pricing
and calibrating in all cases.

The proposed method succeeds in finding the presumed parameter set in 9 843
cases out of 10 000 without any constraints on the search space and in 9 856 cases
restraining the search to the intervals specified in Table 2.5. The average CPU time
for the whole calibration process is less than 0.3 seconds. See Table 2.6 for detailed
information on the whole validation set. In Table 2.7 and in the rest of this section
we specify the information for a representative example with the optimal parameter
set θ∗ specified in Table 2.1 and the initial guess θ0 = [1.20, 0.20, 0.30,−0.60, 0.20]ᵀ.

The convergence of the residual rk and the relative distance of each parameter
towards the optimum is plotted in Fig. 2.6. In Figs. 2.7a and 2.7b, we plot the
pricing error on the implied volatility surface at the initial point θ0 and the optimal
point θ†, respectively. As can be seen, the pricing error decreases from 10−2 to 10−7

after 13 steps.
This result contrasts the conclusion of previous research: local optimal param-

eters are not intrinsically embedded in the Heston calibration problem, but rather
caused by an objective function shaped as a narrow valley with a flat bottom and a
premature stopping criterion.

We plot the contours for ‖r‖ when varying 2 out of 5 parameters. Starting from
θ0, the iteration path is shown with contour plots in Fig. 2.8. The initial point θ0

is marked with a black circle and the true solution θ∗ is marked with a black plus
symbol. The red lines with asterisks are the iteration paths of θk, k = 1, . . . , 13.

Table 2.6: Information about the optimisation: average over 10 000 testing cases.

Absolute deviation from θ∗ Error measure Computational cost
|κ† − κ∗| 1.54× 10−3 ‖r0‖ 1.39× 10−1 CPU time (seconds) 0.29
|v̄† − v̄∗| 2.40× 10−5 ‖r†‖ 2.94× 10−11 LM iterations 12.82
|σ† − σ∗| 3.79× 10−3 ‖J†e‖∞ 1.47× 10−5 price evaluations 14.57
|ρ† − ρ∗| 1.52× 10−2 ‖∆θ†‖ 3.21× 10−4 gradient evaluations 12.82
|v†0 − v

∗
0 | 6.98× 10−6 linear systems solved 13.57

Table 2.7: Information about the optimisation of a representative example.

Absolute deviation from θ∗ Error measure Computational cost
|κ† − κ∗| 1.09× 10−3 ‖r0‖ 4.73× 10−2 CPU time (seconds) 0.29
|v̄† − v̄∗| 2.18× 10−6 ‖r†‖ 1.00× 10−12 LM iterations 13
|σ† − σ∗| 4.70× 10−5 ‖J†e‖∞ 1.21× 10−5 price evaluations 14
|ρ† − ρ∗| 9.89× 10−6 ‖∆θ†‖ 2.50× 10−4 gradient evaluations 13
|v†0 − v

∗
0 | 1.18× 10−6 linear systems solved 13
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Fig. 2.7: Pricing error on the implied volatility surface.

Table 2.8: The Hessian matrix ∇∇ᵀf(θ∗).

∂κ ∂v̄ ∂σ ∂ρ ∂v0

∂κ 5.26× 10−5

∂v̄ 9.65× 10−3 2.26× 10+1

∂σ −5.49× 10−4 −7.66× 10−2 7.46× 10−3

∂ρ 1.61× 10−4 2.00× 10−2 −2.34× 10−3 7.56× 10−4

∂v0 5.28× 10−3 1.18× 10+1 −3.53× 10−2 8.40× 10−3 9.69× 10−1

For almost all pairs, the first step is a long steepest descent step that is nearly
orthogonal to the contour. The rest are relatively cautious steps with the Gauss-
Newton approximation of the Hessian. The contour plots do not show evidence for
local minima, at least not in 2 dimensional sections.

The Gauss-Newton approximation of the Hessian matrix at the optimal solution
is given in Table 2.8.

The Hessian matrix is ill-conditioned with a condition number of 3.978 × 106.
The elements ∂2f(θ∗)/∂κ2 and ∂2f(θ∗)/∂ρ2 are of a much smaller order than the
others. This suggests that the objective function, when around the optimum, is
less sensitive to changes along κ and ρ. The effect of κ on the objective function
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Fig. 2.8: Contours of ‖r‖ and iteration path for (θi, θj).

is weak because option prices depend on the integrated volatility, which is little
sensitive to the degree of oscillation of volatility; ρ controls the slope of the smile,
so this parameter is difficult to identify if a narrow range of moneyness is used for
calibration.

In other words, the objective function is more stretched along these two axes
as can be verified looking at the contours, for example in Figs. 2.8a and 2.8b. The
ratio between ∂2f(θ∗)/∂κ2 and ∂2f(θ∗)/∂v̄2 is of order 10−6, which indicates a great
disparity in sensitivity: changing 1 unit of v̄ is comparable to changing 106 units of
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Fig. 2.8: (cont.) Contours of ‖r‖ and iteration path for (θi, θj).

κ. On the other hand, this explains the so-called local minima reported in previous
research. When one starts from a different initial point and stops the iteration with
a high tolerance, it is possible that the iterate lands somewhere in the region where
κ and ρ are very different. There are two possible approaches that one can seek
to deal with this: the first is to scale the parameters to a similar order and search
on a better-scaled objective function; the second is to decrease the tolerance level
for the optimisation process, meaning to approach the very bottom of this objective
function.

In Table 2.9, we present the performance of the LM method with analytical
gradient (LMA), the LM method with numerical gradient (LMN), and a feasibil-
ity perturbed sequential quadratic programming method (FPSQP) [49] adopted in
UniCredit bank. As the concrete implementation of FPSQP is owned by the bank,
we only extract their test results. The computational cost can be compared through
the number of evaluations of the pricing function (2.9) per iteration, expressed as a
multiple of the number n of options to be calibrated. LMA requires about n pricing
function evaluation per step. LMN requires more for the gradient approximation,
but the difference is not large since LMN uses a rank-one update for the subsequent
Jacobian matrices. FPSQP requires about 5.5 times more than that of LMA and
achieves only a lower accuracy for the stopping criterion for the gradient.
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We tested our method also on a few realistic model parameterisations. In Ta-
ble 2.10, we present three test cases that are representative respectively for long-
dated FX options, long-dated interest rate options and equity options [7]. They are
believed to be prevalent and challenging for the simulation of Heston model [53].
Each component of the initial guess is an independent uniformly distributed ran-
dom number in the ±10% range of the corresponding optimum. This choice is due
to the fact that practitioners usually choose the initial guess as the last available
estimation which is expected to be close to the solution if the calibration is frequent
enough and the market does not change drastically. We test each case with 100
initial guesses. Our previous test range in Table 2.5 has covered these cases too,
but here we would like to focus on the performance of our method when applied to
these typical examples and thus justify its computational efficiency and robustness
for practical application. The information about the convergence as an average of
the 100 initial guesses is given in Table 2.11. For the practical cases with initial
guesses in the vicinity, it takes less than or around one second to obtain the optimal
solution.

2.6 Conclusion

We proposed a new representation of the Heston characteristic function which is
continuous and easily derivable. We derived the analytical form of the gradient of
the Heston option pricing function with respect to the model parameters. The result
can be applied in any gradient-based algorithm. An algorithm for a full and fast
calibration of the Heston model is given. The LM method succeeds in finding the
global optimal parameter set within a reasonable number of iterations. The method

Table 2.9: Performance comparison between solvers.

LMA LMN FPSQP
Stopping criterion ‖r(θk)‖ ≤ 10−10 ‖r(θk)‖ ≤ 10−10 ‖∆θk‖ ≤ 10−6

Iterations 13 22 -
Price evaluations per iteration 1.08n 1.70n 6.00n

Table 2.10: Test cases with realistic Heston model parameters. Case I: long-dated
FX options. Case II: long-dated interest rate options. Case III: equity options.

Case I Case II Case III
κ∗ 0.50 0.30 1.00
v̄∗ 0.04 0.04 0.09
σ∗ 1.00 0.90 1.00
ρ∗ -0.90 -0.50 -0.30
v∗0 0.04 0.04 0.09
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Table 2.11: Calibration results for three typical realistic cases, reporting an average
on 100 initial guesses for each of them.

Case I Case II Case III
|κ† − κ∗| 2.87× 10−2 1.35× 10−3 1.20× 10−3

Absolute |v̄† − v̄∗| 4.80× 10−3 4.52× 10−5 2.11× 10−5

deviation |σ† − σ∗| 5.29× 10−2 7.48× 10−4 3.94× 10−4

from θ∗ |ρ† − ρ∗| 3.65× 10−2 1.69× 10−5 1.46× 10−5

|v†0 − v
∗
0 | 2.14× 10−3 1.46× 10−5 1.07× 10−5

‖r0‖ 2.70× 10−4 4.51× 10−5 1.02× 10−4

Error ‖r†‖ 1.12× 10−4 9.24× 10−11 3.33× 10−11

measure ‖J†e‖∞ 1.77× 10−1 4.63× 10−6 4.15× 10−6

‖∆θ†‖ 6.88× 10−21 1.63× 10−8 5.10× 10−5

CPU time 0.40 1.11 0.15
Computational LM iterations 16.83 51.52 6.86
cost Price evaluations 23.38 52.60 7.86

Gradient evaluations 16.83 51.52 6.86
Linear systems solved 23.38 51.52 6.86

is validated by randomly generated parameterisations as well as three typical cases
of Heston model parameterisations for long-dated FX options, long-dated interest
rate options and equity options. The resulting parameters can replicate the volatility
surface with an l2-norm error of 10−10 and an l1-norm error around 10−7. The cheap
computational cost and the stable performance for different initial guesses make
the proposed method suitable for the purpose of high-frequency trading. Several
numerical issues are discussed. We also present the final Hessian matrix and contours
of the objective function. We point out that either a rescaling of the parameters or
a low tolerance level is needed to find the global optimum.
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Chapter 3

Implementation of
Interior-point Methods for LP
based on Krylov Subspace
Iterative Solvers with
Inner-iteration Preconditioning

Linear programming (LP) is one of the most fundamental optimisation problems. It
is defined as a problem formulated by linear objective function and linear constraints.
Many real-life problems can be modelled to own this form, and solved by an LP
solver.

An example in finance is to solve a basic problem in financial mathematics. The
problem was originally described in a note by [30].

In this short problem description, these notations are used:

• m: number of states (scenarios),

• n: number of assets,

• P ∈ Rm×n: payoff matrix, where Pij represents the payoff of the jth asset
under the ith state,

• h ∈ Rn: trading strategy, hold hj units of asset j,

• y ∈ Rm: defined as y := P × h, represents the return of the portfolio under
different states given the strategy h. Due to the obvious fact that under no
states shall we lose money, y ≥ 0 needs to be satisfied component-wise,

• q ∈ Rm: risk-neutral probability measure. By this definition in the context of
financial mathematics, the conditions shall hold:

1. q ≥ 0,
∑
qi = 1, the definition of probability measure,
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2. 〈q, P (:, j)〉 = 0, the expected return of the jth assets should be zero under
no arbitrage condition3,

• e := [1, 1, . . . , 1]T: an all-one vector of proper size.

The problem is to maximize the payoff of the portfolio under all states

max eTy subject to y = Ph, y ≥ 0. (3.1)

It can be written in the standard dual form

max
[
0

e

]T [
h

y

]
, subject to


P −I
−P I

0 −I


[
h

y

]
+ s = 0, s ≥ 0, (3.2)

and its dual is

min


0

0

0


T

x, subject to
[
PT −PT 0

−I I −I

]
x =

[
0

e

]
, x ≥ 0. (3.3)

The problems (3.2) and (3.3) constitute the primal-dual form of an LP problem.
Not restricted to finance, LP has arisen from a wide range of applications, and

the size of problems to be solved has been increasing to millions. Thus, a good lP
solver that achieves speed and robustness is of importance to industrial practice.

As is well known, to solve a LP problem, there are two general classes of methods,
simplex and interior-point. Both methods seek for solution by searching from one
point to the next until the optimum is achieved. In the simplex method, each step is
cheap to compute, but the total number of steps may be large. On the other hand,
in the interior-point method, each step is more computationally expensive, but can
make a huge progress towards the optimal point. Our focus is on the interior-
point method. In this section we present an implementation of the interior-point
algorithm for LP based on Krylov subspace methods for least squares problems.
We employ an inner-iteration preconditioner recently developed by Morikuni and
Hayami [61, 93, 94] to deal with severe ill-conditioning of linear equations in the
final stage of iterations. The advantage of our methods is that it does not break
down even when previous direct methods do. Also, we save computation time and
storage compared to previous preconditioners.

3.1 Introduction

Consider the linear programming (LP) problem in the standard primal-dual formu-
lation

min
x
cTx subject to Ax = b, x ≥ 0, (3.4a)

3〈x, y〉 denotes the inner product between vectors x and y
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max
y,s

bTy subject to ATy + s = c, s ≥ 0, (3.4b)

where A ∈ Rm×n, m ≤ n, and we assume the existence of an optimal solution.
In this paper, we describe an implementation of the interior-point method for LP
based on iterative solvers. The main computational task in one iteration of the
interior-point method is the solution of a system of linear equations to compute
the search direction. Although there are two known approaches for this, i.e., direct
and iterative methods, the direct method is the primary choice so far and there is
very few implementation solely depending on an iterative method, e.g., [17]. This
is because the linear system becomes notoriously ill-conditioned toward the end of
interior-point iterations and no iterative solver has managed to resolve this difficulty.

Here, we apply novel inner-iteration preconditioned Krylov subspace methods
for least squares problems. The inner-iteration preconditioners recently proposed by
Morikuni and Hayami [93, 94] enable us to deal with the severe ill-conditioning of
the system of linear equations. Furthermore, the proposed Krylov subspace methods
do not suffer from singularity and therefore no preprocessing is necessary even if A
is rank-deficient. This is another advantage of our approach over the direct solvers.

Extensive numerical experiments were conducted over diverse instances of 125 LP
problems taken from the benchmark libraries Netlib, Qaplib, and Mittelmann
collections. The largest problem has 434,580 variables. Our implementation proves
to be more robust than the public-domain solvers SeDuMi (Self-Dual Minimization)
[108] and SDPT3 (Semidefinite Programming Toh-Todd-Tütüncü) [110, 111] with-
out increasing CPU time. As far as the authors know, this is the first time an
interior-point method entirely based on iterative solvers succeeds in solving a fairly
large number of standard LP instances from the benchmark libraries with standard
stopping criteria. Our implementation is considerably slower than the interior-point
solver of MOSEK [95], one of the state-of-the-art commercial solvers, though it is
competitive in robustness. On the other hand, we observed that our implementation
is able to solve ill-conditioned dense problems with severe rank-deficiency which the
MOSEK solver can not solve.

We emphasize that there are many interesting topics to be further worked out
based on this paper. There is still room for improvement regarding the iterative
solvers as well as using more sophisticated methods for the interior-point iterations.

In the following, we introduce the interior-point method and review the iterative
solvers previously used. We employ an infeasible primal-dual predictor-corrector
interior-point method, one of the methods that evolved from the original primal-
dual interior-point method [109, 74, 87, 113] incorporating several innovative ideas,
e.g., [115, 80].

The optimal solution x,y, s to problem (3.4) must satisfy the Karush-Kuhn-
Tucker (KKT) conditions

ATy + s = c, (3.5a)
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Ax = b, (3.5b)

XSe = 0, (3.5c)

x ≥ 0, s ≥ 0, (3.5d)

where X := diag(x1, x2, . . . , xn), S := diag(s1, s2, . . . , sn), and e := [1, 1, . . . , 1]T.
The complementarity condition (3.5c) implies that at the optimal point, one of the
elements xi or si must be zero for i = 1, 2, . . . , n.

The following system is obtained by relaxing (3.5c) to XSe = µe with µ > 0:

XSe = µe, Ax = b, ATy + s = c, x ≥ 0, s ≥ 0. (3.6)

The interior-point method solves the problem (3.4) by generating approximate so-
lutions to (3.6), with µ decreasing toward zero, so that (3.5) is satisfied within
some tolerance level at the solution point. The search direction at each infeasible
interior-point step is obtained by solving the Newton equations

0 AT I

A 0 0

S 0 X




∆x
∆y
∆s

 =


rd

rp

rc

 , (3.7)

where rd := c− ATy − s ∈ Rn is the residual of the dual problem, rp := b− Ax ∈
Rm is the residual of the primal problem, rc := −XSe + σµe, µ := xTs/n is
the duality measure, and σ ∈ [0, 1) is the centring parameter, which is dynam-
ically chosen to govern the progress of the interior-point method. Once the kth
iterate (x(k),y(k), s(k)) is given and (3.7) is solved, we define the next iterate as
(x(k+1),y(k+1), s(k+1)) := (x(k),y(k), s(k)) + α(∆x,∆y,∆s), where α ∈ (0, 1] is a
step length to ensure the positivity of x and s, and then reduce µ to σµ before
solving (3.7) again.

At each iteration, the solution of (3.7) dominates the total CPU time. The choice
of linear solvers depends on the way of arranging the matrix of (3.7). Aside from
solving the (m+ 2n)× (m+ 2n) system (3.7), one can solve its reduced equivalent
form of size (m+ n)× (m+ n)

[
A 0

S −XAT

] [
∆x
∆y

]
=
[

rp

rc −Xrd

]
, (3.8)

or a more condensed equivalent form of size m×m

AXS−1AT∆y = rp −AS−1(rc −Xrd), (3.9)

both of which are obtained by performing block Gaussian eliminations on (3.7). We
are concerned in this paper with solving the third equivalent form (3.9).

It is known that the matrix of (3.9) is not positive definite when any of the
following cases is encountered. First, when A is rank-deficient, system (3.9) is sin-
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gular. There exist presolving techniques that can detect and remove the dependent
rows in A, see, e.g., [5, 55]. Second, in late interior-point iterations, the diagonal
matrix XS−1 has very tiny and very large diagonal values as a result of convergence.
Thus, the matrix may become positive semidefinite, or even slightly indefinite, due
to rounding error. In particular, the situation becomes severe when primal degen-
eracy occurs at the optimal solution. One can refer to [58, 116] for more detailed
explanations.

Thus, when direct methods such as Cholesky decomposition are applied to (3.9),
some diagonal pivots encountered during decomposition can be zero or negative,
causing the algorithm to break down. Many direct methods adopt a strategy of
replacing the problematic pivot with a very large number. See, e.g., [116] for the
Cholesky-Infinity factorization, which is specially designed to solve (3.9) when it is
positive semidefinite but not definite. Numerical experience [1, 78, 44, 79, 6, 114, 29]
indicates that direct methods provide sufficiently accurate solutions for interior-point
methods to converge regardless of the ill-conditioning of the matrix. However, as
the LP problems become larger, the significant fill-ins in decompositions make direct
methods prohibitively expensive. It is stated in [56] that the fill-ins are observed
even for very sparse matrices. Moreover, the matrix can be dense, as in quadratic
programs in support vector machine training [42] or linear programs in basis pursuit
[17], and even when A is sparse, AXS−1AT can be dense or have a pattern of nonzero
elements that renders the system difficult for direct methods. The expensive solution
of the KKT systems is a usual disadvantage of second-order methods including
interior-point methods.

These drawbacks of direct methods and the progress in preconditioning tech-
niques motivate researchers to develop stable iterative methods for solving (3.9) or
alternatively (3.8). The major problem is that as the interior-point iterations pro-
ceed, the condition number of the term XS−1 increases, making the system of linear
equations intractable. One way to deal with this is to employ suitable precondition-
ers. Since our main focus is on solving (3.9), we explain preconditioners for (3.9)
in detail in the following. We mention [18, 45, 46, 10, 96] as literature related to
preconditioners for (3.8).

For the iterative solution of (3.9), the conjugate gradient (CG) method [62]
has been applied with diagonal scaling preconditioners [14, 100, 75] or incomplete
Cholesky preconditioners [80, 73, 18, 83]. LSQR with a preconditioner was used in
[50]. A matrix-free method of using CG for least squares (CGLS) preconditioned
by a partial Cholesky decomposition was proposed in [57]. In [24], a preconditioner
based on Greville’s method [25] for generalized minimal residual (GMRES) method
was applied. Suitable preconditioners were also introduced for particular fields such
as the minimum-cost network flow problem in [102, 70, 88, 89]. One may refer to
[31] for a review on the application of numerical linear algebra algorithms to the
solutions of KKT systems in the optimisation context.

In this chapter, we propose to solve (3.9) using Krylov subspace methods precon-
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ditioned by stationary inner-iterations recently proposed for least squares problems
in [61, 93, 94]. In Section 3.2, we briefly describe the framework of Mehrotra’s
predictor-corrector interior-point algorithm we implemented and the normal equa-
tions arising from this algorithm. In Section 3.3, we specify the application of our
method to the normal equations. In Section 3.4, we present numerical results in
comparison with a modified sparse Cholesky method and three direct solvers in
CVX, a major public package for specifying and solving convex programs [60, 59].
In Section 3.5, we conclude the work.

Throughout this chapter, we use bold lower case letters for column vectors. We
denote quantities related to the kth interior-point iteration by using a superscript
with round brackets, e.g., x(k), the kth iteration of Krylov subspace methods by
using a subscript without brackets, e.g., xk, and the kth inner iteration by using a
superscript with angle brackets, e.g., x〈k〉. R(A) denotes the range space of a matrix
A. κ(A) denotes the condition number κ(A) = σ1(A)/σr(A), where σ1(A) and
σr(A) denote the maximum and minimum nonzero singular values of A, respectively.
Kk(A, b) = span{b, Ab, . . . , Ak−1b} denotes the Krylov subspace of order k.

3.2 Interior-point algorithm and the normal equations

We implement an infeasible version of Mehrotra’s predictor-corrector method [81],
which has been established as a standard in this area [78, 79, 113, 82]. Note that
our method can be applied to other interior-point methods (see, e.g., [113] for more
interior-point methods) whose directions are computed via the normal equations
(3.9).

3.2.1 Mehrotra’s predictor-corrector algorithm

In this method, the centring parameter σ is determined by dividing each step into
two stages.

In the first stage, we solve for the affine direction (∆xaf ,∆yaf ,∆saf)
0 AT I

A 0 0

S 0 X




∆xaf

∆yaf

∆saf

 =


rd

rp

−XSe

 , (3.10)

and measure its progress in reducing µ. If the affine direction makes large enough
progress without violating the nonnegative boundary (3.5d), then σ is assigned a
small value. Otherwise, σ is assigned a larger value to steer the iterate to be more
centred in the strictly positive region.

In the second stage, we solve for the corrector direction (∆xcc,∆ycc,∆scc)
0 AT I

A 0 0

S 0 X




∆xcc

∆ycc

∆scc

 =


0

0

−∆Xaf∆Safe+ σµe

 , (3.11)
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where ∆Xaf = diag(∆xaf), ∆Saf = diag(∆saf) and σ is determined according to the
solution in the first stage. Finally, we update the current iterate along the linear
combination of the two directions.

In our implementation of the interior-point method, we adopt Mehrotra’s
predictor-corrector algorithm as follows.

Algorithm 3.2.1. Mehrotra’s predictor-corrector algorithm.
1: Given (x(0),y(0), s(0)) with (x(0), s(0)) > 0.
2: for k = 0, 1, 2, . . . until convergence, do
3: µ(k) := x(k)T

s(k)/n // the predictor stage
4: Solve (3.10) for the affine direction (∆xaf ,∆yaf ,∆saf).
5: Compute αp, αd.
6: if min (αp, αd) ≥ 1 then
7: σ := 0,

(
∆x(k),∆y(k),∆s(k)

)
:= (∆xaf ,∆yaf ,∆saf)

8: else
9: Set µaf and σ := a small value, e.g., 0.208. // the corrector stage

10: Solve (3.11) for the corrector direction (∆xcc,∆ycc,∆scc).
11:

(
∆x(k),∆y(k),∆s(k)

)
:= (∆xaf ,∆yaf ,∆saf) + (∆xcc,∆ycc,∆scc)

12: end if
13: Compute α̂p, α̂d.
14: x(k+1) := x(k) + α̂p∆x(k),

(
y(k+1), s(k+1)

)
:=
(
y(k), s(k)

)
+ α̂d

(
∆y(k),∆s(k)

)
15: end for

In line 5 in Algorithm 3.2.1, the step lengths αp, αd are computed by

αp = ηmin (1, min
i:∆xi<0

(− xi
∆xi

)), αd = ηmin (1, min
i:∆si<0

(− si
∆si

)), (3.12)

where (∆x,∆s) = (∆xaf ,∆saf), η ∈ [0.9, 1).
In line 9, the quantity µaf is computed by

µaf = (x(k) + αp∆xaf)T(s(k) + αd∆saf)/n.

In the same line, the parameter σ is chosen as σ = min (0.208, (µaf/µ
(k))2) in the

early phase of the interior-point iterations, where the value 0.208 is adopted from
the LIPSOL package [116]. In the late phase of the interior-point iterations, σ is
chosen as approximately 10 times the error measure Γ defined in (3.31). Here the
distinction between early and late phases is when Γ is more or less than 10−3.

In line 13, we first compute trial step lengths αp, αd using Eqs. (3.12) with
(∆x,∆s) = (∆x(k),∆s(k)). Then, we gradually reduce αp, αd to find the largest
step lengths that can ensure the centrality of the updated iterates, i.e., to find the
maximum α̂p, α̂d that satisfy

min
i

(xi + α̂p∆xi)(si + α̂d∆si) ≥ φ(x+ α̂p∆x)T(s+ α̂d∆s)/n,

where φ is typically chosen as 10−5.
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3.2.2 The normal equations in the interior-point algorithm

We consider modifying Algorithm 3.2.1 so that it is not necessary to update y(k).
Since we assume the existence of an optimal solution to problem (3.4), we have
b ∈ R(A). Let D := S−1/2X1/2 and A := AD. Problem (3.9) with ∆w = AT∆y
(the normal equations of the second kind) is equivalent to

min ‖∆w‖2 subject to A∆w = f , (3.13)

where f := rp −AS−1(rc −Xrd).
In the predictor stage, the problem (3.10) is equivalent to first solving (3.13) for

∆waf with ∆w = ∆waf , f = faf := b + AS−1Xrd, and then updating the others
by

∆saf = rd −D−1∆waf , (3.14a)

∆xaf = −D2∆saf − x. (3.14b)

In the corrector stage, the problem (3.11) is equivalent to first solving (3.13)
for ∆wcc with ∆w = ∆wcc, f = fcc := AS−1∆Xaf∆Safe − σµAS−1e, and then
updating the others by

∆scc = −D−1∆wcc, (3.15a)

∆xcc = −D2∆scc − S−1∆Xaf∆saf + σµS−1e. (3.15b)

By solving (3.13) for ∆w instead of solving (3.9) for ∆y, we can compute ∆saf ,
∆xaf , ∆scc, and ∆xcc and can save 1MV4 in (3.14a) and another in (3.15a) if a
predictor step is performed per interior-point iteration.

Remark 3.1. For solving an interior-point step from the condensed step equation (3.9)
using a suited Krylov subspace method, updating (x,w, s) rather than (x,y, s) can
save 1MV each interior-point iteration.

Note that in the predictor and corrector stages, problem (3.13) has the same
matrix but different right-hand sides. We introduce methods for solving it in the
next section.

3.3 Application of inner-iteration preconditioned Krylov
subspace methods

In lines 4 and 10 of Algorithm 3.2.1, the linear system (3.13) needs to be solved,
with its matrix becoming increasingly ill-conditioned as the interior-point itera-
tions proceed. In this section, we focus on applying inner-iteration preconditioned
Krylov subspace methods to (3.13) because they are advantageous in dealing with
ill-conditioned sparse matrices. The methods to be discussed are the preconditioned

4“MV” denotes the computational cost required for one matrix-vector multiplication.
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CG and MINRES methods [62, 97] applied to the normal equations of the second
kind ((P)CGNE and (P)MRNE, respectively) [23, 94], and the right-preconditioned
generalized minimal residual method (AB-GMRES) [61, 94].

First, the conjugate gradient (CG) method [62] is an iterative method for solving
linear systems Ax = b, where A ∈ Rn×n is a symmetric and positive (semi)definite
matrix and b ∈ R(A). CG starts with an initial approximate solution x0 ∈ Rn

and determines the kth iterate xk ∈ Rn by minimising ‖xk − x∗‖2A over the space
x0 +Kk(A, r0), where r0 = b−Ax0, x∗ is a solution of Ax = b, and ‖xk−x∗‖2A :=
(xk − x∗)TA(xk − x∗).

Second, MINRES [97] is another iterative method for solving linear systems
Ax = b, where A ∈ Rn×n is symmetric. MINRES with x0 determines the kth
iterate xk by minimising ‖b−Ax‖2 over the same space as CG.

Third, the generalized minimal residual (GMRES) method [104] is an iterative
method for solving linear systems Ax = b, where A ∈ Rn×n. GMRES with x0

determines the kth iterate xk by minimising ‖b−Ax‖2 over x0 +Kk(A, r0).

3.3.1 Application of inner-iteration preconditioned CGNE and
MRNE methods

We first introduce CGNE and MRNE. Let A = AAT, x = ∆yaf , b = faf , and
∆waf = AT∆yaf for the predictor stage, and similarly, let A = AAT, x = ∆ycc,
b = fcc, and ∆wcc = AT∆ycc for the corrector stage. CG and MINRES applied
to systems Ax = b are CGNE and MRNE, respectively. With these settings, let
the initial solution ∆w0 ∈ R(AT) in both stages, and denote the initial residual
by g0 := f − A∆w0. CGNE and MRNE can solve (3.13) without forming AAT

explicitly.
Concretely, CGNE gives the kth iterate ∆wk such that ‖∆wk − ∆w∗‖2 =

min∆w∈∆w0+Kk(ATA,ATg0) ‖∆w − ∆w∗‖2, where ∆w∗ is the minimum-norm solu-
tion of A∆w = f for ∆w0 ∈ R(AT) and f ∈ R(A). MRNE gives the kth iterate
∆wk such that ‖f −A∆wk‖2 = min∆w∈∆w0+Kk(ATA,ATg0) ‖f −A∆w‖2.

We use inner-iteration preconditioning for CGNE and MRNE methods. The
following is a brief summary of the part of [94] where the inner-outer iteration
method is analysed. We give the expressions for the inner-iteration precondition-
ing and preconditioned matrices to state the conditions under which the former
is SPD. Let M be a symmetric nonsingular splitting matrix of AAT such that
AAT = M − N . Denote the inner-iteration matrix by H = M−1N . The inner-
iteration preconditioning and preconditioned matrices are C(`) = ∑`−1

i=0 H
iM−1 and

AATC(`) = M
∑`−1
i=0(I − H)H iM−1 = M(I − H`)M−1, respectively. If C(`) is

nonsingular, then AATC(`)u = f , z = C(`)u is equivalent to AATz = f for all
f ∈ R(A). For ` odd, C(`) is symmetric and positive definite (SPD) if and only if
the inner-iteration splitting matrix M is SPD [92, Theorem 2.8]. For ` even, C(`) is
SPD if and only if the inner-iteration splitting matrix M +N is SPD [92, Theorem
2.8]. We give Algorithms 3.3.1–3.3.2 for CGNE and MRNE preconditioned by inner
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iterations [94, Algorithms E.3, E.4].

Algorithm 3.3.1. CGNE method preconditioned by inner iterations.
1: Let ∆w0 be the initial approximate solution, and g0 := f −A∆w0.
2: Apply ` steps of a stationary iterative method to AATz = g0, u = ATz to

obtain z0 := C〈`〉g0 and u0 := ATz0.
3: s0 := u0, γ0 := (g0, z0)
4: for k = 0, 1, 2, . . . until convergence, do
5: αk := γk/(sk, sk), ∆wk+1 := ∆wk + αsk, gk+1 := gk − αkAsk
6: Apply ` steps of a stationary iterative method to AATz = gk+1 to obtain

zk+1 := C〈`〉gk+1 and uk+1 := ATzk+1.
7: γk+1 := (gk+1, zk+1), βk := γk+1/γk, sk+1 := uk+1 + βksk
8: end for

Algorithm 3.3.2. MRNE method preconditioned by inner iterations.
1: Let ∆w0 be the initial approximate solution, and g0 := f −A∆w0.
2: Apply ` steps of a stationary iterative method to AATu = g0, s = ATu to

obtain s0 := ATC(`)g0.
3: p0 := s0, γ0 := ‖s0‖22
4: for k = 1, 2, . . . until convergence, do
5: tk := Apk
6: Apply ` steps of a stationary iterative method to AATu = tk, v = ATu to

obtain vk := ATC(`)tk.
7: αk := γk/(vk,pk), ∆wk := ∆wk+αkpk, gk+1 := gk−αktk, sk+1 := sk−αkvk

8: γk := ‖sk+1‖22, βk := γk+1/γk, pk+1 := sk + βkpk
9: end for

3.3.2 Application of inner-iteration preconditioned AB-GMRES
method

Next, we introduce AB-GMRES. GMRES can solve a square linear system trans-
formed from the rectangular systemA∆waf = faf in the predictor stage andA∆wcc =
fcc in the corrector stage by using a rectangular right-preconditioning matrix that
does not necessarily have to be AT. Let B ∈ Rn×m be a preconditioning matrix for
A. Then, AB-GMRES corresponds to GMRES [104] applied to

ABz = f , ∆w = Bz,

which is equivalent to the minimum-norm solution to the problem (3.13), for all
f ∈ R(A) if R(B) = R(AT) [94, Theorem 5.2], where ∆w = ∆waf or ∆wcc,
f = faf or fcc, respectively. AB-GMRES gives the kth iterate ∆wk = Bzk such
that zk = argminz∈z0+Kk(AB,g0) ‖f − ABz‖2, where z0 is the initial iterate and
g0 = f −ABz0.

Specifically, we apply AB-GMRES preconditioned by inner iterations [93, 94] to
(3.13). This method was shown to outperform previous methods on ill-conditioned
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and rank-deficient problems. We give expressions for the inner-iteration precondi-
tioning and preconditioned matrices. Let M be a nonsingular splitting matrix such
that AAT = M − N . Denote the inner-iteration matrix by H = M−1N . With
C(`) = ∑`−1

i=0 H
iM−1, the inner-iteration preconditioning and preconditioned matri-

ces are B(`) = ATC(`) and AB(`) = ∑`−1
i=0(I −H)H i = M(I −H`)M−1, respectively.

If the inner-iteration matrix H is semiconvergent, i.e., limi→∞H
i exists, then AB-

GMRES determines the minimum-norm solution of A∆w = f without breakdown
for all f ∈ R(A) and for all ∆w0 ∈ R(AT) [94, Theorem 5.5]. The inner-iteration
preconditioning matrix B(`) works on A in AB-GMRES as in Algorithm 3.3.3 [94,
Algorithm 5.1].

Algorithm 3.3.3. AB-GMRES method preconditioned by inner iterations.
1: Let ∆w0 ∈ Rn be the initial approximate solution, and g0 := f −A∆w0.
2: β := ‖g0‖2, v1 := r0/β

3: for k = 1, 2, . . . until convergence, do
4: Apply ` steps of a stationary iterative method to AATp = vk, z = ATp to

obtain zk := B〈`〉vk.
5: uk := Azk
6: for i = 1, 2, . . . , k, do
7: hi,k := (uk,vi), uk := uk − hi,kvi
8: end for
9: hk+1,k := ‖uk‖2, vk+1 := uk/hk+1,k

10: end for
11: pk := arg minp∈Rk ‖βe1 − H̄kp‖2, qk = [v1,v2, . . . ,vk]pk
12: Apply ` steps of a stationary iterative method to AATp = qk, z = ATp to

obtain z′ := B〈`〉qk.
13: ∆wk := ∆w0 + z′

Here, v1,v2, . . . ,vk are orthonormal, e1 is the first column of the identity matrix,
and H̄k = {hi,j} ∈ R(k+1)×k.

Note that the left-preconditioned generalized minimal residual method (BA-
GMRES) [61, 93, 94] can be applied to solve the corrector stage problem, which
can be written as the normal equations of the first kind

AAT∆ycc = A(SX)−1/2 (∆Xaf∆Safe− σµe) ,

or equivalently

min
∆ycc
‖AT∆ycc − (SX)−1/2 (∆Xaf∆Safe− σµe) ‖2. (3.16)

In fact, this formulation was adopted in [57] and solved by the CGLS method pre-
conditioned by partial Cholesky decomposition that works in m-dimensional space.
The BA-GMRES also works in m-dimensional space.

The advantage of the inner-iteration preconditioning methods is that we can
avoid explicitly computing and storing the preconditioning matrices for A in (3.13).
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We present efficient algorithms for specific inner iterations in the next section.

3.3.3 SSOR inner iterations for preconditioning the CGNE and
MRNE methods

The inner-iteration preconditioned CGNE and MRNE methods require a symmet-
ric preconditioning matrix. This is achieved by the SSOR inner-iteration precon-
ditioning, which works on the normal equations of the second kind AATz = g,
u = ATz, and its preconditioning matrix C(`) is SPD for ` odd for ω ∈ (0, 2) [92,
Theorem 2.8]. This method exploits a symmetric splitting matrix by the forward
updates, i = 1, 2, . . . ,m in lines 3–6 in Algorithm 3.3.5 and the reverse updates,
i = m,m − 1, . . . , 1, and can be efficiently implemented as the NE-SSOR method
[103], [94, Algorithm D.8]. See [11] where SSOR preconditioning for CGNE with
` = 1 is proposed. Let αT

i be the ith row vector of A. Algorithm 3.3.4 shows the
NE-SSOR method.

Algorithm 3.3.4. NE-SSOR method.
1: Let z〈0〉 = 0 and u〈0〉 = 0.
2: for k = 1, 2, . . . , `, do
3: for i = 1, 2, . . . ,m, do
4: d

〈k− 1
2 〉

i := ω[gi − (αi,u〈k−1〉)]/‖αi‖22
5: z

〈k− 1
2 〉

i := z
〈k−1〉
i + d

〈k− 1
2 〉

i ,u〈k−1〉 := u〈k−1〉 + d
〈k− 1

2 〉
i αi

6: end for
7: for i = m,m− 1, . . . , 1, do
8: d

〈k〉
i := ω[gi − (αi,u〈k−1〉)]/‖αi‖22

9: z
〈k〉
i := z

〈k− 1
2 〉

i + d
〈k〉
i ,u〈k−1〉 := u〈k−1〉 + d

〈k〉
i αi

10: end for
11: u〈k〉 := u〈k−1〉

12: end for

When Algorithm 3.3.4 is applied to lines 2 and 6 of Algorithm 3.3.1 and lines
2 and 6 of Algorithm 3.3.2, the normal equations of the second kind are solved
approximately.

3.3.4 SOR inner iterations for preconditioning the AB-GMRES
method

Next, we introduce the successive overrelaxation (SOR) method applied to the nor-
mal equations of the second kind AATp = g, z = ATp with g = vk or qk as used
in Algorithm 3.3.3. If the relaxation parameter ω satisfies ω ∈ (0, 2), then the it-
eration matrix H of this method is semiconvergent, i.e., limi→∞H

i exists [34]. An
efficient algorithm for this method is called NE-SOR and is given as follows [103],
[94, Algorithm D.7].

When Algorithm 3.3.5 is applied to lines 4 and 12 of Algorithm 3.3.3, the normal
equations of the second kind are solved approximately.
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Algorithm 3.3.5. NE-SOR method.
1: Let z〈0〉 = 0.
2: for k = 1, 2, . . . , `, do
3: for i = 1, 2, . . . ,m, do
4: d

〈k〉
i := ω[gi − (αi, z〈k−1〉)]/‖αi‖22, z〈k−1〉 := z〈k−1〉 + d

〈k〉
i αi

5: end for
6: z〈k〉 := z〈k−1〉

7: end for

Since the rows of A are required in the NE-(S)SOR iterations, it would be more
efficient if A is stored row-wise.

3.3.5 Row-scaling of A

Let D be a diagonal matrix whose diagonal elements are positive. Then, problem
(3.13) is equivalent to

min ‖∆w‖2 subject to D−1A∆w = D−1f . (3.17)

Denote Â := D−1A and f̂ := D−1f . Then, the scaled problem (3.17) is

min ‖∆w‖2 subject to Â∆w = f̂ . (3.18)

If B̂ ∈ Rn×m satisfies R(B̂) = R(ÂT), then (3.18) is equivalent to

ÂB̂ẑ = f̂ , ∆w = B̂ẑ (3.19)

for all f̂ ∈ R(Â). The methods discussed earlier can be applied to (3.19). In the
NE-(S)SOR inner iterations, one has to compute ‖α̂i‖2, the norm of the ith row of
Â. However, this can be omitted if the ith diagonal element of D is chosen as the
norm of the ith row of A, that is, D(i, i) := ‖αi‖2, i = 1, . . . ,m. With this choice,
the matrix Â has unit row norm ‖α̂i‖2 = 1, i = 1, . . . ,m. Hence, we do not have to
compute the norms ‖α̂i‖2 inside the NE-(S)SOR inner iterations if we compute the
norms ‖αi‖2 for the construction of the scaling matrix D. The row-scaling scheme
does not incur extra CPU time. We observe in the numerical results that this scheme
improves the convergence of the Krylov subspace methods.

CGNE and MRNE preconditioned by inner iterations applied to a scaled lin-
ear system D−1A∆w = D−1f are equivalent to CG and MINRES applied to
D−1AATC(`)Dv = f , ∆w = ATC(`)Dv, respectively, and hence determine the
minimum-norm solution of A∆w = f for all f ∈ R(A) and for all ∆w0 ∈ Rn

if C` is SPD. Now we give conditions under which AB-GMRES preconditioned by
inner iterations applied to a scaled linear system D−1A∆w = D−1f determines the
minimum-norm solution of the unscaled one A∆w = f .

Lemma 3.1. If R(B) = R(AT) and D ∈ Rm×m is nonsingular, then AB-GMRES
applied to D−1A∆w = D−1f determines the solution of min ‖∆w‖2, subject to
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A∆w = f without breakdown for all f ∈ R(A) and for all ∆w0 ∈ Rn if and only if
N (B) ∩R(D−1A) = {0}.

Proof. Since R(B) = R(AT) gives R(D−1AB) = R(D−1AAT) = R(D−1A), the
equality minu∈Rm ‖D−1(f − ABu)‖2 = min∆w∈Rn ‖D−1(f − A∆w)‖2 holds for
all f ∈ Rm [61, Theorem 3.1]. AB-GMRES applied to D−1A∆w = D−1f de-
termines the kth iterate ∆wk by minimising ‖D(f −A∆w)‖2 over the space ∆w0 +
Kk(D−1AB,D−1g0), and thus determines the solution of min ‖∆w‖2, subject to
D−1A∆w = D−1f without breakdown for all f ∈ R(A) and for all ∆w0 ∈ Rn

if and only if N (D−1AB) ∩ R(D−1AB) = {0} [94, Theorem 5.2], which reduces
to R(D−1A) ∩ N (B) = {0} from N (D−1AB) = R(BTATD−T)⊥ = R(BTAT)⊥ =
R(BTB)⊥ = R(BT)⊥ = N (B).

Theorem 3.1. If D ∈ Rm×m is nonsingular and the inner-iteration matrix is
semiconvergent, then AB-GMRES preconditioned by the inner iterations applied to
D−1A∆w = D−1f determines the solution of min ‖∆w‖2, subject to A∆w = f

without breakdown for all f ∈ R(A) and for all ∆w0 ∈ Rn.

Proof. From Lemma 3.1, it is sufficient to show that R(B) = R(AT) and
N (D−1AB) ∩ R(D−1AB) = {0}. Since D−1MD−T = D−1(AAT − N)D−T is the
splitting matrix of D−1AATD−T for the inner iterations, the inner-iteration matrix
is DTHD−T. Hence, the inner-iteration preconditioning matrix B = ATC(`)D sat-
isfies R(B) = R(AT) [94, Lemma 4.5]. On the other hand, D−1AB = D−1M(I −
H`)(D−1M)−1 satisfies N (D−1AB) ∩R(D−1AB) = {0} [94, Lemmas 4.3, 4.4].

3.4 Numerical experiments

In this section, we compare the performance of the interior-point method based on
the iterative solvers with the standard interior-point softwares. We also developed
an efficient direct solver coded in C to compare with the iterative solvers. For the
sake of completeness, we briefly describe our direct solver first.

3.4.1 Direct solver for the normal equations

To deal with the rank-deficiency, we used a strategy that is similar to the Cholesky-
Infinity modification scheme introduced in the LIPSOL solver [116]. However, in-
stead of penalizing the elements that are close to zero, we removed them and solved
the reduced system. We implemented this modification by an LDLT decomposition
as explained below.

The generic sparse Cholesky solver breaks down once a numerically zero pivot is
encountered. The Cholesky decomposition of AAT is

AAT = LLT, (3.20)

where L is the lower triangular matrix. The breakdown happens when the diagonal
entries of the L contain numerically zero elements. To describe this, consider a 2×2
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block case. Mathematically, breakdown happens when

L =
[
R1 0

R2 0

]
, (3.21)

where R1 ∈ Rr×r is a lower triangular and nonsingular matrix, r corresponds to the
rank of A, R2 ∈ R(m−r)×r. Recall that the problem to be solved is AAT∆y = f .
Without loss of generality, assume that the first r rows of A is linearly independent
and let the partitions of ∆y and f be

∆y =
[
∆y1

∆y2

]
, f =

[
f1

f2

]
, (3.22)

respectively, such that ∆y1 ∈ Rr, f1 ∈ Rr, ∆y2 ∈ Rm−r and f2 ∈ Rm−r. Then the
problem becomes

LLᵀ∆y = f , (3.23a)[
R1 0

R2 0

] [
Rᵀ

1 Rᵀ
2

0 0

] [
∆y1

∆y2

]
=
[
f1

f2

]
, (3.23b)

[
R1R

ᵀ
1 R1R

ᵀ
2

R2R
ᵀ
1 R2R

ᵀ
2

] [
∆y1

∆y2

]
=
[
f1

f2

]
, (3.23c)

which is equivalent to

R1(Rᵀ
1∆y1 +Rᵀ

2∆y2) = f1, (3.24a)

R2(Rᵀ
1∆y1 +Rᵀ

2∆y2) = f2. (3.24b)

Then, the solution ∆y is given by the r linear independent equations (3.24a). By
setting ∆y2 = 0, we have[

∆y1

∆y2

]
=: ∆y =

[
(R1R

T
1 )−1f1

0

]
. (3.25)

Thus, the idea to modify the sparse Cholesky solver is to set the degenerate part
of ∆y (the partition of ∆y that corresponds to linearly dependent rows of A) to
be zero and then solve for the rest. We implement this modification by an LDLT
decomposition, since the generic sparse Cholesky solver breaks down once a numer-
ically zero pivot is encountered. Some indefinite matrices for which no Cholesky
decomposition exists have an LDLT decomposition with negative or zero entries in
D.

We explain the implementation by an example where AAT ∈ R3×3. For matrix
AAT, LDLT decomposition gives

AAT = LDLT (3.26a)
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=


1 0 0
l21 1 0
l31 l32 1



d1 0 0
0 d2 0
0 0 d3




1 l21 l31

0 1 l32

0 0 1

 . (3.26b)

Correspondingly, we partition the ∆y and f as

∆y =


∆y1

∆y2

∆y3

 , f =


f1

f2

f3

 . (3.27)

Assuming that the diagonal element d2 is close to zero, we let the corresponding
∆y2 = 0, and delete f2 and the corresponding row and column in the decomposition{
L,D,LT

}
. Then, we set

L̃ =
[

1 0
l31 1

]
, D̃ =

[
d1 0
0 d3

]
, f̃ =

[
f1

f3

]
, ∆̃y =

[
∆y1

∆y3

]
. (3.28)

and solve
L̃D̃1/2

(
(L̃D̃1/2)T∆̃y

)
= f̃ , (3.29)

using forward and backward substitution. The solution is then given by

∆y =


∆y1

0
∆y3

 . (3.30)

Concretely, we used the Matlab built-in function chol to detect whether the matrix
is symmetric positive definite. We used the ldlchol from CSparse package version
3.1.0 [32] when the matrix was symmetric positive definite, and we turned to the
Matlab built-in solver ldl for the semidefinite cases which uses MA57 [38].

3.4.2 Implementation specifications

In this section, we describe our numerical experiments.
The initial solution for the interior-point method was set using the method de-

scribed in LIPSOL solver [116]. The initial solution for the Krylov subspace itera-
tions and the inner iterations was set to zero.

We set the maximum number of the interior-point iterations as 99 and the stop-
ping criterion regarding the error measure as

Γ ≤ εout = 10−8, Γ := max
{
µ(k),

‖b−Ax(k)‖2
max {‖b‖2, 1}

,
‖c− s(k) −ATy(k)‖2

max {‖c‖2, 1}

}
. (3.31)

For the iterative solver for the linear system (3.13), we set the maximum number
of iterations for CGNE, MRNE and AB-GMRES as m, and relaxed it to a larger
number for some difficult problems for CGNE and MRNE. We set the stopping
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criterion for the scaled residual as

‖f̂ − Â∆w(k)‖2 ≤ εin‖f̂‖2,

where εin is initially 10−6 and is kept in the range [10−14, 10−4] during the process.
We adjusted εin according to the progress of the interior-point iterations. We trun-
cated the iterative solving prematurely in the early interior-point iterations, and
pursued a more precise direction as the LP solution was approached. The progress
was measured by the error measure Γ. Concretely, we adjusted εin as

ε
(k)
in =

ε
(k−1)
in × 0.75 if log10 Γ(k) ∈ (−3, 1],

ε
(k−1)
in × 0.375 if log10 Γ(k) ∈ (−∞,−3].

For steps where iterative solvers failed to converge within the maximum number of
iterations, we slightly increased the value of εin by multiplying by 1.5.

We adopt the implementation of AB-GMRES preconditioned by NE-SOR inner-
iterations [71] with the additional row-scaling scheme (Section 3.3.5). No restarts
were used for the AB-GMRES method. The non-breakdown conditions discussed in
Sections 3.3.1 and 3.3.2 are satisfied.

For the direct solver, the tolerance for dropping pivot elements close to zero was
10−16 for most of the problems; for some problems this tolerance has to be increased
to 10−6 to overcome breakdown.

The experiment was conducted on a MacBook Pro with a 2.6 GHz Intel Core i5
processor with 8 GB of random-access memory, OS X El Capitan version 10.11.2.
The interior-point method was coded in Matlab R2014b and the iterative solvers
including AB-GMRES (NE-SOR), CGNE (NE-SSOR), and MRNE (NE-SSOR),
were coded in C and compiled as Matlab Executable (MEX) files accelerated with
Basic Linear Algebra Subprograms (BLAS).

We compared our implementation with the standard solvers available in CVX
[60, 59]: SDPT3 version 4.0 [110, 111], SeDuMi version 1.34 [108], and MOSEK ver-
sion 7.1.0.12 [95], with the default interior-point stopping criterion (3.31). Note that
SDPT3 and SeDuMi are non-commercial public-domain solvers, whereas MOSEK
is a commercial solver known as one of the state-of-the-art solvers. These solvers
were implemented with the CVX Matlab interface, and we recorded the CPU time
reported in the screen output of each solver. However, it usually took a longer time
for the CVX to finish the whole process. The larger the problem was, the more ap-
parent this extra CPU time became. For example, for problem ken_18, the screen
output of SeDuMi was 765.3 seconds while the total processing time was 7,615.2
seconds.

3.4.3 Typical LP problems: sparse and full-rank problems

We tested 125 typical LP problems from the Netlib, Qaplib and Mittelmann
collections in [33]. Most problems usually have sparse and full-rank constraint matrix
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Table 3.1: Overall performance of the solvers on 125 testing problems.
Status Solved Solved† Unsolved Expensive

AB-GMRES (NE-SOR) 123 0 0 2
CGNE (NE-SSOR) 124 1 0 0
MRNE (NE-SSOR) 125 0 0 0
Modified Cholesky 117 2 6 0

SDPT3 76 19 25 5
SeDuMi 103 16 6 0
MOSEK 125 0 0 0

A (except problems bore3d and cycle). For the problems with l ≤ x ≤ u, l 6=
0, u 6= ∞, we transform them using the approach in LIPSOL [116].

The overall numerical experience is summarised in Table 3.1. MRNE (NE-SSOR)
and MOSEK were most stable in the sense that they solved all 125 problems. CGNE
(NE-SSOR) method solved all problems except for the largest Qaplib problem,
which was solved to a slightly larger tolerance level of 10−7. AB-GMRES (NE-
SOR) was also very stable and solved the problems accurately enough. However, it
took longer than 20 hours for two problems that have 154,699 and 23,541 unknowns,
respectively, although it succeeded in solving larger problems such as pds-80. The
other solvers were less stable. The modified Cholesky solver solved only 93% of
the problems, although it was fast for the problems that it could successfully solve.
SDPT3 solved 61% and SeDuMi 82% of the problems. Here we should mention that
SeDuMi and SDPT3 are designed for LP, semidefinite programming (SDP), and
second-order cone programming (SOCP), while our code is (currently) tuned solely
for LP.

Note that MOSEK solver uses a multi-corrector interior-point method [54] while
our implementation is a single corrector (i.e., predictor-corrector) method. This led
to different numbers of interior-point iterations as given in the tables. Thus, there
is still room for improvement in the efficiency of our solver based on iterative solvers
if a more elaborately tuned interior-point framework such as the one in MOSEK is
adopted.

In order to show the trends of performance, we use the Dolan-Moré performance
profiles [37] in Figs. 3.1–3.2, with π(τ) := P (log2 rps ≤ τ) the proportion of problems
for which log2-scaled performance ratio is at most τ , where rps := tps/t

∗
p, tps is the

CPU time for solver s to solve problem p, and t∗p is the minimal CPU time for
problem p. The comparison indicates that the iterative solvers, although slower
than the commercial solver MOSEK in some cases, were often able to solve the
problems to the designated accuracy.

In Tables 3.2–3.4, we give the following information:

1. the name of the problem and the size (m,n) of the constraint matrix,

2. the number of interior-point iterations required for convergence,
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(c) Mittelmann problems.
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(d) All the problems.

Fig. 3.1: Dolan-Moré profiles comparing the CPU time costs for the proposed
solvers, public-domain and commercial solvers.

3. CPU time for the entire computation in seconds. For the cases shorter than
3, 000 seconds, CPU time is taken as an average over 10 measurements. In
each row, we indicate in red boldface and blue underline the fastest and second
fastest solvers in CPU time, respectively.

Besides the statistics, we also use the following notation:

† inaccurately solved, i.e., the value of εout was relaxed to a larger level. For our
solvers, we provide extra information at the stopping point: †a, a = blog10 Γc
in the iter column, and †b, b = blog10 κ(AAT)c in the time column, where b·c
is the floor function; the CVX solvers do not provide the condition number
but only the relative duality gap,

- the iterations diverged due to numerical instabilities,

� the iterations took longer than 20 hours.

Note that all zero rows and columns of the constraint matrix A were removed
beforehand. The problems marked with # are with rank-deficient A even after this
preprocessing. For these problems we put rank(A) in brackets after m, which is
computed using the Matlab function sprank.
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(c) Mittelmann problems.
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Fig. 3.2: Dolan-Moré profiles comparing the CPU time costs for the proposed solvers
and public-domain solvers.

In order to give an idea of the typical differences between methods, we present the
interior-point convergence curves for problem ken_13. The problem has a constraint
matrix A ∈ R28,632×42,659 with full row rank and 97, 246 nonzero elements.

Different aspects of the performance of the four solvers are displayed in Fig. 3.3.
The red dotted line with diamond markers represents the quantity related to AB-
GMRES (NE-SOR), the blue with downward-pointing triangle CGNE (NE-SSOR),
the yellow with asterisk MRNE (NE-SSOR), and the dark green with plus sign the
modified Cholesky solver. Note that for this problem ken_13, the modified Cholesky
solver became numerically inaccurate at the last step and it broke down if the default
dropping tolerance was used. Thus, we increased it to 10−6.

Fig. 3.3a shows κ(AAT) in log10 scale. It verifies the claim that the least squares
problem becomes increasingly ill-conditioned at the final steps in the interior-point
process: κ(AAT) started from around 1020 and increased to 1080 at the last 3-5 steps.
Fig. 3.3b shows the convergence curve of the duality measure µ in log10 scale. The µ
drops below the tolerance and the stopping criterion is satisfied. Although it is not
shown in the figure, we found that the interior-point method with modified Cholesky
with the default value of the dropping tolerance 10−16 stagnated for µ ' 10−4.
Comparing with Fig. 3.3a, it is observed that the solvers started to behave differently
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Table 3.2: Experiments on Netlib problems. In each row, red boldface and blue underline denote the fastest and second fastest solvers in CPU
time (seconds), respectively.

Inner-outer iteration solvers Direct solver Public-domain solvers Commercial solver

AB-GMRES CGNE MRNE Modified SDPT3 SeDuMi MOSEK
(NE-SOR) (NE-SSOR) (NE-SSOR) Cholesky

Problem m n Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time
25fv47 821 1,876 25 4.62 25 5.00 25 4.60 25 3.67 59 2.50 29 2.30 26 3.90
adlittle 56 138 12 0.03 13 0.03 13 0.05 12 0.09 16 0.16 14 0.10 10 1.98

afiro 27 51 8 0.02 8 0.01 8 0.01 8 0.03 11 0.11 7 0.10 9 1.91
agg 488 615 21 0.72 21 0.88 24 0.79 21 1.49 34 0.61 32 0.90 18 2.24

agg2 516 758 21 0.64 21 0.56 23 0.53 21 1.55 32 1.28 23 1.00 13 2.12
agg3 516 758 19 0.68 19 0.52 21 0.58 19 1.38 32 1.24 22 1.10 12 2.06

bandm 305 472 18 0.73 19 0.62 19 0.74 17 0.90 42 1.52 20 0.50 15 2.17
beaconfd 173 295 13 0.07 13 0.07 13 0.07 12 0.41 15 0.22 10 0.20 8 1.97

blend 74 114 12 0.06 14 0.07 13 0.08 12 0.11 15 0.16 11 0.10 9 1.98
bnl1 643 1,586 25 2.53 25 4.66 25 4.92 25 1.95 †−5 † 64 2.50 20 2.51
bnl2 2,324 4,486 32 44.98 32 23.37 32 27.63 32 12.41 †−4 † 38 5.80 25 2.66

bore3d# 233 (232) 334 19 0.35 19 0.23 19 0.21 19 0.63 35 1.92 18 1.50 19 3.00
brandy 220 303 17 0.43 18 0.86 18 0.86 17 0.59 46 1.02 19 0.40 12 2.04
capri 271 482 19 0.80 19 0.88 19 0.91 19 1.04 47 3.22 33 1.60 14 2.63
cre_a 3,516 7,248 30 186.77 30 48.43 31 35.79 31 105.60 †−7 † 28 8.70 20 2.69
cre_b 9,648 77,137 43 787.95 42 611.11 42 455.04 53 1,143.90 †−6 † †−7 † 19 3.63
cre_c 3,068 6,411 30 268.84 32 47.92 33 46.12 33 79.67 - - 28 7.70 17 2.56
cre_d 8,926 73,948 37 387.17 37 316.81 37 213.69 37 847.00 - - 34 42.10 16 3.06
cycle# 1,903 (1,875) 3,371 30 61.87 31 50.44 61 185.12 - - †−6 † 30 5.30 20 2.76
czprob 929 3,562 39 1.51 38 1.60 39 1.73 39 10.45 †−5 † 39 2.80 27 2.91
d2q06c 2,171 5,831 32 132.75 33 581.83 36 750.06 32 24.09 84 6.43 29 4.10 21 2.85
d6cube 415 6,184 23 3.77 24 7.41 23 7.12 26 2.68 34 1.65 - - 11 2.50
degen2 444 757 15 1.26 16 1.13 16 1.18 21 2.27 17 0.41 13 0.40 8 2.12
degen3 1,503 2,604 19 27.30 21 13.26 21 13.38 19 27.52 †−6 † 15 2.00 12 2.18
dfl001 6,071 12,230 48 4,336.35 50 2,044.54 55 2,205.16 91 3,131.77 - - †−5 † 22 7.46
e226 223 472 21 0.64 20 0.61 21 0.82 20 0.59 61 1.17 22 0.60 14 1.97
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Table 3.2: (cont.) Experiments on Netlib problems. In each row, red boldface and blue underline denote the fastest and second fastest solvers
in CPU time (seconds), respectively.

Inner-outer iteration solvers Direct solver Public-domain solvers Commercial solver

AB-GMRES CGNE MRNE Modified SDPT3 SeDuMi MOSEK
(NE-SOR) (NE-SSOR) (NE-SSOR) Cholesky

Problem m n Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time
etamacro 400 816 30 1.23 31 1.58 31 1.43 30 2.30 - - 30 2.80 20 2.82

fffff800 524 1,028 32 4.11 30 6.29 33 6.39 32 3.31 44 0.86 46 1.60 22 2.55
fit1d 24 1,049 21 0.78 21 0.45 21 0.49 19 0.38 36 2.11 18 0.80 13 0.67
fit1p 627 1,677 16 4.01 16 5.31 16 5.14 16 3.56 25 1.78 53 2.00 17 0.73
fit2d 25 10,524 20 3.40 21 3.54 21 3.72 20 2.40 41 3.10 15 2.60 18 0.79
fit2p 3,000 13,525 19 1,103.13 32 1,755.13 32 1,831.13 19 102.02 27 3.69 40 8.90 17 0.82

ganges 1,309 1,706 18 8.21 18 27.73 21 33.06 18 3.80 22 0.90 26 1.60 15 0.91
gfrd_pnc 616 1,160 21 1.15 22 1.04 21 0.88 21 0.98 27 0.85 20 1.00 29 0.90
grow15 300 645 19 0.43 19 0.35 20 0.37 17 0.40 21 0.80 25 1.00 13 0.89
grow22 440 946 20 0.68 20 0.59 22 0.59 18 0.53 22 0.93 26 1.40 14 0.95
grow7 140 301 18 0.12 18 0.16 18 0.12 16 0.16 19 0.66 19 0.70 12 0.69
israel 174 316 24 0.99 27 0.94 27 1.06 25 1.12 34 0.51 20 0.60 15 2.14
kb2 43 68 16 0.09 17 0.08 17 0.08 15 0.11 26 0.71 15 0.50 16 0.75

ken_07 2,426 3,602 17 4.14 18 2.39 17 2.24 16 1.07 33 1.74 18 1.80 15 0.79
ken_11 14,694 21,349 22 636.24 23 123.23 23 85.95 22 7.83 †−4 † 38 10.60 31 1.87
ken_13 28,632 42,659 27 2,633.00 28 365.15 29 348.51 27 23.90 - - 43 29.50 20 2.83
ken_18 105,127 154,699 � � 38 12,893.63 46 21,315.47 38 324.89 - - 59 765.30 20 24.98

lotfi 153 366 16 0.28 16 0.24 16 0.32 16 0.39 37 1.14 20 1.20 15 2.47
maros_r7 3,136 9,408 15 57.78 15 29.69 15 31.68 15 11.14 21 5.39 15 4.80 12 3.29
modszk1 687 1,620 23 2.70 23 3.60 23 3.48 22 2.54 29 0.85 23 1.00 22 0.92
osa_07 1,118 25,067 34 12.35 32 6.26 36 8.51 27 5.85 31 3.90 31 4.90 14 2.55
osa_14 2,337 54,797 38 11.41 32 9.11 37 11.81 37 16.07 37 7.65 36 7.30 18 3.03
osa_30 4,350 104,374 39 22.69 41 19.08 38 17.16 36 28.98 37 12.49 40 11.50 17 3.36
osa_60 10,280 243,246 30 48.25 40 40.12 33 37.26 34 67.90 39 26.73 41 21.70 17 5.10
pds_02 2,953 7,716 29 4.43 29 3.43 29 4.16 29 3.16 †−5 † 30 6.90 18 0.82
pds_06 9,881 29,351 48 49.77 48 44.17 51 45.85 48 44.65 - - 51 61.50 23 1.45
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Table 3.2: (cont.) Experiments on Netlib problems. In each row, red boldface and blue underline denote the fastest and second fastest solvers
in CPU time (seconds), respectively.

Inner-outer iteration solvers Direct solver Public-domain solvers Commercial solver

AB-GMRES CGNE MRNE Modified SDPT3 SeDuMi MOSEK
(NE-SOR) (NE-SSOR) (NE-SSOR) Cholesky

Problem m n Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time
pds_10 16,558 49,932 51 91.60 52 87.75 50 79.22 52 130.17 - - 74 157.20 28 2.54
pds_20 33,874 108,175 61 1,365.98 64 1,155.95 62 683.72 62 665.05 - - †−7 † 34 11.02
perold 625 1,506 36 4.71 36 6.71 36 6.97 37 2.82 †−6 † †−7 † 24 0.87
pilot 1,441 4,860 33 31.54 33 51.15 33 49.36 33 16.18 - - 81 19.70 39 1.73

pilot4 410 1,123 30 2.11 30 2.12 30 2.29 30 2.26 †−7 † - - 27 0.78
pilot87 2,030 6,680 39 55.59 39 105.77 39 102.58 39 33.13 88 11.54 76 12.60 38 2.45

pilot_ja 940 2,267 35 13.02 37 19.51 36 14.79 37 4.84 - - - - 29 0.71
pilot_we 722 2,928 35 5.67 39 8.58 38 7.62 35 2.42 †−7 † 44 4.90 31 0.71
pilotnov 975 2,446 24 5.70 25 5.02 27 4.07 22 2.90 - - - - 17 0.73
qap12 3,192 8,856 19 758.92 21 144.74 20 99.35 19 50.45 26 21.78 †−7 † 17 6.09
qap15 6,330 22,275 23 5,530.52 25 789.81 24 581.25 24 335.83 52 330.31 †−7 † 17 21.11
qap8 912 1,632 11 1.73 12 1.09 11 0.98 10 2.75 13 1.25 8 1.10 7 2.16
sc105 105 163 10 0.05 10 0.04 10 0.04 10 0.02 20 0.50 10 0.20 8 2.13
sc205 205 317 11 0.17 11 0.09 11 0.07 10 0.05 18 0.61 12 0.30 10 2.16
sc50a 50 78 10 0.03 10 0.00 6 0.02 10 0.02 12 0.17 8 0.20 8 2.13
sc50b 50 78 7 0.01 7 0.02 7 0.02 7 0.03 11 0.26 7 0.20 6 1.94

scagr25 471 671 18 0.93 18 0.69 18 0.71 17 0.20 35 0.84 21 0.70 21 2.63
scagr7 129 185 14 0.15 15 0.11 15 0.11 14 0.07 33 0.71 17 0.50 19 2.52
scfxm1 330 600 18 1.03 19 1.05 20 1.14 18 0.70 52 1.40 20 0.80 15 2.42
scfxm2 660 1,200 21 2.44 22 4.73 23 4.71 21 1.35 58 1.59 24 1.30 18 2.56
scfxm3 990 1,800 22 5.94 23 12.64 24 12.10 22 1.64 59 1.79 25 1.50 16 2.53

scorpion 388 466 15 0.28 16 0.23 16 0.26 15 0.20 17 0.39 11 0.30 11 2.21
scrs8 490 1,275 25 0.91 26 0.78 25 0.77 25 0.61 37 1.06 35 1.70 14 2.41
scsd1 77 760 9 0.06 9 0.05 9 0.03 9 0.04 12 0.23 8 0.20 8 2.02
scsd6 147 1,350 11 0.17 12 0.12 11 0.13 11 0.07 15 0.32 11 0.40 10 2.06
scsd8 397 2,750 12 0.76 12 0.71 12 0.64 11 0.16 13 0.32 10 0.60 7 1.93
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Table 3.2: (cont.) Experiments on Netlib problems. In each row, red boldface and blue underline denote the fastest and second fastest solvers
in CPU time (seconds), respectively.

Inner-outer iteration solvers Direct solver Public-domain solvers Commercial solver

AB-GMRES CGNE MRNE Modified SDPT3 SeDuMi MOSEK
(NE-SOR) (NE-SSOR) (NE-SSOR) Cholesky

Problem m n Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time
sctap1 300 660 17 0.31 19 0.38 19 0.36 17 0.12 20 0.46 20 0.50 11 2.15
sctap2 1,090 2,500 20 1.36 20 1.21 21 1.04 19 1.75 21 0.48 12 0.60 9 2.05
sctap3 1,480 3,340 19 1.33 19 1.14 20 1.22 18 2.31 23 0.94 13 0.40 9 2.11

share1b 117 253 23 0.50 24 0.51 24 0.48 23 0.16 27 0.52 22 0.50 23 2.74
share2b 96 162 12 0.16 14 0.20 16 0.21 12 0.09 26 0.60 19 0.30 15 2.47

shell 536 1,777 19 0.61 19 0.57 19 0.58 19 1.68 - - 31 1.10 22 0.56
ship04l 402 2,166 14 0.26 14 0.26 14 0.26 15 1.00 20 0.74 17 0.80 10 1.86
ship04s 402 1,506 15 0.78 15 0.30 15 0.21 14 1.14 20 0.67 17 0.70 11 0.48
ship08l 778 4,363 16 0.82 17 1.33 17 1.28 16 2.47 21 0.51 18 0.90 11 1.93
ship08s 778 2,467 15 0.44 16 0.46 16 0.60 15 1.82 20 0.32 16 0.40 10 1.88
ship12l 1,151 5,533 20 1.48 19 2.21 20 2.01 19 4.66 22 0.65 23 1.90 14 2.04
ship12s 1,151 5,533 17 0.90 19 1.00 19 0.94 17 2.66 22 0.41 17 0.90 12 1.96
sierra 1,227 2,735 17 1.28 19 1.37 19 1.05 21 1.60 - - 29 3.50 16 0.59
stair 356 614 22 1.43 22 1.63 22 1.87 22 0.96 †−6 † 18 0.70 15 0.52

standata 359 1,274 18 0.63 17 0.34 17 0.38 17 0.86 - - 19 0.70 9 0.48
standgub 361 1,383 17 0.35 17 0.30 17 0.37 17 0.91 - - 19 0.70 9 0.51
standmps 467 1,274 25 0.81 24 0.68 25 0.82 24 1.71 - - 15 0.70 17 0.53
stocfor1 117 165 19 0.13 21 0.13 20 0.20 19 0.09 30 0.71 17 0.50 11 2.21
stocfor2 2,157 3,045 23 37.36 24 18.00 24 17.59 21 13.43 53 1.95 †−4 † 17 2.54
stocfor3 16,675 23,541 � � 38 4,590.71 37 4,071.37 †−7 †32 80 11.05 - - 26 3.37

truss 1,000 8,806 19 6.62 21 10.22 22 10.59 19 3.29 21 1.12 19 1.90 12 2.27
tuff 333 628 21 1.63 22 1.27 24 2.03 21 1.39 †−7 † 21 0.80 18 0.60

vtp_base 198 346 24 0.69 24 0.52 24 0.61 24 0.77 39 1.26 42 1.30 12 0.69
wood1p 244 2,595 17 1.75 17 1.34 17 1.19 - - 38 2.75 19 2.00 10 2.17
woodw 1,098 8,418 25 5.12 27 6.72 28 7.34 22 3.73 - - 33 3.20 17 2.47
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Table 3.3: Experiments on Qaplib problems. In each row, red boldface and blue underline denote the fastest and second fastest solvers in CPU
time (seconds), respectively.

Inner-outer iteration solvers Direct solver Public-domain solvers Commercial solver

AB-GMRES CGNE MRNE Modified SDPT3 SeDuMi MOSEK
(NE-SOR) (NE-SSOR) (NE-SSOR) Cholesky

Problem m n Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time
nug05 201 225 7 0.16 7 0.09 7 0.09 7 0.27 12 0.36 5 0.20 5 1.81
nug06 372 486 10 0.56 10 0.31 10 0.25 8 0.83 11 0.22 6 0.10 6 1.84
nug07 602 931 12 1.83 13 0.96 12 0.72 12 2.02 18 1.48 10 0.70 8 2.09
nug08 912 1,632 10 3.27 11 1.03 12 1.06 10 3.26 16 2.08 8 1.00 7 1.96
nug12 3,192 8,856 19 1,287.19 20 427.16 19 355.36 20 73.13 †−7 † †−7 † 17 5.57
nug15 6,330 22,275 23 9,521.25 25 809.23 24 773.55 23 559.88 33 171.64 †−5 † 17 22.13
nug20 15,240 72,600 25 60,223.29 †−7 †28 33 16,650.52 †−7 †28 †−7 † †−5 † 19 243.71
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Table 3.4: Experiments on Mittelmann problems. In each row, red boldface and blue underline denote the fastest and second fastest solvers in
CPU time (seconds), respectively.

Inner-outer iteration solvers Direct solver Public-domain solvers Commercial solver

AB-GMRES CGNE MRNE Modified SDPT3 SeDuMi MOSEK
(NE-SOR) (NE-SSOR) (NE-SSOR) Cholesky

Problem m n Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time
fome11 12,142 24,460 47 6,900.09 48 14,156.31 53 12,270.84 - - - - †−5 † 23 8.97
fome12 24,284 48,920 48 12,568.26 48 38,138.98 52 28,159.85 - - - - †−7 † 21 33.17
fome13 48,568 97,840 47 25,726.58 50 37,625.03 54 63,301.06 - - - - †−7 † 24 61.01
fome20 33,874 108,175 61 1,510.85 64 1,240.23 62 689.71 62 692.71 - - †−7 † 34 8.96
fome21 67,748 216,350 74 12,671.62 74 3,185.03 84 3,822.02 75 1,617.71 - - †−6 † 39 18.47

nug08-3rd 19,728 29,856 12 5,833.97 11 259.01 10 237.02 - - - - - - 7 257.82
pds-30 49,944 158,489 69 1,964.48 72 1,105.42 70 788.98 69 1,659.21 - - 103 2,014.70 34 19.93
pds-40 66,844 217,531 66 4,878.49 68 1,551.30 77 1,904.76 67 4,012.71 � � 105 4,832.20 34 31.15
pds-50 83,060 275,814 73 13,860.17 73 3,274.74 80 3,960.55 73 7,196.51 � � 111 11,433.90 38 49.74
pds-60 99,431 336,421 72 25,592.33 75 5,024.43 83 7,535.99 72 11,609.01 � � †−7 † 36 94.28
pds-70 114,944 390,005 80 22,564.32 82 4,980.04 85 7,405.50 84 17,575.97 � � 126 44,946.8 46 136.50
pds-80 129,181 434,580 80 25,752.26 83 6,279.08 86 9,853.86 85 21,077.53 � � 119 58,286.40 42 157.64
rail507 507 63,516 43 1,039.09 51 1,138.80 51 475.47 48 14.98 †−7 † 34 7.10 17 2.69
rail516 516 47,827 39 496.60 43 700.58 39 536.36 38 11.82 †−7 † 19 3.70 11 2.48
rail582 582 56,097 44 1,296.56 46 971.35 47 1,422.62 41 17.52 †−7 † 40 8.60 16 2.43
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as κ(AAT) increased sharply.

Figs. 3.3c–3.3d show the relative residual norm ‖faf −AAT∆yaf‖2/‖faf‖2 in the
predictor stage and ‖fcc − AAT∆ycc‖2/‖fcc‖2 in the corrector stage, respectively.
The quantities are in log10 scale. The relative residual norm for modified Cholesky
tended to increase with the interior-point iterations and sharply increased in the final
phase when it lost accuracy in solving the normal equations for the steps. We ob-
served similar trends for other test problems and, in the worst cases, the inaccuracy
in the solutions prevented interior-point convergence. Among the iterative solvers,
AB-GMRES (NE-SOR) and MRNE (NE-SSOR) were the most stable in keeping
the accuracy of solutions to the normal equations; CGNE (NE-SSOR) performed
similarly but lost numerical accuracy at the last few interior-point steps.

Figs. 3.3e–3.3f show the CPU time and number of iterations of the Krylov meth-
ods for each interior-point step, respectively. It was observed that the CPU time of
the modified Cholesky solver was more evenly distributed in the whole process while
that of the iterative solvers tended to be less in the beginning and ending phases.
At the final stage, AB-GMRES (NE-SOR) required the fewest number of iterations
but cost much more CPU time than the other two iterative solvers. This can be
explained as follows: AB-GMRES (NE-SOR) requires increasingly more CPU time
and memory with the number of iterations because it has to store the orthonormal
vectors in the modified Gram-Schmidt process as well as the Hessenberg matrix. In
contrast, CGNE (NE-SSOR) and MRNE (NE-SSOR) based methods require con-
stant memory. CGNE (NE-SSOR) took more iterations and CPU time than MRNE
(NE-SSOR). Other than A and the preconditioner, the memory required for k iter-
ations of AB-GMRES is O(k2 + km+ n) and that for CGNE and MRNE iterations
is O(m+ n)[61, 94]. This explains why AB-GMRES (NE-SOR), although requiring
less iterations, usually takes longer to obtain the solution at each interior-point step.

On the other hand, the motivation for using AB-GMRES (NE-SOR) is that
GMRES is more robust for ill-conditioned problems than the symmetric solvers CG
and MINRES. This is because GMRES uses a modified Gram-Schmidt process to
orthogonalize the vectors explicitly; CG and MINRES rely on short recurrences,
where orthogonality of vectors may be lost due to rounding error. Moreover, GM-
RES allows using non-symmetric preconditioning while the symmetric solvers require
symmetric preconditioning. For example, using SOR preconditioner is cheaper than
SSOR for one iteration because the latter goes forwards and backwards. SOR re-
quires 2MV + 3m operations per inner iteration, while SSOR requires 4MV + 6m.
In this sense, the GMRES method has more freedom for choosing preconditioners.

From Fig. 3.3, we may draw a few conclusions. For most problems, the direct
solver gave the most efficient result in terms of CPU time. However, for some prob-
lems, the direct solver tended to lose accuracy as interior-point iterations proceeded
and, in the worst cases, this would inhibit convergence. For problems where the
direct method broke down, the proposed inner-iteration preconditioned Krylov sub-
space methods worked until convergence. It is acceptable to solve iteratively for an
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approximate step in the early phase of the interior-point method and then increase
the level of accuracy in the late phase.
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(a) Condition number κ(AAT).
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(b) Duality measure µ.
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(c) Relative residuals for predictor stage.
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(d) Relative residuals for corrector stage.
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(e) CPU time for each interior-point step.
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(f) Krylov iteration for each interior-point step.

Fig. 3.3: Numerical results for problem ken_13.

3.4.4 Rank-deficient problems

Most of the problems tested in the last section have a sparse and full-rank constraint
matrix A. In this section, we enrich the experiment by adding artificial problems
with a dense, rank-deficient and ill-conditioned constraint matrix, which challenge
some of the solvers.
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We first present an experiment to investigate the effect of rank-deficiency on CPU
time. Since MOSEK was the most efficient and stable standard solver as presented in
the previous section, here we only compare our solvers with MOSEK. We randomly
generated a set of constraint matrices A whose rank ranged from 50 to 100 with a
step of 5. The elements of x and c were uniformly distributed random numbers,
generated by using the Matlab function rand. The location of zero elements of
x was also subject to the random uniform distribution. Then, b was generated as
b = Ax. More details are given in Table 3.5.

In Fig. 3.4, we plot the time required for each solver to achieve interior-point
convergence versus rank(A). In order to give averaged information, we took an
average of the CPU times for 5 different randomly generated problems for each
rank, where the CPU time was taken as an average of 10 measurements for each
problem. All solvers succeeded in solving the problems. Iterative solvers performed
better than modified Cholesky as the rank decreased.

Next, we present an experiment for problems that were both rank-deficient and
ill-conditioned. We randomly generated a set of problems, with constraint matrix
A as in Table 3.6. The sparsity of A was around 50%.

In Fig. 3.5, we plot the time required for each solver to achieve interior-point
convergence versus rank(A). The graphs for modified Cholesky and MOSEK are

Table 3.5: Information on artificial problems: completely dense with different rank.

Problem m n Nonzeros Rank κ(A)
Artificial 100 300 30,000 [50, 100] 102

rank(A)
50 60 70 80 90 100

C
P
U

ti
m
e
(i
n
se
co
n
d
s)

0.5

1

1.5

2

2.5

3

AB-GMRES (NE-SOR)
CGNE (NE-SSOR)
MRNE (NE-SSOR)
Modified Cholesky
MOSEK

Fig. 3.4: CPU time for artificial problems: completely dense with different rank.

Table 3.6: Information on artificial problems: ill-conditioned with different rank.

Problem m n Nonzeros Rank κ(A)
Artificial 100 300 15,000 [50, 100] 108
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rank(A)
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Fig. 3.5: CPU time for artificial problems: ill-conditioned with different rank.

Table 3.7: Experiments on artificial problems.

Inner-outer iteration solvers Direct solver Commercial solver

AB-GMRES CGNE MRNE Modified MOSEK
(NE-SOR) (NE-SSOR) (NE-SSOR) Cholesky

Problem Rank(A) Iter Time Iter Time Iter Time Iter Time Iter Time
Rand1 1,000 22 120.04 †−4 †18 †−6 †21 - - 26 6.50
Rand2 999 28 483.85 †−4 †18 †−6 †31 - - 27 11.04
Rand3 998 21 336.19 †−4 †21 †−6 †20 - - - -
Rand4 997 24 392.52 †−4 †18 †−6 †20 - - - -
Rand5 996 31 441.28 †−4 †19 †−6 †20 - - - -
Rand6 995 21 305.69 †−4 †21 †−6 †20 - - - -

disconnected because there were failed cases. For example, MOSEK (green line
with circles) failed at the point rank(A) = 88 and rank(A) = 90, and hence the
points at rank(A) = 86 and rank(A) = 92 were not connected.

This result shows that MOSEK, although fast and stable for the full-rank prob-
lems, failed for 7 out of 26 ill-conditioned rank-deficient problems and was almost
always slower than the proposed solvers. The modified Cholesky solver broke down
due to numerical errors for 21 problems. However, the three iterative solvers over-
came this difficulty and solved all the problems.

Note that when the interior-point solver with MOSEK failed to converge, it
automatically switched to a simplex method. Although this re-optimisation process
can usually give an optimal solution to the LP problem, we consider the interior-
point method to have failed.

Similar experiments were carried out on larger problems. We tested the solvers
on problems of size 1, 000 × 1, 500 with condition number 108 and sparsity around
50%. The result is presented in Table 3.7. The notations † and - have the same
meaning as explained in the previous section. The table shows that only AB-GMRES
(NE-SOR) succeeded in solving all problems.
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3.5 Conclusion

We proposed a new way of preconditioning the normal equations of the second
kind arising within interior-point methods for LP problems (3.13). The resulting
interior-point solver is composed of three nested iteration schemes. The outer-most
layer is the predictor-corrector interior-point method; the middle layer is the Krylov
subspace method for least squares problems, where we may use AB-GMRES, CGNE
or MRNE; on top of that, we use a row-scaling scheme that does not incur extra
CPU time; the inner-most layer, serving as a preconditioner for the middle layer,
is the stationary inner iterations. Among the three layers, only the outer-most one
runs toward the required accuracy and the other two are terminated prematurely.

The advantage of our method is that it does not break down, even when the
matrices become (nearly) singular. The method is competitive for large and sparse
problems and may also be well-suited to problems in which matrices are too large and
dense for direct approaches to work. Extensive numerical experiments showed that
the stability and efficiency of our method outperform the open-source solvers SDPT3
and SeDuMi, and can solve rank-deficient and ill-conditioned problems where the
MOSEK interior-point solver fails. It would also be worthwhile to extend our method
to problems such as convex quadratic programming and SDP.
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Chapter 4

Stability of Calibration
Procedures: Fractals in the
Black-Scholes-Merton Model

Usually, in the Black-Scholes-Merton pricing theory the volatility is a positive real
parameter. Here we explore what happens if it is allowed to be a complex number.
The function for pricing a European option with a complex volatility has essential
singularities at zero and infinity. The singularity at zero reflects the put-call parity.
In this framework, the function yielding the implied volatility has not only a real
root, but also infinitely many complex roots in a neighbourhood of the origin. The
Newton-Raphson calculation of the complex implied volatility has a chaotic nature
described by fractal objects.

4.1 Introduction

Every day, the implied volatility consistent with the given price of a European option
is computed millions of times in trading and risk management systems throughout
the financial industry. This is typically done with the Newton-Raphson method
[68, 112], which can exhibit chaotic phenomena when hunting a successively better
approximation to the root. Neglecting the practical meaning, these phenomena are
best described in the complex plane by means of the associated fractal Julia sets.
In a one-page paper published in 1879, Cayley [15] first suggested the difficulty in
extending the Newton-Raphson method (which he called Newton-Fourier) to the
following cases:

1. complex polynomials with degree higher than 2;

2. a complex initial value leading the following iterations;

3. the allowance of complex roots.

Furthermore, in the study of this problem he proposed a concept which later was
called an attraction basin:
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“To determine the region of the plane, such that P (the initial point)
being taken at pleasure anywhere within one region we arrive ultimately
at the point A (a root); anywhere within another region at the point B;
and so for the several points representing the roots of the equation.”

In this work, we extend the Black-Scholes-Merton valuation [12, 84] to a com-
plex implied volatility parameter, allowing the initial value of the Newton-Raphson
method to be complex; then we explore the fractal objects that describe the chaotic
nature of the Newton-Raphson calculation of the implied volatility.

4.1.1 Implied volatility

The Black-Scholes-Merton model does not adequately take into account important
characteristics of the market dynamics such as skewness, fat tails and the correlation
between the asset’s value and its volatility. Other models have been devised to better
approximate the fair price of derivatives, as discussed in a large body of research.
However, dealers still prefer to describe the price of an option V , obtained either
by these refined models or from a market quote, in terms of the volatility σ such
that the Black-Scholes-Merton formula replicates the given price. This parameter
σ is called the implied volatility and is often described, following Rebonato [101,
pg. 169], as:

“the wrong number to put in the wrong formula to get the right price
of plain-vanilla (European) options”.

From the perspective of a trader, implied volatility results from a rescaling process
that allows to compare the relative worth of options with different maturities or
involving different assets or currencies, where a crude comparison in terms of pre-
mium would be inapplicable. For similar reasons it is also used in the interpolation
of prices of options with different maturities and strikes.

4.1.2 Numerical scheme to calculate the implied volatility

To calibrate the implied volatility σ ≥ 0, the Newton-Raphson method is used to
solve the equation which matches the market price V and the Black-Scholes-Merton
valuation for a European option:

V = e−rT θ

{
FΦ

[
θ

(
log F

K

σ
√
T

+ 1
2σ
√
T

)]
−KΦ

[
θ

(
log F

K

σ
√
T
− 1

2σ
√
T

)]}
, (4.1)

where θ = 1 for call options and θ = −1 for put options, F := S0e
(r−d)T is the fair

forward price to maturity T , r is the risk-free interest rate, d is the dividend rate
(or foreign interest rate for a foreign exchange rate contract), S0 is the spot price
of the underlying, K is the strike price, and Φ(·) is the standard normal cumulative
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distribution function

Φ(x) = 1√
2π

∫ x

−∞
exp

(
−u

2

2

)
du, (4.2)

which can be expressed through the error function as

Φ(x) = 1
2 + 1√

2π

∫ x

0
exp

(
−u

2

2

)
du (4.3a)

= 1
2 + 1

2 erf x√
2
. (4.3b)

If we denote by f(σ) the right-hand side of Eq. (4.1), then the Newton-Raphson
iteration to solve V = f(σ) is given by

σn+1 = σn −
f(σn)− V
f ′(σn) , (4.4)

starting from an arbitrary initial guess σ0 ∈ R+. However, as explained by Jäckel
[68], f(σ) is convex for low volatilities and concave for higher volatilities, causing
instabilities in the algorithm. The article demonstrates how taking the logarithm of
both the market price and the Black-Scholes-Merton price overcomes this conver-
gence problem.

Inspired by the chaotic phenomenon arising from the Newton-Raphson search
for implied volatility around the origin, where f(σ) is too flat according to Jäckel,
we perform a further experiment on the calibration of implied volatility where the
search domain is extended to the complex plane and the Black-Scholes-Merton price
is extended as an analytic function on C∗ = C \ {0} with essential singularities at
zero and infinity. We observe infinitely many complex roots for Eq. (4.1) other than
the real one, as will be illustrated by means of fractal attraction basins.

4.2 Analytic extension of the pricing function

In this section, we show the analytic extension of the major component of the Black-
Scholes-Merton pricing function, i.e., the normal cumulative distribution function,
and therefore the extension of the pricing function itself. We discuss the singularity
of this function and hence the complex roots of Eq. (4.1). Illustrations are given at
the end.

4.2.1 Analytic extension of the cumulative normal distribution

The standard normal cumulative distribution function Φ(z) with a complex argu-
ment z ∈ C is related to several special functions that arise often in applied mathe-
matics and engineering; see for example Fettis, Caslin and Cramer [43] for an analysis
of the zeros of erf(z).

Theorem 4.1. The cumulative density function of the standard normal distribution
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can be extended as a complex entire function on C.

Proof. Given that exp(−z2/2) is an entire function, by general results of complex
analysis [2] the function

Φ(z) = 1
2 + 1√

2π

∫ z

0
exp

(
−u

2

2

)
du (4.5)

is well defined and entire. Trivially, its restriction to the real line is the function
Φ(x) defined in Eq. (4.3a).

An analytic function is said to have an isolated singularity at a point if the
function is analytic in a neighbourhood of the point with the point excluded. Isolated
singularities of analytic functions in one variable are classified as [2]:

Removable if the function can be assigned a value at that point such that the
resulting extended function is analytic. A typical example of a removable
singularity is z = 0 for f(z) = (sinz)/z.

Pole if the norm of the function tends to ∞ as that point is approached. A typical
example of a pole singularity is z = 0 for f(z) = 1/z.

Essential in all other cases. A typical example of an essential singularity is z = 0
for f(z) = exp(1/z).

Remark 4.1. The complex cumulative normal distribution function Φ(z) has an
essential singularity at z = ∞. This is because along the real axis, when z → +∞,
Φ(z) → 1 and when z → −∞, Φ(z) → 0. On the other hand, along the imaginary
axis, Φ(z) is unbounded for z → ±i∞: for real y, substituting u = iv,

Φ(iy) = 1
2 + 1√

2π

∫ iy

0
exp

(
−u

2

2

)
du (4.6a)

= 1
2 + i

1√
2π

∫ y

0
exp v

2

2 dv, (4.6b)

which grows to ±i∞ as y → ±∞.

4.2.2 Analytic extension of the Black-Scholes-Merton pricing for-
mula

Theorem 4.2. The Black-Scholes-Merton price as a function of the volatility f(σ)
can be extended as an analytic function on C∗ = C \ {0}. The singularities at zero
and infinity are essential.

Proof. The necessary and sufficient condition for a point z0 to be an essential sin-
gularity of f(z) is that limz→z0 f(z) does not exist. Let d± := log(F/K)/(σ

√
T ) ±

σ
√
T/2, then it is easily seen that when σ approaches zero along the imaginary axis,

d± approach +i∞ or −i∞, depending on the ratio F/K. As shown in Remark 4.1,
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limy→∞Φ(iy) is indefinite. Thus limσ→0 f(σ) equals neither a finite complex num-
ber nor∞, i.e., the limit does not exist. Similarly one can verify that the singularity
at σ =∞ is essential.

From another perspective, the singularity is not removable, as otherwise it would
have a zero Taylor expansion, and it is not a pole either as otherwise the function
would tend to infinity.

Remark 4.2. If we denote by f(σ) the RHS of Eq. (4.1), then we have that f(−σ) is
the opposite of the price of the put option with the same maturity and strike. This
has as a consequence that along the real axis

lim
σ→0+

f(σ) =

e
−rT (F −K) if F ≥ K

0 if F ≤ K
(4.7)

lim
σ→0−

f(σ) =

0 if F ≥ K

e−rT (F −K) if F ≤ K,
(4.8)

which is reflected in Fig. 4.1 and again implies that the singularity at σ = 0 is
essential. By the put-call parity f(σ)− f(−σ) is independent of σ.

A striking consequence of the previous result is that the implied volatility equa-
tion has now infinitely many solutions near zero.

Corollary 4.1. In each neighbourhood of 0, there are infinitely many complex values
of the volatility σ such that Eq. (4.1) holds.

Proof. This is a consequence of the previous theorem and the Weierstrass-Casorati
theorem [2, Ch. 4, Thm. 9].

Fig. 4.1: The modulus |f(σ)| of the complex Black-Scholes-Merton price as a func-
tion of complex volatility σ. Note the gap along the real axis between the value
at 0− and 0+ as explained in Remark 4.2. The function has a similar behaviour in
a neighbourhood of σ = ∞. The plot is truncated from above at 2 because in a
neighbourhood of zero the surface goes to infinity infinitely many times.
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(a)

(b) (c)

Fig. 4.2: The modulus of calibration error |f(σ) − V | as a function of complex
volatility σ. (a): The minima of the surface correspond to the scaled real implied
volatility at 11.2 vol and to the infinitely many complex roots close to the origin;
the plot is truncated from above at 8. (b): A blow-up of |f(σ) − V | around the
multiple complex roots close to the origin; the plot is truncated from above at 5.
(c): Contour map of |f(σ)− V |.

Fig. 4.2 displays the function |f(σ)− V | for a fixed V which according to Corol-
lary 4.1 exhibits infinitely many complex zeros other than the real implied volatility.

In Figs. 4.1–4.3 we use market data of 28 November 2013 for a 1Y at-the-money
(ATM) USDJPY call option: the spot is S = 102.10, the strike is K = 102.76, and
the scaled ATM volatility is σ = 11.2 vol; the interest rate for JPY, is r = 2.68% and
that for USD is q = 2.71. The unit “vol” is a measure of volatility used habitually
by practitioners, with 1 vol = 1%. We scale our complex plane in vols, so that the
label 30 on the x or y axis means 30% or i30%.
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4.3 Implied volatility fractals

4.3.1 Newton-Raphson fractals

Fractals arising from the Newton-Raphson algorithm have been studied in several
articles [28, 99]. In fact the first fractals arose as an attempt to respond a question
by Cayley [15] on the loci of complex numbers converging to the several roots of a
polynomial by the Newton-Raphson algorithm.

Definition 4.1. Given a function g, for each positive integer n we denote by gn the
n-fold composition of g:

gn(x) = g(g(. . .g(x). . .))︸ ︷︷ ︸
n times

. (4.9)

Then we can associate to each fixed point x∗ of g its basin of attraction

Bg(x∗) =
{
x ∈ C| lim

n→∞
gn(x) = x∗

}
. (4.10)

If to solve a non-linear equation y(x) = 0 we apply the Newton-Raphson iteration

xn+1 = xn −
y(xn)
y′(xn) (4.11)

and define
g(x) = x− y(x)

y′(x) , (4.12)

then the initial values x0 where the Newton-Raphson method converges to a given
root x∗ are in the attraction basin Bg(x∗).

The Julia set Jg is the boundary of the attraction basin Bg(x∗) of a fixed point x∗
[86]. It has been proved that when g is a rational function the Julia set thus defined
is independent of the fixed point and coincides with the closure of the repelling
fixed points. Several illustrations of attraction basins coloured according to the
convergence speed and also of Julia sets can be found in the book by Peitgen and
Richter [98].

4.3.2 Fractals associated to implied volatility

In this subsection, we present an empirical analysis of attraction basins and Julia
sets for the Newton-Raphson iteration associated to Eq. (4.1). For simplification we
use an equivalent equation given by Jäckel [68],

b = h(σ̂) (4.13)

where b := V erT /
√
FK,

h(σ̂) := θea/2Φ
[
θ

(
a

σ̂
+ σ̂

2

)]
− θe−a/2Φ

[
θ

(
a

σ̂
− σ̂

2

)]
, (4.14)
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a := log(F/K), and σ̂ := σ
√
T . The Newton-Raphson iteration to find the implied

volatility from equation (4.13) is

σ̂n+1 = σ̂n −
h(σ̂n)− b
h′(σ̂n) (4.15a)

= σ̂n −
√

2π (h(σ̂n)− b)
exp

(
− a2

2σ̂2
n
− σ̂2

n
8

) . (4.15b)

The termination criterion is
‖σ̂n+1 − σ̂n‖
‖σ̂n‖

≤ ε (4.16)

or n = L. Given an initial point σ̂0, a tolerance level ε and a maximum iteration
number L, the Newton-Raphson iteration (4.15b) terminates in three cases:

1. it converges to the real root;

2. it converges to one of the many complex roots;

3. it does not converge until the maximum iteration number is reached, or en-
counters other numerical problems.

We produced fractals by plotting each initial point σ̂0 in a different colour according
to how the corresponding iterations terminate. Specifically, for the three termination
cases above, we used the following colour scheme:

1. a shade of blue, linearly scaling from dark to light by the number of steps it
takes to converge: the points in dark blue take fewer steps to converge than
those in light blue;

2. a shade of red, linearly scaling from dark to light by the number of steps it
takes to converge: the points in dark red take fewer steps to converge than
those in light red;

3. black.

In this colouring scheme, the attraction basins are the regions that are not in
black. In all figures, we used 1001 × 1001 initial points. Fig. 4.3 shows an implied
volatility fractal under different magnifications. Note that the enlargement of panel
4.3a around the origin shown in panel 4.3b is not observable in panel 4.3a because
of the limited resolution of the latter.

Fig. 4.4 shows the fractals for options with different values of ∆ = ∂f/∂S0, i.e.
the rate of change of the option price with respect to the change in the spot price
of the underlying. In the Black-Scholes-Merton model,

∆ = θe−dtΦ
[
θ
(
log(F/K)/(σ

√
T ) + σ

√
T/2

)]
. (4.17)

We use call and put options with ∆ = 25% and ∆ = 10% because they are often used
by practitioners to depict the volatility smile (the ATM call option with ∆ = 50%
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Fig. 4.3: (a) Implied volatility fractal for an ATM option with ε = 10−8, L = 100.
The axis scale is in vols. (b) A zoom-in of (a) around the origin. (c) A zoom-in of
(b) in the first quadrant. (d) A zoom-in of one petal in (c).

is shown in Fig. 4.3). The volatility smile is an important measurement indicating
that the implied volatility changes with the strike. We show the fractals in the upper
half of the complex plane because the fractals are symmetric with respect to the real
axis, as can be seen in Fig. 4.3. Notice the difference in the number of attraction
basins for different values of ∆ and the similarity between call and put options with
the same ∆.

Fig. 4.5 shows a fractal for an ATM option with the same parameters as Fig. 4.3
and Jäckel’s aforementioned modification of the equation to be solved [68]. This
modification subtracts from both sides of Eq. (4.13) the intrinsic value τ :=
2θH(θa) sinh(a/2), where H(·) is the Heaviside function, and solves the equivalent
form on a logarithmic scale

log h(σ̂)− τ
b− τ

= 0. (4.18)
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(c) Call, ∆ = 10%, K = 126.50, σ = 16 vol.
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(d) Call, ∆ = 25%, K = 113.85, σ = 15 vol.

Fig. 4.4: Implied volatility fractals for options with ε = 10−8, L = 100 and various
values of ∆.
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Fig. 4.5: Implied volatility fractal for an ATM option with Jäckel’s modification.
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The corresponding Newton-Raphson iteration is

σ̂n+1 = σ̂n −
log h(σ̂n)−τ

b−τ
1

h(σ̂n)−τ h
′(σ̂n)

(4.19a)

= σ̂n −
√

2π(h(σ̂n)− τ) log h(σ̂n)−τ
b−τ

exp
(
− a2

2σ̂2
n
− σ̂2

n
8

) . (4.19b)

Notice that this modification largely reduced the red area (the initial points that
lead to a convergence to the complex roots) and the blue area (the initial points
that lead to a convergence to the real root). The enlargement panel 4.5b shows the
exquisite fractal near the origin.

4.4 Conclusion

We extended the Black-Scholes-Merton price as a function of the volatility as an
analytic function on C∗ = C \ {0} and showed that the singularities at zero and
infinity are essential. As a result, the objective function for finding the implied
volatility has infinitely many complex solutions near zero. Following the practice,
we adopt the Newton-Raphson method to resolve for the implied volatility. The
chaotic nature of the calibration of the implied volatility is described in the complex
plane by means of the associated fractal Julia sets. Fractals associated with the
searching process are shown for this interesting problem prevalent in the industry.
Among other things, these fractals visualise dramatically the effect of a modification
suggested by Jäckel to improve the stability and convergence of the search for the
implied volatility.
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Chapter 5

Model Consistency
Under Spot Inversion
in the Foreign Exchange Market

5.1 Introduction

The symmetries of the foreign exchange (FX) market distinguish it from the others.
It is common knowledge that the USDJPY exchange rate is just the reciprocal of
the JPYUSD exchange rate.

An ideal model for an exchange rate St should guarantee that its inverse 1/St
also follows a process within the same class. Furthermore, let S(1) denotes the
USDJPY rate, S(2) denotes the JPYGBP rate, then their product S(3) = S(1)S(2)

is the USDGBP rate and should obey a model in the same class as the other two.
However in reality these properties are barely satisfied by the existing models.

The Black-Scholes-Merton model [12, 84] can guarantee that the inversion of spot
rate follows another Black-Scholes-Merton model. But many stochastic volatility
(SV) models, which are more popular in the financial industry, do not enjoy this
property. In this chapter, we investigate this property on the SV model and use the
results to verify an arbitrage example in the FX market.

For the following discussion, we avoid using the word domestic and foreign as
they cause confusions. Instead, we use the FX terminology that the first currency is
called the base currency and the second is called the term currency. fx denotes the
first order derivative of f with respect to x, fxy denotes the second order derivative
of f with respect to x and y. The exception is the subscript t for S and v which
denotes a process as time passes, e.g., St represents the process of S.

5.2 Definition and theorem of model consistency

We give the definitions of SV model and the model consistency under spot inversions.

Definition 5.1. A stochastic volatility (SV) model for an exchange rate St is a
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stochastic process of the form

dSt = (rterm − rbase)Stdt+√vtStdW 1
t , (5.1a)

dvt = a(vt, t)dt+ b(vt, t)dW 2
t , (5.1b)

with
dW 1

t dW 2
t = ρdt, (5.1c)

where rterm and rbase denote the risk-free interest rate of the term currency and base
currency, respectively.

Definition 5.2. A family of stochastic volatility processes is called consistent under
spot inversions if whenever an exchange rate St follows one such process under its
term currency risk neutral measure, the inverse rate S−1

t in the measure associated
to its term currency (which is the base currency of St) is also the solution of an SDE
in the family.

Next, we give the theorem on SV model consistency.

Theorem 5.1. If an exchange rate St follows the process Eqs. (5.1) in the risk-
neutral measure associated to the term currency, then the inverse exchange rate
S∗t := S−1

t follows

dS∗t = (rbase − rterm)S∗t dt+
√
v∗t S

∗
t dW̄ 1

t , (5.2a)

dv∗t =
[
a(v∗t , t) + ρ

√
v∗t b(v∗t , t)

]
dt+ b(v∗t , t)dW̄ 2

t , (5.2b)

with
dW̄ 1

t dW̄ 2
t = −ρdt. (5.2c)

Proof. Let St be the spot rate which follows the general SV proecess Eqs. (5.1),
and f(St, vt, t) be a derivative contract with St as the underlying. The price for
f(St, vt, t) in term currency satisfies the PDE [21]

ft + 1
2vS

2fSS + 1
2b

2fvv + ρ
√
V SbfSv + (rterm − rbase)SfS + afv − rtermf = 0. (5.3)

Let f∗ := f/S be the price of this derivative in base currency. Then we deduce the
PDE that is satisfied by f∗ as a function of S∗t .

First note that

S∗ = S−1, (5.4a)

fS = −fS∗S∗2, (5.4b)

fSS = fS∗S∗(S∗)4 + 2fS∗(S∗)3, (5.4c)

fSv = ∂fv
∂S∗

∂S∗

∂S
= −fS∗vS∗2. (5.4d)
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Then the pricing PDE Eq. (5.3) in terms of S∗t is

ft + 1
2vS

∗ (fS∗S∗S∗ + 2fS∗) + 1
2b

2fvv − ρ
√
vS∗bfS∗v

−(rterm − rbase)S∗fS + afv − rtermf = 0.
(5.5)

Next, we change to f∗ = fS∗ noting that

fS∗ = 1
S∗
f∗S∗ −

1
S∗2

f∗, (5.6a)

fS∗S∗ = 1
S∗
f∗S∗S∗ −

2
S∗2

f∗S∗ + 2
(S∗)3 f

∗, (5.6b)

fS∗v = 1
S∗
f∗S∗v −

1
S∗2

f∗v , (5.6c)

fvv = f∗vv
S∗

, (5.6d)

fv = f∗v
S∗
, (5.6e)

ft = f∗t
S∗
. (5.6f)

The PDE Eq. (5.5) becomes

f∗t
S∗

+ 1
2v(S∗)2fS∗S∗ + vS∗fS∗ + 1

2b
2fvv − ρ

√
vS∗bfvS∗

−(rterm − rbase)S∗fS∗ + afv − rterm
f∗

S∗
= 0.

(5.7)

After arranging terms, we reach

f∗t + 1
2f
∗
S∗S∗ − (rterm − rbase)S∗f∗S∗ + (a+ ρ

√
vb)f∗v + 1

2b
2f∗vv

−ρ
√
vbS∗f∗vS∗ − rbasef

∗ = 0,
(5.8)

which is the pricing PDE for the stochastic process Eqs. (5.2).

5.3 Theorem for specific stochastic volatility models

We first list the variance processes (5.1b) and the function forms of a(vt, t) and
b(vt, t) for the popular SV models.

1. The Heston model [63].
The variance vt follows

dvt = κ(v̄ − vt)dt+ σ
√
vtdW 2

t , (5.9)

and the drift and variance terms are

a(vt, t) = κ(v̄ − vt), (5.10a)

b(vt, t) = σ
√
vt. (5.10b)
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2. The Stein & Stein model [107].
The volatility ut := √vt follows an Ornstein-Uhlenbeck process

dut = κ(ū− ut)dt+ αdW 2
t , (5.11)

and the variance vt follows

dvt = 2utdut + α2dt, (5.12a)

= (2κū√vt − 2κvt + α2)dt+ 2α√vtdW 2
t , (5.12b)

and the drift and variance terms are

a(vt, t) = 2κū√vt − 2κvt + α2, (5.13a)

b(vt, t) = 2α√vt. (5.13b)

3. The Scott model [106].
The logarithm of square root of variance yt := log√vt follows an Ornstein-
Uhlenbeck process

dyt = κ(ȳ − yt)dt+ βdW 2
t , (5.14)

and the variance vt follows

dvt = 2vt
[
κ(ȳ − yt)dt+ βdW 2

t

]
+ 2vtβ2dt, (5.15a)

= 2vt
[
κ(ȳ − log√vt) + β2

]
dt+ 2βvtdW 2

t , (5.15b)

and the drift and variance terms are

a(vt, t) = 2vt
[
κ(ȳ − log√vt) + β2

]
, (5.16a)

b(vt, t) = 2βvt. (5.16b)

4. The Hull & White model [64].
The variance vt follows a log-normal process

dvt = µvvtdt+ σvtdW 2
t , (5.17)

and the drift and variance terms are

a(vt, t) = µvvt, (5.18a)

b(vt, t) = σvt. (5.18b)

Then, we give theorems for each SV model introduced.

Corollary 5.1. The Heston model is consistent with spot inversions. Namely, if
a spot rate is modelled by a Heston process with parameters (κ, v̄, σ, ρ, v0), then the
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inverse spot rate in the appropriate numéraire is modelled by a Heston model with
parameters

(κ∗, v̄∗, σ∗, ρ∗, v∗0) =
(
κ− ρσ, κ

κ− ρσ
v̄, σ,−ρ, v0

)
. (5.19)

Proof. This is a direct result of Theorem 5.1 by inserting a(vt, t) = κ(v̄ − vt) and
b(vt, t) = σ

√
vt for Heston model into the Eq. (5.2b)

dv∗t =
[
κ(v̄ − v∗t ) + ρ

√
v∗t σ

√
v∗t

]
dt+ σ

√
vtdW̄ 2

t , (5.20a)

= (κ− ρσ)
[

κ

κ− ρσ
v̄ − v∗t

]
dt+ σ

√
v∗t dW̄ 2

t , (5.20b)

which is the variance process of Heston model with parameters as in Eq. (5.19).

Corollary 5.2. The Stein & Stein model, Scott model, and Hull & White model as
specified in Section 5.2 are not self-consistent under the inversion of spot rate.

Proof. 1. For the Stein & Stein model, the function a∗(v∗t , t) is

a∗(v∗t , t) = a(v∗t , t) + ρ
√
v∗t b(v∗t , t), (5.21a)

= 2κū∗
√
v∗t − 2κv∗t + α2 + ρ

√
v∗t 2α

√
v∗t , (5.21b)

= 2κū∗
√
v∗t + 2(αρ− κ)v∗t + α2, (5.21c)

which is of the form in Eq. (5.13a) only if αρ = 0.

2. For the Scott model, the function a∗(v∗t , t) is

a∗(v∗t , t) = a(v∗t , t) + ρ
√
v∗t b(v∗t , t), (5.22a)

=
[
κ(ȳ∗ − log v∗t ) + 1

2β
2
]
v∗t + ρβ(v∗t )

3
2 , (5.22b)

which contains the term (v∗t )3/2 and thus does not have the form in Eq. (5.16a).

3. For the Hull & White model, the function a∗(v∗t , t) is

a∗(v∗t , t) = a(v∗t , t) + ρ
√
v∗t b(v∗t , t), (5.23a)

= µvv
∗
t + ρσ(v∗t )

3
2 , (5.23b)

which contains the term (v∗t )
3
2 and thus does not have the form in Eq. (5.18a).

5.4 Consequence on variance swap pricing

A variance swap is a contract that pays out a linear function of the realized historical
variance of the returns of an asset in a specified set of dates. An example of a fairly
standard deal is a one year USDJPY variance swap paying 100,000 USD per volatility
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point where the USDJPY rate is taken every business day at 4 p.m. London time
from a given Reuters fixing page. A deal like this is quoted by giving a fair variance
level in a similar fashion to how forwards and futures are dealt with.

Obviously the volatility exposure of a USDJPY variance swap paying a rebate in
USD is different from that paying an equivalent amount in JPY. The reason for this
is that the USDJPY spot is negatively correlated with its volatility. A variance swap
paying in JPY is more valuable since a high realized variance scenario is likely to
occur on JPY gaining value against USD. Inexperienced dealers can be arbitraged in
this way. This observation can be verified by the previous conclusion on the Heston
model as in the following analysis.

In mathematical modelling the variance is replaced by the continuously sampled
variance which is also called quadratic variation, in the Heston model this is the
stochastic variable

Var = 1
T

∫ T

0
Vtdt, (5.24)

where T is the expiration date of the contract expressed in years. The fair level for a
variance swap paying in term currency is the expectation of the annualized accrued
variance which in the Heston model is

Eterm

(
1
T

∫ T

0
Vtdt

)
= v̄ + (v0 − v̄)1− e−κT

κT
, (5.25)

which is a number between the starting level of the variance v0 and its mean reversion
level v̄.

For a variance swap paying in base currency we just need to invert the Heston
process and apply this formula with Corollary 5.1, the level is therefore

Ebase

(
1
T

∫ T

0
Vtdt

)
= v̄∗ + (v∗0 − v̄∗)

1− e−κ∗T
κ∗T

, (5.26a)

= κ

κ− ρσ
v̄ +

(
v∗0 −

κ

κ− ρσ
v̄

) 1− e−(κ−ρσ)T

(κ− ρσ)T , (5.26b)

which is a number between the starting level v0 and the modified mean reversion
v̄κ/(κ − ρσ). These calculations are in agreement with the observations above re-
garding USDJPY since in this case the correlation ρ is negative which depresses the
value of the variance swap value when pricing in base currency.

5.5 Extension to the affine diffusion model

The affine jump-diffusion (AJD) model [39] assumes state vector X follows the
process

dXt = µ(Xt)dt+ σ(Xt)dZt + dJt, (5.27)

where the drift vector µ(Xt), the instantaneous covariance matrix σ(Xt), and the
jump intensities all have affine dependence on X. The Heston model is a particular
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affine stochastic volatility model that belongs to the AJD class.
For our analysis, we make two assumptions on the AJD model. Firstly we

assume there is no jump. Secondly we assume the first element in the vector Xt is
the underlying price St under the FX settings. We work on the special form of AJD.

d
(
St

vt

)
=
(

(rterm − rbase)St
µ(vt, t)

)
dt+

(
σ11St 0
σ21 σ22

)(
dZ1

t

dZ2
t

)
, (5.28)

with dZ1
t dZ2

t = 0.

Theorem 5.2. If an exchange rate St follows the process Eq. (5.28) in the risk-
neutral measure associated to the term currency, then the inverse exchange rate
S∗t := S−1

t follows

d
(
S∗t

v∗t

)
=
(

(rbase − rterm)S∗t
µ(v∗t , t) + σ11σ21

)
dt+

(
σ11S

∗ 0
−σ21 σ22

)(
dZ̄1

t

dZ̄2
t

)
, (5.29a)

with
dZ̄1

t dZ̄2
t = 0. (5.29b)

Proof. Let St be the exchange rate, vt be the variance of St. The vector (St, vt)
follows the AJD proecess Eq. (5.28), and f(St, vt, t) be a derivative contract with St
as the underlying. Then the pricing PDE for f(St, vt, t) is

ft + (rterm − rbase)rSfS + (µ(vt, t) + α− λβ) fv + 1
2σ

2
11S

2fSS

+σ11σ21SfSv + 1
2(σ2

21 + σ2
22)fvv = rtermf.

(5.30)

See Appendix A for the deduction of the PDE (5.30).
Let f∗ := f/S be the price of this derivative in base currency. Then we deduce

the PDE that is satisfied by f∗ as a function of S∗t . Apply the inverse in Eqs. (5.4),
then Eq. (5.30) in terms of S∗t is

ft − (rterm − rbase)fS∗S∗ + [µ(vt, t) + (α− λβ)] fv + 1
2σ

2
11(fS∗S∗S∗2 + 2fS∗S∗)

− σ11σ21fS∗vS
∗ + 1

2(σ2
21 + σ2

22)fvv = rtermf. (5.31)

Next, we change to f∗ = fS∗ by applying Eqs. (5.6)

f∗t
S∗
− (rterm − rbase)S∗(

1
S∗
f∗S∗ −

1
S∗2

f∗) + [µ(vt, t) + (α− λβ)] f
∗
v

S∗

+ 1
2σ

2
11

[
S∗2( 1

S∗
f∗S∗S∗ −

2
S∗2

f∗S∗ + 2
(S∗)3 f

∗) + 2S∗( 1
S∗
f∗S∗ −

1
S∗2

f∗)
]

− σ11σ21S
∗
[ 1
S∗
f∗S∗v −

1
S∗2

f∗v

]
+ 1

2(σ2
21 + σ2

22)f
∗
vv

S∗
= rterm

f∗

S∗
. (5.32)

After arranging terms, we reach
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f∗t − (rterm − rbase)S∗f∗S∗ + [µ(Vt, t) + (α− λβ + σ11σ21)] f∗v

+ 1
2σ

2
11S
∗2f∗S∗S∗ − σ11σ21S

∗f∗S∗V + 1
2(σ2

21 + σ2
22)f∗vv = rbasef

∗, (5.33)

which is the pricing PDE for the stochastic process Eqs. (5.29).

5.6 Conclusion

We define and investigate the consistency of a class of stochastic volatility models
under spot inversions, and hence their applicability in FX market. We give a general
result for the parameters of SV model which is followed by the inverse spot rate.
The Heston model, among the other members in the SV family, is the only one that
we found to be consistent under the spot inversion. The result is further extended
to the affine SV model. The conclusion on the Heston model verifies the arbitrage
opportunity in variance swap trading.



Chapter 6

General Conclusion

The thesis contains four projects with the topic ranging from numerical optimisation
to derivative pricing, which are dealt with in Project 2 and 4, respectively. The
intersection of the two areas is presented in Project 1 and 3, reflecting the rising
status of numerical optimisation technique in the financial industry. Each project
has its own conclusion given at the end of the corresponding chapter. The conclusion
in this chapter is brief and high-level.

The first work addresses an important practical issue by proposing a novel
method to calibrate the Heston stochastic volatility (SV) model. The Heston model
has been prevalently used in the industry for equity and foreign exchange (FX)
markets. The calibration problem is as important as the model itself. Solving this
issue is also important for local SV (LSV) models whose SV component is the He-
ston model. The work received a lot of interests from practitioners in the financial
industry.

The linear programming (LP) problem is of significance in a wide range of appli-
cations. Most interior-point solvers for optimisation have computed search directions
using direct solvers or iterative solvers with direct-type preconditioners. When the
problem is getting larger and larger and the structure becoming dense, the iterative
solver is the only choice to go. Project 2 implements an innovative interior-point
method (IPM) entirely based on Krylov subspace methods for the LP problems, and
succeeds for the first time in the history of IPM to solve an extensive set of bench-
mark problems from Netlib, Qaplib, and Mittelmann collections. The number
of variables of the largest problem is 434,580. With the standard stopping criteria,
the computational results show that this implementation outperforms the popular
public-domain solvers SeDuMi and SDPT3, and is able to solve the rank-deficient
problems which failed the interior-point solver of MOSEK, one of the most popular
commercial solver.

Project 3 exhibits chaotic phenomena of the Newton-Raphson calculation of the
implied volatility (IV) consistent with the given price of a European option. The
computation is performed millions of times in trading and risk management systems
throughout the financial industry every day. This work allows IV to be complex,
and shows that the function that yields the parameter has singularity at zero, which
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reflects the put-call parity, and that at infinity. The Newton-Raphson hunting of a
successively better approximation to the IV is described via the fractal tool.

SV models have been extensively used by FX practitioners. Project 4 investigates
the feasibility of such application from the perspective of model consistency under
spot inversion. A conclusion on the general form of SV model is given, so that
further research may be conducted on the consistency of any SV model and on the
relation between consistency and the functional form of drift and variance terms of
SV process. The analysis shows that the Heston model is the only one among the
studied SV models that is consistent when applied to model FX exchange rate.

Financial mathematics and numerical methods are meaningful as they are closely
connected with practice. The thesis makes an effort to deliver research that is of
practical meaning and hopefully it does.
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Appendix A

Derivation of the pricing PDE
for affine diffusion model under
foreign exchange settings

Let St be the exchange rate, Vt be the variance of St. The vector (St, Vt) follows the
AJD proecess (5.28) with zero-jump, and f(St, Vt, t) be a derivative contract with
St as the underlying. The dynamic of f(St, Vt, t) is

df = [ft + (rterm − rbase)SfS + µ(Vt, t)fV +
1
2
(
σ2

11S
2fSS + 2σ11σ21SfSV + (σ2

21 + σ2
22)fV V

)]
dt+

(σ11SfS + σ21fV )dZ1
t + σ22fV dZ2

t . (A.1)

For simplicity, let

M := ft + (rterm − rbase)SfS + µ(Vt, t)fV +
1
2
(
σ2

11S
2fSS + 2σ11σ21SfSV + (σ2

21 + σ2
22)fV V

)
(A.2)

be the factor multiplied by dt, and hence

df =Mdt+ (σ11SfS + σ21fV )dW 1
t + σ22fV dW 2

t . (A.3)

When constructing the replicating portfolio of f(St, Vt, t), we need to note that
the exchange rate St is not in itself a trade-able quantity. The closest trade-able
quantity is the term currency value of a base currency bond: B

(b)
t St. Consider

portfolio Π constituted with 1 unit of the derivative f(St, Vt, t), ∆ unit of B(b)
t St, ∆̃

unit of another derivative f̃(St, Vt, t) with the same underlying.

Π = f −∆B(b)
t St − ∆̃f̃ . (A.4)
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foreign exchange settings

The dynamics of Π is

dΠ = df −∆d(B(b)S)− ∆̃df̃ ,

= df −∆B(b)St
(
rtermdt+ σ11dW 1

t

)
− ∆̃df̃ ,

=Mdt+ (σ11SfS + σ21fV )dW 1
t + σ22fV dW 2

t −∆B(b)St(rtermdt+ σ11dW 1
t )

− ∆̃
[
M̃dt+ (σ11Sf̃S + σ21f̃V )dW 1

t + σ22f̃V dW 2
t

]
,

=
(
M−∆B(b)Strterm − ∆̃M̃

)
dt+ σ22(fV − ∆̃f̃V )dW 2

t

+
[
σ11SfS + σ21fV − ∆̃(σ11Sf̃S + σ21f̃V )−∆B(b)Stσ11

]
dW 1

t . (A.5)

By no arbitrage, the portfolio Π is (term) risk-free and the coefficient of the Brownian
motions should be zero. Mathematically it holds that

σ11SfS + σ21fV − ∆̃(σ11Sf̃S + σ21f̃V )−∆B(b)Sσ11 = 0, (A.6a)

σ22(fV − ∆̃f̃V ) = 0, (A.6b)

dΠ = rtermΠdt

= rterm(f −∆B(b)S − ∆̃f̃)dt.
(A.6c)

Then from (A.6b), we get ∆̃
∆̃ = fV

f̃V
. (A.7)

∆ can be obtained from (A.6a)

σ11SfS −
fV

f̃V
Sσ11f̃S −∆B(b)Sσ11 = 0,

fS −
fV f̃S

f̃V
−∆B(b) = 0,

∆ = fS − f̃S∆̃
B(b) . (A.8)

Substituting the expression of ∆ and ∆̃ into (A.5)

dΠ =
[
M−∆B(t)Srterm − ∆̃M̃

]
dt,

=
[
M− (fS − f̃S∆̃)Srterm − ∆̃M̃

]
dt. (A.9)

Equate and (A.9) and (A.6c),

M− (fS − f̃S∆̃)Srterm − ∆̃M̃ = rterm(f −∆B(t)S − ∆̃f̃),

M− (fS − f̃S
fV

f̃V
)Srterm −

fV

f̃V
M̃ = rterm(f − (fS − f̃S

fV

f̃V
)S − fV

f̃V
f̃),

M− rtermf

fV
= M̃ − rtermf̃

f̃V
, (A.10)
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which holds independent of the expression of derivative. Assume that

M− rtermf

fV
= g(St, Vt, t), (A.11)

where g(St, Vt, t) = −(α−λβ), λ := g(St,Vt,t)+α
β is called market price of volatility

risk and is often assumed to be proportional to V , that is λ = θv.Substitute the
definition ofM and g(St, Vt, t) into (A.11), we have the pricing PDE

ft + (rterm − rbase)SfS + [µ(Vt, t) + (α− λβ)] fV +
1
2σ

2
11S

2fSS + σ11σ21SfSV + 1
2(σ2

21 + σ2
22)fV V = rtermf. (A.12)


	Dedication
	Acknowledgements
	Declaration
	Abstract
	Impact Statement
	List of Tables
	List of Figures
	General Introduction
	Content in brief
	Preprints and programmes
	Outline

	Full and Fast Calibration of the Heston Stochastic Volatility Model
	Stochastic volatility models
	Previous research on Heston model calibration
	Recognised difficulties
	Existing methods

	Problem formulation and gradient calculation
	The inverse problem formulation
	Pricing formula of a vanilla option and representations of the characteristic function
	Analytical gradient

	Calibration using the Levenberg-Marquardt method
	Numerical results
	Data
	Performance

	Conclusion

	Implementation of Interior-point Methods for LP based on Krylov Subspace Iterative Solvers with Inner-iteration Preconditioning
	Introduction
	Interior-point algorithm and the normal equations
	Mehrotra's predictor-corrector algorithm
	The normal equations in the interior-point algorithm

	Application of inner-iteration preconditioned Krylov subspace methods
	Application of inner-iteration preconditioned CGNE and MRNE methods
	Application of inner-iteration preconditioned AB-GMRES method
	SSOR inner iterations for preconditioning the CGNE and MRNE methods
	SOR inner iterations for preconditioning the AB-GMRES method
	Row-scaling of A

	Numerical experiments
	Direct solver for the normal equations
	Implementation specifications
	Typical LP problems: sparse and full-rank problems
	Rank-deficient problems

	Conclusion

	Stability of Calibration Procedures: Fractals in the Black-Scholes-Merton Model
	Introduction
	Implied volatility
	Numerical scheme to calculate the implied volatility

	Analytic extension of the pricing function
	Analytic extension of the cumulative normal distribution
	Analytic extension of the Black-Scholes-Merton pricing formula

	Implied volatility fractals
	Newton-Raphson fractals
	Fractals associated to implied volatility

	Conclusion

	Model Consistency Under Spot Inversion in the Foreign Exchange Market
	Introduction
	Definition and theorem of model consistency
	Theorem for specific stochastic volatility models
	Consequence on variance swap pricing
	Extension to the affine diffusion model
	Conclusion

	General Conclusion
	Bibliography
	Appendix Derivation of the pricing PDE for affine diffusion model under foreign exchange settings

