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In this thesis three distinct trading scenarios are considered and stochastic opti-

mal control models are proposed to derive the optimal strategy the agent/firm

should follow. First, we consider an agent who needs to liquidate a large amount

of an asset and can trade in both a ‘lit’ exchange and a dark pool. We find the

optimal selling schedule by solving numerically the resulting Hamilton-Jacobi-

Bellman (HJB) equation. Next, we consider a customised liquidity pool (CLP)

that offers a market-making service, by showing bid and ask prices to its clients.

The CLP earns the spread from each transaction and it is subject to an inven-

tory risk deriving from potential unfavourable price movements. The CLP can

hedge its position in the ‘lit’ pool by means of limit and/or market orders so

to rebalance its position on the asset. Finally, we consider a firm that offers

mixed principal-versus-agency trading to its clients, and which earns the spread

from the principal portion and a fixed fee for the brokerage service. We find

the optimal proportion of principal/agency liquidity that should be displayed

to clients and the optimal hedging strategy. We make specific reference to the

foreign exchange market and consider the cases of one currency pair and three

currency pairs. We provide the pseudo-codes, which have been written for solv-

ing numerically the models presented in this thesis, as well as a concise review

of the dynamic programming principle (DPP) and the viscosity solution theory,

specifically applied to the models discussed herein.
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Chapter 1

Introduction

1.1 Overview of the thesis

This thesis can be collocated within the extensive literature of algorithmic and

high-frequency trading. The increasing power of the machine, together with

new market needs, has determined a substantial increase in trading speed. Such

trading activity, which may take place at a millisecond level, is now mostly per-

formed by computers. At the basis of such execution rules there are complex

algorithms, which originate from mathematical models. Industry practitioners

typically have extensive market knowledge and convey such information into a

modest number of mathematical equations that output instructions, which form

the trading strategies followed by the firm. Depending on the firm’s activity,

whether it be betting on future price-movements direction or offering two-way

quotes to clients, financial analysis endeavours to maximise the firm’s net earn-

ings, while managing the risk taken. An analysis of the impact of high-frequency

trading has been studied in, e.g., Cartea et al. [25], who find that traders belong-

ing to such a class increase price impact as well as market noise, traded volume

and market liquidity.

In this context, we propose two classes of mathematical models which can be

utilised depending on the trading situations the agent (or firm) may face. For

each class of models we treat, we proceed as follows: We define the stochastic

differential equations, which model the evolution of the surrounding environment,

17



Chapter 1. Introduction 18

and we describe the set of actions the agent may take to intervene on the financial

system. We make use of the optimisation techniques provided by stochastic

optimal control theory to single out the best admissible strategy and we plot

the results. We analyse how the results vary when different values of the model

parameters are employed, and we discuss the financial validity of the derived

results. In Section 7.1 we collect the main mathematical tools applied throughout

the thesis.

One of the important contributions of this thesis is to provide market practi-

tioners with new understanding and novel tools. As such, the thesis also aims

at capturing real market dynamics, which take place in modern trading floors.

Therefore, mathematical assumptions are made, while keeping practical consid-

erations in mind at all times.

1.2 Main contributions

The original work presented in this thesis revolves around two main research

streams: (i) optimal execution and (ii) optimal pricing and inventory manage-

ment. In this section we contextualise this work within the current literature

and we make specific references to the proposed innovations and the new contri-

butions we made.

1.2.1 Optimal execution

Agents who need to perform an ‘optimal execution’ typically trade for underlying

economic reasons. They trade in one direction only at any given time and are

subject to (unfavourable) price slippage. Since the rise of algorithmic and high

frequency trading, the need for clear and predetermined trading schedules has

become essential to guarantee minimal market impact and effective execution

by the due-date the agent may have. The general agreement is that slicing a

“parent order” (i.e. the whole amount which needs to be executed) into “child

orders” is optimal when it comes to large executions. This is so to minimise

the turmoil in the market, which may encourage other agents to trade in the
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same direction, further impacting the market price. Additionally, it gives the

chance for the order book to be refilled, in order for market participants to trade

at better prices. The main question is how such parent orders should be sliced.

With no information available and a set terminal date, trading at a constant rate

looks like a reasonable approximation of an optimal strategy. On the other hand,

depending on market conditions and the benchmark of the agent, the trading

speed may take visibly different shapes, making the constant-rate liquidation

strategy largely sub-optimal. Pioneers of this research field are Almgren and

Chriss [2] and Bertsimas and Lo [10]. A great deal of research has developed

since then and we refer in particular to the book by Cartea et al. [23] and

Guéant et al. [43] and the references therein. In particular, the benchmark of

the agent substantially changes the shape of the optimal policy. We find, e.g.,

(i) the work by Lorenz and Almgren [61] where agents target a mean-variance

criterion, (ii) the papers by Cartea and Jaimungal [21], Frei and Westray [39]

and Gueànt and Royer [46] on targeting VWAP1, (iii) the work by Løkka [62] in

which a maximisation of a CARA2 utility function is considered, et cetera.

A related research stream, i.e. optimal execution in situations where multiple

venues are available to market participants, has also been the object of recent

studies. In particular Kratz and Schöneborn [57, 58] introduced dark pools as a

liquidating venue in a setting applicable to order-driven markets. Horst and Nau-

jokat [52] studied a similar problem, in that liquidation was performed through

passive orders (which share similarities with the dark-pool order-matching struc-

ture) and aggressive orders.

Main Contributions: Our work on optimal execution falls in the latter cate-

gory and we consider a situation where both ‘lit’ and dark pools are available to

market participants. Although the topic is not original in itself, we propose sev-

eral modifications and extensions to the state-of-the-art literature by analysing

the effects of, e.g., permanent price impact3 in a continuous-time model, which

1Volume Weighted Average Price.
2Constant Absolute Risk Aversion.
3Permanent price impact may occur more often in less liquid markets, in which it takes

more time for the liquidity taken by a market order to be refilled via submission of fresh limit
orders. Furthermore, it may happen due to trades originated by a new flow of price-sensitive
information. Finally, large orders are more likely to cause permanent market impact compared
to small-sized orders.
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has not been discussed elsewhere in the aforementioned works. Next we propose

a model for the whole top of the book, by giving a structure to both the lit-pool

best bid price and the spread. Additionally, we consider partial order execution

in the dark pool. Finally, we work with more structured price dynamics and

do not require for the latter to be martingales. With this last assumption, we

consider the possibility for the agent to have a market view and schedule his

trading accordingly. These results are presented in Chapter 3.

1.2.2 Optimal pricing and inventory management

As noted by Carmona and Webster [17], research on optimal market making

can be associated to two different schools of thought. On the one hand, we

find inventory-risk models in which market makers construct their posting strat-

egy in accordance with their risk aversion and the current distance from their

preferred inventory position. Such market makers rarely, if ever, bet on future

price movements. They offer bid and ask quotes and trade in either direction

with their clients. As a result of such trades, and assuming the price remains

constant, market makers earn the spread from each transaction. Price updates

today are at a millisecond level and thus it can happen that the market maker

trades (out of a long position) at a lower price than the one they entered at. Such

a trade results in a loss if the charged spread was not wide enough to cover such

a movement. Therefore, by offering liquidity, the market maker is subject to an

inventory risk, which can be mitigated by adjusting his quotes and/or crossing

the spread to actively hedge out his position. Pioneers of this line of research

are Garman [40] and Amihud and Mendelson [3, 4].

On the other hand, a second line of research has its focus on adverse selection,

asymmetric information, client alpha and price direction. Such optimal quoting

problems have been extensively studied since the late ’80s (cfr. Kyle [59]). The

goal was to find the optimal bid and ask quotes to trade a security, given partial

information about its future value.

In the context of an order driven market, such a problem has recently been stud-

ied by Guilbaud and Pham [47]. They assume that a market maker posts limit
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orders on both sides of the book and submits market orders when its inventory

becomes critically small or large.

Main Contributions: The research presented in this thesis can be positioned

in the framework of inventory-risk. We consider a firm which offers quotes to

its clients. It also intersects the more recent research on order-driven markets in

that such a firm can hedge out its position by means of limit and market orders.

At the time of this writing we are not aware of other similar works. We find the

optimal pricing and hedging strategies the firm should follow, and we present

our results in Chapter 4. In the same context, we provide an application of the

above framework to the foreign exchange market in which one and three currency

pairs are traded. We propose a mixed principal and agency execution offered by

a firm to its clients. The foreign exchange literature is very limited in itself and

currency-pair trading in an order-driven market is rather unexplored territory

as of now. We find the optimal principal versus agency proportion of liquidity

that should be offered to clients as well as the hedging strategy the firm should

follow. In this last application, we further (implicitly) consider an element of

price discovery and adverse selection when, e.g., we allow for features such as

permanent impact and mean reversion of the price process. These additional

features position the work presented in Chapter 5 in the intersection of the two

research lines discussed above.

1.3 Structure of the thesis

This thesis consists of six main chapters. The original work is presented in

Chapter 2, in particular Section 2.3.2, and in Chapters 3, 4, 5 and 6. The

remainder of Chapter 2 gives the reader an overview of the problems at hand,

and in Chapter 7 we collect the main mathematical tools utilised throughout the

thesis. While we provide proofs specific to the original models presented here,

such results are not original in the sense that standard techniques are applied,

and thus we do not wish to refer to them as being ‘original’ work. This thesis is

structured as follows:
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In Chapter 2 we provide four reference models for both optimal execution and

optimal market making, with and without the presence of a dark pool as an

alternative trading venue. We start the chapter by refreshing some order-driven

market terminology and, in Section 2.2, we introduce the optimal-execution and

market-making problems when only a lit pool is available to market participants.

In the optimal-execution case, the goal is to find the optimal trading schedule of

an agent who wishes to execute a sizeable amount of shares over a finite period

of time. We provide a reference model and we show the optimal strategy, which

we obtain numerically. Next, we introduce the market-making problem faced by

an agent who submits limit orders on both sides of the book and is subject to an

inventory risk (associated with future price movements) throughout the activity.

The agent can hedge his position by crossing the spread via the submission

of market orders. The optimal strategy is shown and its features are discussed.

Next we move to Section 2.3 where we assume the presence of a dark pool, and we

revisit the optimal-liquidation and optimal market-making problems within this

new setting. In the optimal execution case, the agent can post simultaneously

in both venues. With regard to the market-making problem, we switch our

vantage point and assume that a firm (which shares similarities with modern

dark pools) offers tailored prices which are only visible to its clients. Such a

firm, which is also subject to an inventory risk, can hedge its position in a

standard exchange by submitting both limit and/or market orders. This latter

problem (cfr. Section 2.3.2) is a novelty in the literature and as-such is part of

the original work presented in this thesis. The models analysed in this chapter

do not aim at capturing realistic market features, for they are only meant to

provide the reader with the basic tools and concepts that will be largely utilised

later in the thesis. In light of such a goal, the mathematical complexity has been

reduced to a minimum.

In Chapter 3 we take the perspective of an agent who wishes to liquidate or

acquire a substantial number of shares. We consider structured price dynamics

and, in Section 3.2, we start by analysing the situation where the agent is only

allowed to trade in a ‘lit’ pool. When mentioning a ‘lit’ market, we refer to an

accessible venue with full transparency and a limit order book publicly available

for trading. In such a venue the execution is certain, since we assume the agent
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trades by means of market orders only. We find the optimal trading schedule of

the agent and compare it with the one shown in Chapter 2. In Section 3.3, we

consider an optimal simultaneous execution in ‘lit’ and dark pools. In the latter

venue the liquidity is hidden and trades take place at the ‘lit’-pool mid-price.

Here anonymity is preserved, and price impact is avoided. As a shortcoming,

execution is not guaranteed, for it is subject to the existence of a trading coun-

terparty. We take as a reference model the work by Kratz and Schöneborn [57]

and we consider the following modifications: (i) more realistic price dynamics

which incorporate empirically observed market features, (ii) presence of perma-

nent price impact when trading in the ‘lit’ pool, and (iii) optionality of partially

filled orders submitted to the dark pool. We show, and provide a financial inter-

pretation to, the optimal trading schedule in each venues. This chapter is based

on Crisafi and Macrina [30].

In Chapter 4 we consider a firm which provides two-way liquidity to its clients

and optimally chooses the spread it charges for offering such a service. Such a

spread is also a function of the order size, since we assume that larger orders

should be executed at a wider spread. We consider a jump process for the ‘lit’

pool mid-price and a continuous-time Markov chain with a discrete state space

for the spread process. The firm is subject to an inventory risk, which can be

mitigated by skewing the quotes offered. In addition, the firm can resort to the

‘lit’ exchange to actively exit its position. In particular, the firm can post limit

orders in the standard exchange, of which execution is uncertain, but from which

the firm benefits due to advantageous prices. The firm may also cross the spread

and post expensive market orders. Limit orders posted for hedging purposes need

not to be placed on top of the book. We numerically solve the derived system

of quasi-variational inequalities and we graphically show the optimal strategy

of the firm. Finally, we comment on the empirical terminal-cash distribution,

which we obtain by Monte Carlo simulations. This chapter is based on Crisafi

and Macrina [31].

In Chapter 5 we further extend the framework presented in Chapter 4 by in-

cluding the possibility for the firm to execute only a portion of the client’s order

principally, i.e. as a market maker, while trading the remaining part in the
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standard exchange on behalf of the client. Analogous to Chapter 4 the firm is

subject to an inventory risk, which can be mitigated by (i) skewing its prices,

(ii) offering asymmetric percentages of principal liquidity and (iii) crossing the

spread in the standard exchange via market orders. We consider the foreign

exchange market and present models for trading one and three currency pairs.

We show the optimal principal strategy, that is, the optimal portion of order to

be executed principally, and the hedging strategy of the firm.

In Chapter 6 we summarise the results obtained in this work and suggest further

directions this research may take. Finally, in Chapter 7, we provide a brief

description of the viscosity solution theory and we give the pseudocodes we use

to numerically solve the HJB equations stated in the thesis.



Chapter 2

Reference models

2.1 Overview of the chapter

In this chapter we provide an introduction to the optimal execution and the

optimal market making problems. We start by describing the functioning of ‘lit’

pools, namely (i) the different types of order that can be sent to such pools, and

(ii) the different types of agent that trade regularly within those venues. We

then provide reference models for the aforementioned trading situations, which

are the object of study of this thesis. We finally introduce the concept of dark

pools, their main features and the associated reference models for both trade

execution and market making.

In what follows we consider a probability space (Ω,F ,P) equipped with a fil-

tration {Fu}0≤u≤T satisfying the usual conditions, such that all the processes

specified below are taken to be {Fu}-adapted.

2.2 ‘Lit’ pool and its terminology

Market participants can send passive or aggressive orders to the ‘lit’ pool. Passive

orders (or limit orders) specify the quantity and the price at which the posting

agent wants to buy or sell. Such orders are recorded in the limit order book

(LOB) until they are executed or cancelled. The highest price at which an

25
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investor is willing to buy (or, equivalently, a limit buy order is posted) is called

the best bid price, and the lowest price at which an investor is willing to sell (or,

equivalently, a limit sell order is posted) is called the best ask price. The difference

between the best ask and the best bid prices is called spread and their arithmetic

average is called mid-price. The latter is a theoretical quantity and is not a

tradable price in most standard exchanges (exceptions include mid-matching

orders for foreign exchange trading in electronic crossing networks). Limit orders

are filled by aggressive orders (or market orders), which only specify quantities

that wish to be traded, and are to be executed at the best available LOB prices.

In particular, market buy (sell) orders are matched with limit sell (buy) orders.

Most exchanges follow the price-priority rule. That is, limit orders at a more

favourable price are executed first. When multiple limit orders are posted at

the same price, the first-in-first-out rule applies (time priority). Investors who

post limit orders are called liquidity providers, while investors who submit market

orders are called liquidity takers. A market order is expensive and the agent pays

the spread, while the latter can be earned through limit orders. On the other

hand, a market order benefits from sure execution (provided that there is enough

liquidity in the LOB), while a limit order may not be executed. Crossing the

spread is an alternative definition of submitting market orders and walking the

book is the action of moving the best price available via aggressive trading. Such

a movement is called price impact (or slippage), which can be temporary and/or

permanent. We distinguish between two main classes of market participants that

operate in ‘lit’ pools. Buy-side agents, who trade only in one direction at any

given time, and sell-side agents or market makers, who post limit orders on both

sides of the LOB to earn the spread. The former agents need to solve an optimal

execution problem to find their optimal trading schedule, while the latter need a

model for optimal market making. In what follows, we provide reference models

for both types of agent.

2.2.1 An introduction to optimal execution

The current literature on optimal execution in an order-driven market is vast

and interesting. Research in the field has its roots in the papers by Almgren
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and Chriss [2], and Bertsimas and Lo [10]. More recent contributions include,

e.g., Pemy and Zhang [72], Pemy et al. [73], Gatheral and Schied [41], Brigo

and Di Graziano [12], Moazeni et al. [67], and Cartea et al. [22]. Cartea and

Jaimungal [20] consider a continuous-time, jump-diffusion mid-price model and

explicitly take into account the impact of the market activity on the mid-price.

In the same context, we also mention the works by Guéant et al. [44], and

Bayraktart and Ludkovsky [7], who treat optimal liquidation via limit orders.

Microstructural features of optimal trading in LOBs are, for example, treated in

(i) Cartea and Jaimungal [19], who model the spot price via a hidden Markov

chain to capture the switches between price regimes, (ii) Cartea et al. [24], who

model the deviation of mid-price from its long-term mean via a jump-diffusion

process, and (iii) Obizhaeva and Wang [69] and Alfonsi et al. [1], who propose

trading strategies by modelling the LOB’s depth.

Here we describe a simple model based on Cartea et al. [23], which serves as

a building block for the next chapters. We consider an agent who wants to

execute a sizeable trade by means of aggressive orders in a ‘lit’ pool. We assume

that there is enough liquidity in the LOB to match their market orders at any

point in time. They execute existing limit orders and impacts the best price,

making their subsequent trades less profitable. The agent’s trades are subject

to both permanent and temporary price impacts. For explanation purposes, we

restrict our attention to optimal liquidation, while keeping in mind that optimal

acquisition is analogous. The goal is to find the optimal selling schedule that

maximises their performance criterion.

2.2.1.1 A reference model

In this section we provide a base model that is useful for comparison with the

ones proposed in the following chapters. We assume that the agent trades on a

continuous-time basis between a starting time t ≥ 0 and a terminal date T , and

we denote by ν := {νu} their selling rate. The LOB best bid price is subject to

both a permanent and a temporary price impact derived by the agent’s trades.
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In particular, the permanently impacted best bid price satisfies

dSbu = −µνudu+ σdWu, (2.1)

where {Wu}, for u ≥ t, is a standard Brownian motion, the initial price level is

Sbt = sb and µ ≥ 0. An assumption that is usually made, see e.g. Almgren and

Chriss [10], is that the investor will get the trade orders executed at a price that

includes an instantaneous impact commensurate to the liquidation rate ν. This

feedback effect is commonly referred to as temporary impact. The temporarily

impacted best bid price Ŝbu is given by

Ŝbu = Sbu − βνu, (2.2)

where β ≥ 0. The temporary price impact happens when the quantity posted

at the best-price level is not sufficient to fill the the incoming aggressive or-

der. Hence, by (potentially) exhausting multiple book levels, the resulting price

received by the agent may be less than the current best bid price.

Finally, the agent’s inventory evolves according to

dXu = −νudu, (2.3)

and starts at an initial size Xt = x ≥ 0. The agent has a performance criterion

that they wish to maximise by optimally choosing their trading schedule (i.e. the

process νu, ∀ u ∈ [t, T ]). Such a criterion can include a variety of components in

order to reflect the preferences specific to that particular agent. In this context

we assume that the agent wants to maximise their total revenues subject to: (i)

a running penalty for holding the inventory throughout the whole liquidation

period, and (ii) a penalty for failing to liquidate their entire inventory by T . The

former penalty models the urgency of the agent for liquidating the inventory,

while the latter penalty can be interpreted as the reluctancy of the agent to

terminate the trading period with a non-zero inventory. Further details are

given below. We write for the value function

V (t,x) = sup
ν

Et,x
[∫ τ

t

(
Ŝbuνu − φX2

u

)
du+

(
Sbτ − αXτ

)
Xτ

]
, (2.4)
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where α and φ are non negative constants, and x := (x, sb) is a vector of state

variables1. The stopping time τ , defined by

τ := inf{u ≥ t |Xu ≤ 0} ∧ T, (2.5)

indicates the first time the inventory is depleted or the terminal date, whichever

comes first. That is, the agent stops trading as soon as their inventory reaches

zero, if that happens before T . Equation (2.4) will be used throughout the thesis,

hence it is worth commenting on the meaning of each of its components. The

quantity Ŝbuνu models the instantaneous revenues due to the sale of the shares.

Indeed, the rate of trading νu is multiplied by the temporary impacted bid price.

This reflects the fact that there may not be enough liquidity posted on the first

level of the book to satisfy the order of size νu and thus the agent’s aggressive

order may exhaust multiple levels. The higher the rate of trading, the higher

the number of levels taken from the book. This is incorporated in the functional

form of Ŝbu in (2.2). The quantity φX2
u models the running penalty for holding

the inventory. In other words, φ is a measure of the urgency of the agent. The

higher φ, the sooner the agent wants to liquidate their inventory. The quantity

SbτXτ represents the terminal theoretical value of the shares at time τ . Such

quantity is different from zero only if τ = T and XT > 0. In fact, if τ < T , then

Xτ = 0—by definition of the stopping time τ—and the liquidation task is over.

The analogous holds for the quantity −αX2
τ , which is non-zero only if τ = T and

XT > 0. Such a quantity models the terminal penalty for holding the inventory.

We interpret it as the ‘disappointment’ of the agent who failed to liquidate their

whole inventory. We would like to remark that the expression
(
Sbτ − αXτ

)
is

not necessarily to be intended as the price at which the remaining shares are

evaluated, since that could easily be negative for Xτ and α sufficiently large.

Standard techniques from dynamic programming principle2 (DPP) suggest that

the value function V (t,x) should satisfy the following Hamilton-Jacobi-Bellman

1Throughout the thesis we refer to the vector of state variables by the notation x, which may
take different meanings within different models, depending on the state variables considered for
the particular model. We always state explicitly the components of the vector x.

2See, e.g., Pham [75].
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(HJB) partial differential equation:

sup
v

{(
sb − βv

)
v − φx2 +

∂V

∂t
(t,x)− µv ∂V

∂sb
(t,x) +

1

2
σ2 ∂2V

(∂sb)2
(t,x)

−v∂V
∂x

(t,x)

}
= 0,

(2.6)

with terminal condition V (τ,x) = (sb−αx)x and boundary condition V (u, 0, sb) =

0.

Remark 2.1. The HJB equation (2.6) is a special case of the more general model

discussed in the appendix, Section 7.1. The steps for its derivation are provided

in details therein. The above applies to all the HJB equations presented in this

thesis.

The functional form of the terminal condition (used to formulate an appropriate

ansatz), together with the linearity of the impact functions (i.e. βνu and µνu)

and the continuous price process dynamics result in the possibility of finding a

closed-form solution for Equation (2.6). An explicit expression for the optimal

strategy {νu} and the remaining inventory {Xu} deriving from (2.6) are given

by3:

νu = γ
ζeγ(T−u) + e−γ(T−u)

ζeγT − ζe−γT
x, Xu = γ

ζeγ(T−u) − e−γ(T−u)

ζeγT − ζe−γT
x, (2.7)

where

γ =

√
φ

β
, ζ =

α− µ
2 +
√
βφ

α− µ
2 −
√
βφ

, (2.8)

and x is the initial inventory level. Equation (2.7) is a deterministic function

of time and of the model parameters. In what follows, for consistency with the

remainder of the thesis, we graphically show the optimal strategy for various

parameters’ values and comment on their roles.

2.2.1.2 Numerical results and parameters’ analysis

In this section we show how the trading schedule changes when the model pa-

rameters vary.

3We refer to Cartea et al. [23], pages 144-146, for the details of the steps sufficient to achieve
a closed-form solution of (2.6).
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Remark 2.2. We numerically solve Equation (2.6)—which describes the local

behaviour of the value function—and plot the optimal strategy of the agent. We

then double-check the validity of our algorithm with Equation (2.7).

First, we find the optimal rate of trading v by applying first order conditions to

Equation (2.6). Then we substitute the resulting expression for v in the HJB

equation, in order to eliminate the sup operator (the method is standard and

widely used in, e.g. Cartea et al [23]). Finally, we employ a standard finite

difference method to solve the resulting, highly non-linear, PDE. We define time

and space grids, and apply the terminal and boundary conditions to the relevant

grid points. We then proceed backwards in time to determine further points

in the grid via a discretisation of the HJB equation (2.6). We thus are able

to approximate the value function and the optimal strategy of the agent. This

method is used throughout this chapter and we refer to the above high-level view

of the methodology for all the numerical results shown herein. Boundary and

terminal conditions are stated below each HJB equation, and parameters values

are reported below each plot.

Throughout this section, we consider an equally-spaced time grid [0,10] with

intervals of 0.01, an equally-spaced price grid [0,10] with intervals of 0.1 and an

equally-spaced inventory grid [0, 30], with intervals of 1.

We start by analysing the role of α and φ.
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Figure 2.1: Optimal selling strategy—displayed as a function of the remaining
inventory—found by solving the HJB equation (2.6). We set σ = 0.1, β = 0.1,
µ = 0.01, x = 30, sb = 8, T = 10. In the left panel we set φ = 0.005. In the right

panel we set α = 0.1
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In Figure 2.1 we plot the evolution of the inventory for different values of α (left

panel) and φ (right panel). As α increases, the agent is motivated to liquidate a

bigger portion of their inventory by T . Higher values of φ incentivise the investor

to liquidate faster at the beginning, as a consequence of the higher reductions of

the value function when holding a large inventory throughout the whole period.
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Figure 2.2: Optimal selling strategy—displayed as a function of the remaining
inventory—found by solving the HJB equation (2.6). We set σ = 0.1, x = 30, sb = 8,
α = 0.1, φ = 0.001, T = 10. In the left panel we set µ = 0.01. In the right panel we

set β = 0.1

In Figures 2.2 we show how the optimal selling schedule changes, when different

values of the temporary (left panel) and permanent (right panel) impacts are

considered. When the impacts decrease, the agent liquidates a bigger portion

of their inventory by the terminal date T . This confirms the intuition that the

agent refrains from placing large orders (when the market impact is high) as to

avoid slippage: a feature that makes their trades progressively less profitable.

Our conclusion on the above reference model on optimal liquidation can be sum-

marised as follows. The agent wishes to liquidate their inventory by T , though

there is no obligation to do so. This feature is modelled by the parameters α and

φ, which penalise the agent for holding inventory (at maturity and throughout

the whole period, respectively). The agent’s liquidation urgency is modelled by

the parameters α and φ. In particular, we observe the following: (i) the higher

α, the smaller the remaining inventory at T , and (ii) the higher φ, the faster the

liquidation during the initial period. On the other hand, higher price impacts

reduce the selling rate of the agent by making the liquidation process more ex-

pensive. A variation of the above model consists in constraining the inventory to
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be zero by T , i.e. by setting x = −
∫ T
t νudu. This gives rise to a singular terminal

condition where limt→T V (t,x) = 01{x=0} −∞1{x 6=0}. Within this alternative

model, the coefficients µ and β have no impact on the amount of inventory liqui-

dated by T , while φ determines the selling impatience within the considered time

frame. A very similar feature is obtained, in the present framework, by setting

a sufficiently large α (see Figure 2.1—left panel—for α = 0.5). In fact, from

Equation (2.7), we have limα→+∞Xu = sinh(γ(T − u)x/ sinh(γT ). Hence, for

u = T , we have XT = 0, which means that no remaining inventory is held at time

T . This is not surprising, since by setting α = +∞, we have recovered the afore-

mentioned singular terminal condition, i.e. limt→T V (t,x) = 01{x=0}−∞1{x 6=0}.

2.2.2 An introduction to the market-making problem

As opposed to the agent whose goal is to find the optimal strategy to buy or sell

a large amount of an asset, a market maker does not trade in one direction only.

They post limit orders on both sides of the book, thus selling at the higher rate

and buying at the lower rate. Throughout their activity, the market maker may

hold an inventory (which may be negative in the case of short-selling), which

is associated to a risk coming from future price uncertainty as well as better

information that the market-maker’s counterparties may have. If the inventory

surpasses a (optimal) threshold, we assume that the market maker themselves

crosses the spread—by submitting aggressive orders—until the inventory is rebal-

anced and set within the acceptable level. At the end of the trading period, say

T , the market maker wishes to have a neutral position (equivalently, a zero inven-

tory) and is subject to a penalty proportional to the amount of asset held at T .

Previous work on market making includes Amihud and Mendelson [3] who, based

on Garman [42], relate the bid-ask prices to the share holding of a risk-neutral

agent. They find a relationship between the optimal quotes and the distance

from the “preferred” inventory position. Stoll [83] considers a two-period model

in which a risk-averse agent supplies liquidity and maximises their expected

utility. Ho and Stoll [51] utilise the DPP to obtain the optimal quotes which

maximise the terminal wealth in a single-dealer market. The recent evolution

in financial markets, arising with algorithmic and high-frequency trading, has



Chapter 2. Reference models 34

shifted the optimal market-making problem to trading in an order-driven mar-

ket, where optimal quotes and trading strategies are computed and performed by

electronic machines. For example, Avellaneda and Stoikov [5] consider a market-

making problem in a limit order book. They consider the maximisation of the

agent’s utility function in both the finite and the infinite-time cases. They model

the arrival of buy and sell orders by Poisson processes and the dynamics of the

mid-price by an arithmetic Brownian motion. This type of problem has been

investigated elsewhere, too. The works by Cartea and Jaimungal [20] on risk

metrics and by Cartea et al. [18] consider ambiguity and Hawkes processes4, re-

spectively. Guéant et al. [45] deal with the inventory risk and reduce a complex

optimisation problem to a system of ODEs. Guilbaud and Pham [47] consider

a market maker who continuously submits limit orders at the best quoted (or

slightly better) prices and resorts to market orders when the inventory becomes

too large. They numerically solve a finite-time impulse-control problem and find

the optimal order sizes and quotes to be posted in the standard exchange.

As a reference model we here consider a mixture of (i) the market making problem

treated in Cartea et al. [23], and (ii) a simplified version of the Guilbaud and

Pham [47] framework. In particular, the following two modifications with respect

to Cartea et al. [23] are employed: (i) the market maker does not choose the

limit price and only posts on top of the book, and (ii) they can hedge their

inventory through market orders. Compared to Guilbaud and Pham [47], we

have: (i) unit-sized orders, (ii) continuous price process and constant market

spread, and (iii) the market maker can only post on top of the book. The model

described in Section 2.2.2.1 is for introduction purposes only and does not wish

to be realistic. The modifications with respect to Cartea et al. [23] and Pham

[47] are only made for simplicity of exposition. For example, the assumption

regarding a constant half spread is unrealistic (in normal market conditions) and

will, in fact, be removed in Chapter 4.

2.2.2.1 A reference model

We assume that the market maker trades within t and T , and continuously posts

unit-sized limit buy and sell orders on top of the book. Such orders are assumed

4Hawkes processes are self-exciting processes introduced by Hawkes [49].
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to be immediate-or-cancel (IOC) orders, that is either they are immediately

executed, or the market maker cancels them and posts new orders at the (possibly

updated) best bid and ask prices. We assume that the mid-price follows an

arithmetic Brownian motion

dSu = σdWu, (2.9)

with initial state level St = s. We assume that the market has a constant half

spread k, such that the best ask and bid prices are defined by

Sau = Su + k and Sbu = Su − k, (2.10)

respectively. We assume that the market-maker’s inventory satisfies the following

stochastic differential equation

dXu = dN−u − dN+
u , (2.11)

where Xt = x and {N±u } are independent Poisson processes with intensities λ±.

The process {N−u } models incoming market sell orders which fill the market

marker’s limit buy orders, while the process {N+
u } models incoming market buy

orders which fill limit sell orders posted by the market maker.

Remark 2.3. The difference of two independent Poisson-distributed random

variables is well-known to be distributed according to the Skellam distribution

(Skellam [80]). As such, we could have written Equation (2.11) by a Skellam pro-

cess for the sake of compactness. We chose the current non-compact formulation

for ease of interpretation and for ease of comparison with the current relevant

literature (e.g. Cartea et al. [23]).

Finally, we define the cash process by

dYu = (Su + k)dN+
u − (Su − k)dN−u , (2.12)

with initial state level Yt = y. The inventory and cash equations are to be

interpreted as follows. When the Poisson process {N+
u } jumps, a limit sell order

is executed by an incoming aggressive buy order. The market-maker’s inventory

is reduced by one unit and their cash is increased by the amount Su + k. The
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analogous holds when {N−u } jumps. We emphasise that this is not an optimal

posting problem, i.e., the market maker does not choose the prices at which they

post their limit orders. We remove such an assumption in Chapter 4.

At any time the market maker can choose whether they want to cross the spread

in order to reduce their inventory. If, at time τ , a unit-sized market sell order

is placed, the inventory and the cash amounts are modified as follows: Xτ =

Xτ− − 1, and Yτ = Yτ− +Sτ − k. If a market buy order is optimal, the inventory

and the cash amounts become: Xτ = Xτ− + 1 and Yτ = Yτ− − Sτ − k. Such

expressions can be written concisely as

Xτ = Xτ− + ξτ and Yτ = Yτ− − ξτ (Sτ + kξτ ), (2.13)

where ξτ ∈ {−1, 1}.

Remark 2.4. Equations (2.11), (2.12) and (2.13) can be compactly written by

dXu = dN−u − dN+
u +

∑
i

δ(u− τi)ξτi ,

dYu = (Su + k)dN+
u − (Su − k)dN−u −

∑
i

δ(u− τi)ξτi(Sτi + kξτi),
(2.14)

where δ(·) is the Dirac delta function. More details can be found in Remark 7.1.

In the remainder of the thesis we will use the non-compact notation, although we

acknowledge that this remark applies to all the state-variables dynamics which

can be subject to discretionary impulses.

Every time the market maker sends (expensive) aggressive orders, they reveal

to other market participants the sign of their inventory. That is, a market sell

order is a sign of holding a positive inventory, which they want to liquidate, and

vice versa. The potential information leakage may push the price against the

market-maker’s inventory and therefore we find it suitable to add an additional

fixed penalty ε > 0, to which the market maker is subject to when they cross

the spread. We choose a constant penalty for tractability of the model. Alter-

native specifications may include a penalty commensurate to the order size, as

well as a time-dependent penalty (as opposed to an instantaneous penalty), of
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which effect may decay with time. In the current setting, the former specifica-

tion does not make a difference since orders are assumed to be unit-sized. The

latter specification would be more appropriate if hedging was performed on a

continuous-time basis as it would have an interpretation analogous to the one

pertaining to permanent price impact.

Within the present model, the market maker aims to maximise their terminal

cash subject to both terminal and running penalties for holding a non-zero in-

ventory. their optimal strategy consists of a double sequence of stopping times τi

and random variables5 ξi, for i = 0, 1, 2, . . . , which maximises their performance

criterion:

V (t,x) = sup
(τi,ξi)i≥0

Et,x
[
YT +XT (ST − αXT )− φ

∫ T

t
X2
udu−

∑
t≤τi<T

ε

]
, (2.15)

where x := (x, y, s) is the vector of state variables, corresponding to the inven-

tory, the cash and the mid-price processes. This is an optimal impulse-control

problem and the value function solves the following HJB quasi variational in-

equality (QVI)

min

{
φx2 − ∂V

∂t
(t,x)− λ+

[
V (t, x− 1, y + s+ k, s)− V (t,x)

]
−1

2
σ2∂

2V

∂s2
(t,x)− λ−

[
V (t, x+ 1, y − s+ k, s)− V (t,x)

]
;

V (t,x)−MV (t,x)

}
= 0,

(2.16)

with terminal condition V (T,x) = y+(s−αx)x—see, e.g., Pham [75] for details.

The operator MV (t,x) in (2.16) is defined by

MV (t,x) = sup
e∈{−1,+1}

V
(
t, x+ e, y − e(s+ ke), s

)
− ε. (2.17)

Remark 2.5. The reason why Equation (2.16) is referred-to as an inequality is

explained in Section 7.1, Remark 7.2.

The result of the above optimisation thus only consists of the thresholds which

indicate—to the market maker—the inventory level at which it is optimal for

5We let ξi be the shorthand notation of ξτi .
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them to cross the spread and post aggressive orders to rebalance their position

(also known as hedging).

2.2.2.2 Numerical results and parameters’ analysis

Next we study the behaviour of the optimal strategy for various values of param-

eters. The graphs of the present section show the optimal inventory thresholds

for the entire trading period. The region between the two lines (labelled “Limit

orders”) shows the range of inventory for which it is optimal for the market maker

to keep posting limit orders. As maturity is approached, the region shrinks due

to the penalty to which the market maker is subject to, if they reach T with

a non-zero inventory. If the inventory falls in the region above the upper line,

then it is optimal to post market sell orders until the inventory is back in the

limit-order region. If the inventory falls below the bottom line, the market maker

starts posting aggressive buy orders. The market-order regions widen when the

maturity is approached. This is due to the necessity to liquidate as much inven-

tory as possible before T .

We can use an ansatz to reduce the number of state variables of Equation (2.16)

and, in-particular, we set V (t, x, s, y) = y + xs + h(t, x) and substitute it into

Equation (2.16). We thus find, and numerically solve, the PDE satisfied by the

function h(t, x). (See (i) Cartea et al. [23], and (ii) Chapter 4, Section 4.3, of

the present work for details and examples of such substitution, respectively). We

use an explicit finite difference method to approximate the solution of Equation

(2.16) and the optimal strategy of the market maker. Throughout this section,

we consider an equally-spaced time grid [0,50] with intervals of 1 and an equally-

spaced inventory grid [-150, 150], with intervals of 0.1. The terminal condition is

stated below HJB equation (2.16) and parameters’ values are stated below each

plot.

The parameter φ models the running penalty for holding the inventory. The

higher the penalty, the sooner the market maker resorts to aggressive orders,

so to rebalance their position on the asset. The numerical results confirm the
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intuition, and Figure 2.3 shows that the limit-order region widens for a lower

value of φ.
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Figure 2.3: Optimal inventory thresholds found by solving the HJB equation
(2.16). We set k = 3, α = 2, λ+ = λ− = 0.5, T = 50, ε = 10. In the left panel we set

φ = 0.00001. In the right panel we set φ = 0.0001.

In Figure 2.4 we choose different values for the arrival-rates of buyers and sellers,

who fill the market-maker’s limit orders. We note that we lose the symmetry—

around the line Xu = 0—featured in Figure 2.3 and that the optimal boundaries

are now skewed. In the left panel, buyers come more frequently than sellers and

thus the optimal threshold at which the market maker starts posting aggressive

buy orders is closer to zero. The opposite holds when the arrival-rate of the

sellers is higher than the one of the buyers (right panel).
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Figure 2.4: Optimal inventory thresholds found by solving the HJB equation
(2.16). We set k = 3, α = 2, φ = 0.0001, T = 50, ε = 10. In the left panel we set

λ+ = 0.6, λ− = 0.4. In the right panel we set λ+ = 0.4, λ− = 0.6.
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Figure 2.5: Optimal inventory thresholds found by solving the HJB equation
(2.16). We set α = 2, λ+ = λ− = 0.5, T = 50, ε = 10, φ = 0.0001. In the left panel

we set k = 5. In the right panel we set k = 1.

The role of the parameter k is two-fold as it appears in both the earnings coming

from limit orders as well as the costs for submitting market orders. In fact, when

a passive order is posted (and executed), the submitting agent earns the spread,

which is paid by the counterparty, who sent an aggressive order to the same

market venue. We want to address the question of what a market maker should

do when the spread widens. According to the numerical results, a higher spread

incentivises the market maker to refrain from posting aggressive orders while

keeping posting passive orders. This behaviour has two interpretations. (i) The

earnings obtained through limit orders compensate both the running and the

terminal penalties for holding the inventory. (ii) The submission of aggressive

orders is very expensive in the scenario of a high spread k, and it offsets the

benefits coming from reducing the inventory. Such a feature is shown in Figure

2.5, where for high k (left panel) the limit-order region is wider compared to the

the case where k is low (right panel).

Figure 2.6 shows the role of the parameter α, which models the penalty for

holding a non-zero inventory at the end of the trading period. A higher α (left

panel) incentivises the market maker to resort to aggressive orders sooner—by

shrinking the limit-orders region—versus lower values of α (right panel).
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Figure 2.6: Optimal inventory thresholds found by solving the HJB equation
(2.16). We set k = 3, λ+ = λ− = 0.5, T = 50, ε = 10, φ = 0.0001. In the left panel

we set α = 5. In the right panel we set α = 1.
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Figure 2.7: Optimal inventory thresholds found by solving the HJB equation
(2.16). We set k = 3, λ+ = λ− = 0.5, α = 2, T = 50, φ = 0.0001. In the left panel

we set ε = 20. In the right panel we set ε = 1.

Finally, we show that as ε (that is, the penalty for crossing the spread) increases,

the market maker refrains from posting aggressive orders. Figure 2.7 shows this

feature, and we can see a shrunk limit-order region for low values of ε (right

panel).

We conclude this section by summarising the insights provided by such a refer-

ence model. The market maker earns the spread by posting limit orders and is

subject to an inventory risk, derived by potential unfavourable price movements

(e.g. the price decreases when they have a positive inventory and vice versa).
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We note that the shape and the width of the optimal thresholds derive from such

a tradeoff. The optimal strategy of the market maker consists of posting limit

orders on both sides of the book, as long as the inventory does not surpass the

critical boundaries. In the event that the inventory crosses one of the thresholds,

the market maker posts aggressive buy or sell orders (when the inventory is neg-

ative or positive, respectively), until their holdings are back within an acceptable

level. While the main purpose of this model is to construct a common ground for

the discussion presented in the following chapters, we acknowledge that in the

literature, see e.g. Cartea et al. [23, 24], optimal market-making problems are

closely related to optimal-posting problems, where the market maker can choose

the price at which their limit orders are posted. Such feature is included later in

the thesis, in Chapter 4.

2.3 Dark pools

Dark pools are alternative trading venues where buy and sell orders are not dis-

played publicly. The introduction of dark pools was motivated by the existence

of big institutional investors who wanted to trade large amounts of an asset with

no impact on the market price, while also maintaining anonymity so to avoid

information leakage. There are different types of dark pools and one way of dis-

tinguishing among them is to consider the amount of principal liquidity offered

to the clients (see, e.g., Zhu [87]). There are dark pools which limit their ac-

tivity to just offering the platform for trading, subject to the payment of a fee.

Such pools match buyers and sellers at the ‘lit’-pool mid-price and are known

as crossing networks. There is no guarantee of execution of orders sent to such

types of dark pools, for each trade is subject to the availability of a counter-

party. On the other hand, there are dark pools which trade principally with

their clients and in-effect act as market makers. They guarantee anonymity to

their clients and, loosely speaking, offer a tighter spread than the one available

in ‘lit’ pools in order to be competitive and win more business. Analogously

to ‘lit’-pool market makers, they charge the spread for client’s transactions and

are subject to an inventory risk. In between these two categories, there are

dark pools which trade both principally and as agents, possibly within the same
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transaction. They earn the spread from the principal portion and a commission

fee from the brokerage service. The firms belonging to latter two categories are

commonly referred to as CLP or broker-dealer firms. The new European regula-

tion due to take effect in January 2018—known as MiFID ii—will substantially

reduce the anonymity granted to dark pool’s clients. In particular, monthly size

caps will be implemented so to limit the opaque activity of market participants.

Furthermore, reporting, clearing and transparency obligations will be in place

for instruments that are less regulated to date. Although the new regulation

will impact dark pools, the models presented in this thesis will still be relevant

for the following reasons: (i) agents will still be able to trade within multiple

venues, (ii) anonymity and opaqueness enter only marginally in the discussion

and in the model design, and (iii) we propose flexible setups that provide high

potentials for customisation.

To the best of our knowledge, at the time this thesis is being written, there are

no references available for trading in CLPs. On the contrary, optimal execution

within dark pools that limit their activity to third-parties orders’ match has been

extensively studied in, e.g., Kratz and Schöneborn [57, 58]. In the next section,

we outline a simplified model, inspired by Cartea et al. [23], as a reference for

the class of models presented in Chapter 3. Next, we provide a toy model for the

case in which the dark pool (CLP) operates as principal and provides liquidity

to its clients. The last reference model is part of the original work presented in

this thesis and we refer to Crisafi and Macrina [31]. A larger class of such models

is thoroughly discussed in Chapter 4.

Research on dark-pool trading includes the early work by Hendershott and

Mendelson [50], who extend the Kyle [59] model to capture the dynamics of

the interplay between investors, dark pools and standard exchanges, followed by

Degryse et al. [34], Buti et al. [14] and Daniëls et al. [32]. The works by Ye [86]

and Zhu [87] examine the effects—on price discovery—of the migration of order

flows from exchanges to dark pools. Increase in overall trading volume is shown

in Buti et al. [15].

Kratz and Schöneborn [57] consider continuous-time trading in the dark pool

within the classical field of optimal liquidation. They model the LOB mid-price
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by an exogenous square-integrable martingale and regard the dark pool as a

complete-or-zero-execution venue where the arrival of trading counterparties is

modelled by a Poisson process. In this context, we also refer to work by Horst and

Naujokat [52], in which the authors find the optimal strategy when trading in an

illiquid market. The agent under consideration seeks to minimise the deviation

from a given target, while submitting market orders in the standard exchange

and “passive orders” in a dark pool.

2.3.1 Optimal trading in ‘lit’ and dark pools

We consider an agent who wants to liquidate a sizeable amount of an asset by

means of both, (i) aggressive orders in the ‘lit’ pool, and (ii) dark-pool orders.

The agent trades continuously in both venues and wishes to maximise their

revenues while (i) minimising the price impact, and (ii) reaching the terminal

date with as few shares as possible. The goal is to find the optimal selling schedule

in both venues, which maximises the performance criterion of the agent.

2.3.1.1 A reference model

We assume that the ‘lit’-pool mid-price follows an arithmetic Brownian motion

dSu = σdWu. (2.18)

Trades in the ‘lit’ pool take place at the instantaneously impacted price Ŝu =

Su − βνu, where ν := {νu} is the agent’s rate of trading in the ‘lit’ pool. The

agent simultaneously posts sell orders in the dark pool, which may or may not

be executed, depending on the availability of a trade counterparty. We assume

that the execution price in the dark pool is the ‘lit’-pool mid-price. We model

the arrival of dark-pool counterparties by a Poisson process {Nu} with constant

intensity λ. We define the agent’s inventory process by

dXu = −νudu− ηudNu, (2.19)
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where η := {ηu} is a predictable process, which models the size of the orders

placed in the dark pool at each time u ∈ [t, T ]. We further define the cash

process of the agent by

dYu = νuŜudu+ ηuSudNu. (2.20)

The constant-intensity assumption is an unrealistic one. Market generally sees

activity bursts followed by periods of relative calmness. On the other hand, a

random intensity would reduce the tractability of the model. The agent aims

to maximise their expected terminal cash, subject to both terminal and running

penalties for holding a positive inventory. We define the value function by

V (t,x) = sup
ν,η

Et,x
[
Yτ +Xτ (Sτ − αXτ )− φ

∫ τ

t
X2
udu

]
, (2.21)

where α and φ are non-negative constants and x := (x, y, s) is a vector of state

variables. The stopping time τ is defined by Equation (2.5), and it is needed

since the agent may terminate their liquidation task well before the terminal

date T (provided there is enough liquidity available in the dark pool). The value

function V (t,x) satisfies the HJB equation

sup
v,n

{
− φx2 +

∂V

∂t
(t,x) + λ

[
V (t, x− n, y + ns, s)− V (t,x)

]
+

1

2
σ2∂

2V

∂s2
(t,x)− v∂V

∂x
(t,x) + v(s− βv)

∂V

∂y
(t,x)

}
= 0,

(2.22)

with terminal and boundary conditions given by V (τ,x) = y + x(s − αx) and

V (u, 0, y, s) = y, respectively. A closed-form solution, together with the tech-

niques to obtain it, is provided in Cartea et al. [23], pages 178-181. In particular,

the optimal strategy ({νu}, {ηu}) is given by

νu = −
Xu

(
ζ− − ζ+ζ̄e−γ(T−u)

)
β
(

1− ζ̄e−γ(T−u)
) , ηu = Xu, (2.23)
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and the remaining inventory is given by

Xu = eζ
−u/βx

1− ζ̄e−γ(T−u)

1− ζ̄e−γT
, (2.24)

where

ζ± =
βλ

2
±
√
β2λ2

4
+ βφ and ζ̄ =

α+ ζ−

α+ ζ+
. (2.25)

Here, for consistency with the remainder of the thesis, we graphically show the

optimal trading schedule and comment on the roles played by the model’s pa-

rameters.

2.3.1.2 Numerical results and parameters’ analysis

In this section we provide a numerical analysis of the agent’s optimal liquidation

strategy, and how it changes when the model parameters vary. In the plots below

we show the inventory trajectories over time. In each plot, the dotted line shows

the inventory evolution if no dark-pool execution takes place throughout the

whole period. The solid line shows the effect of one dark-pool execution at time

τ = 5. We note that, within this model, the agent places a small portion of the

inventory in the ‘lit’ pool and all the remaining shares in the dark pool. That

is, the liquidation task ends as soon as the first dark-pool execution takes place.

We note that the optimal strategy ceases to be convex. In fact the agent hopes

to liquidate as much as possible in the dark pool, and thus starts by placing

small orders in the ‘lit’ pool. The speed of the ‘lit’-pool trading rate increases

towards the end of the trading period due to the terminal penalty for holding

the inventory.

Throughout this section, we consider an equally-spaced time grid [0,10] with

intervals of 0.01 and an equally-spaced inventory grid [0, 30], with intervals of

1. The terminal and boundary conditions are stated below HJB equation (2.22)

and parameters’ values are stated below each plot.
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Figure 2.8: Optimal selling strategy—displayed as a function of the remaining
inventory—found by solving the HJB equation (2.22). We set σ = 0.1, s = 40,
λ = 0.5, α = 0.5, T = 10, φ = 0.001, τ = 5. In the left panel we set β = 0.2. In the

right panel we set β = 0.01.

In Figure 2.8 we see that β, i.e. the coefficient of the instantaneous price impact,

dramatically changes the shape of the selling schedule. A low β (right panel)

induces a faster liquidation in the ‘lit’ pool since the reduced impact makes

the dark pool less attractive to the investor. The trading speed reflects such

feature and increases in the case of low temporary price impact (left panel).

Furthermore, we note that the liquidation task is almost fully achieved even in

the case of no dark-pool executions (right panel, dotted line). This is not the

case for a high β. In fact, the agent fails to liquidate a relevant portion of their

inventory by T , if no liquidity is available in the dark pool (left panel, dotted

line).

Next, we analyse the role of the terminal penalty for holding a non-zero inventory

at T . The value function of the agent decreases proportionally to the square

of the terminal inventory, and therefore a higher penalty increases the trading

speed of the agent, so that the trading period can be concluded with a smaller

inventory. Our intuition is confirmed in Figure 2.9, where we note that a higher

α incentivises the agent to hold as few units of the asset as possible at T (left

panel). We further note that the selling speed increases more towards the end of

the trading period, rather than consistently between t and T . This is due to the

presence of the dark pool, since the agent wishes to liquidate as much as possible

in the alternative venue.
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Figure 2.9: Optimal selling strategy—displayed as a function of the remaining
inventory—found by solving the HJB equation (2.22). We set σ = 0.1, s = 40,
λ = 0.5, T = 10, φ = 0.001, τ = 5, β = 0.1. In the left panel we set α = 3. In the

right panel we set α = 0.1.
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Figure 2.10: Optimal selling strategy—displayed as a function of the remaining
inventory—found by solving the HJB equation (2.22). We set σ = 0.1, s = 40,
λ = 0.5, α = 0.5, T = 10, α = 0.5, τ = 5, β = 0.1. In the left panel we set φ = 0.01.

In the right panel we set φ = 0.0001.

In Figure 2.10 we show how the selling schedule changes when we vary the

parameter φ of the quadratic running penalty for the inventory holding. We

note that a high φ increases the trading speed of the agent in the ‘lit’ pool from

the beginning of the trading period.

The last parameter we focus on is λ, which models the arrival intensity of trading

counterparties in the dark pool. In the right panel of Figure 2.11 we note that

a low λ (that is, there is little to no liquidity in the dark pool) induces a faster
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liquidation in the ‘lit’ pool. In particular, as λ → 0, the trading trajectories

approach the ones obtained when trading in the ‘lit’ pool only.

Time
0 2 4 6 8 10

In
v
e
n
to
ry

le
v
e
l

0

5

10

15

20

25

30

Selling schedule - high λ

Dark-pool execution at τ = 5

No dark-pool execution

Time
0 2 4 6 8 10

In
v
e
n
to
ry

le
v
e
l

0

5

10

15

20

25

30

Selling schedule - low λ

Dark-pool execution at τ = 5

No dark-pool execution

Figure 2.11: Optimal selling strategy—displayed as a function of the remaining
inventory—found by solving the HJB equation (2.22). We set σ = 0.1, s = 40,
φ = 0.001, α = 0.5, T = 10, α = 0.5, τ = 5, β = 0.1. In the left panel we set λ = 1.

In the right panel we set λ = 0.1.

We can summarise our findings as follows. The trading trajectories in the ‘lit’

pool cease to be convex (i.e. the agent reduces their speed of trading in the ‘lit’

pool at the beginning of the period) since the agent is keen to liquidate as much

of their inventory as possible in the dark pool so as to avoid price impact. One

of the main features of the optimal selling strategy, which we derive by solving

the HJB Equation (2.22), is that the agent always places an optimal portion of

the asset in the ‘lit’ pool and all the remaining inventory in the dark pool at

all times. In Chapter 3, where we propose price dynamics with more structure,

we present cases where this feature ceases to be true. Finally, we note that

the permanent price impact is not treated in the present model. Its effects are

studied in Chapter 3.

2.3.2 Dark pools as market makers

In this section we explore the optimal trading strategies of a dark pool that

plays the role of a market maker. Here, we use the terms dark pool, CLP and

broker-dealer firm interchangeably. As opposed to the previous section, where
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the dark-pool activity was limited to matching third-party orders, here the CLP

offers liquidity to buyers and sellers, and we refer to such activity by saying that

the CLP trades principally. Within this basic model, we assume that the CLP

trades 100% principally, thus transferring internally the whole inventory risk.

This assumption is removed in Chapter 5.

The CLP provides bid and ask quotes to its clients and earns the spread from

each transaction. We assume that the spread offered by the CLP is tighter than

the one shown in the ‘lit’ pool. Clients are incentivised to trade in the CLP,

since they are offered advantageous prices, while also preserving their anonymity.

Furthermore, such a feature increases the competitiveness of the venue compared

to similar liquidity providers. The assumption that the dark-pool spread lies

within the ‘lit’-pool one at any time is an unrealistic one. In fact, this does

not need to be the case, and it is not true when the CLP holds a non-zero

inventory. In the simplified model presented below, this is not an issue since

we consider both the dark-pool quotes and the ‘lit’-pool spread to be constants.

Such assumptions are removed in Chapter 4.

Throughout its activity, the CLP is subject to an inventory risk, which can be

reduced by submitting limit and/or market orders in the ‘lit’ pool. We sometimes

refer to such activity as hedging. We assume that the CLP is subject to a penalty

every time it resorts to the ‘lit’ venue, so to model the potential information

leakage the CLP would suffer. In particular, publicly displaying its orders on a

regular exchange may give insights to other market participants into the dark-

pool inventory and, thus, the market trend.

In the next section we provide a simplified version of the model presented in

Chapter 4 and we show the optimal inventory thresholds, which provide the

dark-pool trading strategy.

2.3.2.1 A reference model

We assume that the CLP trades within the time interval [t, T ], and executes

unit-sized buy and sell orders submitted by its clients6. We assume that the

6A unit-size order can be interpreted/changed to one lot or a fixed size with no added
complexity. We prefer to keep it to one, to reduce the numbers of parameters to a minimum.
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‘lit’-pool mid-price follows an arithmetic Brownian motion

dSu = σdWu, (2.26)

starting at St = s. We further assume that the market has a constant half spread

k, such that the ‘lit’-pool best ask and bid prices are defined by

Sau = Su + k and Sbu = Su − k, (2.27)

respectively. Equations (2.26) and (2.27) are far from capturing realistic market

dynamics. We choose them for tractability purposes, bearing in mind this model

is for reference purpose only. We let the CLP’s inventory start at the value x ∈ R

and satisfy the following stochastic differential equation

dXu = dN−u − dN+
u , (2.28)

where {N±u } are independent Poisson processes with intensities λ±. The CLP

offers bid and ask quotes pegged to the ‘lit’-pool mid-price. That is, it executes

orders from buyers at a price Su + δ+ and orders from sellers at a price Su− δ−,

where δ+ and δ− are positive constants, not greater than k. We define the cash

process of the CLP by

dYu = (Su + δ+)dN+
u − (Su − δ−)dN−u , (2.29)

with initial state level Yt = y.

At each time the CLP can choose whether it wishes to reduce its inventory by

means of market or limit orders. If at time τm a market order is placed, the

inventory and the cash processes are subject to the following impulses

Xτm = Xτm−
+ ξτ and Yτm = Yτm− − ξ

m
τ (Sτm + kξτm), (2.30)

where ξτm ∈ {−1, 1}, for a sell and buy market order, respectively. On the

other hand, if at time τ ` a IOC limit order is placed, the inventory and the cash

processes are subject to the following impulse
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Xτ` = Xτ`−
+ ητ`zτ` and Yτ` = Yτ`−

− η`τ (Sτ` − kητ`)zτ` , (2.31)

where ητ` ∈ {−1, 1}, for a sell and buy market order, respectively, and zτ`

is a collection of i.i.d. {0, 1}-valued random variables which model the limit-

order execution percentage. When z = 1 the limit order posted by the CLP gets

executed, otherwise it gets cancelled. In a more structured model the probability

mass function of the random variables zτ` should be related to the depth of the

book at which the CLP posts its limit orders. In the present framework we

assume that limit orders are always posted at the best prices available in the ‘lit’

market (which has a constant spread), and therefore we set P[z = 1] = p, where

p is a positive constant.

Similarly to Section 2.2.2.1, every time the CLP sends orders to the ‘lit’ pool,

it leaks information to other market participants. This feature is modelled by

fixed penalties εm > ε` > 0 for market and limit orders, respectively, to which

the CLP is subject to. We assume that the market-order penalty is larger than

the limit-order one since, by crossing the spread, the CLP reveals a higher degree

of execution urgency to other market participants. Furthermore, an aggressive

order produces a higher price impact (against the market-maker inventory) com-

pared to a limit-order.

The optimal strategy of the CLP is a pair of double sequences of stopping times

τmi and τ `j and random variables ξi and ηj , for i, j = 0, 1, 2 . . . , which maximise

its expected terminal cash YT while minimising the risk of holding the inven-

tory throughout the whole trading period. We thus plot the optimal inventory

thresholds which indicate—to the market maker—the inventory level at which

it is optimal for them to cross the spread and post ‘lit’ pool orders. We define

the value function by

V (t,x) = sup
Mi,Lj

Et,x
[
YT +XT (ST −αXT )−φ

∫ T

t
X2
udu−

∑
t≤τmi <T

εm−
∑

t≤τ`j<T

ε`
]
,

(2.32)
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where x := (x, y, s), Mi : (τmi , ξi)i≥0 and Lj : (τ `j , ηj)j≥0. This is a double-

obstacle impulse-control problem and the value function solves the following

QVI:

min

{
φx2 − ∂V

∂t
(t,x)− λ+

[
V (t, x− 1, y + s+ δ+, s)− V (t,x)

]
−1

2
σ2∂

2V

∂s2
(t,x)− λ−

[
V (t, x+ 1, y − s+ δ−, s)− V (t,x)

]
;

V (t,x)−MV (t,x);V (t,x)− LV (t,x)

}
= 0,

(2.33)

with terminal condition V (T,x) = y + (s− αx)x. The operators MV (t,x) and

LV (t,x) in Equation (2.33) are defined by

MV (t,x) = sup
e∈{−1,+1}

V
(
t, x+ e, y − e(s+ ke), s

)
− εm, (2.34)

and

LV (t,x) = sup
n∈{−1,+1}

E(z)
[
V
(
t, x+ nz, y − n(s− kn)z, s

)]
− ε`, (2.35)

where the expectation in Equation (2.35) is taken with respect to the random

variable z, which represents what percentage of a limit order is filled in the ‘lit’

pool. The result of the above optimisation consists of the thresholds for the

CLP’s inventory at which it is optimal to post (passive or aggressive) orders in

the ‘lit’ pool.

2.3.2.2 Numerical results and parameters’ analysis

In this section we show the optimal boundaries found by solving the quasi vari-

ational inequality in Equation (2.33). We find the critical thresholds that define

the strategy of the CLP. In the plots that follow, we show the optimal bound-

aries and we see that no ‘lit’-pool orders are submitted by the CLP as long as its

inventory lies within the central region, labelled “Market making”. If the inven-

tory falls outside the central region, the CLP starts submitting limit buy or sell

orders in the ‘lit’ pool when the inventory is negative or positive, respectively.

Market orders are the last resort means of trading and are submitted when the
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inventory surpasses the upper line for sell orders and the bottom line for buy

orders. We note that the boundaries shrink as we approach T as a result of

the terminal penalty for holding the inventory, which we model by α. In what

follows we look at the role played by the model’s parameter.

In Figure 2.12 we note that a high α (left panel) incentivises the CLP to resort

faster to hedging, compared to the case of low α (right panel). In particular,

the CLP resorts to market orders for lower inventory levels. Market orders

are expensive but benefit from sure execution and thus are preferred when the

penalty for holding the inventory is higher. When α is low, the aggressive-orders

boundaries widen in favour of passive orders.

We can use the ansatz V (t, x, s, y) = y + xs + h(t, x) in order to reduce the

number of state variables of Equation (2.33). We thus find, and numerically solve,

the PDE satisfied by the function h(t, x). We use an explicit finite difference

method to approximate the solution of Equation (2.33) and the optimal strategy

of the agent. Throughout this section, we consider an equally-spaced time grid

[0,50] with intervals of 1 and an equally-spaced inventory grid [-200, 200], with

intervals of 0.1. The terminal condition is stated below HJB equation (2.16) and

parameters’ values are stated below each plot.
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Figure 2.12: Optimal inventory thresholds found by solving the HJB equation
(2.33). We set k = 4, λ+ = λ− = 0.5, T = 50, εm = 30, ε` = 15 φ = 0.0001,
δ+ = δ− = 2, p = 0.8. In the left panel we set α = 3. In the right panel we set α = 1.
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Figure 2.13: Optimal inventory thresholds found by solving the HJB equation
(2.33). We set k = 4, T = 50, εm = 30, ε` = 15 φ = 0.0001, α = 1, δ+ = δ− = 2,
p = 0.8. In the left panel we set λ+ = 0.7 and λ− = 0.3. In the right panel we set

λ+ = 0.3 and λ− = 0.7.

In Figure 2.13 the market-making boundaries are skewed upward (resp. down-

ward) when the arrival rate of buyers is higher (resp. lower) than the one of

sellers. In the right panel the inventory is expected to increase on average and

thus the CLP resorts to the ‘lit’ pool faster in the case of positive inventory,

compared to the case of negative inventory. In the left panel the opposite holds

since buyers are expected to arrive at a higher rate than sellers. The CLP in-

corporates its beliefs on the market trend, and it is thus incentivised to take its

hedging decisions consistently with the arrival rate of buyers and sellers.
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Figure 2.14: Optimal inventory thresholds found by solving the HJB equation
(2.33). We set k = 4, λ+ = λ− = 0.5, T = 50, εm = 30, ε` = 15, α = 1, φ = 0.0001,
δ+ = δ− = 2, p = 0.8. In the left panel we set k = 6. In the right panel we set k = 2.
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The half spread k plays an important role since a higher k results in more expen-

sive aggressive ‘lit’-pool orders and more advantageous ‘lit’-pool passive orders.

These properties make limit orders preferred to market orders and thus the CLP

crosses the spread for higher levels of the inventory. Figure 2.14 shows that for

a high spread (left panel) the boundaries widen, while for a low spread (right

panel), the boundaries shrink.

In Figure 2.15 we show that low values of the penalties εm and ε` (right panel)

encourage the CLP to resort sooner to the ‘lit’ pool for its hedging activity. This

confirms the intuition that, being risk averse, the CLP resorts to the ‘lit’ pool

sooner, provided the hedging is less penalising.
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Figure 2.15: Optimal inventory thresholds found by solving the HJB equation
(2.33). We set k = 4, λ+ = λ− = 0.5, T = 50, φ = 0.0001, α = 1, δ+ = δ− = 2,
p = 0.8. In the left panel we set εm = 35 and ε` = 20. In the left panel we set εm = 6

and ε` = 4.

The parameter φ models the running penalty for holding the inventory. In the

left panel of Figure 2.16 we note that the market-making region is consistently

shrunk compared to the right panel. This implies that the CLP reduces the

amount of inventory it is willing to hold at every point in time, in favour of

hedging, as the inventory causes higher reductions of the value function.
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Figure 2.16: Optimal inventory thresholds found by solving the HJB equation
(2.33). We set k = 4, λ+ = λ− = 0.5, T = 50, εm = 30, ε` = 15 , α = 1, δ+ = δ− = 2,
p = 0.8. In the left panel we set φ = 0.001. In the right panel we set φ = 0.00001.

The parameter pmodels the probability of execution of the limit orders submitted

to the ‘lit’ pool by the CLP. A higher p increases the likelihood of reducing the

inventory by means of limit orders, which are less expensive and, thus, preferred.

Figure 2.17 shows that in the case of a high probability of execution p (left

panel), the market-orders regions shrink as the CLP is confident it can rebalance

its inventory by means of limit orders. The opposite holds in case of a low p.
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Figure 2.17: Optimal inventory thresholds found by solving the HJB equation
(2.33). We set k = 4, λ+ = λ− = 0.5, T = 50, εm = 30, ε` = 15 φ = 0.0001, α = 1,
δ+ = δ− = 2. In the left panel we set p = 0.95. In the right panel we set p = 0.65
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2.4 Conclusions

In the present chapter, we have considered both optimal execution and optimal

market making, with and without the presence of a dark pool (or CLP) as an

additional venue.

In the case of optimal execution, we note that the presence of a dark pool con-

siderably changes the optimal strategy of the agent. In fact, they place a small

portion of their inventory in the ‘lit’ pool and the remaining inventory in the

dark pool at every point in time. That is, the ‘lit’-pool trading speed is reduced

compared to scenarios where only a standard exchange is available to the agent.

This is in line with the feature that the dark pool offers more favourable trad-

ing prices (i.e. mid-price trading rather than buying at the best ask price and

sell at the best bid price). In the presented model, the liquidation task ends as

soon as the first dark-pool execution takes place. This behaviour of the optimal

strategy (i.e. placing all the remaining inventory in the dark pool) is due to the

dynamics of the mid-price, which we choose to be a martingale. In Chapter 3,

where this assumption is removed and more realistic dynamics for the mid-price

are chosen (e.g. a mean-reverting jump process), the aforementioned strategy

ceases to be optimal, since the agent takes advantage of the expected movements

of the market price.

When the dark pool (here, CLP) plays the role of a market maker by providing

principal liquidity to its clients, it sets bid and ask quotes and resorts to the

‘lit’ pool to reduce its risk of holding the inventory. It first posts limit orders,

which are less expensive but their execution is uncertain, and ultimately market

orders. We show that the optimal thresholds crucially depend on the model

parameters and, in particular, on the degree of risk that the CLP is willing to

take. In Chapter 4 we consider additional state and control variables. We allow

the CLP to choose both (i) the spread it charges to its client, and (ii) the depth

of the LOB at which it posts passive orders (i.e. the CLP need not to post on

top of the book). Furthermore, we drop the unrealistic assumption of a constant

‘lit’-pool spread.
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In Chapter 5 we provide an application of the above framework to the electronic

foreign exchange (eFX) market. We slightly modify some of the assumptions

made in Chapter 4, so to make the model consistent with the specific features of

the eFX market.





Chapter 3

Optimal execution in ‘lit’ and

dark pools

3.1 Overview of the chapter

In this chapter we study an optimal execution problem from the perspective of an

investor, when both dark and ‘lit’ pools are available to market participants. We

assume that an agent seeks to execute a sizeable amount of a liquidly-traded asset

over a finite period of time [t, T ], where the initial time t lies in the interval [0, T ).

The ultimate goal is to find the optimal trading schedule which maximises the

performance criterion of the agent. This chapter is based on Crisafi and Macrina

[30].

In Section 3.2 we propose a class of models and we numerically solve an optimal

execution problem when only the ‘lit’ pool is available to the agent. We show

that the optimal trading trajectories are closely related to the price dynamics

assumed.

In Section 3.3 we add the possibility for the agent to trade simultaneously in

both ‘lit’ and dark pools and we compare the results to the ones obtained in

the reference model presented in Section 2.3.1. We find, e.g., that the choice of

the optimal strategy depends on the price dynamics assumed (i.e. it depends on

the current and expected market conditions). In Section 2.3.1 the strategy was

61



Chapter 3. Optimal execution in ‘lit’ and dark pools 62

independent from the price since no information was available on future price

movements (i.e. the price was a martingale). We believe this is not realistic since

agents may have their own expectations on the market’s evolution and thus wish

to incorporate this feature in the model.

Throughout the present chapter we use standard finite difference methods to

solve—backward in time—the HJB equations stated herein. We thus obtain and

plot the numerical solution. The algorithm and techniques used are described

in detail in Section 7.5.1. Furthermore, the values of the parameters used are

reported under each plot, for reproducibility purposes.

3.2 Trading in the ‘lit’ pool

We assume that the agent trades in the ‘lit’ pool by means of aggressive orders

only. Such urgency may be motivated by a need for immediate liquidity as well

as some private information the agent may have. In order to precisely determine

the liquidation price received by the agent, a model of all LOB levels should

be considered. This would reduce the model’s tractability and thus we assume

that—as far as an optimal liquidation strategy is concerned—it suffices to model

the best bid price1. We remark that the effect of exhausting distinct book levels

can be achieved by a temporary price impact function, as seen in Chapter 2.

3.2.1 Price, inventory and cash dynamics

We fix a probability space (Ω,F ,P) equipped with a filtration {Fu}0≤u≤T satisfy-

ing the usual conditions. In what follows, we assume that the task is to liquidate

an amount Xt = x of shares, where 0 ≤ x < ∞, and write for the inventory

dynamics

dXu = −νudu, (3.1)

where the rate of trading ν := {νu} takes value in a compact set V = [0, N ] ⊂

[0,∞) and is the control process of the stochastic optimal control problem pre-

sented in Section 3.2.2. In the short run, we assume that the best bid price at

1Or the best ask price in the case of an optimal acquisition.
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time u ∈ [t, T ] depends on its initial state and on the cumulated market activ-

ity up to time u. We introduce two compensated compound Poisson processes

defined by

J̃b,iu = Jb,iu − λb,iuE
[
zb,i1

]
=

Nb,i
u∑

j=1

zb,ij − λ
b,iuE

[
zb,i1

]
,

where i = 1, 2. In the above notation, {N b,i
u } are independent Poisson processes

with intensity λb,i. The jump sizes are modelled by sequences of i.i.d. random

variables zb,ij , where j=1,2,. . . ,. We model the best bid price process by

dSbu = µb
(
u, Sbu− , νu

)
du+

2∑
i=1

hbi
(
u, Sbu−

)
dJ̃b,iu , (3.2)

with initial value Sbt = sb. The functions µb and hbi can be chosen such that the

best bid price is always non-negative, or in ways that reproduce market features.

In Equation (3.2) we consider positive jumps which model the incoming limit buy

orders at a more favourable price, and negative jumps to account for cancellations

of limit buy orders and market sell orders which walk the LOB. The price model

in Equation (3.2) has been inspired by the financial considerations made in Cont

et al [28]. Explicit examples will be provided in Section 3.2.3. Although we view

the optimisation problem from the perspective of liquidating orders, the model

proposed in Equations (3.1) and (3.2) can be adapted to the case of optimal

acquisition. Last, we define the cash (wealth) process by

dYu = µy
(
u, Sbu, νu

)
du,

with initial value Yt = y. The function µy models the instantaneous gains made

by the investor through selling shares, possibly taking into account the temporary

price impact of trades. We consider a general function µy so to account for

different ways of calculating profits and losses (P&L).

3.2.2 The value function

We introduce a stopping time τ ,

τ := inf {u ≥ t |Xu ≤ 0} ∧ T, (3.3)
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that describes the first time the inventory is depleted, if such an event occurs

before the terminal date T . For notational simplicity, in this section we define

the space O = [0, x]× R2 and let the vector of the state variables be defined by

Xu =
(
Xu, S

b
u, Yu

)
∈ O, with initial values at time t given by x = (x, sb, y) ∈ O.

We propose a general objective function of the form

V (t,x)=sup
ν∈V

E t,x

[∫ τ

t
e−r(u−t)f(u,Xu, νu) du+ e−r(τ−t)g(Xτ )

]
, (3.4)

where r ≥ 0 is a discount rate (also used in, e.g., Pemy and Zhang [72], and

Bian et al. [11]) and E t,x[·] is the expectation given the initial state of the

system (t,x) ∈ [0, T )×O. We consider a discount factor to model the potential

preference of the agent for an immediate execution. We emphasise that while

r may be the risk-free interest rate, it doesn’t have to be so. The function

f : [0, T ] × O × V → R may have several interpretations. For example it may

represent the gains made from the shares sale (e.g. Sbuνu), or correspond to a

penalty for holding the inventory (e.g. −φX2
u, where φ > 0). The function

g : O → R may be the terminal reward obtained by a block trade liquidation of

the remaining inventory at time T (e.g. SbTXT ). However, g may also represent

a penalty resulting from failing to liquidate the whole inventory (e.g. −αX2
T ,

where α > 0). Explicit examples are provided in Section 3.2.3.

We let p := (p1, p2, p3) ∈ R3, and we define the operator H by

H (t,x,p) = sup
v∈V

{
f (t,x, v)− vp1 + µb

(
t, sb, v

)
p2 + µy(t, sb, v)p3

}
. (3.5)

Also, for polynomially bounded (PB) functions ϕ ∈ C1,1([0, T ] × O), we let Bb
be defined by

Bb (t,x, ϕ)=
2∑
i=1

λb,iE(zb,i)
[
ϕ
(
t, x, sb + hbi

(
t, sb

)
zb,i, y

)
− ϕ

(
t,x
)

−hbi
(
t, sb

)
zb,i

∂ϕ

∂sb
(
t,x
)]
,

(3.6)
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where E(zb,i) is the expectation taken with respect to the random variable zb,i.

Standard arguments from dynamic programming suggest that the value function

of the optimal control problem (3.4) satisfies the following HJB partial integro

differential equation (PIDE)2:

rV (t,x)− ∂V

∂t
(t,x)−H (t,x, DxV )− Bb (t,x, V ) = 0, (3.7)

on [0, T )×O, where DxV denotes the gradient vector of the function V and with

terminal condition V (τ,x) = g(x) and boundary condition V (u, 0, s, y) = y. The

meaning of the boundary condition is that if there are no shares to liquidate,

the agent does not take any action and they are left with their current cash

holdings. The same holds at time τ , if Xτ = 0. Since one cannot guarantee

the smoothness of V (t,x) on the whole domain, one cannot discuss the solution

of the HJB PIDE in the classical sense. We show the viscosity property of the

value function in Chapter 7.

3.2.3 Explicit examples and numerical results

In this section we propose two explicit examples of the price dynamics. We

consider a specific form of the cash dynamics and of the performance criterion,

and we numerically find the optimal inventory trajectories.

3.2.3.1 Geometric Lévy model

We propose an exponential model for the best bid price process, so to ensure its

positivity at every point in time:

dSbu
Sb
u−

=
(
µ̄b − µνu

)
du+ dJb,1u − dJb,2u . (3.8)

In (3.8) we have let µb
(
t, sb, v

)
= (µ̄b−µv)sb and hbi(t, s

b) = sb(1{i=1}−1{i=2}).

Furthermore, the processes {Jb,1u } and {Jb,2u } are defined as in Equation (3.2), and

we let the random variables zb,ij be sequences of non-negative independent and

2We refer to Section 7.1 for details on its derivation.
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uniformly distributed random variables3. In Equation (3.8) we interpret dJb,1

as the change in the best bid price due to the submission of limit buy orders at

a more favourable price, whereas dJb,2 models the changes due to: (i) incoming

market sell orders which walk the book, and (ii) the effect of cancellations of

limit buy orders posted at the best price.

We introduce a permanent price impact (parametrised by µ ≥ 0), deriving from

the lit-pool orders submitted by the agent. We further consider a constant drift

coefficient, µ̄b ∈ R. The inventory evolution of the investor is here described by

Equation (3.1), and we model the temporarily impacted best bid price Ŝbu by

Ŝbu = Sbu − βνu, (3.9)

where β > 0, and the cash process by

dYu = νuŜ
b
udu, (3.10)

where we have set µy(t, sb, v) = vŝb. Next we consider an investor who wants

to optimally liquidate their portfolio by placing aggressive sell orders in the ‘lit’

market. For this purpose, we consider the following value function:

V (t,x) = sup
ν∈V

E t,x

[
e−r(τ−t)(Yτ +Xτ (Sbτ − αXτ ))− φ

∫ τ

t
e−r(u−t)X2

udu

]
,

(3.11)

where we have set f (t,x, v) = −φx2 and g(x) = y + x(sb − αx). The inter-

pretation of Equation (3.11) is analogous to the one presented in Chapter 2:

the agent seeks to maximise their terminal cash subject to both (i) a terminal

penalty (parametrised by α) for failing to liquidate the whole inventory, and (ii)

a running penalty (parametrised by φ) for holding the inventory throughout the

3We notice that, in order to guarantee the positivity of the price process, we shall ensure
that zb,1 > −1 and zb,2 < 1.
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whole period. The value function solves the following HJB PIDE

sup
v∈Z

{
rV (t,x)− φx2+

∂V

∂t
(t,x) +

(
µ̄b − µv

)
sb
∂V

∂sb
(t,x)− v∂V

∂x
(t,x)

+v
(
sb − βv

)∂V
∂y

(t,x) + λb,1E(zb,1)
[
V
(
t, x, sb(1 + zb,1), y

)
− V

(
t,x
)]

+λb,2E(zb,2)
[
V
(
t, x, sb(1− zb,2), y

)
− V

(
t,x
)]}

= 0,

(3.12)

with terminal condition V
(
τ,x) = y + x(sb − αx) and boundary condition

V (u, 0, sb, y) = y. The expectations in Equation (3.12) are taken with respect

to the random variables zb,1 and zb,2, respectively. In what follows, we plot the

optimal strategy obtained by numerically solving Equation (3.12) and we provide

a detailed analysis of the model’s parameters.

In Figures 3.1 and 3.2 we plot a hundred simulated paths for: (i) the inventory

evolution (top left panel), (ii) the cash process (top right panel), (iii) the unim-

pacted best bid price (bottom left panel), and (iv) the impacted best bid price

(bottom right panel).
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Figure 3.1: Simulation of Equations (3.1), (3.10), (3.8) and (3.9). We set β = 0.05,
µ = 0.01, µ̄b = 0.01, x = 30, sb = 8, λb,1 = λb,2 = 0.5, zb,i ∼ U [0, 1), r = 0.01,

T = 10, φ = 0.01, α = 1.
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Figure 3.2: Simulation of Equations (3.1), (3.10), (3.8) and (3.9). We set β = 0.05,
µ = 0.01, µ̄b = −0.01, x = 30, sb = 8, λb,1 = λb,2 = 0.5, zb,i ∼ U [0, 1), r = 0.01,

T = 10, φ = 0.01, α = 1.

In Figure 3.1 we consider an upward trend (i.e. µ̄b > 0), while in Figure 3.2 we

consider a downward trend (i.e. µ̄b < 0) for the best bid price process.

Contrary to the models presented in Chapter 2, where the optimal strategy only

depends on the inventory level, here it also depends on the current price level. As

such, for the parameters’ analysis, we only plot the mean strategy, as similarly

done in Cartea et al. [23].

In Figure 3.3 we show how the optimal trading speed changes when we vary the

parameters α (left panel) and φ (right panel). As expected, a higher terminal

penalty coefficient α encourages the agent to liquidate a bigger portion of their

inventory by T , while the running penalty φ increases the initial speed of trading.
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Figure 3.3: Optimal mean selling strategy—displayed as a function of the remain-
ing inventory—found by solving the HJB equation (3.12). We set β = 0.1, µ = 0.05,
µ̄b = 0, x = 30, sb = 8, λb,1 = λb,2 = 0.1, zb,i ∼ U [0, 1), r = 0.01, T = 10. In the left

panel we set φ = 0.001. In the right panel we set α = 1.

In Figure 3.4 we plot the effects of the temporary and permanent price impacts—

left and right panels, respectively—on the selling schedule of the agent. When

the coefficient of the temporary price impact β is low (left panel, upper line), the

agent reduces their trading speed at the beginning of the period, so to benefit

from the submartingale property of the best bid price, which is assumed to

increase on average according to the positive drift parameter µ̄b. The agent

accelerates their trading towards the end of the period, due to the terminal

penalty α. Such an acceleration is less detrimental than in the case of low

instantaneous impact. The analogous holds for the permanent price impact µ.
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Figure 3.4: Optimal mean selling strategy—displayed as a function of the remain-
ing inventory—found by solving the HJB equation (3.12). We set α = 0.5, µ̄b = 0.1,
φ = 0.001, x = 30, sb = 8, λb,1 = λb,2 = 0.1, zb,i ∼ U [0, 1), r = 0.01, T = 10. In the

left panel we set µ = 0.05. In the right panel we set β = 0.1.
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Figure 3.5: Optimal mean selling strategy—displayed as a function of the remain-
ing inventory—found by solving the HJB equation (3.12). We set α = 0.5, β = 0.1,
φ = 0.01, x = 30, sb = 8, µ = 0.05, zb,i ∼ U [0, 1), µ̄b = 0, T = 10. In the left panel

we set r = 0.01. In the right panel we set λb,1 = λb,2 = 0.1.

In the left panel of Figure 3.5 we consider different intensities for the jump

processes in the price dynamics. When the latter is a submartingale (upper line)

the agent liquidates slower so to benefit from the increasing market trend. On

the contrary, when the best bid price is a supermartingale, the agent increases

their trading rate (bottom line). The dashed line represents the optimal selling

schedule when the price is a martingale. In the right panel we display the effect

of the discount rate r. Such a rate may model the urgency of the agent for their

liquidation task. We note that while the terminal quantity liquidated does not

change when we vary r, the initial speed increases for higher values of r. This is

coherent with our modelling assumption that a faster liquidation increases the

value function of the agent.

3.2.3.2 Mean-reverting model

Here we modify the best bid price dynamics and model it by a mean-reverting

process—coherently with its observed market features—while leaving the other

state variables unchanged. The shortcoming of this model is that the price may

become negative. We now let the best bid price evolve according to

dSbu = [κb
(
S̄ − Sbu−)− µνu]du+ dJb,1u − dJb,2u , (3.13)
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In (3.13) we have set µb
(
t, sb, v

)
= [κb

(
S̄−sb)−µv] and hbi(t, s

b) = 1{i=1}−1{i=2},

where κb > 0 is the speed of mean reversion and S̄ > 0 is its long term mean.

For simplicity we consider the same optimisation problem in Equation (3.11) and

the value function now satisfies

sup
v∈Z

{
∂V

∂t
(t,x)− rV (t,x)− φx2+

[
κb
(
S̄ − sb)− µv

]∂V
∂sb

(t,x)− v∂V
∂x

(t,x)

+ v
(
sb − βv

)∂V
∂y

(t,x) + λb,1E(zb,1)
[
V
(
t, x, sb + zb,1, y

)
− V

(
t,x
)]

+ λb,2E(zb,2)
[
V
(
t, x, sb − zb,2, y

)
− V

(
t,x
)]}

= 0,

(3.14)

with terminal and boundary conditions given by V (τ,x) = y + x(sb − αx) and

V (u, 0, sb, y) = y, respectively. In Figures 3.6 and 3.7 we plot a hundred simu-

lated paths for: (i) the inventory evolution (top left panel), (ii) the cash process

(top right panel), (iii) the unimpacted best bid price (bottom left panel), and (iv)

the impacted best bid price (bottom right panel). In Figure 3.6 we set Sbt < S̄,

while in Figure 3.7 we set Sbt > S̄.
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Figure 3.6: Simulation of Equations (3.1), (3.10), (3.13) and (3.9). We set β =
0.05, µ = 0.1, x = 30, sb = 5, S̄ = 8, λb,1 = λb,2 = 0.5, zb,i ∼ U [0, 1), r = 0.001,

T = 10, φ = 0.0001, α = 0.5, κb = 0.1.
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Figure 3.7: Simulation of Equations (3.1), (3.10), (3.13) and (3.9). We set β =
0.05, µ = 0.1, x = 30, sb = 11, S̄ = 8, λb,1 = λb,2 = 0.5, zb,i ∼ U [0, 1), r = 0.001,

T = 10, φ = 0.0001, α = 0.5, κb = 0.1.

The majority of the model parameters share the same features outlined in Section

3.2.3.1, and thus we here only look at the role of the mean-reversion speed and

the long-term mean, and plot the mean strategy of the agent.
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Figure 3.8: Optimal selling strategy—displayed as a function of the remaining
inventory—found by solving the HJB equation (3.14). We set β = 0.05, µ = 0.1,
x = 30, S̄ = 8, λb,1 = λb,2 = 0.5, zb,i ∼ U [0, 1), r = 0.001, T = 10, φ = 0.0001, α = 2.

In the left panel we set sb = 6. In the right panel we set sb = 10.
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Figure 3.9: Optimal selling strategy—displayed as a function of the remaining
inventory—found by solving the HJB equation (3.14). We set β = 0.05, µ = 0.1,
x = 30, S̄ = 8, λb,1 = λb,2 = 0.5, zb,i ∼ U [0, 1), r = 0.001, T = 10, φ = 0.0001, α = 1.

In the left panel we set κb = 0.1. In the right panel we set κb = 0.001.

In Figure 3.8 we show different trading trajectories for different values of the

speed of mean reversion. First we note that the trading speed in the left panel is

higher than the one appearing in the right panel. This is due to the price sensi-

tivity of the policy and, in particular, to a higher starting price in the left panel

compared to the one in the right panel. Furthermore, we note that if the cur-

rent price is above its long-term average (left panel), the agent liquidates faster

when the speed of mean reversion is higher (solid line). This result incorporates

(i) the opportunity to liquidate at a more favourable price (which is short-lived

compared to the case of low κb—dotted line), and (ii) the lower terminal value of

the remaining portfolio, given by the asset price being, on average, closer to its

long-term mean. Analogous considerations can be made for the case of a starting

price lower than the long-term mean of the asset (right panel). That is, a higher

speed of mean reversion discourages the investor to liquidate faster as the price

is going to quickly mean-revert to a higher value.

Figure 3.9 shows the optimal strategy for different values of the long-term mean

of the asset’s price, while also considering both the cases of high and low speed of

mean reversion. In both panels, in agreement with the considerations made for

Figure 3.8, higher values of the long-term mean S̄ reduce the liquidation speed.

Such difference is more evident for higher values of the mean-reversion speed

(left panel). In particular, as κb → 0, the three inventory evolutions converge to
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a unique path. This is trivial since, if we set κb = 0, the best bid price is not

affected by the parameter S̄.

3.3 Trading in the dark pool

We here propose a more flexible setup than the continuous-time model elaborated

by Kratz and Schöneborn [57] and we outline here our main contributions to the

literature.

1. We do not require for the price process to be a martingale.

2. We incorporate the permanent price impact in our model (Kratz and

Schöneborn [58] include price impact in a discrete-time model).

3. We allow for partial execution in the dark pool.

4. We consider a general objective function and a general terminal bequest

function to account for: (i) different preferences of agents, (ii) various

ways of calculating P&L, and (iii) minimisation/maximisation of various

performance measures (e.g. implementation shortfall4).

As a shortcoming deriving from a more complex structure, we lose the opportu-

nity of finding a closed-form solution and need to resort to numerical techniques

for describing the optimal selling schedule. Another difference which is worth

noticing is that we do not constrain the inventory to be fully liquidated by T .

While it may be an interesting problem to look at, we believe that practical

market considerations should be set as a priority and fully liquidating a large

inventory under strongly averse conditions may not necessarily be the optimal

choice and/or economically justified. We therefore prefer to keep the terminal

penalty for failing to liquidate the whole inventory, so to account for various ur-

gencies that agents may experience. We believe that current market conditions

should contribute to the choice of the optimal portion to liquidate and they

should, therefore, affect the trading schedule.

4The implementation shortfall (IS) is defined in, e.g., Almgren and Chriss [2] by the difference

between the theoretical and realised gain. That is IS = XtS
b
t −

∫ T
t
νuS

b
udu.
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As mentioned earlier in this work, we assume that trades in the dark pool get

executed at the lit-pool mid-price, for which we still need a model. We decide

to model the spread process {∆u}—from which the mid price Smu = Sbu + ∆u/2

derives—for the following reasons:

1. By providing a flexible model, one can choose dynamics that guarantee the

positivity of the spread process at all times.

2. Market liquidity (understood as the spread’s width) can be easily incor-

porated in the model and its effects on the optimal strategy can be better

understood.

3. By modelling the spread we can capture market features such as, e.g., the

high bid-ask correlation and the mean reversion of the market spread.

In the next sections we present the optimal control problem and we provide

explicit examples which depict the flexibility of our model.

3.3.1 Modified prices, inventory and cash dynamics

The market spread is determined by both the best bid and the best ask prices

movements. In particular, when the bid price experiences a positive jump (in-

creases), the spread should decrease in the same instant, given that the ask price

has not jumped. Analogously, a downward jump of the best bid price should

increase the spread. The opposite holds for jumps in the best ask price. Fur-

thermore, as the lit-pool trades of the agent permanently impact the best bid

price downward, such impact should also be reflected in the spread process. We

thus choose for the latter the following dynamics

d∆u = µ∆ (u,∆u− , νu) du+
2∑
i=1

h∆
i (u,∆u−) dJ̃∆,i

u +
2∑
i=1

hb,∆i
(
u, Sbu− ,∆u−

)
dJ̃b,iu ,

(3.15)
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with initial value ∆t = ∆. In the above notation, the processes {Jb,iu } are

defined as in Equation (3.2) and we further introduce the compensated compound

Poisson processes

J̃∆,i
u = J∆,i

u − λ∆,iuE
[
z∆,i

1

]
=

N∆,i
u∑
j=1

z∆,i
j − λ∆,iuE

[
z∆,i

1

]
,

where i = 1, 2 and {N∆,i
u } are independent Poisson processes with intensity λ∆,i.

The jump sizes are modelled by sequences of i.i.d. random variables z∆,i
j , where

j=1,2,. . . ,.

The purpose of this section is to find the optimal trading strategy in both ‘lit’

and dark venues at any time u ∈ [t, T ). We denote the optimal order size

in the dark pool by {ηu}, and we define the vector-valued control process by

ν = {νu} := (νu, ηu), where {νu} is progressively measurable and {ηu} ∈ [0, Xu]

is predictable. Next, we modify the inventory and the cash dynamics since they

now also depend on the dark pool activity. Along the lines of Horst and Naujokat

[52], we model the dark-pool execution part by a jump process. We thus write

dXu = −νudu− ηudJyu , (3.16)

and

dYu = µy
(
u, Sbu, νu

)
du+ hy

(
u, Sbu− ,∆u− , ηu

)
dJyu . (3.17)

In the above, we define Jyu :=
∑Ny

u
j=1 z

y
j , where {Ny

u} is a Poisson process with

intensity λy and zyj , for j = 1, 2, . . . , are i.i.d. random variables supported in

[0, 1], which model the executed portion of the order submitted to the dark pool.

3.3.2 The value function

To simplify the notation, we here introduce the space O := [0, x] × R3 and we

define a vector of state variables Xu =
(
Xu, S

b
u,∆u, Yu

)
∈ O with initial values

x = (x, sb,∆, y) ∈ O. Next we consider a generalised optimisation problem of

the form
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V (t,x) = sup
ν∈Z

E t,x

[∫ τ

t
e−r(u−t)f1

(
u,Xu, νu

)
du+ e−r(τ−t)g1

(
Xτ

)]
, (3.18)

where τ is defined by Equation (3.3), Z := V ×N and E t,x[·] is the expectation

given the initial state of the system (t,x ∈ [0, T ) × O). The function f1 may

play the role of a running gain and/or penalty criterion. We include the lit-pool

trading rate ν in f1 as it may reflect a penalisation for the information leakage

to which publicly-displayed orders are subject to. The function g1 is a terminal

bequest function which can include (i) the terminal cash, and (ii) the theoretical

monetised value as well as a terminal penalty for the remaining inventory at time

τ . For p ∈ R4 with components (p1, p2, p3, p4), we define the operator H1 by

H1 (t,x,p) = sup
v∈V

{
f1 (t,x, v)− vp1 + µb

(
t, sb, v

)
p2 + µ∆ (t,∆, v) p3

+µy(t, sb,∆, v)p4

}
,

and further the operators Bb,∆(t,x, ϕ), B∆(t,x, ϕ) and By(t,x, ϕ) by

Bb,∆ (t,x, ϕ) =
2∑
i=1

λb,iE(zb,i)

[
ϕ
(
t, x, sb + hbi

(
t, sb

)
zb,i,∆ + hb,∆i

(
t, sb,∆

)
zb,i, y

)
−ϕ
(
t,x
)
− hbi

(
t, sb

)
zb,i

∂ϕ

∂sb
(
t,x
)
− hb,∆i

(
t, sb,∆

)
zb,i

∂ϕ

∂∆

(
t,x
)]
,

(3.19)

B∆ (t,x, ϕ) =
2∑
i=1

λ∆,iE(z∆,i)

[
ϕ
(
t, x, sb,∆ + h∆

i

(
t,∆

)
z∆,i, y

)
− ϕ

(
t,x
)

−h∆
i

(
t,∆

)
z∆,i ∂ϕ

∂∆

(
t,x
)] (3.20)

and
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By(t,x, ϕ) = sup
n∈N

λyE(zy)
[
ϕ(t, x− nzy, sb,∆, y + hy(t, sb,∆, n)zy)− ϕ(t,x)

]
,

(3.21)

Standard dynamic programming arguments suggest that the HJB equation as-

sociated to the optimisation problem in (3.18) is a PIDE of the form

rV (t,x)− ∂V

∂t
(t,x)−H1 (t,x, DxV )− Bb,∆(t,x, V )− B∆(t,x, V )

−By(t,x, V ) = 0,

(3.22)

on [0, T )×O, with terminal condition V (τ,x) = g1(x) and boundary condition

V (u, 0, sb,∆, y) = y. In Chapter 7 we show that V (t,x) is the unique continuous

viscosity solution of Equation (3.22).

3.3.3 Explicit examples and numerical results

We now look at the same examples presented in Section 3.2.3, only this time we

start with the mean-reverting model, which is the one that is widely known to

better reflect empirical market features.

3.3.3.1 Mean-reverting model

As well-known by practitioners and as also taken into account in much of the

current literature (see e.g. Cartea et al. [24], and Fodra and Pham [38]), the

LOB prices—and, thus, the market spread—mean-revert quickly to their long-

term mean. Thus we choose the following dynamics for the best bid price and

the spread processes:

dSbu =
[
κb
(
S̄ − Sbu−

)
− µνu

]
du+ dJb,1u − dJb,2u , (3.23)

d∆u =
[
κ∆
(
∆̄−∆u−

)
+ µνu

]
du+ dJ∆,1

u − dJ∆,2
u − dJb,1u + dJb,2u , (3.24)

where we have set µb
(
t, sb, v

)
= [κb

(
S̄ − sb) − µv], hbi(t, s

b) = 1{i=1} − 1{i=2},

µ∆
(
t,∆, v

)
= [κ∆

(
∆̄−∆

)
+µv], h∆

i (t,∆) = 1{i=1}−1{i=2} and hb,∆i (t, sb,∆) =

1{i=2} − 1{i=1}. We let S̄ and ∆̄ be the long-term means and κb and κ∆ are the

speeds of mean reversion of {Sbu} and {∆u}, respectively. In Equation (3.23) we
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interpret dJb,1 to be the change in the best bid price due to the submission of limit

buy orders at a more favourable price, whereas dJb,2 models the changes due to

incoming market sell orders which walk the book and the effect of cancellations

of limit buy orders posted at the best price. As we stated earlier in this work,

when the best bid price jumps upward by means of dJb,1, the spread process

should simultaneously jump downward and this is the reason why dJb,1 also

appears in Equation (3.24). The analogous holds for dJb,2. The remaining

compound Poisson processes that appear in the spread dynamics are associated

to the movements of the best ask price, which jumps upward thanks to marker

buy orders that walk the book, and jumps downward when a limit sell order is

posted at a price lower than the current best ask price. Finally, we note that

the the trading rate in the ‘lit’ pool appears in the drift of the spread dynamics

since, by pushing the best bid price down, it simultaneously widens the spread.

The top of the book (TOB) simulation in Figure 3.10 depict very similar features

to those shown in real data.
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Figure 3.10: Simulation of Equations (3.23) and (3.24). We set , zb,i, z∆,i ∼
U [0, 1), λb,1 = λb,2 = λ∆,1 = λ∆,2 = 0.5, ∆̄ = 0.2, S̄ = 40, κb = κ∆ = 0.0002,

St = 40, ∆t = 0.2, T = 100.

Next, we consider an investor who wants to optimally liquidate their portfolio

by placing sell orders in both the ‘lit’ market and the dark pool. The inventory

process of the investor is here modelled by (3.16), while we model the cash process

by

dYu = νuŜ
b
udu+ ηuS

m
u−dJyu , (3.25)

where we define, for β > 0, Ŝbu = Sbu − βνu. In Equation 3.25 we have set

µy
(
u, sb, ν

)
= νŝb and hy

(
u, sb,∆, η

)
= ηsm = η(sb + ∆/2). Equation 3.25 can
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be interpreted as follows. The quantity νuŜ
b
u represents the revenues deriving

from selling the shares at the impacted bid price in the ‘lit’ pool. The quantity

ηuS
m
u− represents the order sent to the dark pool evaluated at the mid-price,

which increases the cash process of the agent, only if it is executed (and for the

quantity executed). The execution in the dark pool is modelled by the compound

Poisson process Jyu .

The maximised expected return derived by the shares sale is obtained by solving

the optimisation problem

V (t,x) = sup
ν∈Z

E t,x

[
e−r(τ−t)(Yτ +Xτ (Smτ − αXτ ))− φ

∫ τ

t
e−r(u−t)X2

udu

]
,

(3.26)

where we have set f1 (t,x, v) = −φx2 and g1(x) = y + x(sm − αx), where τ

is defined by Equation (3.3) and φ ∈ R+ ∪ 0. In the considered performance

criterion, we allow for a maximisation of the terminal cash Yτ together with

the terminal theoretical value of the portfolio Smτ Xτ (i.e. the remaining shares

evaluated at the mid-price), and a penalty for a non-zero inventory level at time

τ given by −αX2
τ , where α > 0. The integral term, as in Cartea et al. [18, 20],

penalises for the inventory holding over the whole period in which the strategy

is applied. The associated HJB PIDE is given by

sup
v∈Z

{
∂V

∂t
(t,x)− rV (t,x)− φx2 +

[
κb
(
S̄ − sb

)
− µv

]∂V
∂sb

(t,x)

+
[
κ∆
(
∆̄−∆) + µv

]∂V
∂∆

(t,x) + v(sb − βv)
∂V

∂y
(t,x)− v∂V

∂x
(t,x)

+λyE(zy)
[
V
(
t, x− nzy, sb,∆, y + nzy(sb + ∆/2)

)
−V (t,x)

]
+λb,1E(zb,1)

[
V
(
t, x, sb + zb,1,∆− zb,1, y

)
−V (t,x)

]
+λb,2E(zb,2)

[
V
(
t, x, sb − zb,2,∆ + zb,2, y

)
−V (t,x)

]
+λ∆,1E(z∆,1)

[(
t, x, sb,∆ + z∆,1, y

)
−V (t,x)

]
+λ∆,2E(z∆,2)

[
V
(
t, x, sb,∆− z∆,2, y

)
−V (t,x)

]}
= 0,

(3.27)

with terminal condition V (τ,x) = y+ (sb + ∆/2−αx)x and boundary condition

V
(
u, 0, sb,∆, y

)
= y.
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Figure 3.11: Simulation of Equations (3.16), (3.25), (3.23) and (3.24). We set
β = 0.001, µ = 0.001, x = 30, sb = 8, S̄ = 8, ∆ = 1, ∆̄ = 1, λb,1 = λb,2 = λ∆,1 =
λ∆,2 = 0.5, zb,i, z∆,i ∼ U [0, 1), λy = 0.1, zy ∼ U [0, 1], r = 0.02, T = 10, φ = 0.001,
α = 2, κb = κ∆ = 0.1. In the bottom panels, the black lines depict the impacted
prices while the corresponding blue lines represent the theoretical unimpacted prices.

First, we plot a hundred simulations of the state variables of the model and,

in Figure 3.11, we show: (i) the inventory evolution (top left panel), (ii) the

cash evolution (top right panel), (iii) the best bid price (bottom left panel),

and (iv) the spread (bottom right panel). For the parameters’ analysis, we plot

the mean strategy and we consider three different scenarios for the dark-pool

liquidity: (i) no execution takes place in the dark pool throughout the entire

trading period (upper/dotted line), (ii) partial execution (middle/dashed line),

and (iii) full execution (bottom/solid line). We let the dark-pool executions, if

any, take place at τ1 = 4 and τ2 = 7. Furthermore, we let the partial execution

to account for 50% of the order posted. We emphasise that τ1 and τ2, as well

as the execution portion in the dark pool, are fixed arbitrarily—for the sake of

illustration only—after a complete solution has been found. The reason for this

choice is to make comparison between graphs rather straightforward.
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Figure 3.12: Optimal mean selling strategy—displayed as a function of the remain-
ing inventory—found by solving the HJB equation (3.27). We set κb = κ∆ = 0.01,
β = 0.01, x = 30, sb = 5, ∆ = 0.5, S̄ = 5, ∆̄ = 1, λb,1 = λb,2 = λ∆,1 = λ∆,2 = 0.2,
zb,i, z∆,i ∼ U [0, 1), µ = 0.01, λy = 0.1, zy ∼ U [0, 1], α = 2, T = 10. In the top panels
we set r = 0.01, φ = 0.001, α = 4 (left), α = 0.5 (right). In the middle panels we
set r = 0.01, α = 2, φ = 0.1 (left), φ = 0.0001 (right). In the bottom panels we set

φ = 0.001, α = 2, r = 0.1 (left), r = 0.0001 (right).
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In Figures 3.12 we see that higher values of the terminal penalty α increase the

total portion of inventory liquidated by T , while higher value of the parameter φ

and r increase the liquidation speed throughout the whole period, while leaving

the terminal-inventory level almost unchanged. As noted earlier, α penalises

only for the terminal holdings, while φ penalises for the current holdings, and r

increases the reward for the shares liquidated earlier.
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Figure 3.13: Optimal mean selling strategy—displayed as a function of the re-
maining inventory—found by solving the HJB equation (3.27). We set κ∆ = 0.01,
β = 0.01, x = 30, sb = 5, ∆ = 1, ∆̄ = 0.5, λb,1 = λb,2 = λ∆,1 = λ∆,2 = 0.2,
zb,i, z∆,i ∼ U [0, 1), µ = 0.01, λy = 0.1, zy ∼ U [0, 1], α = 2, φ = 0.001, r = 0.01,
T = 10. In the top panels we set S̄ = 3, κb = 0.1 (left), κb = 0.0005 (right). In the

bottom panels we set S̄ = 7, κb = 0.1 (left), κb = 0.0005 (right).

The speed of mean reversion of the best bid price (i.e. κb) has a different impact

on the selling schedule, depending on the initial value of the bid price Sbt and,
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in particular, whether it is higher or lower than its long-term mean S̄. In the

top panels of Figure 3.13 we set Sbt > S̄, which implies that, on average, the

price is going to decrease to get closer to its long-term mean. The agent is

thus incentivised to liquidate faster at the beginning since the price is higher

than it is supposed to be. This feature is more evident when the speed of mean

reversion κb is higher. In fact, the price reverts faster and the agent increases

their liquidation speed so to exploit the opportunity of selling at a higher price.

In the bottom panels of Figure 3.13, the starting price is lower than its long-term

mean, i.e. Sbt < S̄, and thus the agent waits for it to revert, so to liquidate at a

more favourable price. As opposed to the previous case, a higher κb reduces the

liquidation speed. This is rather intuitive: the agent is willing to wait for the

price to increase, which, on average, takes less time than the case of low κb.

In Figure 3.14 we analyse the role of the speed of mean reversion κ∆ of the spread

process. Before entering into details, we make a few considerations on how the

spread affects the agent’s trading strategy. First and foremost, we acknowledge

that the spread is a measure of the market liquidity. In particular, a tighter

spread models a highly liquid market, while less liquid markets usually have

wider spreads. Also, in liquid markets, the spread mean-reverts faster than in

an illiquid market, where trades have higher permanent impact. Finally, a wider

spread makes the trading in the dark pool more advantageous, than the case of

a tighter spread. We thus expect larger trades in the dark pool when the spread

is higher.

In the top panels of Figure 3.14, we set ∆t > ∆̄ and, therefore, the spread is

expected to decrease by reverting to its long-term mean ∆̄. For high values of

the speed of mean reversion κ∆, the agent increases their liquidation speed in

both venues, compared to the case of low κ∆. In fact, when the speed of mean

reversion is low, the benefits of a fast liquidation decrease (top right panel). In

the bottom panels, we set ∆t < ∆̄ and thus the spread is expected to increase.

For a high speed of mean reversion (bottom left panel), the agent dramatically

reduces their dark-pool posting as they are encouraged to wait for a larger spread.

The opposite holds when the spread is expected to revert slowly (bottom left

panel).



Chapter 3. Optimal execution in ‘lit’ and dark pools 85

Time
0 2 4 6 8 10

R
e
m
a
in
in
g
in
v
e
n
to
ry

5

10

15

20

25

30

Selling schedule - high κ
∆,∆t > ∆̄

No dark-pool execution

Partial dark-pool execution

Full dark-pool execution

Time
0 2 4 6 8 10

R
e
m
a
in
in
g
in
v
e
n
to
ry

5

10

15

20

25

30

Selling schedule - low κ
∆,∆t > ∆̄

No dark-pool execution

Partial dark-pool execution

Full dark-pool execution

Time
0 2 4 6 8 10

R
e
m
a
in
in
g
in
v
e
n
to
ry

5

10

15

20

25

30

Selling schedule - high κ
∆,∆t < ∆̄

No dark-pool execution

Partial dark-pool execution

Full dark-pool execution

Time
0 2 4 6 8 10

R
e
m
a
in
in
g
in
v
e
n
to
ry

5

10

15

20

25

30

Selling schedule - low κ
∆,∆t < ∆̄

No dark-pool execution

Partial dark-pool execution

Full dark-pool execution

Figure 3.14: Optimal mean selling strategy—displayed as a function of the re-
maining inventory—found by solving the HJB equation (3.27). We set κb = 0.01,
β = 0.01, x = 30, sb = 5, ∆ = 0.5, S̄ = 5, λb,1 = λb,2 = λ∆,1 = λ∆,2 = 0.2, µ = 0.01,
zb,i, z∆,i ∼ U [0, 1), λy = 0.1, zy ∼ U [0, 1], α = 2, φ = 0.001, r = 0.01, T = 10. In
the top panels we set ∆̄ = 0.3, κ∆ = 0.1 (left), κ∆ = 0.0005 (right). In the bottom

panels we set ∆̄ = 0.7, κ∆ = 0.1 (left), κ∆ = 0.0005 (right).

In Figure 3.15 we analyse the role of both the permanent and the temporary

price impacts.

As expected, higher impacts reduce the quantity we post in the ‘lit’ pool (left

panels) while lower impacts encourage the lit-pool posting (right panels).

This is in agreement with the results previously obtained.
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Figure 3.15: Optimal mean selling strategy displayed as a function of the remain-
ing inventory. We set κb = κ∆ = 0.01, x = 30, sb = 5, ∆ = 0.5, S̄ = 5, ∆̄ = 0.5,
λb,1 = λb,2 = λ∆,1 = λ∆,2 = 0.2, zb,i, z∆,i ∼ U [0, 1), φ = 0.001, α = 2, λy = 0.1,
zy ∼ U [0, 1], r = 0.01, φ = 0.001, T = 10. In the top panels we set β = 0.01, µ = 0.1
(left), µ = 0.001 (right). In the bottom panels we set µ = 0.01, β = 0.03 (left),

β = 0.001 (right).

Figure 3.16 shows the optimal selling schedule for different values of the arrival

rates of the jump processes in both the best bid price and the spread processes.

We show that the agent’s trading schedule crucially depends on both the price

dynamics and the market liquidity. In particular, a trading acceleration in both

venues is optimal when the spread is subject to more downwards jumps rather

than upwards jumps. The opposite holds for the case of more frequent upwards

jumps.
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Figure 3.16: Optimal mean selling strategy—displayed as a function of the remain-
ing inventory—found by solving the HJB equation (3.27). We set κb = κ∆ = 0.01,
β = 0.01, x = 30, sb = 5, ∆ = 0.5, S̄ = 5, ∆̄ = 0.5, µ = 0.01, λy = 0.1, zy ∼ U [0, 1],
zb,i, z∆,i ∼ U [0, 1), r = 0.01, φ = 0.001, α = 2, T = 10. In the top panels we set
λ∆,1 = λ∆,2 = 0.2, λb,1 = 0.7, λb,2 = 0.1 (left), λb,1 = 0.1, λb,2 = 0.7 (right). In the
bottom panels we set λb,1 = λb,2 = 0.2, λ∆,1 = 0.7, λ∆,2 = 0.1 (left), λ∆,1 = 0.1,

λ∆,2 = 0.7 (right)

Figure 3.17 shows the optimal selling schedule for different values of the arrival

rate of the dark-pool executions, λy. Higher values of λy act as a deterrent for

lit-pool trading, as dark-pool executions are more likely than in the case of low

λy. We note that the lit-pool liquidation speed decreases for high λy (left panel)

while it increases for low λy (right panel). This confirms both our intuition and

the results previously obtained in Figure 2.11.
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Figure 3.17: Optimal selling strategy—displayed as a function of the remaining
inventory—found by solving the HJB equation (3.27). We set κb = κ∆ = 0.01,
β = 0.01, φ = 0.01, x = 30, sb = 5, ∆ = 0.5, S̄ = 5, ∆̄ = 0.5, λb,1 = λb,2 = λ∆,1 =
λ∆,2 = 0.2, zb,i, z∆,i ∼ U [0, 1), µ = 0.01, zy ∼ U [0, 1], r = 0.01, φ = 0.001, α = 2,

T = 10. In the left panel we set λy = 0.5. In the right panel we set λy = 0.01.
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Figure 3.18: Optimal ‘lit’ and dark-pool strategies—found by solving the HJB
equation (3.27)—for an inventory of 30 (left and right panels, respectively). We set
κb = κ∆ = 0.01, β = 0.01, φ = 0.01, S̄ = 5, ∆̄ = 0.5, λb,1 = λb,2 = λ∆,1 = λ∆,2 = 0.2,
zb,i, z∆,i ∼ U [0, 1), µ = 0.01, λy = 0.1, zy ∼ U [0, 1], r = 0.01, φ = 0.001, α = 2,
T = 10. In the top panels, we set Sbt > S̄. In the bottom panels we set Sbt < S̄.

Finally, in Figure 3.18, we plot the optimal ‘lit’ and dark-pool strategies as

functions of the bid price and the spread. The plots are to be read as follows:
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Each surface represents the optimal posting in the venue specified in the title,

for the time t specified in the legend, if the inventory at that particular time is

30,000. This is only to show the qualitative features of the optimal strategy, as a

complete solution would also require an optimal posting for all levels of inventory

at all times (we here only plot surfaces for one-second time intervals). We can

see that roundtrips in dark pools are not necessarily beneficial, especially when

adding features such as permanent impact and prices dynamics different from

martingales. As a final consideration, we note that the posting in both venues

increases—as maturity approaches—due to the terminal penalty α.

3.3.3.2 Geometric Lévy model

For the sake of completeness, we propose an exponential model so to ensure the

positivity of the best bid price and the spread processes at every time u ∈ [t, T ].

(We here shall further require |zb,i| < 1, z∆,1 > −1 and z∆,2 < 1, almost surely).

We let the best bid price be defined by Equation (3.13) and we let the market

spread evolve according to

d∆u

∆u−
=
(
µ̄∆ + µνu

)
du− dJb,1u + dJb,2u + dJ∆,1

u − dJ∆,2
u , (3.28)

where we have set µ∆
(
t,∆, v

)
=
(
µ̄∆ + µv

)
∆, h∆

i (t,∆) = ∆(1{i=1} − 1{i=2})

and hb,∆i (t, sb,∆) = ∆(1{i=2} − 1{i=1}). In Figure 3.19 we plot a simulation of

the best ask, the mid and the best bid prices. We keep the inventory and the

cash dynamics as in Equations (3.16) and (3.25) respectively, and we consider

the value function stated in Equation (3.26).
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Figure 3.19: Simulation of Equations (3.13) and (3.28). We set , zb,i, z∆,i ∼
U [0, 1), λb,1 = λb,2 = 0.5, λ∆,1 = λ∆,2 = 0.6, µ̄b = µ̄∆ = 0, S̄ = 40, St = 40,

∆t = 0.2, T = 100.
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The associated HJB PIDE is given by

sup
v∈Z

{
∂V

∂t
(t,x)− rV (t,x)− φx2 +

(
µ̄b − µv

)
sb
∂V

∂sb
(t,x)

+
(
µ̄∆ + µv

)
∆
∂V

∂∆
(t,x) + v(sb − βv)

∂V

∂y
(t,x)− v∂V

∂x
(t,x)

+λyE(zy)
[
V
(
t, x− nzy, sb,∆, y + nzy(sb + ∆/2)

)
−V (t,x)

]
+λb,1E(zb,1)

[
V
(
t, x, sb(1 + zb,1),∆(1− zb,1), y

)
−V (t,x)

]
+λb,2E(zb,2)

[
V
(
t, x, sb(1− zb,2),∆(1 + zb,2), y

)
−V (t,x)

]
+λ∆,1E(z∆,1)

[(
t, x, sb,∆(1 + z∆,1), y

)
−V (t,x)

]
+λ∆,2E(z∆,2)

[
V
(
t, x, sb,∆(1− z∆,2), y

)
−V (t,x)

]}
= 0,

(3.29)
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Figure 3.20: Simulation of Equations (3.16), (3.25), (3.13) and (3.28). We set
β = 0.001, µ = 0.001, x = 30, sb = 5, ∆ = 0.5, λb,1 = λb,2 = λ∆,1 = λ∆,2 = 0.5,
zb,i, z∆,i ∼ U [0, 1), λy = 0.1, zy ∼ U [0, 1], r = 0.02, T = 10, φ = 0.001, α = 2,
µ̄b = µ̄∆ = 0. In the bottom panels, the black lines depict the impacted prices while

the corresponding blue lines represent the theoretical unimpacted prices.

As we provided an extended analysis of the model parameters in Section 3.3.3.1,
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we here only show the state-variables simulations and the optimal ‘lit’ and dark-

pool strategies, in Figures 3.20 and 3.21 respectively. In the top panels of Figure

3.21, the spread and the best bid price are assumed to be supermartingales

while in the bottom panels thy are assumed to be submartingales. We note that

the optimal quantity to be posted in both venues is smaller in the latter case

compared to the former. Finally, we note that roundtrips are not necessarily

beneficial.
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Figure 3.21: Optimal ‘lit’ and dark-pool strategies—found by solving the HJB
equation (3.29)—for an inventory of 30 (left and right panels, respectively). We set
β = 0.01, x = 30, λb,1 = λb,2 = λ∆,1 = λ∆,2 = 0.2, zb,i, z∆,i ∼ U [0, 1), µ = 0.01,
λy = 0.1, zy ∼ U [0, 1], r = 0.01, φ = 0.001, α = 2, T = 10. In the left panel we set

µ̄b = µ̄∆ = 0.001. In the right panel we set µ̄b = µ̄∆ = −0.001.

3.4 Conclusions

In this chapter we present a more sophisticated model than the one introduced

in Chapter 2. First, we consider a class of models that can be adapted to the

particular situation at hand. Next, we treat in details two explicit examples for
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the dynamics of the bid-price and market-spread processes. Finally, we study

the role of the model’s parameters and plot the optimal strategy of the agent.

We note that the selling schedule crucially depends on both the price dynamics

(the best bid) and the market’s liquidity (the spread). We consider a mean-

reverting model so to reproduce observed market features, and a geometric Lévy

model so to ensure the positivity of the prices processes involved.

We take as main reference the papers by Kratz and Schöneborn [57] and Horst

and Naujokat [52], and we here outline the main differences. Compared to Kratz

and Schöneborn [57], we: (i) introduce an explicit model for the spread process,

(ii) consider the permanent price impact for both the best bid price and the

spread processes, (iii) consider processes other than martingales, (iv) allow for

partial execution in the dark pool and (v) provide a general setup so to account

for various modelling preferences. On the other hand, we consider continuous-

time trading in the ‘lit’ pool as opposed to Horst and Naujokat [52], who consider

discrete-time trading when crossing the spread. Points (iv) and (v) mentioned

above are also a novelty compared to the work by Horst and Naujokat [52].



Chapter 4

The market-making problem

in a customised liquidity pool

4.1 Overview of the chapter

Market makers are liquidity providers. They set bid and ask quotes and trade

with impatient investors who seek to immediately buy or sell a certain quantity

of a financial asset. A portion of the market-maker’s P&L derives from the

spread charged to the clients. On the other hand, holding a non-zero inventory

carries an intrinsic risk associated with the unpredictable changes to which an

asset price is subject. This risk is further increased by a potential information

asymmetry due to which a market maker trades in the wrong direction.

We consider a financial entity that offers a dealer service to its clients. Such

an entity may be a small financial shop, an individual trading desk of large

institutions, as well as large firms which provide liquidity to a selected pool of

clients. Among these, we find, e.g., investment banks,1 hedge funds and high-

frequency traders. In the industry, such financial entity is sometimes referred to

as CLP1. These bespoke liquidity pools share some characteristics with so-called

dark pools, while additionally providing the dealer service. As such CLPs may be

viewed as “grey pools”, that is, a kind of hybrid between a dark pool and a ‘lit’

pool. CLPs typically offer two-way prices to their clients while preserving their

1The terminology ‘alternative liquidity pool’ is also used.

93
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anonymity. Clients can compare prices from various dealers through internal

GUI applications, but there is no centralised liquidity pool2 that displays those

prices, which are streamed directly to the clients in conditions of market opacity

and confidentiality. CLPs thus offer for all practical purposes a market-making

service, though they have no obligation to offer two-sided liquidity at any time.

In the remainder of the paper, we use the terms “dealer activity” and “market

making” interchangeably.

In the situation at hand the CLP (i) offers liquidity to its clients (who may

be both buyers and sellers) and (ii) may post limit and market orders in a

‘lit’ exchange to control the level of its inventory. We emphasise that the work

presented here has no particular asset class in mind, since the CLP may specialise

in, e.g. stocks, commodities and foreign exchange trading.

While Section 2.3.2 already treats part of the original work included in this

thesis, the model presented there is very limited in that (i) it does not allow the

CLP to choose the prices it offers to clients, (ii) it only allows the CLP to post

limit orders in the lit pool on top of the book and not deeper, (iii) the lit-pool

spread is assumed to be constant, and (iv) the model is very specific, thus not

allowing for much flexibility.

In what follows, we address the aforementioned four points by providing a more

flexible and structured model. We start by presenting the trading strategies

of the CLP for the purpose of inventory management. Next we formulate the

optimisation problem and we provide some examples by numerically solving the

associated HJB equation. This chapter is based on Crisafi & Macrina [31].

Throughout the present chapter we use standard finite difference methods to

solve—backward in time—the HJB equations stated herein. We thus obtain and

plot the numerical solution. The algorithm and techniques used are described in

detail in Section 7.5.2. Furthermore, under each plot there are the values of the

parameters used, for reproducibility purposes.

2In foreign exchange, examples of centralised liquidity pools include EBS, FXAll, Hotspot,
Thomson Reuters, etc., and in equity we may mention LSE, NYSE, NASDAQ, etc.
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4.2 Market making in CLPs

We consider a CLP that trades with buyers and sellers by being their counter-

party. It executes incoming buy and sell orders by its clients over a finite period

of time t ≤ u ≤ T < ∞ and may resort to the centralised exchange platform if

its inventory becomes critically small or large.

We fix a filtered probability space (Ω,F , {Fu}t≤u≤T ,P) satisfying the usual con-

ditions and we assume that: (i) the CLP mid-price is aligned with the standard

exchange mid-price {Su}, and (ii) the CLP chooses the spread it charges to

clients. We define the LOB mid-price by

dSu = k̄±Mu
dMu, (4.1)

where {Mu} is a Poisson process with intensity λm and k̄±Mu
is a collection of i.i.d.

random variables valued in {−k̄, k̄}. We choose such simple dynamics in Equa-

tion (4.1)—i.e. the mid-price can only move a tick a.s.—because our intention is

to focus on the market-making activity of the CLP, disregarding any potential

market-view it may have, or sudden price moves. Along the lines of Guilbaud and

Pham [47], we model the LOB bid-ask half spread by a continuous-time Markov

chain {ku}t≤u≤T with a discrete state space K := {k0, k1, k2, . . . , kn}, where k0 <

k1 < k2 < · · · < kn are set so to reflect the granularity of the standard-exchange

prices. In particular, for j = 0, 1, 2, . . . , n−1, we let kj+1−kj = k̄ > 0. The chain

is generated by {Q} = (rij) such that P[ku+du = kj |ku = ki] = rijdu + o(du)

and P[ku+du = ki|ku = ki] = 1 + riidu + o(du), with rij ≥ 0 for all j 6= i and

rii = −
∑

j 6=i rij . Such a choice has interesting financial justifications. Because

the spread is a measure of the market liquidity, lower states in K (e.g. k0) may be

associated with periods of higher liquidity compared to higher states (e.g. kn).

Also, by correctly choosing the transition probabilities, one can postulate the

existence of a “normal” level of the spread—for each particular class of assets—

from which deviations are unlikely to happen. Furthermore, the transition from

one state to another can be associated with the submission of both aggressive

and passive orders by market participants.
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We remark that when we write ku, we mean the level of the spread at time

u ∈ [t, T ], whereas with the notation k ∈ K we refer to a particular state kj , for

j = 0, 1, 2, . . . , n.

At any time u ∈ [t, T ], the best LOB bid and ask prices are given by Sbu = Su−ku

and Sau = Su + ku, respectively. In Figure 4.1 we provide two sample paths for

the ‘lit’-pool TOB.
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Figure 4.1: Sample paths for (4.1). We set k̄ = 0.01 and K = {0.01, 0.02, . . . , 0.1}.

At each time u ∈ [t, T ], we consider three options for the inventory management:

(i) the CLP’s order flow may be controlled by accordingly choosing the prices

offered to its clients, (ii) a limit order—of which execution is uncertain—is posted

to the standard exchange, or (iii) a costly market order is submitted to the

standard exchange. Our goal is thus to obtain the critical levels of the inventory

for which it is optimal to (i) skew the CLP prices, (ii) submit limit orders, and

(iii) submit market orders.

4.2.1 Pricing strategy

We consider the processes δ+
u , δ

−
u to be (i) the controls of the optimisation prob-

lem presented in Section 4.2.3 and (ii) part of the pricing strategy of the CLP.

The CLP chooses the values of {δ±u }. We denote by Su − δ−u and Su + δ+
u the

base prices and by δ+
u + δ−u the base spread from which the CLP derives the

prices offered to its clients, since the actual spread paid by the client to the CLP

is also a function of the order-size of the client, see Equation (4.3). In order to
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maintain competitiveness with respect to standard exchanges and other liquidity

providers, we assume that the CLP base spread does not exceed the standard

exchange spread under normal circumstances (i.e., acceptable inventory levels).

Nonetheless, it may be skewed with respect to the ‘lit’-exchange spread on the

protect side (e.g. the sell side when the CLP has a negative inventory), while

we assume that the aggress side (e.g. the buy side when the CLP has a negative

inventory) shall not cross the mid-price level. This last assumption is justified

since crossing the mid-price leaks to buy-side agents very sensitive information

regarding the CLP level of inventory. We thus suppose that δ+
u and δ−u are pre-

dictable processes valued in [0, δ̄], where the upper bound is justified by practical

considerations (N.B., an infinite spread results in an infinite price), as well as by

the incentive for the CLP to maintain its quotes within a constant range.

The CLP flow of client orders can be affected by changing δ+
u and δ−u (that is,

the arrival intensity of buyers and sellers is a function of the quotes posted by

the market maker). We might assume for example that the CLP has a positive

inventory at time u ∈ [t, T ]. It can make trading more attractive to buyers

rather than sellers, so to rebalance its inventory level. In particular, by lowering

δ+
u and increasing δ−u , the CLP encourages buyers to place orders while sellers

are discouraged to do so. We further assume that the CLP accepts clients’ orders

at time u (i.e., it keeps streaming dealable prices to clients) only if the inventory

at time u− lies within
[
− X̄, X̄

]
, where X̄ > 0 so that, if either boundary

is surpassed, the CLP may only trade in one direction. Such an assumption

is supported by the following financial interpretation: the CLP is subject to

regulatory constraints (e.g. internal risk-management) which do not allow to

hold or short-sell a position bigger than a fixed authorised quantity. Throughout

the market-making activity (i.e., between hedging times), we define the CLP

inventory process {Xu} by

dXu = dJ−u 1{Xu−≤X̄}
− dJ+

u 1{Xu−≥−X̄}
, (4.2)

where J±u :=
∑N±u

i=1 q
±
i and where the Cox processes {N±u } have intensities λ±δ =

λ±(δ±u ). The random variables q±i are i.i.d. with support Q := {0, q1, . . . , qN}
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where these model the size of the trades executed by the CLP. At any time

u ∈ [t, T ], we have sign[Xu] = {−1, 0, 1} where we include short-selling for the

case sign[Xu] = −1. We model the CLP cash process {Yu} by

dYu = f
(
u, Su− , δ

+
u , q

+
u

)
dJ+

u 1{Xu−≥−X̄}
− f

(
u, Su− , δ

−
u , q

−
u

)
dJ−u 1{Xu−≤X̄}

,

(4.3)

where q±u is shorthand notation for q±
N±u

. The function f allows the CLP to offer

a stream of prices related to the size of the client’s order3. In particular the CLP

offers tighter spreads for smaller sizes and wider spreads for larger sizes. The

function f further allows for various ways to calculate P&L. We remark that

Equations (4.2) and (4.3) are strongly coupled. For example, the arrival of a

seller at time u increases the inventory Xu− by q−u and reduces the cash amount

Yu− by f
(
u, Su− , δ

−
u , q

−
u

)
q−u . The analogous holds for the arrival of buyers.

4.2.2 Hedging strategy

The CLP can resort to the standard exchange to liquidate (respectively refill)

part of its inventory; we assume that it cannot post speculative orders. This

means that at time u ∈ [t, T ] a buy order can be posted only if Xu < 0 while

a sell order can be posted if Xu > 0. We refer to Remark 7.1 for the compact

version of the equations treated in the present section.

4.2.2.1 Limit orders

The CLP can post a limit order by specifying a quantity η and a limit price

S ± (k + κ), where κ is the optimal distance from the best price, at which it

wants to buy or sell. We only consider IOC orders and we model their execution

percentages by a [0, 1]-valued sequence of i.i.d. random variables zi, of which

cumulative distribution function heavily depends on the limit-price chosen by

3We wish to remark that, within this context, the function f is fixed a priori by the market
maker and is not the object of the optimisation.
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the CLP. In particular, if a limit order is posted at time τ `i , for i = 1, 2 . . . , then

it impacts the inventory and the cash processes as follows:

Xτ`i
= Γ

(
ηi, Xτ`i −−

, zi
)
, Yτ`i

= χ
(
ηi, Y τ`i −−

, zi, Sτ`i −−
, kτ`i −−

, κi
)
. (4.4)

Since the CLP cannot post speculative orders in the ‘lit’ pool, it must hold∣∣Γ(ηi, Xτ`i −−
, zi
)∣∣ ≤ ∣∣Xτ`i −−

∣∣, almost surely. For example a limit buy order, which

if executed increases the inventory, can only be posted if the CLP holds a negative

inventory, and vice versa. The cash process changes accordingly. We state these

assumptions rigorously in Chapter 7. We let TtT be the set of stopping times

valued in [t, T ], and N :=
[

min
(
0,−Xτ`i −−

)
,max

(
0,−Xτ`i −−

)]
be the set of all

admissible control actions. A limit-order strategy is a collection of stopping times

and actions L = (τ `i , ηi, κi)i≥1 ∈ TtT × N × K`, where the elements in K` ⊂ K

reflect the price-granularity of the ‘lit’ exchange.

4.2.2.2 Market orders

Alternatively, the CLP can submit a market order, which (i) is more expensive

and (ii) benefits from sure execution as it is matched with existing limit orders.

A market order of size ξi posted at a time τmi impacts the inventory and cash

processes as follows:

Xτmi
= Λ

(
ξi, Xτmi −−

)
, Yτmi = c

(
ξi, Y τmi −−

, Sτmi −− , kτmi −−
)
, (4.5)

where
∣∣Λ(ξi, Xτmi −−

)∣∣ ≤ ∣∣Xτmi −−

∣∣. A market-order strategy is a collection of stop-

ping times and actions M = (τmi , ξi)i≥1 ∈ TtT × X , where the set X is defined

by X =
[

min
(
0,−Xτmi −−

)
,max

(
0,−Xτmi −−

)]
.

The level of generality in the limit-order and the market-order impulses offers the

flexibility to include various features. For example, there are different methods

to compute the P&L. Furthermore, one may like to account for the fees paid to

the exchange for using their services and for possible liquidity rebates for limit

orders.
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4.2.3 The value function

We consider the problem of maximising expected terminal cash subject to a ter-

minal penalty for holding a non-zero inventory by the terminal date. In defining

the objective function, we are led by Guilbaud and Pham [47] and we propose

the following

V (t, x, y, s; k) = sup
D,L,M

E

[
U (XT , YT , ST , kT ) +

∫ T

t
g(u,Xu) du

−
∑

t≤τmi <T
εm −

∑
t≤τ`i<T

ε`

]
,

(4.6)

where D := (δ+
u , δ

−
u )u≥t, the function U is the utility derived from the cash and

inventory holdings at time T , and g is a running penalty for the risk of holding

the inventory. In the summations of Equation (4.6), we include the penalties

εm and ε` for submitting market and limit orders in the standard exchange,

where εm > εl > 0. Throughout the paper we have the vector of state variables

x := [x, y, s] ∈ O := [−X̄ − qN , X̄ + qN ]×R2. Equation (4.6) satisfies the DPP,

see Fleming and Soner [37]. That is, for all τ ∈ TtT , we have

V (t,x; k) = sup
D,L,M

E

∫ τ

t
g(u,Xu)du−

∑
t≤τmi <τ

εm −
∑

t≤τ`i<τ

ε` + V (τ,Xτ ; kτ )

 .
(4.7)

This is an optimal double-obstacle impulse control problem. We define the non-

local operators L and M, for limit and market orders respectively, by

LV (t,x; k) = sup
η∈N ,κ∈K`

E(z)
[
V (t,Γ(η, x, z), χ(η, y, z, s, k, κ), s; k)

]
− ε`, (4.8)

where the expectation is taken with respect to the random variable z, and

MV (t,x; k) = sup
ξ∈X

V (t,Λ(ξ, x), c(ξ, y, s, k), s; k)− εm. (4.9)
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We introduce the operator Ā defined by

Ā(t,x, k, p, ϕ, δ+, δ−) = p+
∑
k′ 6=k

rkk′
[
ϕ(t,x; k′)− ϕ(t,x; k)

]
+ λm E(k̄±)

[ (
ϕ
(
t, x, y, s+ k̄±; k

)
− ϕ (t,x; k)

) ]
+ λ+

δ E(q+)
[ (
ϕ
(
t, x− q+, y + f(t, s, δ+, q+)q+, s; k

)
− ϕ (t,x; k)

) ]
1{x≥−X̄}

+ λ−δ E(q−)
[ (
ϕ
(
t, x+ q−, y − f(t, s, δ−, q−)q−, s; k

)
− ϕ (t,x; k)

) ]
1{x≤ X̄},

(4.10)

where the expectations are taken with respect to the random variables k̄±, q+

and q−, respectively. Furthermore, we set

A(t,x, k, p, ϕ) = sup
δ±∈[0,δ̄]

Ā(t,x, k, p, ϕ, δ+, δ−).

The value function V (t,x; k) satisfies the HJB system of QVIs4

min {−g(t, x)−A (t,x, k, ∂tV, V ) ; (V −MV ) (t,x; k) ; (V − LV ) (t,x; k)} = 0,

(4.11)

on [t, T )×O×K, with terminal condition V (T, x, y, s; k) = U(x, y, s, k). Equation

(4.11) can be interpreted as follows: if V −MV > 0 and V − LV > 0, then

the value function cannot be improved by an impulse and thus no orders are

submitted to the standard exchange. As soon as V −MV < 0 or V − LV < 0,

the value function is set to V −MV = 0 or V − LV = 0 and an impulse takes

place. In the event V −MV < 0 and V − LV < 0, the value function is set to

V −max{MV,LV } = 0. We thus consider intervention times (τ `i and τmi ) and

impulses (ηi, κi and ξi) by which the CLP can control the evolution of the state

variables Xu and Yu. For this purpose, we define the continuation region (CR),

the limit orders impulse region (LI) and the market orders impulse region (MI)

by

CR := {(u,x, k) ∈ [t, T )×O ×K : V > LV & V >MV } ,

LI := {(u,x, k) ∈ [t, T )×O ×K : LV = V & LV >MV } ,

MI := {(u,x, k) ∈ [t, T )×O ×K :MV = V & MV > LV } .

(4.12)

4We refer to Section 7.1 for details on its derivation.
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The system of QVIs introduced in Equation (4.11) is highly non-linear and some-

what similar to the one studied in Guilbaud and Pham [47], although in the

present model two distinct impulses can take place. Some dimension reduction

is possible if the mid-price is assumed to be a martingale (see e.g. Cartea and

Jaimungal [20] and Guilbaud and Pham [47, 48]), since the optimal strategy in

feedback-form will only be a function of the inventory. We make this assumption

in the numerical section that follows, while keeping the general model presented

in this section at a higher degree of generality. In the next section we provide

some explicit examples of the model and we find numerically the optimal strategy

by means of the solving algorithm proposed in Guilbaud and Pham [47, 48].

4.3 Explicit examples and numerical results

We started this chapter with the intention of addressing some of the shortcom-

ings of the model presented in Section 2.3.2. In the previous section we presented

a class of models which allows for various choices of the state variables dynamics,

the control sets and the performance criterion. In the present section, we specif-

ically consider the points mentioned in Section 4.1—i.e. (i) the CLP can choose

optimally the prices it offers to clients, (ii) the CLP can post limit orders deep

in the book, (iii) the lit-pool spread is not constant—and we provide numerical

examples5 in which we progressively add such features to the model presented

in Section 2.3.2. We briefly recall the state variables dynamics—though they

are very similar to the ones in Section 2.3.2—for readability. Throughout this

section, we assume that the mid-price is modelled by Equation (4.1) and that

limit orders in the ‘lit’ exchange cannot be partially filled. This is not a strong

assumption as long as we consider unit-sized orders posted in the standard ex-

change. In fact, the majority of the times, posting unit-sized orders in a ‘lit’

market serves as to reduce consistent price slippage deriving from the order-

book imbalance. We assume that clients pay the “adjusted base spread” to the

CLP, where in the latter the size of the client’s order is taken into account. We

5While it would obviously be desirable to base the analysis on CLPs real data, it does not
come as a surprise that such sensitive information is strictly private and not shared outside
firms.
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thus assume that the inventory and the cash processes evolve according to

dXu = dJ−u 1{Xu−≤X̄}
− dJ+

u 1{Xu−≥−X̄}
,

dYu =
(
Su− + δ+

u (1 + c)q
+
u
)
dJ+

u 1{Xu−≥−X̄}
−
(
Su− − δ−u (1 + c)q

−
u
)
dJ−u 1{Xu−≤X̄}

,

where we have set f
(
t, s, δ±, q±

)
=
(
s + δ±(1 + c)q

±)
and 0 < c < 1 is a pre-

determined fixed constant. The convexity of the non-linear function (1 + c)q
+
u

reflects the fact that for the CLP it is more expensive to hedge a larger order due

to the price slippage in the exchange. Thus, the CLP charges more for each unit

of such an order. Next, we introduce the possibility of submitting unit-sized

market and limit orders in the standard exchange. At each time ti, the CLP

checks whether it is more convenient to (i) execute trades in the CLP only, (ii)

submit a market order such that

Xti = Xti−
+ ξi, Yti = Yti− − ξi

(
Sti− + ξikti−

)
, (4.13)

where ξi ∈ X := {−1{x>0},1{x<0}}, or (iii) submit a limit order such that

Xti = Xti−
+ ηizi, Yti = Yti− − ηi

(
Sti− − (kti− + κi)ηi

)
zi, (4.14)

where ηi ∈ N = {−1{x>0},1{x<0}} and zi are i.i.d. random variables supported

in {0, 1}. In Equation (4.6) we set U(x, y, s, k) = y + x(s − αx) and g(u, x) =

−φx2, where φ > 0. In order to thoroughly understand the marginal effects of the

three changes mentioned above, we think it is better to add them progressively

to the model. We thus start by considering a situation where the CLP can skew

its prices but (i) it can only post limit orders on top of the book, and (ii) the lit

pool spread is constant, only to remove them later in the discussion. The form

of the terminal condition suggests we can use the ansatz(see, e.g., Cartea et al.

[23]) V (t,x) = y + xs + h(t, x), which henceforth will be inserted in Equation

(4.11).

4.3.1 Optimal dark-pool spread

We let the CLP choose between three possible scenarios.



Chapter 4. The market-making problem in a CLP 104

(i) It can choose not to skew the prices and thus to let δ+ = δ− and λ+ = λ−

(which we call no skew), (ii) it may skew the prices downward such that δ+ < δ−

and λ+ > λ− (which we call left or downward skew), and (iii) it may skew the

prices upward such that δ+ > δ− and λ+ < λ− (which we call right or upward

skew). The upward skew penalises buyers over sellers while the opposite holds

for the downward skew. Mathematically, the above reduces to assuming that the

CLP optimally chooses the prices (δ+, δ−) ∈ D :=
{

(δ+
n , δ

−
n ), (δ+

r , δ
−
r ), (δ+

l , δ
−
l )
}

for the no skew, the right skew and the left skew scenarios, respectively. Asso-

ciated to such prices, we assume arrival intensities of the form (λ+
δ , λ

−
δ ) ∈ I :={

(λ+
n (δ+

n ), λ−n (δ−n )), (λ+
r (δ+

r ), λ−r (δ−r )), (λ+
l (δ+

l ), λ−l (δ−l ))
}

. The QVI now reads:

min

{
− sup
(δ+,δ−)∈D

(
λ+
δ E

(q+)
[
δ+q+(1 + c)q

+
+ h(t, x− q+)− h(t, x)

]
1{x≥−X̄}

+λ−δ E
(q−)

[
δ−q−(1 + c)q

−
+ h(t, x+ q−)− h(t, x)

]
1{x≤ X̄}

)
φx2 − ∂h(t, x)

∂t
− λmxE(k̄±)

[
k̄±
]

; h(t, x)− sup
ξ∈X

[
− k − εm + h(t, x+ ξ)

]
;

h(t, x)− sup
η∈N

E(z)
[
kz − ε` + h(t, x+ ηz)

]}
= 0,

(4.15)

with terminal condition h(T, x) = −αx2. We numerically solve (4.15) to find

the optimal CLP pricing and hedging strategy. We expect to find additional

boundaries to the one obtained in Section 2.3.2, since the CLP now has different

pricing alternatives.

Figure 4.2: Optimal inventory thresholds found by solving the HJB equa-
tion (4.15). We set α = 2, D := {(0.5, 0.5), (0.3, 0.6), (0.6, 0.3)}, I :=
{(0.5, 0.5), (0.6, 0.4), (0.4, 0.6)}, ε` = 3, εm = 6, c = 0.05, λm = 0.5, k = 1,
q± ∼ U [1, 10], z ∼ U [0, 1], s = 40, E[k̄±] = 0, x = y = 0, X̄ = 100. In the left

panel we set φ = 0.01. In the right panel we set φ = 0.0001.
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In Figure 4.2 we show two simulated inventory paths (relative to a unique stock-

price path) and we plot them above the optimal boundaries found by solving

Equation (4.15). We see that when the inventory is relatively small, it is optimal

not to skew the prices so to receive on average an equal number of buy and

sell orders (here we assume that no-skewing implies equal arrival intensities of

buyers and sellers, which may not be the case in particular market conditions,

e.g. new information is available to a number of clients which are incentivised

to trade in the same direction). If the the inventory increases (resp. decreases),

the CLP employs a left/downward (resp. right/upward) skew so to encourage

buyers (resp. sellers). As in the toy model, there are inventory levels for which

it is optimal to resort to the standard exchange. The critical inventory level

at which the CLP begins placing orders in the standard exchange falls as the

terminal liquidation date is approached. We plot the optimal boundaries for the

case of moderate risk aversion (right panel) and high risk aversion (right panel).

We notice that the hedging activity of the CLP is highly correlated to its degree

of risk aversion. Indeed, for high values of φ, the CLP starts posting orders to

the standard exchange for smaller inventory values and vice versa.

Remark 4.1. While the inventory thresholds shown are the optimal boundaries

found numerically by solving the HJB equation (4.15), the (superimposed) sim-

ulated inventory paths are meant for illustration purposes only. In particular,

they crucially depend on the partition of the time grid. For example, when the

hedging boundaries are surpassed and the optimal strategy suggests that limit

orders should be posted, the simulated paths only capture one limit order per

time-grid point. If the grid points are, e.g., one second apart, the plot would show

one limit order per second until the inventory is back within the market-making

region. If instead the grid was finer and points were one millisecond apart, the

paths would show one limit order per millisecond. Put it in another way, if the

time grid had N points, then a maximum of N − 1 optimal stopping times could

take place (we do not allow for an impulse at the terminal time). We wish to

stress that the solution of (4.15) comprises of the optimal boundaries only, while

the simulated paths are a visual aid to better understand the business of the

CLP.
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4.3.2 Optimal lit-pool posting

In the previous section we have included the option of skewing the prices that

the CLP offers, but the model is still limited in that the hedging in the standard

exchange by means of limit orders can only be done on top of the book. Here we

modify this assumption and we allow the CLP to also post at the second best

and third best prices. According to the LOB model presented in Section 4.2, we

let the minimum price tick by k̄, and thus allow the CLP to post limit sell orders

at prices s + k, s + k + k̄ and s + k + 2k̄, while limit buy orders can be posted

at prices s − k, s − k − k̄ and s − k − 2k̄. According to the notation used in

Equation (4.14), we assume that the limit price at which the CLP posts in the

standard exchange can be optimally chosen between κ ∈ K` := {0, k̄, 2k̄}.

By posting deeper in the book, the CLP earns a higher spread if its order gets

executed, while the filling probability of such an order is reduced. In fact, for a

deep limit order to be executed a market order that walks the book is needed,

and the latter are quite rare. To reflect the fact that the filling-probability of

a limit order depends on how far from the mid-price such an order is posted,

we assume that P[zi = 0] = `κ(z0) and P[zi = 1] = `κ(z1) = 1 − `κ(z0). The

associated QVI for the function h(t, x) is

min

{
− sup
(δ+,δ−)∈D

(
λ+
δ E

(q+)
[
δ+q+(1 + c)q

+
+ h(t, x− q+)− h(t, x)

]
1{x≥−X̄}

+λ−δ E
(q−)

[
δ−q−(1 + c)q

−
+ h(t, x+ q−)− h(t, x)

]
1{x≤ X̄}

)
φx2 − ∂h(t, x)

∂t
− λmxE(k̄±)

[
k̄±
]

; h(t, x)− sup
ξ∈X

[
− k − εm + h(t, x+ ξ)

]
;

h(t, x)− sup
η∈N ,κ∈K`

E(z)
[
(k + κ) z − ε` + h(t, x+ ηz)

]}
= 0.

(4.16)

with terminal condition h(T, x) = −αx2. In Figure 4.3, the optimal strategy

obtained by solving (4.16) is shown. We notice that after skewing the prices,

the CLP should start submitting limit orders deep in the book and progressively
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moves towards the top of the book. Shortly before the end of the trading pe-

riod, it should resort to market orders. Again, we show the different strategies

employed by a highly risk-averse and a moderately risk-averse CLP (in the left

and right panels, respectively). In Figure 4.4 we show the different strategies

for high and low values of the terminal-penalty parameter α. When the penalty

for holding a non-zero inventory at T increases, we notice that the boundaries

shrink dramatically, especially towards the end.

Figure 4.3: Optimal inventory thresholds found by solving the HJB equa-
tion (4.16). We set α = 2, D := {(0.5, 0.5), (0.3, 0.6), (0.6, 0.3)}, I :=
{(0.5, 0.5), (0.6, 0.4), (0.4, 0.6)}, ε` = 3, εm = 6, c = 0.05, λm = 0.5, k = 1,
q± ∼ U [1, 10], z ∼ U [0, 1], s = 40, E[k̄±] = 0, x = y = 0, X̄ = 100, k̄ = 0.01,

`κ=0(z1) = 0.9, `κ=k̄(z1) = 0.8, `κ=2k̄(z1) = 0.6. In the left panel we set φ = 0.01. In
the right panel we set φ = 0.0001.

Figure 4.4: Optimal inventory thresholds found by solving the HJB equa-
tion (4.16). We set φ = 0.001, D := {(0.5, 0.5), (0.3, 0.6), (0.6, 0.3)}, I :=
{(0.5, 0.5), (0.6, 0.4), (0.4, 0.6)}, ε` = 3, εm = 6, c = 0.05, λm = 0.5, k = 1,
q± ∼ U [1, 10], z ∼ U [0, 1], s = 40, E[k̄±] = 0, x = y = 0, X̄ = 100, k̄ = 0.01,

`κ=0(z1) = 0.9, `κ=k̄(z1) = 0.8, `κ=2k̄(z1) = 0.6. In the left panel we set α = 6. In
the right panel we set α = 0.5.
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We emphasise that if the terminal preferred inventory level was non-zero, it

would produce a shift in the optimal boundaries by an equal amount.

4.3.3 P&L distribution

Here we simulate the model described in Section 4.3.2 and we find numerically

the terminal P&L distribution, calculated by YT +XT (ST − k̄× sign[XT ]), where

we are assuming that the terminal inventory is liquidated via a market order.

In Table 4.1 we list the values of the parameters we choose for the simulation,

while in Figure 4.5 we show the empirical distribution of the terminal cash for

different levels of the risk aversion of the CLP. We simulate five hundred paths

for the stock price and a thousand paths for inventory, making a total of five

hundred thousand different scenarios.

Table 4.1: Parameters value

S0, X0, Y0 X̄ δ+
n δ−n δ+

u δ−u δ+
d δ−d

40, 0, 0 100 0.5 0.5 0.3 0.6 0.6 0.3

κ0, κ1, κ2 λ+(δ+
n ) λ−(δ−n ) λ+(δ+

u ) λ−(δ−u ) λ+(δ+
d ) λ−(δ−d ) c

0, k̄, 2k̄ 0.5 0.5 0.6 0.4 0.4 0.6 0.05

`κ0 , `κ1 , `κ2 k εm, ε` λm k̄ q± N X

0.9, 0.8, 0.6 1 6, 3 0.5 0.01 U{1, 10} ±1 ±1
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Figure 4.5: Terminal cash distribution as defined in Section 4.3.2. In the left panel
we set α = 0.5 and φ = 0.00001. In the right panel we set α = 6 and φ = 0.01.
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First, we notice that the activity is, on average, profitable and thus the CLP is

incentivised to act as a market maker by offering a stream of prices to its clients.

A unremarkably risk-averse CLP employs a less expensive hedging strategy and

the average P&L is higher than the case of high risk aversion (in the plots above

we have 28,384 versus 20,366 for the left and right panels, respectively). On

the other hand, there is more dispersion around the mean, and the standard

deviations are 13,813 and 9,182 for the left and right panels, respectively. As a

matter of fact, the choice relies on the willingness to take risk specific to each

CLP, which may be further conditioned by the regulations in place. A less risk-

averse CLP holds its inventory for longer compared to a high risk averse, and

hopes to liquidate its inventory by means of its market-making activity, rather

than through hedging. On the other hand, such a CLP may be subject, from

time to time, to larger losses caused by the price moving against its holdings.

4.3.4 Stochastic lit-pool spread

In the last simulation we relax assumption (d) and introduce a stochastic bid-ask

spread. We let K := {1, 2}, that is the market can be in a tight-spread regime and

a wide-spread regime, depending on whether there is good or poor liquidity in the

market, respectively. The generator matrix can be chosen in various ways, so to

model the specific features of the market under consideration. For example, we

could consider a “seasonal” pattern where transitions between regimes happen

rarely and last for longer periods of time. Also, we could reproduce features

similar to mean-reversion by choosing a “preferred” state by making reversion

to that state very likely. The matrices Q1 and Q2 are examples of seasonal and

mean-reverting patterns, respectively:

Q1 =

 −r r

r −r

 , Q2 =

 −rlow rlow

rhigh −rhigh

 , (4.17)

where r, rlow, rhigh > 0. In Q1 the lower r, the rarer the transition between

states happens. In Q2, we choose k = 1 as the preferred state, and the higher

rhigh, compared to rlow, the higher is the transition rate to state 1. The two-

dimensional system of QVIs now reads as
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min

{
− sup

(δ+,δ−)∈D

(
λ+
δ E

(q+)
[
δ+q+(1 + c)q

+
+ hk(t, x− q+)− hk(t, x)

]
1{x≥−X̄}

+λ−δ E
(q−)

[
δ−q−(1 + c)q

−
+ hk(t, x+ q−)− hk(t, x)

]
1{x≤ X̄}

)
φx2 − ∂hk(t, x)

∂t
− λmxE(k̄±)

[
k̄±
]
−
∑
k′ 6=k

rkk′
[
hk′(t, x)− hk(t, x)

]
;

hk(t, x)− sup
ξ∈X

[
− k − εm + hk(t, x+ ξ)

]
;

hk(t, x)− sup
η∈N ,κ∈K`

E(z)
[
(k + κ) z − ε` + hk(t, x+ ηz)

]}
= 0,

(4.18)

with terminal condition hk(T, x) = −αx2. In Equation (4.18) where we have

used the ansatz V (t, x, y, s; k) = y + xs + hk(t, x). The subscript k indicates

that we refer to the regime k ∈ K. In Figures 4.6 and 4.7 we plot the optimal

boundaries found by solving (4.18) for the case of seasonal and mean-reverting

patterns, respectively.

Figure 4.6: Optimal inventory thresholds found by solving the HJB equa-
tion (4.18). Seasonal pattern. We set α = 2, , r = 1, φ = 0.001, D :=
{(0.5, 0.5), (0.3, 0.6), (0.6, 0.3)}, I := {(0.5, 0.5), (0.6, 0.4), (0.4, 0.6)}, ε` = 3, εm = 6,
c = 0.05, λm = 0.5, k = 1, q± ∼ U [1, 10], z ∼ U [0, 1], s = 40, E[k̄±] = 0, x = y = 0,

X̄ = 100, k̄ = 0.01, `κ=0(z1) = 0.9, `κ=k̄(z1) = 0.8, `κ=2k̄(z1) = 0.6, K = {1, 2}.



Chapter 4. The market-making problem in a CLP 111

Figure 4.7: Optimal inventory thresholds found by solving the HJB equation
(4.18). Mean-reverting pattern. We set α = 2, rhigh = 6, rlow = 0.5, φ = 0.001,
D := {(0.5, 0.5), (0.3, 0.6), (0.6, 0.3)}, I := {(0.5, 0.5), (0.6, 0.4), (0.4, 0.6)}, ε` = 3,
εm = 6, c = 0.05, λm = 0.5, k = 1, q± ∼ U [1, 10], z ∼ U [0, 1], s = 40, E[k̄±] = 0,

x = y = 0, X̄ = 100, K = {1, 2}, k̄ = 0.01, `κ=0(z1) = 0.9, `κ=k̄(z1) = 0.8,

`κ=2k̄(z1) = 0.6.

We first note that in the case of high-spread regime in Figure 4.6, the CLP starts

(i) earlier to submit limit orders and (ii) later to submit market orders, compared

to the case of low-spread regime. The same shape is observable in Figure 4.7,

although it is more evident since the return to the state of low-spread regime

(preferred state) is highly likely. This behaviour has the following interpretation:

when the spread is high, limit orders are more remunerative (or, better, cheaper if

we also consider the penalty for posting in the standard exchange), while market

orders are more expensive and thus their submission is postponed.

4.4 Conclusions

In the present work we study an optimal market-making problem faced by a

CLP. The CLP earns the optimally selected spread by trading with its clients.

Market participants, who consider trading via CLPs, may be of the view that it

is desirable to take advantage of favourable prices offered by the CLPs and to

benefit from avoiding price impact—to which they would be otherwise exposed—

especially if forced to submit market orders in a ‘lit’ exchange.
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A stream of two-way prices is offered to each client. Such prices are functions of

the size traded by the client and the CLP holding. Throughout the activity the

pool faces an inventory risk, which can be reduced (i) by controlling the width

and the skew of the CLP spread, and (ii) by resorting to the standard exchange

via both market and limit orders. Internal CLP transactions are preferred so to

avoid information leakage. Such a feature is modelled via a fixed penalty incurred

by the CLP whenever it submits an order to the ‘lit’ exchange. As confirmed

by the numerical results, the CLP will refrain from placing orders in a standard

exchange as long as the size of the inventory is small. Whenever the optimal

boundary is exceeded, the CLP resorts to the standard exchange by means of

limit orders. A limit order is cheaper though its execution is uncertain. The CLP

can choose the limit price; we find that the more the inventory grows, the closer

to the mid-price the CLP will post. This is reasonable since the filling probability

of limit orders depends on how far from the mid-price they are posted. If the

inventory becomes critically large, market orders will be preferred instead, which

are costly but benefit from sure execution. When the end of the market-making

activity approaches (which, e.g., might be thought of as the end of the trading

day) the market-orders region in the ‘lit’ exchange widens while the CLP and

limit-order regions in the standard exchange diminish. In fact, the market maker

will incur in a higher penalty for holding a large inventory at the terminal date.

These conclusions are obtained by formulating and numerically solving a double

obstacle standard stochastic and impulse control problem, for which we provide

four numerical examples with increasing complexity. Compared to the state-

of-the-art literature on ‘lit’ pool market making (see e.g. Guéant et al. [45],

Cartea et al. [24], and Guilbaud & Pham [47, 48]), adding a CLP to the model

substantially modifies the “standard” ‘lit’ exchange market-making problem for

the following reasons: (i) the prices offered to clients can be functions of the size

traded (which would not be possible in a classic LOB), and (ii) there are no such

things as minimum tick size, minimum quantities or queues in the CLP that may

be assumed, and (iii) the standard exchange is only utilised as a hedging venue,

while two-way prices are offered to clients and are not available to general market

participants. This work provides a rather flexible setup for the management of a

CLP inventory. The pricing and the hedging strategies are illustrated in detail.



Chapter 5

Market making: an application

to the eFX spot market

5.1 Overview of the chapter

In this chapter we adapt the framework introduced in Chapter 4 to a broker-

dealer firm that operates in the electronic foreign exchange (eFX) market. The

academic literature on FX spot-trading has its main focus on empirical studies

of aggregated data to evaluate trading strategies, to forecast short-term price

movements, and to analyse the effects of information asymmetry on trading and

price discovery. In this category we find, e.g., the work by Deng et al. [35] who

employ multiple kernels learning and genetic algorithm to forecast future price

movements and test their model on the USDJPY pair. We also find the work

by Menkhoff et al. [66], who utilise ten years of aggregated daily data of fifteen

different currency pairs, and show that the customers’ order flow has significant

predictive content. Such an order flow is also the object of the study carried out

by Berger et al. [8] who confirm that, within electronic markets, such an order

flow has predictive power for up to a minute. Next, Chen and Gau [27] utilise

daily Electronic Broking Services (EBS) data to accept their hypothesis that the

bid quote offers more price discovery compared to the ask quote. Gençai and

Gradojevic [?] utilise EBS data of EURUSD, USDJPY and USDCHF to cluster

patterns of informed traders and find that early morning and late afternoon

113
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UTC (coordinated universal time) have the highest concentration of asymmetric

information. Informed trading in FX markets has also been studied by Payne

[71], who employs a vector autoregressive (VAR) model to quantify the effects of

informed flow on market prices, and shows that the impact of such flow accounts

for around 60% of the quoted spread. In this context, we further mention (i)

the work by King et al. [55], who provide an extensive survey of the FX market

microstructure literature, (ii) the seminal papers by Lyons [64, 65], who proposes

discrete-time inventory-control models, and “hot-potato” models for inventory

management, respectively, and (iii) the work by Evans and Lyons [36], in which

the authors consider the predictive content of the order-flow for the first time in

the literature.

Academic research more pertinent to the work presented in this chapter is very

limited when it comes to the FX asset class. The work by Chaboud et al.

[26] provides an in-depth econometric analysis of the effects of algorithmic and

computerised trading on market efficiency. They find a substantial reduction

of triangular arbitrage opportunities, which derives from a faster circulation of

information. Kozhan et al. [56] modify the Lyons [36] framework to include limit

and market orders, thus reproducing the features of an order-driven market. A

structural VAR model is used by Schmidt [76] to describe a multi-dealer FX

spot electronic order-driven market and find that the trading volume is the main

source of market impact. An optimal market-making problem in the FX market

has been proposed by Veraart [84], who considers a multi-dealer market in which

a firm can optimise the quotes proposed to its customers and can reduce its

inventory by trading with other dealers. They set up an optimisation problem in

which the agent maximises the terminal value of the portfolio, while penalising for

high-variance portfolios. The optimal strategy is found via numerical techniques.

Veraart in [85] further analyses an optimal investment problem in the foreign

exchange market, in which the investor aims to maximise the terminal value of

a portfolio which consists of domestic and foreign currencies.

Impulse-control problems are primarily used, within the FX literature, to study

central bank policy intervention. In this context we mention the works by Ca-

denillas and Zapatero [16], Bertola et al. [9], Mundaka and Øksendal [68], and
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Kercheval and Moreno [54].

The present chapter is organised as follows. We first provide an introduction to

the FX market and its specific features. We then explain in detail the dissim-

ilarities among a standard market-making problem adaptable to general asset

classes (e.g. equity) and an analogous problem specific to FX trading. Next,

we consider a scenario where one currency pair is traded (EURUSD) and a joint

service of brokerage and principal trading is offered by the firm to its clients. We

assume that the firm can hedge its position via market orders in the standard

exchange. We assume that—due to potential regulatory needs of producing a

harmonised balance sheet to which the firm may be subject—the terminal P&L

are calculated in a reference currency. We choose the latter to be USD and thus,

at the end of the trading period, the terminal EUR inventory is converted to

USD. Finally, we move to a three-currency-pair scenario (from which the gen-

eralisation to n currency pairs is trivial) and we consider the same problem of

mixed principal/agency trade execution and hedging. The questions we aim to

address in the present chapter are:

1. What is the optimal proportion of principal-versus-agency trading that the

CLP should offer?

2. What is the optimal hedging strategy when trading specifically in the FX

market?

To answer those questions, we modify the framework presented in Chapter 4 and

we find the optimal trading strategy of the CLP.

5.1.1 The FX spot market

The FX market is mainlyan OTC market, which at the present time is little-

regulated. We take the perspective of a financial firm, such as a CLP, which has

the technological means to offer its clients a competitive financial service in high-

speed markets. The clients can also count on a network of trade counterparties

provided by the firm, which we assume plays the role of a liquidity provider.

CLPs have access to a number of ECNs (Electronic Communication Networks)
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which provide a real-time facility for price discovery. An example of an ECN is

EBS (ICAP Group) which provides services such as EBS Live (real-time prices

delivered from the EBS matching platform direct to the CLP) and EBS Market

(global trading platform). The CLPs access EBS Live via EBS Ai (a direct two-

way interface with the EBS spot market). EBS updates the order book (available

liquidity and prices) every 100ms.

The CLP takes into account the prices and liquidity shown in the ECNs when

making a decision as to what price to offer to its client depending also on the “in-

house” liquidity that the CLP can provide. Such considerations also influence

the decision as to what percentage of the client’s order the CLP wishes to execute

against its principal liquidity and what it will place in the ECN markets via its

brokerage service.

The advantages for a market participant to place orders by utilising a CLP are:

(i) anonymity (which mitigates the information leakage), (ii) no or limited market

impact for the client, (iii) access to state-of-the-art trading technology offering a

24/7 trade service, (iv) reduction of latency, and (v) access to additional liquidity

offered by the CLP (through principal trading) beyond what is available in ECNs

or other markets.

5.1.2 Trading spot FX: the CLP perspective

The spot-FX pricing mechanism adopted by the CLP does not need to be dis-

similar from the one of any other asset class. In fact the CLP can take the

ECN’s printed prices as a reference to establish its own quotes. On the other

hand, the hedging mechanism in foreign exchange is slightly different to the one

in stock markets in that every currency can be exchanged with any other, while

shares usually are exchanged (sold or bought) receiving cash in return (there are

exceptions as in, e.g., exchange options where one share is “exchanged” for a

share of another asset).

The above argument suggests that, when taking hedging decisions, the firm shall

further choose between direct and/or cross hedging, depending on inventory
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levels and market conditions. We refer to Section 5.3 for mathematical and

numerical details.

We now provide an example to clarify the difference between direct and cross

liquidation1 (the underlying principle can be applied to direct and cross hedging).

1. Let us consider a stock market with three assets: A, B and C, where C is

cash in, say, dollars. Assume that the price of asset A is SA ($) per share

and SB ($) is the price per share of asset B. Assume further that we have

a portfolio consisting of XA units of stock A, XB units of stock B and an

amount XC of dollars. Liquidating the portfolio is usually referred to as

the actions of (i) buying/selling XA shares of A in exchange for XASA ($),

and (ii) buying/selling XB shares of B in exchange for XBSB ($). The

terminal value of the portfolio is, therefore, XC +XASA +XBSB ($).

2. Let us now consider an FX market where three currencies are traded: e

(EUR), £ (GPB), and $ (USD). Assume further that our portfolio consists

of X£, Xe and X$ units of GBP, EUR and USD, respectively. The cur-

rent exchange rates are given by Se$ (EURUSD), S£$ (GBPUSD) and Se£

(EURGBP). Liquidating the portfolio—be it to check the cumulative P&L

or to decrease the risk for the exchange rates to move in an unfavourable

direction with respect to our holdings—is referred to as the action of con-

verting two of the inventories in what is considered being the reference

currency. For this purpose, we choose the latter to be USD. We have the

following three options for the conversion into USD:

(a) We can exchange both X£ and Xe for USD and calculate the P&L

by the formula X$ +XeSe$ +X£S£$, or

(b) we can first exchange X£ for EUR and then exchange the updated

EUR holding to USD, which gives a P&L of X$ +(Xe+X£/Se£)Se$,

and finally

(c) we can first exchange Xe for GBP and then exchange the updated

GBP holding to USD, which gives a P&L of X$ + (XeSe£ +X£)S£$.

1While people who are familiar with FX will find such an example trivial, we believe it is
important to clarify the motivation behind the choice of such an asset class.
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This is different from the first scenario in that we do not have the option

of exchanging asset A for asset B, as there is not a quoted price (or,

incidentally, “exchange rate”) SAB.

If there is only one price available in the market for each currency pair, then the

triangular arbitrage relation

Se£ =
Se$

S£$
(5.1)

shall hold, and the liquidating options (a), (b) and (c) in the FX example (2.)

are identical, regardless of the levels of X$, Xe and X£. On the contrary, when

bid and ask prices are available for each currency pair, the above liquidation al-

ternatives cease to be equivalent. Given the tedious calculations and the amount

of algebra involved to formally show this result, we postpone such a discussion

to Section 7.6 in the Appendix, at the end of the present work.

5.2 One currency pair

We start by considering a market where only one currency pair (EURUSD)

is traded. While being less interesting than the three-currency-pair case, and

similar to the analysis carried out in Chapter 4, we believe it is worth exploring

for the following reason: we here consider a firm which offers a joint service of

(i) providing principal liquidity to its clients as well as (ii) providing a brokerage

service for a fee (which is a substantial difference from Chapter 4, where the CLP

could only execute 100% of the orders principally). By looking at this simple

case first, we have the opportunity to understand the structure of the model and

the principal-versus-agency trading relationship before focusing on the hedging

part.

5.2.1 Financial problem

Let us assume that a client (e.g. a pension fund) wishes to execute a sizeable

order when both a ‘lit’ and a CLP are available.
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From the client perspective, the situation is analogous to the one treated in

Chapter 3 if the CLP activity is restricted to anonymous order-matching. On the

other hand, if the CLP offers principal liquidity, the problem is slightly different

in that (i) the execution in the CLP is fully guaranteed (except in rare circum-

stances when, e.g., the so-called “last look” is applied), and (ii) the principal

prices offered by the CLP are commensurate to the size traded by the client.

The latter point may incentivise the client to split such a sizeable order between

the ‘lit’ and the dark venues, since the resulting cumulative trading conditions

may be more favourable than the price offered only by the CLP on its own (this

type of problem has been solved in, e.g., Laruelle et al [60]).

From the CLP perspective, the problem is different to the one treated in

Chapter 4 for three main reasons. Firstly, the CLP can only offer principal liq-

uidity, thus leaving the clients with no other choice but to resort to the lit pool

by themselves, if they wished to trade in multiple venues. Secondly, by choos-

ing the amount of principal liquidity offered, the CLP can implement a more

efficient hedging strategy and inventory management. Thirdly by offering an op-

timal combination of principal liquidity and brokerage, the CLP has control on

the amount sent to the ECN and on the resulting market impact, and can thus

program its hedging strategy (along with its internalisation means) accordingly.

Ultimately, we want to find the optimal ratio of principal vs ECN liquidity that

the CLP should choose to offer to its clients.

5.2.2 Mathematical model

We consider a CLP which offers a market-making service for EURUSD. At each

time u ∈ [t, T ] the CLP carries both EUR and USD inventories; in the spirit of

Chapter 4, we find an analogy between the USD inventory and the cash process.

In fact, being the reference currency, the USD inventory does not carry any risk,

which can all be attributed to the EUR inventory. We assume that the currency

pair is traded in the ECN at {Se$
u −∆e$

u /2, Se$
u + ∆e$

u /2}, where {∆e$
u } is the

market spread for EURUSD. At each time u ∈ [t, T ], a portion αu ∈ [0, 1] of

principal liquidity for an order of random size q+ is offered to buyers and a
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portion βu ∈ [0, 1] of principal liquidity for an order of random size q− is offered

to sellers. The quotes set by the CLP should reflect the current ECN quotes, its

EUR inventory position and the amount of principal liquidity offered. We denote

the prices offered by the CLP by p+
u and p−u for buyers and sellers, respectively.

We refer to Section 5.2.2.1 for an in-depth discussion on the pricing mechanism of

the CLP. The remaining portions of clients’ orders, i.e. (1−αu)q+
u and (1−βu)q−u ,

are traded by the CLP in the ECN on behalf of the client. For the latter service,

the CLP charges a commission η > 0 commensurate to the size of the order. The

EUR inventory of the CLP thus evolves according to

dXeu =
(
βu + (1− βu)η

)
dJ−u −

(
αu − (1− αu)η)dJ+

u , (5.2)

where Xet = xe. We define J±u :=
∑N±u

i=1 q
±
i , where the Cox processes {N±u } have

intensities λ±p = λ±(p±), and q±i , i ≥ 0, are i.i.d. random variables which model

the order size. When the Cox process {N+
u } jumps, the CLP sells q+

N+
u

EURUSD

by offering αuq
+

N+
u

principal liquidity and a brokerage service for (1 − αu)q+

N+
u

.

An analogous interpretation holds when the Poisson process {N−u } jumps and

the CLP buys EURUSD. The USD inventory thus evolves according to

dX$
u = αup

+
u dJ+

u − βup−u dJ−u . (5.3)

Trading in the ECN on behalf of the client causes a permanent impact on prices,

which we model by γ ∈ R+. We consider such impact to affect both sides of the

LOB, as it is well known that they are strongly correlated. The second and third

term in Equation (5.4) serve this purpose for buyers and sellers, respectively. We

assume that the ECN mid-price and spread processes satisfy

dSe$
u = κ

(
S̄ − Se$

u−

)
du+ σs,e$dW s,e$

u + γ(1− αu)dJ+
u − γ(1− βu)dJ−u (5.4)

and
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d∆e$
u = σ∆,e$∆e$

u dW∆,e$
u , (5.5)

respectively. In Equations (5.4) and (5.5) we let Se$
t = se$, ∆e$

t = ∆e$, S̄

is the exchange-rate long-term mean, κ ≥ 0 is the speed of mean reversion

and σs,e$, σ∆,e$ ∈ R+. Furthermore
{
W s,e$
u

}
and

{
W∆,e$
u

}
are independent

Brownian motions. We acknowledge that the model defined by Equation (5.4)

may produce negative prices. On the other hand, it captures realistic features

(such as mean reversion and random jumps) which are commonly observed in

market data.

5.2.2.1 Pricing strategy

We here describe the pricing mechanism of the CLP. We believe that the CLP’s

quotes should depend on (i) the current ECN price, (ii) the sign of the risky

(EUR) inventory, and (iii) the portion of principal liquidity offered to the clients.

The pricing process of the CLP can thus be summarised as follows:

1. In order to be more competitive, the base spread offered by the CLP is

tighter than the ECN one and set to ξ1∆e$
u− , where ξ1 is a constant in [0, 1].

The CLP’s base quotes are, therefore, Se$
u− + ξ1∆e$

u−/2 and Se$
u− − ξ1∆e$

u−/2,

respectively.

2. The CLP applies an inventory skew to its quotes. In particular, it skews

the prices down when it is long EURUSD and skews its prices up when it is

short EURUSD. We define the position-adjusted ask and bid prices by Se$
u−+

ξ1∆e$
u−/2 − ξ2 sign [Xe

u− ] and Se$
u− − ξ1∆e$

u−/2 − ξ2 sign [Xe
u− ], respectively,

where ξ2 ≥ 0.

3. The CLP widens its spread for larger portions of principal liquidity offered.

This feature reflects both an increase in the risk of unfavourable price

movements as well as an increase in the expected hedging costs the CLP is

subject to when large orders are executed principally. We therefore set the

final prices offered to clients at p+
u = Se$

u− + ξ1∆e$
u−/2− ξ2 sign [Xe

u− ] + ξ3αu

and p−u = Se$
u−− ξ1∆e$

u−/2− ξ2 sign [Xe
u− ]− ξ3βu, respectively, where ξ3 ≥ 0.
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We define the distance of the CLP prices from the ECN mid-price by δ+
CLP =

ξ1∆e$
u−/2 − ξ2 sign [Xe

u− ] + ξ3αu and δ−CLP = ξ1∆e$
u−/2 + ξ2 sign [Xe

u− ] + ξ3βu.

Furthermore, along the lines of Cartea et al. [23], we let λ±p = λ±e−cδ
±
CLP , where

c ≥ 0.

5.2.2.2 Hedging strategy

When skewing the quotes offered by the CLP is not sufficient for reducing its

EUR inventory, the firm resorts to the ECN for hedging purposes. Let us assume

that it is optimal at time τ to reduce the magnitude of the EUR inventory by one

unit2 (by symmetry, this will also reduce the magnitude of the USD inventory).

Analogously to Chapter 4, the EUR inventory is subject to the following impulse

Xeτ = Xeτ− + 1{
Xe
τ−
<0
} − 1{

Xe
τ−
>0
}. (5.6)

The USD inventory changes accordingly. In particular, if Xe
τ− > 0, the CLP is

selling EURUSD at the current ECN bid, while if Xe
τ− < 0 it is buying EURUSD

at the current ECN ask price. Therefore, for the USD inventory, we have

X$
τ = X$

τ− −
(
Se$
τ− + ∆e$

τ−/2
)
1{

Xe
τ−
<0
} +

(
Se$
τ− −∆e$

τ−/2
)
1{

Xe
τ−
>0
}.

The ECN mid-price is impacted similarly to Equation (5.4), that is

Se$
τ = Se$

τ− + γ1{
Xe
τ−
<0
} − γ1{

Xe
τ−
>0
}. (5.7)

Also, we consider a fixed cost the CLP sustains when crossing the spread. This

can be seen as a fixed ECN fee as well as the cost of information leakage, which

we model via a positive constant ε. The hedging strategy, as defined in this

context, is a collection of stopping times M : (τi)i≥0 at which it is optimal to

cross the spread in the ECN so to reduce the EUR position.

2A “unit” can be intended as a standard lot, which in FX can be of 105 or 106 of the left-hand
side currency, depending on the specific ECN rules.



Chapter 5. Market making: an application to the eFX spot market 123

5.2.3 The value function

For simplicity, we write the control processes by α = {αu} and β = {βu}, and

the vector of state variables by x := {xe, x$, se$,∆e$}. We define the value

function of the CLP by

V (t,x) = max
α,β,M

Et,x
[
P&LT − α̂(XeT )2 − φ

∫ T

t

(
Xeu
)2

du−
∑

t≤τi<T
ε

]
, (5.8)

where the term P&LT is the terminal theoretical cash of which components

are derived from the USD inventory and the EUR inventory evaluated at the

ECN mid-price. That is, P&LT = X$
T +XeT S

e$
T . The terminal and the running

penalties for holding a non zero inventory are parametrised by3 α̂ ≥ 0 and φ ≥ 0,

as done in Chapters 3 and 4. The value function satisfies the following HJB quasi

variational inequality4:

min

{
φ(xe)2 − κ

(
S̄ − se$

) ∂V
∂se$

− 1

2
(σs,e$)2 ∂2V

(∂se$)2
− 1

2
(σ∆,e$∆e$)2 ∂2V

(∂∆e$)2

−∂V
∂t
− L−V (t,x)− L+V (t,x);V (t,x)−MV (t,x)

}
= 0,

(5.9)

where the operators L−, L+ and M are defined by

L+V (t,x) = sup
α
λ+
p

E(q+)
[
V
(
xe − (α− (1− α)η)q+, x$ + αp+q+, se$ + γ(1− α)q+,∆e$

)
− V (t,x)

]
,

L−V (t,x) = sup
β
λ−p

E(q−)
[
V
(
xe + (β + (1− β)η)q−, x$ − βp−q−, se$ − γ(1− β)q−,∆e$

)
− V (t,x)

]
,

3To keep consistency with the previous chapters, we here call the terminal penalty α̂. The
latter shall not be confused with the portion of principal liquidity offered to sellers, i.e. {αu}.

4We refer to Section 7.1 for details on its derivation.
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and

MV (t,x) = V
(
xe + Xe, x$ + X$, se$ + Se$,∆e$

)
− ε, (5.10)

respectively. In Equation (5.10) we define Xe = 1{xe<0}−1{xe>0}, Xe = (se$−

∆e$/2)1{xe>0} − (se$ + ∆e$/2)1{xe<0} and Se$ = γ1{xe<0} − γ1{xe>0}. Next

we solve numerically the QVI in Equation (5.9) and discuss the optimal pricing

and hedging strategy of the CLP.

5.2.4 Numerical results

In this section we explore some features of the model. For convenience, if the

inventory is positive, we define α to be the aggress liquidity and β the protect

liquidity. This is because α helps to reduce the inventory and thus the CLP wants

to be more aggressive on α and more conservative on β. On the other hand, if

the inventory is negative, for analogous reasons we define α to be the protect

liquidity and β the aggress liquidity. For simplicity, we first assume that the

EURUSD exchange rate is a martingale, i.e., there is no mean reversion (κ = 0)

and no permanent price impact (γ = 0). Thereafter, we include such features

and show how the optimal strategy changes as a function of the FX rate.

We numerically approximate the solution of Equation (5.9) by an explicit—

backward in time—finite difference scheme. Within this section, we consider an

equally-spaced time grid valued in [0, 100] with increments of 0.1, an equally-

spaced inventory grid (xe) valued in [−50, 50] with increments of 0.1, an equally

spaced price grid (se$) values in [1.07, 1.08] with increments of 0.01 and an

equally spaced spread grid (∆e$) valued in [0,0.0002] with increments of 0.0001.

The random variables q± can take values in {0, 1, 2, . . . , 20} with equal proba-

bility of 1
21 and the controls α and β can take values in {0, 0.1, . . . , 1}. At every

node, we check which combination of α and β is optimal (i.e. maximises the

value function) and we store the values, which we plot below. At every time,

and for each node, we further check whether a hedging action improves the value

function, and we store the inventory level at which it is optimal to cross the

spread and reduce the firm’s holdings. The solving algorithm we use is very
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similar to the one used for Chapter 4 and described in Section (7.5.2). Finally,

as noted in Chapters 2 and 4, when se$ or ∆e$ are martingales, we can use the

usual ansatz (see Cartea et al. [23] for details) and reduce the number of state

variables. Such reduction benefits the computational speed.

5.2.4.1 Martingale property of the FX rate
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Figure 5.1: Optimal principal-liquidity strategy (top panels) and hedging strategy
(bottom panels)—displayed as a function of time and inventory—found by solving
the HJB equation (5.9). We set λ± = 0.5, q± ∼ U [0, 20], η = 25 × 10−6, φ = 0.05,
γ = κ = 0, ξ1 = 0.5, ξ2 = 0.5 pips, ξ3 = 0.001, ε = 5, se$ = 1.075, ∆e$ = 2 pips. In

the left panels we set α̂ = 6. In the right panels we set α̂ = 0.5.

If we neglect both (i) the permanent impact of the brokerage and hedging ac-

tivities on the mid-price, and (ii) the mean-reversion property of the mid-price,

we can reduce the dimensionality of the problem. The optimal strategy α, β

and M now only depends on the time and the inventory level. In Figure 5.1

we show the principal strategy α and β (top panels) and the hedging strategy

(bottom panels) for different values of the terminal penalty α̂. A higher terminal
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penalty (cf. left panels) discourages the firm from offering high percentages of

principal liquidity, towards maturity, on the protect side compared to a lower

terminal penalty. Furthermore the optimal hedging boundaries tighten towards

maturity compared to low values of the terminal penalty. We further note that

the hedging strategy is less aggressive than the one featured in Chapter 4. The

reason is that, towards maturity, very little principal liquidity is offered on the

protect side, while it is mainly offered on the aggress side.
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Figure 5.2: Optimal principal-liquidity strategy (top panels) and hedging strategy
(bottom panels)—displayed as a function of time and inventory—found by solving
the HJB equation (5.9). We set λ± = 0.5, q± ∼ U [0, 20], η = 25 × 10−6, α̂ = 2,
γ = κ = 0, ξ1 = 0.5, ξ2 = 0.5 pips, ξ3 = 0.001, ε = 5, se$ = 1.075, ∆e$ = 2 pips. In

the left panels we set φ = 0.1. In the right panels we set φ = 0.001.

In Figure 5.2 we show the optimal principal-liquidity (top panels) and hedging

strategies (bottom panels) for high and low values of the running penalty. High

values of φ reduce the percentage of principal liquidity offered to clients through-

out the period and tighten the hedging boundaries, while low values of φ increase
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the percentage of principal liquidity and widen the hedging boundaries. Such

results are in agreement with the ones shown in Chapter 4.
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Figure 5.3: Optimal principal-liquidity strategy (top panels) and hedging strategy
(bottom panels)—displayed as a function of time and inventory—found by solving
the HJB equation (5.9). We set q± ∼ U [0, 20], η = 25 × 10−6, α̂ = 2, φ = 0.05,
γ = κ = 0, ξ1 = 0.5, ξ2 = 0.5 pips, ξ3 = 0.001, ε = 5, se$ = 1.075, ∆e$ = 2 pips. In
the left panels we set λ+ = 0.7 and λ− = 0.3. In the right panels we set λ+ = 0.3

and λ− = 0.7.

In Figure 5.3 we show the effect of different expectations regarding the client’s

arrival-flow. When the CLP is confident that buyers arrive at a higher frequency

than sellers, (i.e. λ+ > λ−), its inventory is expected to decrease and thus

more principal liquidity is offered to sellers (higher β compared to α). On the

hedging side, the optimal boundaries are skewed upward. That is, the CLP

starts hedging sooner when it holds a negative inventory compared to a positive

one. The opposite holds when the arrival-flow of sellers is higher than the one

of buyers.
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5.2.4.2 Permanent price impact

The addition of a permanent price impact adds interesting features to the optimal

strategy.

Figure 5.4: Optimal principal-liquidity strategy (top panels) and hedging strategy
(bottom panels)—displayed as a function of time and inventory—found by solving the
HJB equation (5.9). We set q± ∼ U [0, 20], η = 25× 10−6, α̂ = 2, φ = 0.05, λ± = 0.5,
κ = 0, ξ1 = 0.5, ξ2 = 0.5 pips, ξ3 = 0.001, ε = 5, se$ = 1.075, ∆e$ = 2 pips. In the

left panels we set γ = 0.01. In the right panels we set γ = 0.0001.

In Figure 5.4, we show the optimal principal strategy through time (top panels),

the optimal principal strategy at the initial time (central panels) and the hedging
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strategy (bottom panels). In the left panels we consider a high price impact

while in the right panels a low price impact is considered. It is interesting to

note that while a high price impact implies less principal liquidity being offered

to clients on the protect side, when we are at time 0 and for a neutral position,

more principal liquidity is offered for higher permanent impact. The financial

justification of such a feature is as follows. The CLP accepts a higher inventory

risk (when starting from a neutral position) so to avoid unfavourable impact on

the market price through its brokerage activity and relies on its internalisation

means.

5.2.4.3 Mean-reversion

When the FX rate mean-reverts to its long-term mean S̄, both principal and

hedging decisions are made on the basis of the value of the current price with

respect to S̄.

Figure 5.5: Optimal principal-liquidity strategy (top panels) and hedging strategy
(bottom panels)—displayed as a function of time and inventory—found by solving
the HJB equation (5.9). We set q± ∼ U [0, 20], η = 25 × 10−6, α̂ = 2, φ = 0.05,
S̄ = 1.075, λ± = 0.5, γ = 0, ξ1 = 0.5, ξ2 = 0.5 pips, ξ3 = 0.001, ε = 5, ∆e$ = 2 pips.

In the left panels we set κ = 0.05. In the right panels we set κ = 0.005.
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In Figure 5.5, we note that when the FX rate is below its long-term mean, more

principal liquidity is offered to sellers than buyers. On the other hand, when

the FX rate is above its long-term mean, more principal liquidity is offered to

buyers. Such a feature is more evident when the speed of mean reversion κ is high

(top-left panel). This can be justified by the intention of the CLP to exploit a

short-lived opportunity of a market mis-pricing. On the hedging side, we notice

that for a high mean-reversion speed, hedging is postponed when the price is

unfavourably high or low (for a negative and positive inventory, respectively).

5.2.5 Price and inventory simulation

We here plot two distinct simulations (left and right panels) of the typical activity

of the CLP.

Time
0 20 40 60 80 100

In
v
e
n
to
ry

-50

0

50

Inventory evolution

USD inventory

EUR inventory

Hedging boundaries

Time
0 20 40 60 80 100

In
v
e
n
to
ry

-50

0

50

Inventory evolution

USD inventory

EUR inventory

Hedging boundaries

Time
0 20 40 60 80 100

P
ri
c
e

1.0742

1.0744

1.0746

1.0748

1.075

1.0752

1.0754

1.0756

1.0758

ECN versus CLP prices

ECN ask

CLP ask

CLP bid

ECN bid

Time
0 20 40 60 80 100

P
ri
c
e

1.073

1.0735

1.074

1.0745

1.075

1.0755

1.076

ECN versus CLP prices

ECN ask

CLP ask

CLP bid

ECN bid

Figure 5.6: Inventory simulation (top panels) and prices simulation (bottom pan-
els). We set q± ∼ U [0, 50], η = 25 × 10−6, α̂ = 2, φ = 0.05, S̄ = 1.075, λ± = 0.5,

γ = 0, ξ1 = 0.5, ξ2 = 0.5 pips, ξ3 = 0.001, ε = 5, ∆e$ = 2 pips, κ = 0.005.

In the top panels of Figure 5.6 we plot the EUR and USD inventory, and super-

impose the hedging boundaries. In the bottom panels we simulate the ECN and
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the CLP prices. We notice that the CLP spread is, as expected, tighter than

the ECN one. When the inventory skew is applied, the aggress price is closer to

the mid-price, while the protect side may be less advantageous than the ECN

one. In the price simulation we further include the mean-reversion of prices and

the permanent impact of trades. Around time t = 50, in the top-left panel, we

notice that the CLP is short EURUSD to the point it needs to resort to the ECN

for hedging. Buying EURUSD in the centralised market causes a market impact

which is evident in the bottom left panel, where prices have a clear increasing

trend around the same time. On the other hand, in the top-right panel around

time t = 30, the CLP is long EURUSD. The bottom-right panel shows indeed

the consistent slippage (starting around the same time), which is caused by the

CLP through its hedging activity.

5.3 Three currency pairs

In this section we assume that the CLP offers liquidity for three currency pairs,

two of which are direct pairs (i.e. EURUSD and GBPUSD) and one is a cross

pair (EURGBP), and that it hedges its positions in a single ECN (which may be

a synthetic ECN constructed via aggregation of the books belonging to different

ECNs). When we refer to direct pairs, we mean that one of the legs is USD

and by cross pair we indicate those currency pairs of which neither leg is USD.

Typically direct pairs are more liquid (i.e. have tighter spreads) than cross pairs.

The CLP activity can be summarised as follows:

1. On the pricing side, the CLP receives orders from buyers and sellers

for each of the currency pairs. It provides principal liquidity for a portion

of such orders, while the remainder is traded in the ECN on behalf of

the client, and it is executed at the market price. Analogously to Section

5.2.2, the CLP chooses the prices at which it offers principal liquidity, and

it charges a commission fee for the brokerage service.

2. On the hedging side, the CLP needs to manage the risk of holding the

inventories deriving from offering principal liquidity to clients. Its options
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are as follows: (i) the CLP skews its prices and/or reduces the portion of

principal liquidity on the protect side (while increasing the proportion of

principal liquidity on the aggress side), and (ii) it can post market orders

in the ECN. In the latter option, as briefly mentioned in Section 5.1.2,

the CLP has the choice of hedging via direct and/or cross pairs. As it is

typically more expensive to hedge via the cross-pair, we would expect the

hedging to happen through the direct pairs. Nonetheless, there may be

circumstances which make the cross-pair hedging optimal, as we shall see

in Section 5.3.3.

In the remainder of the chapter, we assume that

• EURUSD is traded at
{
Se$
u −∆e$

u /2, Se$
u + ∆e$

u /2
}

,

• GBPUSD is traded at
{
S£$
u −∆£$

u /2, S£$
u + ∆£$

u /2
}

,

• EURGBP is traded at
{
Se£u −∆e£u /2, Se£u + ∆e£u /2

}
,

where {∆e$
u }, {∆£$

u }, {∆e£u } are the bid/ask spreads for EURUSD, GBPUSD

and EURGBP, respectively. By means of standard arguments we can derive the

triangular arbitrage relations, given by

Se$
u −∆e$

u /2(
Se£u + ∆e£u /2

)(
S£$
u + ∆£$

u /2
) ≤ 1, (5.11)

and

(
S£$
u −∆£$

u /2
)(
Se£u −∆e£u /2

)
Se$
u + ∆e$

u /2
≤ 1; (5.12)

which shall hold at any time u ∈ [t, T ].

We note that Equation (5.1) implies both (5.11) and (5.12). For simplicity, we

assume that Equation (5.1) holds and that the EURGBP spread is given by

∆e£u = k(∆e$
u + ∆£$

u ), where k > 0. As a byproduct of the above assumptions,

we have two fewer processes to model.
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5.3.1 A revision of the state-variables dynamic

For notational simplicity, we write the state variables dynamics as a seven-

dimensional vector. In particular, we letXu :=
(
Se$
u , S£$

u ,∆e$
u ,∆£$

u , Xeu , X
£
u , X

$
u

)
,

with initial value given by x :=
(
se$, s£$,∆e$,∆£$, xe, x£, x$

)
.

The first two components of the vector Xu are the mid-prices for the EURUSD

and GBPUSD exchange rates, respectively. The third and fourth elements are

the market spreads for the EURUSD and GBPUSD, respectively. Finally, the

last three components are the EUR, GBP and USD inventories, respectively.

We also define the vector of principal-liquidity controls by αu := (αe$
u , α£$

u , αe£u )

and βu := (βe$
u , β£$

u , βe£u ). Each component of the above controls is the principal-

liquidity portion of orders offered to clients who: (i) buy EURUSD (αe$
u ), (ii)

buy GBPUSD (α£$
u ), (iii) buy EURGBP (αe£u ), (iv) sell EURUSD (βe$

u ), (v)

sell GBPUSD (β£$
u ), and (vi) sell EURGBP (βe£u ). The stochastic process Xu

satisfies the following stochastic differential equation:

dXu = σ(u,Xu)dW u + h(u,Xu,αu,βu, qu)dNu, (5.13)

where {W u} :=
({
W s,e$
u

}
,
{
W s,£$
u

}
,
{
W∆,e$
u

}
,
{
W∆,£$
u

})′
is a 4-dimensional

Brownian motion and the 6-dimensional jump process is defined by {Nu} :=({
N+,e$
u

}
,
{
N+,£$
u

}
,
{
N+,e£
u

}
,
{
N−,e$
u

}
,
{
N−,£$
u

}
,
{
N−,e£u

})′
. The elements of

both the diffusion and the jump vectors are assumed to be independent. Also,

for i = e$, £$, e£, each element of the jump vector is a Cox processes {N±,iu }

with intensity λ±,ip = λ±(p±,i) and q±,i are i.i.d. random variables which model

the order size. Furthermore, we have σ : [t, T ] × R7 → R7×4, and h : [t, T ] ×

R7 × [0, 1]3 × [0, 1]3 × [0, q̄]7 → R7×6, where q̄ > 0. In particular, we let

σ(u,Xu) =


σs,e$Se$

u 0 0 0 0 0 0

0 σs,£$S£$
u 0 0 0 0 0

0 0 σ∆,e$∆e$
u 0 0 0 0

0 0 0 σ∆,£$∆£$
u 0 0 0



′

,
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and

h(u,Xu,αu,βu, qu) =

[
h+,e$, h+,£$, h+,e£, h−,e$, h−,£$, h−,e£

]
=



0 0 0 0 −
(
αe$
u − (1− αe$

u )η
)
q+,e$ 0 αe$

u p+,e$
u q+,e$

0 0 0 0 0 −
(
α£$
u − (1− α£$

u )η
)
q+,£$ α£$

u p+,£$
u q+,£$

0 0 0 0 −
(
αe£u − (1− αe£u )η

)
q+,e£ αe£u p−,e£u q+,e£ 0

0 0 0 0
(
βe$
u + (1− βe$

u )η
)
q−,e$ 0 −βe$

u p−,e$
u q−,e$

0 0 0 0 0
(
β£$
u + (1− β£$

u )η)q−,£$ −β£$
u p−,£$

u q−,£$

0 0 0 0
(
βe£u + (1− βe£u )η

)
q−,e£ −βe£u p+,e£

u q−,e£ 0



′

.

In analogy with the pricing method described in Section 5.2.2.1, we define p+,j$
u =

Sj$
u−+ξ1∆j$

u−/2−ξ2 sign [Xj
u− ]+ξ3α

j$
u and p−,j$u = Sj$

u−−ξ1∆j$
u−/2−ξ2 sign [Xj

u− ]−

ξ3β
j$
u for direct pairs, i.e. where j = e,£. For the cross pair, we shall make

the following consideration for the inventory skew. If the CLP is long EURUSD

and short GBPUSD (which is similar to being long EURGBP) then it should

skew its prices down as incoming trades from buyers of EURGBP are 100% risk-

decreasing. Analogously, when the CLP is short EURUSD and long GBPUSD,

then it should skew its prices up so to encourage sellers of EURGBP. Assume,

on the other hand, that the CLP is long in both EURUSD and GBPUSD. An

upward skew would be aimed at reducing the GBP inventory (risk decreasing)

and increase the EUR inventory (risk increasing). Analogously, a downward skew

would be aimed at reducing the EUR inventory (risk decreasing) and increase

the GBP inventory (risk increasing). The same considerations hold when the

CLP is short in both EURUSD and GBPUSD. We therefore believe that, on

such occasions, no inventory skew should be applied to the EURGBP quotes

as there is no such thing as a ‘preferred’ trade direction. The last scenario

we can encounter is being neutral on one inventory and not so in the other.

We believe that in such a case the preferred trade direction should be the one

that rebalances the non-neutral inventory, as a trade in the opposite direction

would be 100% risk increasing. In view of the above thoughts, we shall define
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p+,e£
u = Se£

u− + ξ1∆e£
u−/2 − ξ2 sign [Xe

u− ] + ξ2 sign [X£
u− ] + ξ3α

e£
u and p−,e£u =

Se£
u− − ξ1∆e£

u−/2 − ξ2 sign [Xe
u− ] + ξ2 sign [X£

u− ] − ξ3β
e£
u . It is easy to see that

when the EUR and GBP inventories have the same sign, the skews cancel each

other out. When one of the positions is neutral, the prices are moderately

skewed. Finally, when the two inventories have opposite signs, the prices are

highly skewed. We define δ±,iCLP in the same fashion we did in Section 5.2.2.1 and

we let λ±,ip = λ±,ie−cδ
±,i
CLP .

When the risk associated with holding the EUR and/or GBP inventories in-

creases, the CLP may consider crossing the spread in the ECN by submitting

market orders. Assuming that at time τ an hedging action is optimal, the CLP

has the following alternatives: It can trade EURUSD by

Xeτ = Xeτ− + 1{
Xe
τ−
<0
} − 1{

Xe
τ−
>0
},

X$
τ = X$

τ− −
(
Se$
τ− + ∆e$

τ−/2
)
1{

Xe
τ−
<0
} +

(
Se$
τ− −∆e$

τ−/2
)
1{

Xe
τ−
>0
},

Alternatively, it can trade GBPUSD by

X£
τ = X£

τ− + 1{
X£
τ−
<0
} − 1{

X£
τ−
>0
},

X$
τ = X$

τ− −
(
S£$
τ− + ∆£$

τ−/2
)
1{

X£
τ−
<0
} +

(
S£$
τ− −∆£$

τ−/2
)
1{

X£
τ−
>0
},

Finally, it can trade EURGBP by

Xeτ = Xeτ− + 1{
Xe
τ−
<0, X£

τ−
>0
} − 1{

Xe
τ−
>0, X£

τ−
<0
},

X£
τ = X£

τ−−
(
Se£τ− +∆e£τ−/2

)
1{

Xe
τ−
<0, X£

τ−
>0
}+

(
Se£τ− −∆e£τ−/2

)
1{

Xe
τ−
>0, X£

τ−
<0
}.

The hedging strategy is thus a collection of stopping times and currency pairs,

i.e. M : (τ`, y`)`≥0, where y` ∈ {e$,£$,e£}, for which it is optimal to submit

a market order for that specific pair. Furthermore, every time the CLP posts a

market order in the ECN, it is subject to a fixed penalty given by εy > 0. We

assume that εe$ = ε£$ < εe£.
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The reasoning behind this last assumption is that hedging through cross pairs

is typically more expensive and it is done only when reducing the risk of both

inventories. This gives to other market participants more information on the CLP

current inventories and such leakage comes with a cost. The impulse part can be

rewritten, in matrix notation, as Xτ = Xτ− +my(τ,Xτ−), where m(τ,Xτ−) is

defined by

m(τ,Xu) =

[
me$,m£$,me£

]
=



0 0 0 0

1{
Xe
τ−

<0

}
−1{

Xe
τ−

>0

} 0

−
(
Se$
τ−

+∆e$
τ−
/2
)
1{

Xe
τ−

<0

}
+
(
Se$
τ−
−∆e$

τ−
/2
)
1{

Xe
τ−

>0

}

0 0 0 0 0

1{
X£
τ−

<0

}
−1{

X£
τ−

>0

} −
(
S£$
τ−

+∆£$
τ−
/2
)
1{

X£
τ−

<0

}
+
(
S£$
τ−
−∆£$

τ−
/2
)
1{

X£
τ−

>0

}

0 0 0 0

1{
Xe
τ−

<0, X£
τ−

>0

}
−1{

Xe
τ−

>0, X£
τ−

<0

} −
(
Se£
τ−

+∆e£
τ−
/2
)
1{

Xe
τ−

<0, X£
τ−

>0

}
+
(
Se£
τ−
−∆e£

τ−
/2
)
1{

Xe
τ−

>0, X£
τ−

<0

} 0



′

.

5.3.2 The value function

We here define the value function and the associated HJB equation, while in the

next section we show the optimal strategy, which we obtain numerically. We

define the value function by

V
(
t,x
)

= sup
α,β,M

Et,x

[
X$
T +XeT

(
Se$
T − α̂X

e
T

)
+X£

(
S£$
T − α̂X

£
T

)
− φ

∫ T

t

((
Xeu
)2

+
(
X£
u

)2)
du−

∑
y∈{e$,£$,e£}

∑
t≤τyi <T

εyi

]
.

(5.14)



Chapter 5. Market making: an application to the eFX spot market 137

By making use of the same notation employed by Pham [74, 75] and Øksendal

and Sulem [70], we can write the HJB equation as follows

min

{
− 1

2
tr(σσ′D2

xV )− sup
α,β

∑
i=e$,£$,e£
j=+,−

λj,ip E(qj,i)
[
V (t,x+ hj,i)− V (t,x)

]

φ
(
xe
)2

+ φ
(
x£
)2

;V (t,x)− sup
y∈{e$,£$,e£}

(
V (t,x+m(t,x))− εy

)}
= 0,

(5.15)

where D2
xV denotes the Hessian matrix of the function V . In Equation (5.15) the

part containing the impulse has to be interpreted as follows: if arg maxV (t,x+

m(t,x))−εy = e$, the CLP crosses the spread by trading EURUSD in the ECN

and the value function becomes V (t,x+me$(t,x))− εe$. The direction of such

trade is chosen according to the sign of the EUR inventory (sell if the latter is

positive and buy if it is negative). In financial terms, assuming that a hedging

action is optimal, the CLP needs to decide which is the best currency to trade

in the ECN by considering both: (i) risk reduction, and (ii) cost of trading.

5.3.3 Numerical results

Below we show the optimal strategy found by numerically solving the HJB in

Equation (5.15). In Figure 5.7 we show the principal strategy employed by the

CLP for the three currency pairs. In the left panels we show the strategy for

t = 0, while in the right panels we have t → T . We notice that the principal

liquidity offered on the protect side is reduced as we approach the terminal

time. The large proportion of cross liquidity offered (bottom-left panel) is due

to the larger spread earned when trading the cross pair. Such increased reward

is nonetheless offset by a doubly increased risk (starting from a neutral position).

We further notice that the principal strategy is analogous to the one-currency-

pair case. The new information provided by the current setting is given by the

hedging strategy, which we plot in Figures 5.8 and 5.9. The numerical technique

is analogous to the one described in Section 5.2.4.
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Figure 5.7: Optimal principal-liquidity strategy found by solving the HJB equation
(5.15). We set q± ∼ U [0, 20], η = 25 × 10−6, α̂ = 2, φ = 0.05, λ± = 0.5, ξ1 = 0.5,
ξ2 = 0.5 pips, ξ3 = 0.001, εe$,£$ = 5, εe£ = 10, ∆e$ = ∆£$ = 2 pips, ∆e£ = 3 pips.

In each of the twelve plots in Figures 5.8 and 5.9, the grey area defines the region

of the plane (i.e. the EUR and GBP inventory levels) for which it is optimal to

hedge through the pair specified in the figure. In Figure 5.8 we plot the hedging

strategy for low values of the EURGBP spread. We notice that the cross-pair

hedging regions are wider than the ones shown in Figure 5.9 (right, top and bot-

tom panels). This reflects the tradeoff between the cost of the hedging strategy

and the benefit of reducing both inventories at once.
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Figure 5.8: Optimal hedging strategy found by solving the HJB equation (5.15).
Top panels: t = 0. Bottom panels: t→ T .

Hedging strategy - high ∆e£
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Figure 5.9: Optimal hedging strategy found by solving the HJB equation (5.15).
Top panels: t = 0. Bottom panels: t→ T .
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5.3.4 Price and inventory simulation

In Figure 5.10 we show the qualitative features of the CLP activity. In the top

and bottom-left panels we plot the ECN and CLP prices.
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Figure 5.10: Price simulation (top panels and bottom-left panel) and inventory
simulation (bottom-right panel).

In the bottom-right panel we plot the EUR, GBP and USD inventories and su-

perimpose the direct and cross-pair mean hedging boundaries. Such boundaries

have to be interpreted as follows. If the interior boundaries are surpassed by

either the EUR or GBP inventories, then the CLP starts hedging via EURUSD

or GBPUSD, respectively. The only exception to the above occurs when the

exterior boundaries are surpassed by both the EUR and GBP inventories, and

they do so in opposite directions. For example, if the upper exterior boundary is

surpassed by the EUR inventory while the lower exterior boundary is surpassed

by the GBP inventory, then the CLP is long EURGBP and it is optimal to hedge

in the ECN by selling EURGBP. The opposite holds when the CLP is severely

short EURGBP, i.e. the upper exterior boundary is surpassed by the GBP in-

ventory and the lower exterior boundary is surpassed by the EUR inventory. In
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the latter case, the CLP should hedge by buying EURGBP. In the simulation

provided in Figure 5.10, such an occurrence happens at around time t = 50,

when the CLP is long EURGBP. We can further notice that, around the same

time, the prices offered by the CLP to its clients are set according to its posi-

tion. In the top-left panel, the prices are skewed down due to the CLP being

long EUR. In the top-right panel the prices are skewed up due to the CLP being

short GBP. Finally, in the bottom-left panel, the prices are skewed down so to

encourage buyers of EURGBP.

5.4 Conclusions

In this chapter we study the activity of a CLP which offers a joint service of

principal and agency trading to its clients by streaming tailored two-way prices

and by executing orders while preserving the counterparty’s anonymity. The

CLP earns a commission from the brokerage service while a spread is earned

through principal trading. During the activity the CLP is subject to an inventory

risk which is mitigated by skewing its prices, as well as by crossing the spread in

the ‘lit’ market. We focus on the foreign exchange market and we consider both

one-currency-pair and three-currency-pair cases.

When only one currency pair is traded, and thus we have fewer state variables to

model, we can study the effects of mean-reversion and permanent price impact.

If the FX rate mean reverts, the principal liquidity offered depends on where the

current price is in its mean-reversion cycle. For example, when the FX rate is

below its long-term mean, more principal liquidity should be offered to sellers.

We further analyse the effect of the permanent price impact when trading in the

ECN and show that for a neutral position, the CLP should offer more principal

liquidity when the price impact is high. The financial interpretation of such a

feature is that the CLP tries to avoid unfavourably impacting the market price

at which it may need to hedge its new position in the case it fails to internalise

the received flow.

Finally we present the case where three currency pairs are available for trading

and gain insights on the hedging strategy the CLP should offer. We assume
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that the cross pair is less liquid and thus a higher spread (compared to direct

pairs) is earned when trading with clients. Such benefit is nevertheless offset

by a higher risk accepted by the CLP (we are referring to the cases of: (i) a

neutral position held by the CLP, and (ii) short—or long—positions are held

by the CLP in both direct pairs). With regards to the hedging strategy, the

CLP refrains from hedging through the cross pair unless the benefit of doing so,

i.e. the simultaneous reduction of both inventories, counterbalances the higher

spread paid in the ECN.



Chapter 6

Final conclusions

6.1 Summary of main results and contributions

In the present work we go through some of the typical situations that agents

and firms face when trading in electronic markets. Nowadays most venues have

limit order books and market participants trade among each other in a supply

and demand setting. Various considerations should be made before trading. In

particular we refer to present market conditions, terminal goal, market impact,

et cetera.

Today more than ever, and especially in high-speed markets, such considerations

need to be made in advance by planning for potential future scenarios and by

constructing algorithms which take the current market situation as an input and

output the best strategy. Real-time market data are in fact processed by high

powered machines which then take trading decisions accordingly.

In a nutshell, we propose models that can be used when trading in electronic

markets. It is worth emphasising that they can be applied to many distinct

situations. For example, nothing prevents us from taking the optimal execution

model presented in Chapter 3 and integrating it in the model shown in Chapter

4, thus solving an optimal liquidation problem every time the CLP starts its

hedging procedures.

In this work we answer various questions:

143
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1. How shall an agent execute a large trade in an order-driven market?

2. What changes when the agent can simultaneously trade in a dark pool?

3. How shall a firm, which provides liquidity to clients, set its prices and hedge

its position?

4. How shall a firm choose the ratio of principal versus agency liquidity when

providing a hybrid execution service within the FX market?

The first two questions have been addressed elsewhere, too. We contribute to

the current literature by adding and explaining important financial features to

the governing system of SDEs (e.g. permanent price impact when trading in the

standard exchange). As such, when trading in a less liquid market, our model

should provide a more accurate approximation of the optimal strategy compared

to models in which the price is assumed to be a martingale and the permanent

price impact is neglected. Questions 3 and 4 are a novelty in the literature. While

market-making problems have been extensively studied, the specific behaviour

of firms trading with clients in a protected pool and hedging in an order-driven

market have not. The mathematics applied therein is analogous to the ones

used to solve standard market-making problems à la Cartea et al. [23]. However

the contribution of the present work lies in the development of financial models

which (i) allow for transparent interpretations, and (ii) to a great extent are

ready for applications in the financial industry.

There are various financial features that come into play in both the optimal-

liquidation and the optimal market-making problems. First, there is the risk

caused by uncertain future price movements. On the other hand, liquidating

the position faster has two main drawbacks: (i) price impact, and (ii) adverse

selection. We do not treat the latter in this thesis, but we mention it in Section

6.2 when giving directions for possible future work. The optimal strategy de-

pends on the trade-off between exploiting market opportunities (as in the case of

mean reversion) while trying to minimise unfavourable market disruption, such

as price slippage.

The shape of the optimal policy is determined, among other things, by the

risk appetite of the agents or firms. We find that a strongly risk-averse player
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should always choose early execution, whether this is in the form of liquidation

or hedging. On the other hand, slightly more risk-prone agents are willing to

bear price and time uncertainty in the hope to achieve a better final outcome.

As we show in Chapter 4, Section 4.3.3, the market maker faces a trade-off

between accepting a higher risk (measured via the variance of the performance)

in favour of higher expected returns. Unfortunately risk preferences, which are

agent-specific, are difficult to quantify and estimate, especially when they are

also subject to legal and compliance requirements.

6.2 Future work

There is a number of directions that future research on these topics may take.

For example, it would be appropriate to include some adverse-selection measure

in our models. The main idea behind adverse-selection within this context can

be illustrated as follows. Assume that a limit sell order is executed. This implies

a potential increase in the best ask price, which would make the posting agent

regret their trading decision as now the price has moved in what would have been

their favour. Such a feature could be included in the context of a firm hedging

its inventory in the ‘lit’ pool.

Another modification which could be done to the hedging strategy of the firm

would be to consider a model à la optimal-liquidation framework to be integrated

in the optimal market-making setting. As of now, in the models presented in

Chapters 4 and 5, the firm may only hedge one unit or one lot at any given

time, through an impulse in the model. It would be interesting to have, at each

time the firm enters in a position which requires hedging, a liquidation schedule

based on more sophisticated models, rather than the current setting, which can

be assimilated to the constant-liquidation-rate strategy.

When it comes to FX e-trading, the future directions the research may take are

many. We here mention the two which we believe would have the greatest impact

in both academic research and industry practice. First, it is worth extending the

framework treated in Chapter 6 toN currency pairs, including the synthetic ones.

When we refer to synthetic currency pairs, we indicate those pairs for which
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there is no quoted price in the ECN. An example of such pairs is TRYDKK.

There is no price for Turkish lira and Danish krone, while there are quoted

prices for USDTRY and EURDKK and, of course, EURUSD. The TRYDKK

pair can not be traded directly in the ECN. Nevertheless one can, for example,

buy USDTRY, sell EURDKK and buy EURUSD in order to sell TRYDKK. A

client may occasionally want to see such a pair directly quoted by the firm,

without having to work through multiple transactions. On the firm’s side, this

would require an algorithm which aggregates the information available on pairs

directly traded in the ECN and outputs a reasonable spread for such a synthetic

pair, further considering its potential hedging needs.

Another interesting extension we consider includes the modelling of multiple

competing firms which offer liquidity within the same pool of clients and try to

win the business. Typically, clients have their own algorithms which aggregate

the various sources of liquidity and trade with the most convenient one at every

point in time. A reasonable assumption is that every firm has access to the

same pool of ECNs and thus starts with the same information set. Analysing

the competition among liquidity providers requires assumptions on the pricing

mechanisms of multiple firms and some ambiguity measure to take into account

the potential errors in the modelling assumptions. This would answer questions

like: Assuming a client is allowed to trade with multiple firms sequentially, which

price should be offered so that our firm is on top of the queue, while still making

the trade profitable? How would the hedging strategy change, given that other

firms may be hedging at the same time in the same direction? Would trading

within firms (for hedging purposes, as opposed to cross the spread in the ECN)

be preferable?

These are the types of projects which are being pursued in ongoing research.



Chapter 7

Viscosity solutions and

numerical procedures

The objectives of this chapter are as follows:

1. We state—as a reference—the DPP for a mixed optimal stochastic and

impulse-control problem;

2. We show that the value functions resulting from the models presented in

this thesis are the unique viscosity solutions of the associated HJB equa-

tions;

3. We provide a description of the numerical schemes used to obtain the

results shown in Chapters 3 and 4. The numerical scheme used in Chapter

5 is analogous to the one used in Chapter 4.

The proofs detailed in this chapter are based on already existing mathematical

results and therefore, although they are adapted to the specific models presented

in this thesis, we do not wish to include them in the original work presented

herein. We refer to Shreve [78, 79] and Steele [82] for an introductory overview

on stochastic calculus, which is the main mathematical tool used throughout this

thesis.

147
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7.1 Background material

7.1.1 Dynamic programming and HJB equation

We intentionally keep the tone of this section general, so to accommodate the

various cases presented in Chapters 3, 4 and 5. In particular, we state the DPP

for a mixed optimal stochastic and impulse-control problem. Let us assume we

have a well-defined Rn-valued process, starting at a value x ∈ Rn,

dXu = b(u,Xu,vu)du+ σ(u,Xu,vu)dBu + γ(u,Xu− ,vu)dJu (7.1)

that has a unique and strong solution, and where {vu} is valued in the set U

of admissible processes. We let b : [0, T ] × Rn → Rn, σ : [0, T ] × Rn → Rn×m,

γ : [0, T ] × Rn × R` → Rn×`. The process {Bu} is an m-dimensional Brownian

motion and Ju is an `-dimensional compound Poisson process. The components

of such multidimensional processes are assumed to be independent. Furthermore,

let us consider a continuous time Markov chain k, with discrete state space K,

generated by {Q} = (rij).

Discrete impulses can take place at a cost Φ(u,x, ζ) to shift the process to a new

value Ψ(u,x,k, ζ), where ζ ∈ Υ is the action decision. That is, if at time τ an

impulse takes place, we have

Xτ = Ψ(τ,Xτ− ,kτ− , ζτ ) = Xτ− + Ψ̄(τ,kτ− , ζτ ). (7.2)

Remark 7.1. Following the notation in Davis et al. [33], we wish to mention

that Equations (7.1) and (7.2) can be compactly written by

dXu = b(u,Xu,vu)du+ σ(u,Xu,vu)dBu + γ(u,Xu− ,vu)dJu

+
∑
i

δ(u− τi)Ψ̄(τi,kτ−i
, ζτi),

(7.3)
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where δ(·) denotes the Dirac delta function. A third alternative is to follow

the notation employed by Horst and Naujokat [52], who define a non-decreasing

counting càdlàg process Mu and write the state-variable dynamics by

dXu = b(u,Xu,vu)du+ σ(u,Xu,vu)dBu + γ(u,Xu− ,vu)dJu

+Ψ̄(u,ku− , ζu)dMu,
(7.4)

where the process {Mu} jumps every time the agent gives an impulse to the

system. The three dynamics mentioned allow for an impulse of size Ψ̄(τi,kτ−i
, ζτi)

to take place at the discretion of the agent and thus have the same meaning.

Throughout the present work we prefer to adopt the non-compact notation, i.e.

Equations (7.1) and (7.2), in line with most of the literature relevant to this

thesis (e.g. Seydel [77] and Cartea et al. [23] and the references therein).

The value function is defined by

V (t,x;k) = sup
{vu}t≤u≤T̂ ,(τi,ξi)i≥0

Et,x,k
[ ∫ T̂

t
ϑ(u,Xu,vu)du + %(X T̂ ,kT̂ )

−
∑

τi∈[t,T̂ )

Φ(τi,Xτ−i
, ζi)

]
,

(7.5)

where T̂ := inf(u < t|x /∈ O) ∧ T , where O ⊆ Rn is the domain of the state

variable Xu. The above is a stochastic/impulse control problem for controlled

jump diffusions with regime switching (given by the Markov chain k). In absence

of impulses, let ν∗ denote the optimal control. For θ ∈ [t, T ], we define the control

ν̂u by

ν̂u :=


νu, u ∈ [t, θ]

ν∗u, otherwise.

We can let τr be the first time the regime switches from its initial state. For all

θ ≤ τr we can rewrite the value function by
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V (t,x;k) = sup
{vu}t≤u≤θ

Et,x,k
[ ∫ θ

t
ϑ(u,Xu,vu)du+

∫ T̂

θ
ϑ(u,Xu,v

∗
u)du

+%(X T̂ ,kT̂ )

]
,

= sup
{vu}t≤u≤θ

Et,x,k

[∫ θ

t
ϑ(u,Xu,vu)du+ Eθ,Xθ,kθ

[ ∫ T̂

θ
ϑ(u,Xu,v

∗
u)du

+%(X T̂ ,kT̂ )

]]
,

= sup
{vu}t≤u≤θ

Et,x,k
[ ∫ θ

t
ϑ(u,Xu,vu)du+ V (θ,Xθ;kθ)

]
,

= V (t,x;k) + sup
{vu}t≤u≤θ

Et,x
[ ∫ θ

t
ϑ(u,Xu,vu) +

(
∂

∂t
+ L

)
V (u,Xu;ku)du

]
,

where the last inequality comes from an application of Dynkin’s formula to the

function V and L is the infinitesimal generator of the processes {Xu,ku}, given

by

LV (t,x;k) =

n∑
i=1

(b)i
∂V

∂xi
+

1

2

n∑
i=1

n∑
j=1

(σσT )ij
∂2V

∂xi∂xj

+
∑
k′ 6=k

rkk′
[
V (t,x;k′)− V (t,x;k)

]
;

+
∑̀
i=1

λiE[V (t,x+ (γ)·izi;k)− V (t,x;k)],

where (b)i is the i-th component of the vector b in Equation (7.1), (σσT )ij is the

entry on the i-th row and j-th column in the matrix σσT and (γ)·i is the i-th

column of the matrix γ. By letting θ = t + h ∧ τr, dividing by h and letting

h→ 0 we obtain

sup
v

{
ϑ(t,x,v) +

(
∂

∂t
+ L

)
V (t,x;k)

}
= 0. (7.6)

If a discount factor is present, we have
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V (t,x;k) = sup
{vu}t≤u≤θ

Et,x,k
[ ∫ θ

t
e−r(u−t)ϑ(u,Xu,vu)du+ e−r(θ−t)V (θ,Xθ;kθ)

]
,

= V (t,x;k)

+ sup
{vu}t≤u≤θ

Et,x,k
[ ∫ θ

t
e−r(u−t)

(
ϑ(u,Xu,vu) +

(
∂

∂t
− r + L

)
V (u,Xu;ku)

)
du

]
,

By letting θ = t+ h ∧ τr, dividing by h and letting h→ 0 we obtain

sup
v

{
ϑ(t,x,v) +

(
∂

∂t
− r + L

)
V (t,x;k)

}
= 0. (7.7)

When we add the possibility of having impulses, we follow the same approach

but with θ = t + h ∧ τr ∧ τ1, where τ1 is the first time an impulse takes place.

When we let h→ 0 we face two distinct possibilities: (i) τ1 > t, and (ii) τ1 = t.

If τ1 > t, then (7.6) holds. If, on the other hand, τ1 = t, the value function is

subject to the following impulse

MV (t,x;k) = sup
ζ∈Υ

V (t,Ψ(t,x,k, ζ);k)− Φ(t,x, ζ).

We can thus conclude that V (t,x;k) satisfies the following system of quasi vari-

ational inequalities (QVI)


min

{
− ∂V

∂t − supv{LV (t,x;k) + ϑ(t,x,v)};V (t,x;k)−MV (t,x;k)

}
= 0

on [t, T )×O

V (t,x;k) = %(x,k) on T × ∂O.
(7.8)

Remark 7.2. A QVI is referred as to an inequality since, on [t, T ) × O × K,

Equation (7.8) is a compact version of the three following conditions, which shall
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hold simultaneously:
−∂V

∂t − supv{LV (t,x;k) + ϑ(t,x,v)} ≥ 0,

V (t,x;k)−MV (t,x;k) ≥ 0,(
− ∂V

∂t − supv{LV (t,x;k) + ϑ(t,x,v)}
)(
V (t,x;k)−MV (t,x;k)

)
= 0.

Equation (7.8) is meaningful only if the function V (t,x;k) is sufficiently smooth,

but this does not need to be the case. We thus make use of the weaker notion of

viscosity solutions, which do not require the smoothness of the value function, so

to ensure the convergence of the numerical scheme. In fact, convergence results

for numerical schemes have been proved starting from the characterisation of

the value function by the unique viscosity solution to the associated dynamic

programming equation (see, e.g., Fleming and Soner [37]). Loosely speaking,

Barles and Souganidis [6] prove that, provided a comparison result is proved

for a viscosity solution, any monotone, stable and consistent numerical scheme

converges to the correct solution.

7.1.2 Viscosity solutions

Viscosity solution theory is a powerful tool when it comes to HJB equations,

since proving the regularity and smoothness of the value function may not be an

easy task. Viscosity solutions are defined for both continuous and discontinuous

functions, depending on whether the continuity of the value function wants to be

shown as a separate result, or it comes as a byproduct of the strong comparison

result which guarantees uniqueness of the viscosity solution. For the sake of

generality, we here report the definitions of viscosity solution for discontinuous

functions. First, for each k, we need to define the lower and the upper semi-

continuous envelopes (l.s.c. and u.s.c. envelopes, respectively) of the function

V (t,x;k), given by

V ∗(t,x;k) = lim
t′→t

sup
x′→x

V (t′,x′;k), V∗(t,x;k) = lim
t′→t

inf
x′→x

V (t′,x′;k).
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Definition 7.3. (Viscosity Supersolution). A function V ∈ PB([0, T ]×Rn×K)

is a viscosity supersolution of the HJB (7.8) if for each φ ∈ C1,2([0, T ] × Rn ×

K) ∩ PB([0, T ] × Rn × K) such that V (t,x;k) − φ(t,x;k) attains its minimum

at (t̄, x̄, k̂) ∈ [0, T )× Rn ×K, we have


min

{
− ∂φ

∂t − supv{Lφ(t̄, x̄; k̂) + ϑ(t̄, x̄, v)};V∗(t̄, x̄; k̂)−MV∗(t̄, x̄; k̂)

}
≥ 0

on (t̄, x̄, k̂) ∈ [0, T )×O ×K

V∗(t̄, x̄; k̂) ≥ %(x̄, k̂) on T × ∂O ×K.
(7.9)

Definition 7.4. (Viscosity Subsolution). A function V ∈ PB([0, T ] × Rn × K)

is a viscosity supersolution of the HJB (7.8) if for each φ ∈ C1,2([0, T ] × Rn ×

K) ∩ PB([0, T ] × Rn × K) such that V (t,x;k) − φ(t,x;k) attains its maximum

at (t̄, x̄, k̂) ∈ [0, T )× Rn ×K, we have


min

{
− ∂φ

∂t − supv{Lφ(t̄, x̄; k̂) + ϑ(t̄, x̄,v)};V ∗(t̄, x̄; k̂)−MV ∗(t̄, x̄; k̂)

}
≤ 0

on (t̄, x̄, k̂) ∈ [0, T )×O ×K

V ∗(t̄, x̄; k̂) ≤ %(x̄, k̂) on T × ∂O ×K.
(7.10)

Definition 7.5. (Viscosity Solution). A function V is a viscosity solution of the

HJB (7.8) if it is both a supersolution and a subsolution.

Another important result in the theory of viscosity solution is the so-called com-

parison result, from which it immediately follows the uniqueness of the viscosity

solution. In general terms and for parabolic PDE, it states that, if U and V are

an u.s.c. subsolution and a l.s.c. supersolution respectively, such that U < V

on T × ∂O × K, then U < V on the whole domain [0, T ] × O × K. Uniqueness

immediately follows from such a result, given that if W and V are two viscosity

solutions, by the comparison principle it follows that
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W ∗ ≤ V∗ and V ∗ ≤W∗.

Since, by construction, we already have that W∗ ≤ W ∗ and V∗ ≤ V ∗, we have

the following equality

W∗ = W ∗ = V∗ = V ∗.

As a byproduct, we obtain the continuity of the value function, since a function

that is both u.s.c. and l.s.c. is continuous.

7.2 Reconciliation of notation

In this section we show that the models in Chapters 2, 3, and 4 are special cases

of Equations (7.1) and (7.5). Therefore, the derivation of HJB (7.8) applies to

the models presented in the main body of the thesis1. The notation is kept

consistent with the relevant sections of the thesis.

7.2.1 Chapter 2

In Chapter 2 we consider: (i) optimal liquidation, and (ii) optimal market-making

problems. While the former has no impulse, the latter has some. We here aim

to show that all such models are special cases of the general model described in

Section 7.1. We note that we don’t have any Markov chain in Chapter 2, hence

we drop the dependence on k.

7.2.1.1 Optimal liquidation

We here look at the models described in Sections 2.2.1.1 and 2.3.1.1.

1We do not include Chapter 5 since it’s notation is already in line with Equations (7.1) and
(7.5) and therefore it is straightforward to see that it is a special case.
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1. Section 2.2.1.1;

The controlled process Xu in (7.1) is here given by setting Xu = (Xu, S
b
u),

where γ ≡ 0, b = [−νu,−µνu]′, σ = [0, σ]′, Bu = [Wu] and Ju = 0.

The value function in Equation (7.5) is here given by setting ϑ(u,x,ν) =

ŝbν − φx2 and %(x) = (sb − αx)x.

2. Section 2.3.1.1;

The controlled processXu in (7.1) is here given by settingXu = (Xu, Yu, Su),

where γ = [−ηu, ηuSu, 0]′, b = [−νu, νuŜu, 0]′, σ = [0, 0, σ]′, Bu = [Wu],

and Ju = [Nu]. Furthermore, the jumps here are assumed to be one-sized,

hence the compound Poisson process (Ju) is a simple Poisson process (Nu).

The value function in Equation (7.5) is here given by setting ϑ(u,x,ν) =

−φx2 and %(x) = y + (s− αx)x.

7.2.1.2 Optimal market making

We here look at the models described in Sections 2.2.2.1 and 2.3.2.1.

1. Section 2.2.2.1;

The controlled processXu in (7.1) is here given by settingXu = (Xu, Yu, Su),

where b ≡ 0 and σ = [0, 0, σ]′, Bu = [Wu], Ju = [N−u , N
+
u ]′ and

γ =


1 −1

−Su + k Su + k

0 0

.

For the impulse part, we have Φ(u,x, ζ) = ε and Ψ(u,x, ζ) = [x + ζ, y −

ζ(s+ kζ), 0]′.

The value function in Equation (7.5) is here given by setting ϑ(u,x,ν) =

−φx2 and %(x) = y + (sb − αx)x.

2. Section 2.3.2.1;

The controlled processXu in (7.1) is here given by settingXu = (Xu, Yu, Su),

where b ≡ 0 and σ = [0, 0, σ]′, Bu = [Wu], Ju = [N−u , N
+
u ]′ and
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γ =


1 −1

−Su + k Su + k

0 0

.

For the impulse part, we have Φ(u,x, ζ) = εm1{if market} + ε`1{if limit}

and Ψ(u,x, ζ) = [x + ζ, y − ζ(s + kζ), 0]′1{if market} + [x + ζz, y − ζ(s −

kζ)z, 0]′1{if limit}.

The value function in Equation (7.5) is here given by setting ϑ(u,x,ν) =

−φx2 and %(x) = y + (sb − αx)x.

7.2.2 Chapter 3

In Chapter 3 we discuss two general models for optimal liquidation. The first

one—Section 3.2—treats optimal liquidation when only the ‘lit’ pool is available

to the agent. The second one—Section 3.3—treats optimal liquidation when both

‘lit’ and dark pools are available to the agent. We here show that both models

are special cases of the general model described in Section 7.1. We note that we

don’t have any Markov chain in Chapter 3, hence we drop the dependence on k.

Section 3.2;

The controlled process Xu in (7.1) is here given by setting Xu = (Xu, S
b
u, Yu),

where b = [−νu, µb(u, Sbu, νu)−
∑2

i=1 λ
b,iuE[zb,i], µy(u, Sbu, νu)]′, Bu = 0,

γ =


0 0

hb1(u, Sbu) hb2(u, Sbu)

0 0

.

σ ≡ 0, and Ju = [Jb,1u , Jb,2u ]′.

The value function in Equation (7.5) is here given by setting ϑ(u,x,ν) = f(u,x, ν)

and %(x) = g(x).
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Section 3.3;

The controlled processXu in (7.1) is here given by settingXu = (Xu, S
b
u,∆u, Yu),

where Bu = 0, σ ≡ 0, Ju = [Jb,1u , Jb,2u , J∆,1
u , J∆,2

u , Jyu ], and

b =

[
− νu, µb(u, Sbu, νu)−

2∑
i=1

λb,iuE[zb,i],

µ∆(u,∆u, νu)−
2∑
i=1

λb,iuE[zb,i]−
2∑
i=1

λ∆,iuE[z∆,i], µy(u, Sbu, νu)

]′

γ=


0 0 0 0 −ηu

hb1(u, Sbu) hb2(u, Sbu) 0 0 0

hb,∆1 (u, Sbu,∆u) hb,∆2 (u, Sbu,∆u) h∆
1 (u,∆u) h∆

2 (u,∆u) 0

0 0 0 0 hy(u, Sbu,∆u, ηu)

.

The value function in Equation (7.5) is here given by setting ϑ(u,x,ν) = f1(u,x, ν)

and %(x) = g1(x).

7.2.3 Chapter 4

In Chapter 4 we outline one general model in Section 4.2. We here show that

such a model is a special case of the general model described in Section 7.1.

The controlled process Xu in (7.1) is here given by setting Xu = (Xu, Yu, Su),

where b ≡ 0, Bu = 0, σ ≡ 0, Ju = [J−u , J
+
u ,Mu], where Mu is a Poisson process,

and

γ =


1{Xu−≤X̄}

−1{Xu−≥−X̄} 0

−f(u, Su, δ
−
u , q

−
u )1{Xu−≤X̄}

f(u, Su, δ
+
u , q

+
u )1{Xu−≥−X̄}

0

0 0 k̄±u

.

For the impulse part, we have Φ(u,x, ζ) = εm1{if market} + ε`1{if limit} and

Ψ(u,x,k, ζ) =[∆(ζ, x), c(ζ, y, s, k), 0]′1{if market}

+ [Γ(η, x, ζ), χ(η, y, z, s, k, κ), 0]′1{if limit}.
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The value function in Equation (7.5) is here given by setting ϑ(u,x,ν) = g(u,x)

and %(x,k) = U(x,k).

7.3 Proofs for Chapter 3

In this section we show that the value function of the optimal control problem

presented in Chapter 3 is the unique continuous viscosity solution of the HJB

PIDE given by Equation (3.22).

7.3.1 Dark pool optimal control problem

We adapt the definitions given in the previous section to the particular problem

at hand.

Definition 7.6. A continuous function V : [0, T )×O → R is a viscosity subso-

lution (resp. supersolution) of the HJB Equation (3.22) if

rφ (t̄, x̄)− ∂φ

∂t
(t̄, x̄)−H1 (t̄, x̄, Dxφ)−Bb,∆(t̄, x̄, φ)−B∆(t̄, x̄, φ)−By(t̄, x̄, φ) ≤ 0

(resp. ≥ 0) for each φ ∈ C1,1([0, T )×O)∩PB such that V (t,x)−φ(t,x) attains

its maximum (resp. minimum) at (t̄, x̄) ⊂ [0, T )×O. A continuous function is a

viscosity solution if it is both a viscosity subsolution and a viscosity supersolution.

We here assume that all the real-valued functions defined in this paper satisfy the

Lipschitz continuity and the linear growth conditions, uniformly in the control

variables. We assume that the real value functions ψ(t,y,v) defined by

ψ(t,y,v) ∈
{
µb(·), hb1,2(·), µ∆(·), h∆

1,2(·), hb,∆1,2 (·), µy(·), hy(·), f(·), g(·),

f1(·), g1(·)
}
,

such that

|ψ(t1,y1,v)− ψ(t2,y2,v)| ≤ C(|t1 − t2|+ ||y1 − y2||)
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and

|ψ(t1,y1,v)| ≤ C(1 + |t1|+ ||y1||),

where y1,2 is the vector of state variables and v is the vector of controls associated

to every function (the latter may also be empty). Standard results—see, e.g.,

Ikeda and Watanabe [53]—ensure that there exists a strong and path-wise unique

solution of the price, the spread and the wealth models defined by Equations

(3.2), (3.15) and (3.17).

7.3.2 Moments estimates

We now provide some moments estimates of Sbu. We note that both the following

proposition and its proof, are analogous for ∆u, Xu and Yu. In the remainder of

the paper, we write Xt,x(u) for the state variables at time u with initial values

(t,x) since we need the initial conditions explicitly.

Proposition 7.7. Fix p = 1, 2 and let Sb
t, sb

(u) be the random variable at a fixed

time u ∈ [t, T ] with initial values (t, sb) ∈ [0, T ]× R+. Then, for any v ∈ V and

for any stopping time τ0 ≤ h ∈ [0, T ] there exists a constant K = K(p, C, T ) > 0

such that

E
[ ∣∣Sbt, sb(τ0)

∣∣p] ≤ K (1 +
∣∣ sb ∣∣p) ,

E
[ ∣∣Sb

t, sb1
(τ0)− Sb

t, sb2
(τ0)

∣∣p] ≤ K ( ∣∣ sb1 − sb2 ∣∣p) ,
E
[ ∣∣Sbt, sb(τ0)− sb

∣∣p] ≤ K (1 +
∣∣ sb ∣∣p) (h− t)

p
2 ,

E

[
sup

0≤u≤h

∣∣Sbt, sb(u)− sb
∣∣p] ≤ K (1 +

∣∣ sb ∣∣p) (h− t)
p
2 .

(7.11)

Proof. We adapt the proof in Pham [75] to the present work and indeed we shall

consider the proof only for p = 2 as it suffices to ensure the relation for p = 1,

according to Hölder’s inequality. In order to reduce notation, here K is a generic

positive constant which may take different values in different places. Define Th
as the set of all stopping times smaller than h ∈ [0, T ]. By the optional sampling



Chapter 7. Proofs and numerical procedures 160

theorem and the Lévy-Itô isometry, we have

E
[ ∣∣Sbt, sb(τ0)

∣∣2] ≤KE

[ ∣∣ sb ∣∣2+∫ τ0

t

∣∣∣µb(u, Sbt, sb(u), νu
)∣∣∣2 du

+
2∑
i=1

λb,iE
[∣∣zb,i1

∣∣2] ∫ τ0

t

∣∣∣hbi(u, Sbt, sb(u)
)∣∣∣2 du

]
,

for τ0 ∈ Th. By the linear growth conditions on µb, hb1, hb2, we have

E
[ ∣∣Sbt, sb(τ0)

∣∣2] ≤ K [1 +
∣∣ sb∣∣ 2 + E

∫ τ0

t

∣∣Sbt, sb(u)
∣∣2du

]
. (7.12)

As noted in Pham (1998), if τ0 were a deterministic time, (7.12) would yield

E
[ ∣∣Sbt, sb(τ0)

∣∣2] ≤ K [1 +
∣∣ sb ∣∣2] .

By definition of Th, we note that

E
[∫ τ0

t

∣∣Sbt, sb(u)
∣∣2du

]
≤ E

[∫ h

t

∣∣Sbt, sb(u)
∣∣2du

]
.

Thus, by applying Fubini’s theorem to exchange the order of integration and by

Gronwall’s lemma,

E
[ ∣∣Sbt, sb(τ0)

∣∣2] ≤ K [1 +
∣∣ sb ∣∣2 +

∫ h

t
E
[ ∣∣Sbt, sb(u)

∣∣2] du

]
≤ K

[
1 +

∣∣ sb ∣∣2] ,
(7.13)

for a suitable constant K = K(p, C,M, T ). Define the process Zu by Zu =

Sb
t, sb1

(u)− Sb
t, sb2

(u). Then by an application of Itô’s formula to |Zu|2, we have

E
[
|Zτ0 |

2
]

= E
[∣∣∣sb1 − sb2∣∣∣2+

∫ τ0

t
2Zu

(
µb
(
u, Sb

t, sb1
(u), νu

)
− µb

(
u, Sb

t, sb2
(u), νu

))
du

+
2∑
i=1

λb,iE
[∣∣zb,i1

∣∣2] ∫ τ0

t

∣∣∣hbi(u, Sbt, sb1(u)
)
−hbi

(
u, Sb

t, sb2
(u)
)∣∣∣2du

]
.

From the Lipschitz condition on µb, hb1 and hb2, it follows that

E
[ ∣∣Zτ0 ∣∣2]≤KE

[ ∣∣ sb1 − sb2 ∣∣2+∫ τ0

t

∣∣Sb
t, sb1

(u)− Sb
t, sb2

(u)
∣∣2du

]
.
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By making use of Fubini’s Theorem and Gronwall’s lemma we get

E
[ ∣∣Sb

t, sb1
(τ0)− Sb

t, sb2
(τ0)

∣∣2] ≤KE
[ ∣∣ sb1 − sb2 ∣∣2+

∫ h

t

∣∣Zu∣∣2du

]
≤ K

∣∣ sb1 − sb2 ∣∣2,
for a suitable constant K = K(p, C, T ). For the third moment estimate, we make

use of the first moment estimate in (7.11) to obtain

E
[ ∣∣Sbt, sb(τ0)− sb

∣∣2] ≤ K [∫ τ0

t

(
1 + E

[ ∣∣Sbt, sb(u)
∣∣2]) du

]
≤ K

(
1 +

∣∣ sb ∣∣2) (h−t).

The fourth moment estimate in (7.11) follows from the third moment estimate,

Doob’s maximal inequality, and the fact that the constant K does not depend

on the control process. �

7.3.3 Viscosity solution

In what follows, we note that it suffices to show the viscosity property for the

model presented in Section 3.3, since the model discussed in Section 3.2 is a

special case.

Proposition 7.8. The value function V : [0, T ] × O → R defined in (3.18) is

continuous on [0, T ]×O. Furthermore, for K > 0 and ∀ x ∈ O, it satisfies

V (t,x) ≤ K (1 + ‖x‖1) . (7.14)

Proof. We proceed in two steps. We first show that the value function is Lipschitz

continuous in x, uniformly in t. Next we show that it is continuous in t. We

take x,y ∈ O and since | sup(A)− sup(B)| ≤ sup |(A−B)|, we have that

|V (t,x)− V (t,y) | =∣∣∣∣∣ sup
ν∈Z

E
[∫ τ

t
e−r(u−t)f1(u,Xt,x(u), νu) du+ e−r(τ−t)g1(Xt,x(τ))

]

− sup
ν∈Z

E
[∫ τ

t
e−r(u−t)f1(u,Xt,y(u), νu) du+ e−r(τ−t)g1(Xt,y(τ))

] ∣∣∣∣∣
≤ sup
ν∈Z

∣∣∣∣∣E
[∫ τ

t
e−r(u−t)

(
f1(u,Xt,x(u), νu) du− f1(u,Xt,y(u), νu)

)
du

+ e−r(τ−t)
(
g1(Xt,x(τ))− g1(Xt,y(τ))

)]∣∣∣∣∣.
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The Lipschitz continuity of f1 and g1 give

|V (t,x)− V (t,y) |

≤ sup
ν∈Z

E

[∫ τ

t
e−r(u−t)K||Xt,x(u)−Xt,y(u)||1du

+ e−r(τ−t)K||Xt,x(τ)−Xt,y(τ)||1

]
≤ K||x− y||1,

where the last inequality is justified by the moments estimates in Proposition

7.7. We note that an analogous calculation will produce Equation (7.14). We

now take 0 ≤ t1 < t2 < T and we apply the DPP to obtain

|V (t1,x)− V (t2,x) | =

∣∣∣∣∣ sup
ν∈Z

E

[∫ t2∧τ

t1

e−r(u−t1)f1(u,Xt1,x(u), νu) du

+ e−r(t2−t1)V (t2,Xt1,x(t2))1{τ≥t2} + e−r(τ−t1)g1(Xt1,x(τ))1{τ<t2}

]
− V (t2,x)

∣∣∣∣∣.
We can add and subtract the quantity

1{τ<t2}e
−r(τ−t1)(g1(x) + V (t2,x)) + 1{τ≥t2}e

−r(t2−t1)V (t2,x),

to obtain

|V (t1,x)− V (t2,x) | ≤ sup
ν∈Z

E

[∫ t2∧τ

t1

e−r(u−t1)|f1(u,Xt1,x(u), νu) |du

+1{τ≥t2}e
−r(t2−t1)|V (t2,Xt1,x(t2))− V (t2,x)|

+1{τ<t2}e
−r(τ−t1)|g1(Xt1,x(τ))− g1(x)|

+1{τ<t2}e
−r(τ−t1)|g1(x)− V (t2,x)|

+1{τ<t2}|(e
−r(τ−t1) − 1)V (t2,x) |

+1{τ≥t2}|(e
−r(t2−t1) − 1)V (t2,x) |

]
≤ K|t2 − t1|(1 + ||x||1),

where the last inequality is justified by: (i) the linear growth of f1, g1 and V ,

the Lipschitz continuity of g1 and of V in x uniformly in t, and the moment
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estimates in Proposition 7.7. Thus, we can conclude that

|V (t1,x)− V (t2,y) | ≤ K(|t2 − t1|(1 + ||x||1) + ||x− y||1). �

Proposition 7.9. The value function V defined by Equation (3.18) is a viscosity

solution of the HJB PIDE (3.22).

Proof. We show that V (t,x) is a continuous viscosity solution of (3.22) by proving

that it is both a supersolution and a subsolution. We proceed along the same

lines of Øksendal and Sulem [70] and we first show the supersolution property.

We define a test function φ : [0, T )×O → R such that φ ∈ C1,1([0, T )×O)∩PB

and, without loss of generality, we assume that V − φ reaches its minimum at

(t̄, x̄), such that

V (t̄, x̄)− φ (t̄, x̄) = 0. (7.15)

We let τ1 be a stopping time defined by τ1 = inf {u > t̄ |X t̄, x̄(u) /∈ Bε(x̄)},

where Bε(x̄) is the ball of radius ε centred in x̄. Then we define the stopping

time τ∗ = τ1 ∧ (t̄ + h) for 0 < h < T − t̄ and note that γ̄ := E t̄, x̄[τ∗ − t̄] > 0.

From the first part of DPP and the definition of φ, it follows that, ∀ ν ∈ Z,

V (t̄, x̄) ≥ E

[∫ τ∗

t̄
e−r(u−t̄)f1

(
u,Xν

t̄, x̄(u), νu
)
du+ e−r(τ

∗−t̄)φ
(
τ∗,Xν

t̄, x̄(τ∗)
)]
.

By applying Dynkin’s formula to e−r(τ
∗−t̄)φ

(
τ∗,Xν

t̄, x̄(τ∗)
)

at (t̄, x̄), we get

E

[∫ τ∗

t̄

(
e−r(u−t̄)f1

(
u,Xν

t̄, x̄(u), νu
)
− e−r(u−t̄)

{
rφ
(
u,Xν

t̄, x̄(u)
)

− ∂φ

∂t

(
u,Xν

t̄, x̄(u)
)
− H̄1

(
u,Xν

t̄, x̄(u), Dxφ, νu
)
− Bb,∆

(
u,Xν

t̄, x̄(u), φ
)

− B∆

(
u,Xν

t̄, x̄(u), φ
)
− B̄y

(
u,Xν

t̄, x̄(u), φ, ηu
)})

du

]
≤ 0,

where H̄1 and B̄y are defined respectively by

H̄1

(
t,x,p, v

)
= −vp1 + µb

(
t, sb, v

)
p2 + µ∆

(
t,∆, v

)
p3 + µy

(
t, sb,∆, v

)
p4, and

B̄y(t,x, ϕ, n) = λyE(zy)
[
ϕ
(
t, x− nzy, sb,∆, y + hy

(
t, sb,∆, n

)
zy
)
− ϕ

(
t,x
)]
.
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We divide both sides by −γ̄ and let h→ 0, resulting in

rφ (t̄, x̄)− ∂φ

∂t
(t̄, x̄)− H̄1 (t̄, x̄, Dxφ, v)− f1(t̄, x̄, v)− Bb,∆(t̄, x̄, φ)

−B∆(t̄, x̄, φ)− B̄y(t̄, x̄, φ, η) ≥ 0.

Due to the arbitrariness of v, we can rewrite the above as

rφ (t̄, x̄)− ∂φ
∂t

(t̄, x̄)−H1 (t̄, x̄, Dxφ)−Bb,∆(t̄, x̄, φ)−B∆(t̄, x̄, φ)−By(t̄, x̄, φ) ≥ 0,

which proves the supersolution inequality. We now prove the subsolution in-

equality. We let φ be a smooth and polynomially-bounded test function such

that V − φ has its maximum at (t̄, x̄). Without loss of generality, we assume

V (t̄, x̄)− φ(t̄, x̄) = 0. We shall show that

rφ (t̄, x̄)− ∂φ
∂t

(t̄, x̄)−H1 (t̄, x̄, Dxφ)−Bb,∆(t̄, x̄, φ)−B∆(t̄, x̄, φ)−By(t̄, x̄, φ) ≤ 0.

Let us assume by contradiction that

e−rT
(
rφ (t̄, x̄)−∂φ

∂t
(t̄, x̄)−H1 (t̄, x̄, Dxφ)−Bb,∆(t̄, x̄, φ)−B∆(t̄, x̄, φ)−By(t̄, x̄, φ)

)
> δ,

(7.16)

for δ > 0 and X t̄, x̄(u) ∈ Bε(t̄, x̄). We define τ1 = inf
{
u > t̄ |

(
u, X t̄, x̄(u)

)
/∈

Bε(t̄, x̄)
}

and we define the stopping time τ∗ = τ1 ∧ (t̄+ h). By the DPP, there

exists a control ν∗ ∈ Z such that, for all δ > 0, we have

V
(
t̄, x̄

)
≤ E

[∫ τ∗

t̄
e−r(u−t̄)f1

(
u,Xν∗

t̄, x̄(u), ν∗u
)
du+ e−r(τ

∗−t̄)φ
(
τ∗,Xν∗

t̄, x̄(τ∗)
)]

+
δγ̄

2
.

We divide both sides by −γ̄ and get

1

γ̄
E

[∫ τ∗

t̄
−

(
e−r(u−t̄)f1

(
u,Xν∗

t̄, x̄(u), ν∗u
)
− e−r(u−t̄)

{
rφ
(
u,Xν∗

t̄, x̄(u)
)

− ∂φ

∂t

(
u,Xν∗

t̄, x̄(u)
)
− H̄1

(
u,Xν∗

t̄, x̄(u), Dxφ, ν
∗
u

)
− Bb,∆

(
u,Xν∗

t̄, x̄(u), φ
)

− B∆

(
u,Xν∗

t̄, x̄(u), φ
)
− B̄y

(
u,Xν∗

t̄, x̄(u), φ, η∗u
)})

du

]
≤ δ

2
.

(7.17)

By substituting Equation (7.16) in Equation (7.17) we obtain the desired con-

tradiction (i.e. δ/2 < 0). �
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Proposition 7.10. Let U (resp. V ) be a viscosity subsolution (resp. super-

solution) of (3.22). If U(T,x) ≤ V (T,x) on O, then U ≤ V on [0, T ] × O.

Proof. Let U be a subsolution and V be a supersolution. Since U , V ∈ PB, then

there exists a p > 1 such that

|U(t,x)|+ |V (t,x)|
(1 + ‖x‖pp)

<∞, (7.18)

where the operator ‖·‖pp is the Lp-norm raised to the p-th power. Let Ṽ ε(t,x) :=

V (t,x) + εκ(t,x), where ε > 0 and κ(t,x) = e−ζt
(
1 + ‖x‖2p2p

)
, for ζ > 0. Then

Ṽ ε is a supersolution of (3.22). Indeed, let φ(t,x) be the test function for Ṽ ε,

then the test function for V is φ(t,x)− εκ(t,x). First note that we have

rεκ (t,x)− ∂εκ

∂t
(t,x)− sup

v∈Z
H̄1 (t,x, Dxεκ,v)− Bb,∆(t,x, εκ)

−B∆(t,x, εκ)− By(t,x, εκ) ≥ 0,

for ζ sufficiently large. By the supersolution property of V , we have

r(φ− εκ) (t,x)− ∂(φ− εκ)

∂t
(t,x)−H1 (t,x, Dx (φ− εκ))− Bb,∆(t,x, φ− εκ)

− B∆(t,x, φ− εκ)− By(t,x, φ− εκ) ≥ 0,

and recalling that sup(A+B) ≤ supA+ supB, we have

rφ (t,x)− ∂φ

∂t
(t,x)−H1 (t,x, Dxφ)− Bb,∆(t,x, φ)− B∆(t,x, φ)− By(t,x, φ) ≥

rεκ (t,x)− ∂εκ

∂t
(t,x)− sup

v∈Z
H̄1 (t,x, Dxεκ,v)− Bb,∆(t,x, εκ)

−B∆(t,x, εκ)− By(t,x, εκ) ≥ 0.

Since by (7.18) limx→±∞ sup[0,T ](U − Ṽ ε)(t,x) = −∞, we can assume w.l.o.g.

that

M := max
[0,T ]×O

(U (t,x)− V (t,x)) ,

is attained at (t̄, x̄) ∈ [0, T ] × Σ, where Σ ⊂ O is a compact set. In order to

prove Proposition 7.10, it suffices to show thatM < 0. Suppose by contradiction

that there exists a (t̄, x̄) ∈ [0, T ) × Σ such that M > 0. For ε > 0, we define
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the function Ψε by Ψε (t1, t2,x1,x2) = U (t1,x1)− V (t2,x2)−ψε (t1, t2,x1,x2),

where

ψε (t1, t2,x1,x2) :=
1

2ε

(
|t1 − t2|2 + ‖x1 − x2‖22

)
.

The function Ψε is continuous and admits a maximum point Mε, where M ≤

Mε, at m =
(
tε1, t

ε
2,x

ε
1,x

ε
2

)
. That is, the function U(t1,x1)−ψε(t1, t2,x1,x2) has

a local maximum at m and V (t2,x1)− (−ψε(t1, t2,x1,x2)) has a local minimum

at m. Also, formally limε→0

(
tε1, t

ε
2,x

ε
1,x

ε
2

)
converges, up to a subsequence, to

(t̄, t̄, x̄, x̄) (see Crandall et al. [29] for details). We let oε = (t1− t2)/ε, and define

the vector pε by

pε = (pε1, p
ε
2, p

ε
3, p

ε
4) =

(
1

ε

(
xε1 − xε2

)
,
1

ε

(
sb,ε1 − s

b,ε
2

)
,
1

ε

(
∆ε

1 −∆ε
2

)
,
1

ε

(
yε1 − yε2

))
.

We can apply the viscosity subsolution and supersolution properties at the point

m to obtain, with a slight abuse of notation2, the following inequalities:

rU (tε1,x
ε
1)− oε −H1 (tε1,x

ε
1,p

ε)− Bb,∆ (tε1,x
ε
1, U, p

ε
2, p

ε
3)− B∆ (tε1,x

ε
1, U, p

ε
3)

−By
(
tε1,x

ε
1, U

)
≤ 0,

rV (tε2,x
ε
2)− oε −H1 (tε2,x

ε
2,p

ε)− Bb,∆ (tε2,x
ε
2, V, p

ε
2, p

ε
3)− B∆ (tε2,x

ε
2, V, p

ε
3)

−By
(
tε2,x

ε
2, V

)
≥ 0,

where, for φ ∈ PB , we have

Bb,∆ (t,x, φ, p, q) =

2∑
i=1

λb,iE(zb,i)

[
φ
(
t, x, sb + hbi

(
t, sb

)
zb,i,∆ + hb,∆i

(
t, sb,∆

)
zb,i, y

)
− φ

(
t,x
)

− hbi
(
t, sb

)
zb,ip− hb,∆i

(
t, sb,∆

)
zb,iq

]
,

B∆ (t,x, φ, q) =
2∑
i=1

λ∆,iE(z∆,i)

[
φ
(
t, x, sb,∆ + h∆

i

(
t,∆

)
z∆,i, y

)
−φ
(
t,x
)
− h∆

i

(
t,∆

)
z∆,iq

]
.

2The equivalence of the two different definitions of viscosity solution has been discussed
extensively in, e.g., Pham [74] and Seydel [77].
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We can subtract the two inequalities and take the limit for ε → 0 to get

r [U (t̄, x̄)− V (t̄, x̄)] ≤ 0, which concludes the proof. �

7.4 Proofs for Chapter 4

7.4.1 Assumption

We state all the standing assumptions which are introduced in the modelling

setup presented in Chapter 4.

1. The real-valued functions f , U and g satisfy Lipschitz continuity and the

linear growth conditions.

2. Γ : N×
[
−X̄−qN , X̄+qN

]
×[0, 1]→ R and χ : N×R×[0, 1]×R×K×K` → R

are Lipschitz continuous functions satisfying

|x|2 − E(z)
[
|Γ(η, x, z)|2

]
> 1, |y|2 − E(z)

[
|χ(η, y, z, s, k, κ)|2

]
> 1,

for all η ∈ N , z ∈ [0, 1] and x, y, s ∈ O.

3. Λ : X ×
[
− X̄ − qN , X̄ + qN

]
→ R and c : X × R2 ×K→ R are Lipschitz

continuous functions satisfying, for M > 0, the following properties:

|x|2 − |Λ(ξ, x)|2 > 1, |y|2 − |c(ξ, y, s, k)|2 > 1,

for all ξ ∈ X and x, y, s ∈ O.

7.4.2 Viscosity solution

Definition 7.1. A system of functions V : [0, T ) × O × K → R is a viscosity

subsolution, (resp. supersolution), of (4.11) if



Chapter 7. Proofs and numerical procedures 168

min
{
− g(t̄, x̄)−A

(
t̄, x̄, k̂, ∂tφ, φ

)
; (V ∗−MV ∗)

(
t̄, x̄; k̂

)
; (V ∗−LV ∗)

(
t̄, x̄; k̂

)}
≤0,

(7.19)

(
resp.

min
{
− g(t̄, x̄)−A

(
t̄, x̄, k̂, ∂tφ, φ

)
; (V∗−MV∗)

(
t̄, x̄; k̂

)
; (V∗−LV∗)

(
t̄, x̄; k̂

)}
≥ 0

)
,

(7.20)

where φ ∈ C1,0,0([0, T ) × O × K) is such that V ∗(t,x; k) − φ(t,x; k) (resp.

V∗(t,x; k) − φ(t,x; k)) attains its maximum (resp. minimum) at (t̄, x̄, k̂) ⊂

[t, T )×O ×K.

Proposition 7.11. (Existence) The system of functions V (t,x; k) is a viscosity

solution of the QVI (4.11).

Proof. We use definition 7.1 and we show that the system of functions V (t,x; k)

is a viscosity solution by proving that it is both a supersolution and a subsolution.

First we note that we have V (T,x; k) = U(x; k) on {T} × O ×K, thus we need

to prove the viscosity property only on [t, T )×O×K. Results in, e.g., Ly Vath

et al. [63] ensure that MV∗ ≤ (MV )∗ and LV∗ ≤ (LV )∗. By definition of the

value function, we have V ≥ MV and V ≥ LV for all (u,x) ∈ [t, T ) × O. It

follows that V∗ ≥ (MV )∗ ≥MV∗ and V∗ ≥ (LV )∗ ≥ LV∗. That is, to prove the

supersolution property, it suffices to show that

−g(t̄, x̄)−A
(
t̄, x̄, k̂, ∂tφ, φ

)
≥ 0. (7.21)

Let (V∗ − φ)(t̄, x̄; k̂) = 0, where (t̄, x̄, k̂) = arg min(V∗ − φ)(t,x; k). By defini-

tion of V∗, there exists a sequence (tm,xm) → (t̄, x̄) such that V∗(tm,xm; k̂) →

V∗(t̄, x̄; k̂) as m→∞. We define the stopping time

θm = inf {u > tm |Xtm xm(u) /∈ Bε(tm,xm)} , (7.22)
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where Bε(tm,xm) is the open ball of radius ε centred in (tm,xm). We choose

a strictly positive sequence hm → 0 as m → ∞ and let the stopping time

θ∗m := θm ∧ (tm + hm) ∧ θ∗ ∧ τi, where θ∗ is the first time the regime switches

from its initial value k̄ and where τi is the first time an impulse takes place. By

the DPP and the definition of the function φ, we have for any admissible control

strategy

V (tm,xm; k̂) ≥ E

[∫ θ∗m

tm

g
(
u,Xtm, xm(u)

)
du+ φ

(
θ∗m,Xtm,xm

(
θ∗m
)
; kθ∗m

)]
. (7.23)

An application of Itô’s formula to φ between tm and θ∗m yields

(V∗ − φ)
(
tm,xm; k̂

)
≥

E

[∫ θ∗m

tm

[
g
(
u,Xtm, xm(u)

)
+ Ā

(
u,Xtm,xm(u), k̂, ∂tφ, φ, δ

+
u , δ

−
u

)]
du

]
,

(7.24)

We can divide by −hm, then let m→∞ and apply the the mean value theorem.

Finally, the result follows from the arbitrariness of the control variable.

First note that if V ∗ = MV ∗ or V ∗ = LV ∗, the subsolution property is im-

mediately satisfied. We assume therefore that V ∗ > MV ∗ and V ∗ > LV ∗; we

then need to show that

−g(t̄, x̄)−A
(
t̄, x̄, k̂, ∂tφ, φ

)
≤ 0. (7.25)

By continuity of the mapping in (7.25), we assume on the contrary that there

exists a ε1 > 0 and an ε2 > 0 such that −g(t̄, x̄)− A
(
t̄, x̄, k̂, ∂tφ, φ

)
≥ ε1, for all

X t̄, x̄(u) ∈ Bε2(t̄, x̄). We take the sequences hm → 0 and (tm,xm) → (t̄, x̄), as

m→∞, valued in Bε2(t̄, x̄) and we define the stopping times θm by (7.22) with

ε < ε2 and θ∗m := θm ∧ (tm + hm) ∧ θ∗ ∧ τi. By Itô’s formula and the DPP, there

exists an admissible control strategy (δ+,∗
u , δ−,∗u ) for which
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γm −
ε1hm

2
≤

E

[∫ θ∗m

tm

[
g
(
u,Xtm, xm(u)

)
+ Ā

(
u,Xtm,xm(u), k̂, ∂tφ, φ, δ

+,∗
u , δ−,∗u

)]
du

]
,

(7.26)

where γm = (V ∗ − φ)
(
tm,xm; k̂

)
. Dividing by −hm, we find that

0 ≥ γm
hm
− ε1

2
+

ε1
hm

E[θ∗m − tm]. (7.27)

Since E[θ∗m−tm]/hm → 1 as m→∞, we get ε1/2 ≤ 0, which contradicts ε1 > 0.�

Proposition 7.2. (Strong Comparison Principle) Let v and u be a supersolution

and a subsolution respectively of the QVI (4.11). Then u∗ ≤ v∗ on [0, T ]×O×K.

We write v and u in place of v∗ and u∗ for simplicity. We first prove that there

exists a ζ-strict supersolution. We refer to, e.g., Seydel [77] for technical details.

We consider the function vζ(t,x; k) = v(t,x; k) + ζeβ(T−t)(1 + ||x||2p2p
)
, where

β > 0 and p > 1 are to be determined later. Then we have:

vζ(t,x; k)−Mvζ(t,x; k) ≥

v(t,x; k) + ζeβ(T−t)(|x|2p + |y|2p)−Mv(t,x; k)

− sup
ξ∈X

[
ζeβ(T−t) (|Λ(ξ, x)|2p

)]
− sup
ξ∈X

[
ζeβ(T−t) (|c(ξ, y, s, k)|2p

)]
+ εm ≥

ζeβ(T−t)

[
|x|2p − sup

ξ∈X

(
|Λ(ξ, x)|2p

)]

+ζeβ(T−t)

[
|y|2p − sup

ξ∈X

(
|c(ξ, y, s, k)|2p

)]
+ εm > ζ,

(7.28)

where the second-to-last inequality follows from the supersolution property of

the function v, while the last inequality follows from assumption (3) and the fact

that |a| > |b| ⇒ |a|p > |b|p ∀ p > 1. Analogously, we have:



Chapter 7. Proofs and numerical procedures 171

vζ(t,x; k)− Lvζ(t,x; k) ≥ ζeβ(T−t)

[
|x|2p − sup

η∈N , κ∈K`
E(z)

[ (
|Γ(η, x, z)|2p

) ]]

+ ζeβ(T−t)

[
|y|2p − sup

η∈N , κ∈K`
E(z)

[ (
|χ(η, y, z, s, k, κ)|2p

) ]]
+ ε`

> ζ.

Finally we take into consideration the PIDE part. We let φζ be the test function

for vζ . Then φ := φζ−ζeβ(T−t)(1+||x||2p2p
)

is the test function for v. We therefore

have:

−g(t, x)−A
(
t,x, k, ∂tφ

ζ , vζ
)
≥

−g(t, x)−A (t,x, k, ∂tφ, v) + βζeβ(T−t)(1 + ||x||2p2p
)

−λm E(k̄±)
[
ζeβ(T−t) (|s+ k̄±|2p − |s|2p

) ]
− sup
δ+∈[0,δ̄]

λ+
δ E(q+)

[
ζeβ(T−t) (|x− q+|2p + |y + f(t, s, δ+, q+)q+|2p − |x|2p − |y|2p

)
1{x≥−X̄}

]
− sup
δ−∈[0,δ̄]

λ−δ E(q−)
[
ζeβ(T−t) (|x+ q−|2p + |y − f(t, s, δ−, q−)q−|2p − |x|2p − |y|2p

)
1{x≤X̄}

]
≥

+βζeβ(T−t)(1 + ||x||2p2p
)
− λm E(k̄±)

[
ζeβ(T−t) (|s+ k̄±|2p − |s|2p

) ]
− sup
δ+∈[0,δ̄]

λ+
δ E(q+)

[
ζeβ(T−t) (|x− q+|2p + |y + f(t, s, δ+, q+)q+|2p − |x|2p − |y|2p

)
1{x≥−X̄}

]
− sup
δ−∈[0,δ̄]

λ−δ E(q−)
[
ζeβ(T−t) (|x+ q−|2p + |y − f(t, s, δ−, q−)q−|2p − |x|2p − |y|2p

)
1{x≤X̄}

]
≥ ζ,

for β sufficiently large. Now we set
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vm =

(
1− 1

m

)
v +

1

m
vζ , um =

(
1 +

1

m

)
u− 1

m
vζ . (7.29)

Using Definition 7.1, one can prove that

min
{
− g(t, x)−A (t,x, k, ∂tφm, φm) ; (vm−Mvm) (t,x; k) ; (vm−Lvm) (t,x; k)

}
≥ ζ

m
.

(7.30)

where φm := φ+ 1
mζeβ(T−t)(1 + ||x||2p2p

)
is the test function for vm and φ is the

test function for v and

min
{
− g(t, x)−A (t,x, k, ∂tϕm, ϕm) ; (um−Mum) (t,x; k) ; (um−Lum) (t,x; k)

}
≤ − ζ

m
,

(7.31)

where ϕm := m+1
m ϕ − 1

mφ −
1
mζe

β(T−t)(1 + ||x||2p2p
)

is the test function for um

and ϕ is the test function for u. We further note that u and v are polynomially

bounded (see e.g. Crisafi & Macrina [20], Proposition 6.3, for details). Thus, we

have for each k ∈ K

lim
x→±∞

(um − vm) (t,x; k) = lim
x→±∞

(
1 +

1

m

)
(u− v) (t,x; k)

− 2

m
ζeβ(T−t)(1 + ||x||2p2p

)
=−∞,

(7.32)

where we set p larger than the degree of the bounding polynomial of u and

v. Thus the supremum is attained in a bounded set. Since um − vm is upper

semicontinuous, it attains a maximum over a compact set. Next we show that,

for all m large, we have

M := max
t,x,k

(um(t,x; k)− vm(t,x; k)) ≤ 0, (7.33)
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where (t̄, x̄, k̂) = arg max(um(t,x; k)−vm(t,x; k)). We define the auxiliary func-

tion Ψε by

Ψε (t1, t2,x1,x2; k) := um (t1,x1; k)−vm (t2,x2; k)− 1

2ε

(
|t1 − t2|2 + ‖x1 − x2‖22

)
,

(7.34)

For each k ∈ K, Ψε is upper semicontinuous and therefore it admits a maximum

M ε,k at
(
tk,ε1 , tk,ε2 ,xk,ε1 ,xk,ε2

)
. Let M ε be defined by M ε = maxk∈KM

ε,k, attained

at the point (tε1, t
ε
2,x

ε
1,x

ε
2, k

ε) → (t̄, t̄, x̄, x̄, k̂) as ε → 0. Furthermore, we have

that M ε ≥ M and M ε → M as ε → 0. We now wish to prove that M ≤ 0. Let

us assume on the contrary that M ε > 0. We go through the various cases. Let

(um −Mum)
(
tε1,x

ε
1; kε

)
≤ 0. (7.35)

By the supersolution property of vm and by subtracting the two inequalities, we

have

(um −Mum)
(
tε1,x

ε
1; kε

)
− (vm −Mvm)

(
tε2,x

ε
2; kε

)
+
ζ

m
≤ 0. (7.36)

We can now develop a contradiction argument since

M = lim
ε→0

um
(
tε1,x

ε
1; kε

)
− vm

(
tε2,x

ε
2; kε

)
≤ lim

ε→0
Mum

(
tε1,x

ε
1; kε

)
−Mvm

(
tε2,x

ε
2; kε

)
− ζ

m
≤M − ζ

m
.

(7.37)

The second case arises when (um − Lum)
(
tε1,x

ε
1; kε

)
≤ 0. We follow the same

procedure to show that

M = lim
ε→0

um
(
tε1,x

ε
1; kε

)
− vm

(
tε2,x

ε
2; kε

)
≤ lim

ε→0
Lum

(
tε1,x

ε
1; kε

)
− Lvm

(
tε2,x

ε
2; kε

)
− ζ

m
≤M − ζ

m
.

(7.38)
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Next we consider the PIDE part. We subtract the argument of the subsolution

from the argument of the supersolution and obtain

g
(
tε1, x

ε
1

)
+A

(
tε1,x

ε
1, k

ε,
1

ε

(
tε1 − tε2

)
, um

)
− g
(
tε2, x

ε
2

)
−A
(
tε2,x

ε
2, k

ε,
1

ε

(
tε1 − tε2

)
, vm

)
≥ ζ

m
.

Since we assumed M ε > 0, we can choose a % > 0 and we have

0 < %M ε = %
(
um(tε1,x

ε
1; kε)− vm(tε2,x

ε
2; kε)− 1

2ε

(
|tε1 − tε2|2 + ‖xε1 − xε2‖22

) )
≤ g

(
tε1, x

ε
1

)
+A

(
tε1,x

ε
1, k

ε,
1

ε

(
tε1 − tε2

)
, um

)
− g
(
tε2, x

ε
2

)
−A

(
tε2,x

ε
2, k

ε,
1

ε

(
tε1 − tε2

)
, vm

)
.

We can now analyse every component in detail. First we note that, due to

Assumption (4),

g
(
tε1, x

ε
1

)
− g
(
tε2, x

ε
2

)
≤
∣∣g(tε1, xε1)− g(tε2, xε2)∣∣ ≤ C (∣∣tε1 − tε2∣∣+

∣∣xε1 − xε2∣∣)→ 0

(7.39)

as ε→ 0. For the remaining parts, let us rewrite

Bks
(
t,x, ψ

)
:= E(k̄±)

[ (
ψ
(
t, x, y, s+ k̄±; k

)
− ψ (t,x; k)

) ]
,

Bk+
(
t,x, ψ

)
:= sup

δ+∈[0,δ̄]

λ+
δ E(q+)

[ (
ψ
(
t, x− q+, y + f(t, s, δ+, q+)q+, s; k

)
−ψ (t,x; k)

)
1{x≥−X̄}

]
,

Bk−
(
t,x, ψ

)
:= sup

δ−∈[0,δ̄]

λ−δ E(q−)
[(
ψ
(
t, x+ q−, y − f(t, s, δ−, q−)q−, s; k

)
−ψ (t,x; k)

)
1{x≤X̄}

]
,
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and

Qψ
(
t,x; k

)
:=
∑
k′ 6=k

rkk′
[
ψ(t,x; k′)− ψ(t,x; k)

]
.

We analyse Bkε+

(
tε1,x

ε
1, um

)
−Bkε+

(
tε2,x

ε
2, vm

)
as the other integrals can be treated

analogously. After some manipulation, we find:

Bkε+

(
tε1,x

ε
1, um

)
− Bkε+

(
tε2,x

ε
2, vm

)
≤ sup

δ+∈[0,δ̄]

λ+
δ E

(q+)
[(

Ψε
(
tε1, t

ε
2, x

ε
1 − q+, xε2 − q+,

yε1 + f
(
tε1, s

ε
1, δ

+, q+
)
q+, yε2 + f

(
tε2, s

ε
2, δ

+, q+
)
q+, sε1, s

ε
2; kε

)
−Ψε (tε1, t

ε
2,x

ε
1,x

ε
2; kε)

+
1

2ε

(∣∣yε1 + f
(
tε1, s

ε
1, δ

+, q+
)
q+ − yε2 − f

(
tε2, s

ε
2, δ

+, q+
)
q+
∣∣2 − ∣∣yε1 − yε2∣∣))1{xε1≤X̄}]

+ sup
δ+∈[0,δ̄]

λ+
δ E

(q+)
[(
vm(tε2, x

ε
2 − q+, yε2 + f

(
tε2, s

ε
2, δ

+, q+
)
q+, sε2; kε)

− vm(tε2,x
ε
2; kε)

)
1{xε1≤X̄}

]
− sup
δ+∈[0,δ̄]

λ+
δ E

(q+)
[(
vm(tε2, x

ε
2 − q+, yε2 + f

(
tε2, s

ε
2, δ

+, q+
)
q+, sε2; kε)

− vm(tε2,x
ε
2; kε)

)
1{xε2≤X̄}

]
.

Since the function Ψε attains its maximum at
(
tε1, t

ε
2,x

ε
1,x

ε
2; kε

)
, we have

Bkε+

(
tε1,x

ε
1, um

)
− Bkε+

(
tε2,x

ε
2, vm

)
≤ sup
δ+∈[0,δ̄]

λ+
δ E

(q+)

[
1

2ε

(∣∣yε1 + f
(
tε1, s

ε
1, δ

+, q+
)
q+ − yε2 − f

(
tε2, s

ε
2, δ

+, q+
)
q+
∣∣2

−
∣∣yε1 − yε2∣∣2)1{xε1≤X̄}

]
+ sup
δ+∈[0,δ̄]

λ+
δ E

(q+)
[(
vm(tε2, x

ε
2 − q+, yε2 + f

(
tε2, s

ε
2, δ

+, q+
)
q+, sε2; kε)

− vm(tε2,x
ε
2; kε)

)
1{xε1≤X̄}

]
− sup
δ+∈[0,δ̄]

λ+
δ E

(q+)
[(
vm(tε2, x

ε
2 − q+, yε2 + f

(
tε2, s

ε
2, δ

+, q+
)
q+, sε2; kε)

− vm(tε2,x
ε
2; kε)

)
1{xε2≤X̄}

]
First we note that, when we let ε → 0, we have xε1, x

ε
2 → x̄. Thus the two last

terms of the previous inequality offset each other. Since the first term tends to
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zero as ε→ 0, we have that

lim
ε→0
Bkε+

(
tε1,x

ε
1, um

)
− Bkε+

(
tε2,x

ε
2, vm

)
≤ 0. (7.40)

Finally, we have

Q
(
um
(
tε1,x

ε
1; kε

)
− vm

(
tε2,x

ε
2; kε

))
≤ 0 (7.41)

since the maximum is attained at kε. Thus, by letting ε → 0, we get %M ≤ 0,

which is a contradiction since % > 0. Therefore M ≤ 0. Furthermore, since we

have proved that u∗ ≤ v∗, the value function is continuous as it is both upper

and lower semicontinuous. �

7.5 Numerical procedures

In this section we briefly show the numerical schemes adopted to find the optimal

strategy. These are similar to the one proposed by Guilbaud and Pham [47] and

Bian et al. [11], and adapted to the particular models at hand. Such a scheme

has proved to be monotone, stable and consistent in Guilbaud and Pham [47].

We provide pseudocodes for Chapters 3 and 4, since the numerical scheme used

in Chapter 5 is a combination of both of the above.

7.5.1 Chapter 3

We create an equally-spaced grid for (i) the time axis such that ti+1 − ti =

δt, ∀ i = 0, 1, 2, . . . , n − 1, (ii) the inventory where xj+1 − xj = δx ∀ j =

0, 1, 2, . . . ,m − 1, (iii) the price where sk+1 − sk = δs ∀ k = 0, 1, 2, . . . , p − 1,

(iv) the spread where ∆`+1 −∆` = δ∆ ∀ ` = 0, 1, 2, . . . , q − 1, and (v) the cash

process where yu+1 − yu = δy ∀ u = 0, 1, 2, . . . , o − 1. We write V i,j,k,`,u =

V (ti, xj , sk,∆`, yu) and define the following numerical derivatives:

V i,j,k,`,u
(t) :=

V i+1,j,k,`,u − V i,j,k,`,u

δt
, V i,j,k,`,u

(x) :=
V i,j+1,k,`,u − V i,j,k,`,u

δx
,

V i,j,k,`,u
(s) :=

V i,j,k+1,`,u − V i,j,k,`,u

δs
, V i,j,k,`,u

(∆) :=
V i,j,k,`+1,u − V i,j,k,`,u

δ∆
,
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V i,j,k,`,u
(y) :=

V i,j,k,`,u+1 − V i,j,k,`,u

δy
.

The pseudocode we use to approximate the solution of Equation (3.27) is as

follows:

Algorithm 1 Pseudocode for PIDE (3.27)

1: for all j, k, `, u

2: Set V n,j,k,`,u = e−r(tn−t0)(yu + xj(sk − αxj)).

3: end

4: for i=n-1,n-2,. . . ,0

5: for all j ∈ X, k ∈ S, ` ∈ D, u ∈ Y

6:

7: * Compute the optimal rate of trading (by applying first order conditions)

8:

9: v∗ =
skV

i+1,j,k,`,u
(y)

−µV i+1,j,k,`,u
(s)

−V i+1,j,k,`,u
(x)

+µV i+1,j,k,`,u
(∆)

2βV i+1,j,k,`,u
(y)

.

10: * Compute

11: V i,j,k,`,u = (1− rδt)V i+1,j,k,`,u + δt
(
− φx2

j

12: +
(
κb(S̄ − sk)− µv∗

)
V i+1,j,k,`,u

(s) − v∗V i+1,j,k,`,u
(x)

13: +
(
κ∆(∆̄−∆`) + µv∗

)
V i+1,j,k,`,u

(∆) + v∗(sk − βv∗)V i+1,j,k,`,u
(y)

14: +λy supη∈[0,xj ]

∑
ι p(z

y
ι )
[
V i+1,j−ζ1,ι,k,`,u+ζ2,ι − V i+1,j,k,`,u

]
15: +λb,1

∑
ι p(z

b,1
ι )
[
V i+1,j,k+zb,1ι ,`−zb,1ι ,u − V i+1,j,k,`,u

]
16: +λb,2

∑
ι p(z

b,2
ι )
[
V i+1,j,k−zb,2ι ,`+zb,2ι ,u − V i+1,j,k,`,u

]
17: +λ∆,1

∑
ι p(z

∆,1
ι )

[
V i+1,j,k,`+z∆,1

ι ,u − V i+1,j,k,`,u
]

18: +λ∆,2
∑

ι p(z
∆,2
ι )

[
V i+1,j,k,`−z∆,2

ι ,u − V i+1,j,k,`,u
])

,

19:

20: where ζ1,ι := arg minξ=0,1,2,...,m−j |xξ − ηzyι |,

21: and ζ2,ι := arg minξ=0,1,2,...,o−u |yξ − ηzyι (sk + ∆`/2)|.

22:

23: * Store the arg max (v∗, η∗)(ti, xj , sk,∆`, yu).

24: end

25: * Compute V i,j,k,`,u for k = 0, 1, . . . , z̄ − 1, k = p− z̄ + 1, . . . , p,

26: ` = 0, 1, . . . , z̄ − 1, ` = q − z̄ + 1, . . . , q,

27: u = 0, 1, . . . , ȳ − 1, u = o− ȳ + 1, . . . , o by interpolation.

28: end



Chapter 7. Proofs and numerical procedures 178

In the above algorithm, we discretise the distribution of {zb,1, zb,2, z∆,1, z∆,2}

such that they are all supported in a finite set, say, I = 0, 1, 2, . . . , z̄, which

denotes the number of nodes the price and the spread move with probability p(zι),

where ι ∈ I, associated with every state. We thus reduce the space grids of sb and

∆, of which indices are in the sets S := z̄, z̄+1, . . . , p−z̄ and D := z̄, z̄+1, . . . , q−z̄,

respectively. We further reduce the space grid y to be Y := ȳ, ȳ + 1, . . . , o − ȳ,

where ȳ := arg minξ=0,1,2,...,o |yξ−xm(sp−αxm)|. We provide the pseudocode for

the mean-reverting model—the one for the geometric Lévy model is analogous.

Throughout Chapter 3, we set an equally-spaced time grid [0,10] with intervals of

0.01, an equally-spaced price grid [0,10] with intervals of 0.1, an equally-spaced

spread grid [0.1,1] with intervals of 0.1 and an equally-spaced inventory grid [0,

30], with intervals of 1. The random variables zb,i and z∆,i can take values in

[0, 0.9] with intervals of 0.1 and probability associated to each state of 0.1. The

random variables zy can take values in [0, 1] with intervals of 0.1 and probability

associated to each state of 1
11 .

7.5.2 Chapter 4

We present here the stylised numerical scheme used to solve the QVI (4.18).

The previous examples (including the ones in Chapter 2) can be derived as a

special case. We create an equally-spaced time grid 0 = t0, t1, t2, . . . , tn = T ,

where T > 0 and ti+1 − ti = ∆t, ∀ i = 0, 2, . . . , n − 1 and an equally-spaced

space grid −X = x0, x1, x2, . . . , xm = X, where X > 0 and xj+1 − xj = ∆x,

such that 1/∆x ∈ N. To simplify the notation, we write hi,jk = hk(ti, xj), where

i = 0, 1, . . . , n − 1, j ∈ J := 1/∆x, 1/∆x + 1, . . . ,m − 1/∆x and k ∈ K. Here

we further assume that E[k̄±] = 0. For the random variables q+, q− and zκ

we discretise the sample space and associate to each state ι a probability p(q+
ι ),

p(q−ι ) and p(zκι ). In particular, throughout Chapter 4, we set an equally-spaced

time grid [0,50] with intervals of 1 and an equally-spaced inventory grid [-100,

100], with intervals of 0.1. The random variable z can take values in [0, 1] with

intervals of 0.1 and probability associated to each state of 0.1. The random

variables q± can take values in [0, 10] with intervals of 0.1 and probability of 1
101 .
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Algorithm 2 Pseudocode for QVI (4.18)

1: for all k ∈ K and j=0,1,. . . ,m

2: Set hn,jk = −αx2
j .

3: end

4: for i=n-1,n-2,. . . ,0

5: for all k ∈ K and j ∈ J

6: * Compute

7:

8: T hi,jk = hi+1,j
k + ∆t

(
− φx2

j +
∑

k′ 6=k rkk′
(
hi+1,j
k′ − hi+1,j

k

))
9:

10: + supδ±∈D

[∑
ι p(q

+
ι )λ+

δ

(
δ+q+

ι (1 + c)q
+
ι + h

i+1,j−q+
ι /∆x

k − hi+1,j
k

)
11: +

∑
ι p(q

−
ι )λ−δ

(
δ−q−ι (1 + c)q

−
ι + h

i+1,j+q−ι /∆x
k − hi+1,j

k

)]
,

12: and store the arg max (δ+,∗, δ−,∗)(ti, xj).

13: * Compute Mhi,jk = supξ=±1/∆x

[
− k + hi+1,j+ξ

k

]
− εm,

14: and store the arg max ξ∗i (ti, xj).

15:

16: * Compute

17: Lhi,jk = supη=±1/∆x,κ∈K

[∑
ι p(z

κ
ι )
(
zκι (k + κ) + h

i+1,j+ηzκι
k

)]
− ε`,

18: and store the arg max (η∗i , κ
∗
i )(ti, xj).

19:

20: * Set hi,jk = max
(
T hi,jk ,Mhi,jk ,Lh

i,j
k

)
and store the relative policy.

21: end

22: * Compute hi,jk for j = 0, 1, . . . , 1/∆x− 1 and j = m− 1/∆x, . . . ,m

23: by interpolation.

24: end

7.6 Non-equivalence of liquidation strategies

Firstly, we need to redefine the strategies in terms of the bid and ask quotes and

we note that we have four different cases, depending on the sign of the inventories.

Eventually, we want the conditions to be independent on the specific sizes of Xe

and X£.
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1. If Xe > 0 and X£ > 0, then the three liquidation alternatives are

(a) X$ +Xe
(
Se$ −∆e$/2

)
+X£

(
S£$ −∆£$/2

)
,

(b) X$ +
(
Xe
(
Se£ −∆e£/2

)
+X£

)(
S£$ −∆£$/2

)
,

(c) X$ +

(
Xe +

X£

Se£ + ∆e£/2

)(
Se$ −∆e$/2

)
.

(7.42)

The three strategies are equivalent if we have

(i)
(
Se$ −∆e$/2

)
=
(
Se£ −∆e£/2

)(
S£$ −∆£$/2

)
(ii)

Se$ −∆e$/2

Se£ + ∆e£/2
=
(
S£$ −∆£$/2

)
⇒ Se$ −∆e$/2 =

(
Se£ + ∆e£/2

)(
S£$ −∆£$/2

)
.

(7.43)

The above conditions hold true simultaneously if and only if ∆e£/2 = 0,

which contradicts the hypothesis of the existence of bid and ask quotes for

all three currency pairs.

2. If Xe < 0 and X£ < 0, then the three liquidation alternatives are

(a) X$ +Xe
(
Se$ + ∆e$/2

)
+XU

(
S£$ + ∆£$/2

)
,

(b) X$ +
(
Xe
(
Se£ + ∆e£/2

)
+X£

)(
S£$ + ∆£$/2

)
,

(c) X$ +

(
Xe +

X£

Se£ −∆e£/2

)(
Se$ + ∆e$/2

)
.

(7.44)

The three strategies are equivalent if simultaneously we have

(i)
(
Se$ + ∆e$/2

)
=
(
Se£ + ∆e£/2

)(
S£$ + ∆£$/2

)
(ii)

Se$ + ∆e$/2

Se£ −∆e£/2
=
(
S£$ + ∆£$/2

)
⇒ Se$ + ∆e$/2 =

(
Se£ −∆e£/2

)(
S£$ + ∆£$/2

)
.

(7.45)

The above conditions hold true if and only if ∆e£/2 = 0, which contradicts

the hypothesis of the existence of bid and ask quotes for all three currency

pairs.
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3. If Xe > 0 and X£ < 0, then the three liquidation alternatives are

(a) X$ +Xe
(
Se$ −∆e$/2

)
+X£

(
S£$ + ∆£$/2

)
,

(b)

(b1) X$ +
( >0︷ ︸︸ ︷
Xe
(
Se£ −∆e£/2

)
+X£

)(
S£$ −∆£$/2

)
,

(b2) X$ +
( <0︷ ︸︸ ︷
Xe
(
Se£ −∆e£/2

)
+X£

)(
S£$ + ∆£$/2

)
,

(c)

(c1) X$ +

(
Xe +

X£

Se£ −∆e£/2

)
︸ ︷︷ ︸

>0

(
Se$ −∆e$/2

)
,

(c2) X$ +

(
Xe +

X£

Se£ −∆e£/2

)
︸ ︷︷ ︸

<0

(
Se$ + ∆e$/2

)
.

(7.46)

First, we note that condition (b1) can only happen together with condition

(c1) and, analogously, (b2) with condition (c2). We start by considering

the triplet (a), (b1) and (c1) and we get

(i) Se$ −∆e$/2 =
(
Se£ −∆e£/2

)(
S£$ + ∆£$/2

)
(ii) Xe

(
Se£ −∆e£/2

)(
S£$ −∆£$/2

)
+X£

(
S£$ −∆£$/2

)
= Xe

(
Se$ −∆e$/2

)
+X£ S

e$ −∆e$/2

Se£ −∆e£/2

(7.47)

In condition (ii) we can compare coefficients since we want the conditions

to be independent of the specific levels of the inventories Xe and X£.

Condition (ii) thus reduces to

(
Se£ −∆e£/2

)(
S£$ −∆£$/2

)
=
(
Se$ −∆e$/2

)
. (7.48)

Conditions (i) and (ii) hold simultaneously if ∆£$/2 = 0. For the triplet

(a), (b2) and (c2) analogous considerations hold and the three alternatives

are equivalent if ∆e$/2 = 0.
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4. If Xe < 0 and X£ > 0, then the three liquidation alternatives are

(a) X$ +Xe
(
Se$ + ∆e$/2

)
+X£

(
S£$ −∆£$/2

)
,

(b)

(b1) X$ +
( >0︷ ︸︸ ︷
Xe
(
Se£ + ∆e£/2

)
+X£

)(
S£$ −∆£$/2

)
,

(b2) X$ +
( <0︷ ︸︸ ︷
Xe
(
Se£ + ∆e£/2

)
+X£

)(
S£$ + ∆£$/2

)
,

(c)

(c1) X$ +

(
Xe +

X£

Se£ + ∆e£/2

)
︸ ︷︷ ︸

>0

(
Se$ −∆e$/2

)
,

(c2) X$ +

(
Xe +

X£

Se£ + ∆e£/2

)
︸ ︷︷ ︸

<0

(
Se$ + ∆e$/2

)
.

(7.49)

We can proceed as in point 3 to find analogous results on ∆£$/2 and ∆e$/2.

Wrapping up, we can state that if ∆e$/2, ∆£$/2 and ∆e£/2 are strictly positive,

than the three alternatives need not to be identical.
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