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Huntington’s disease blood and 
brain show a common gene 
expression pattern and share an 
immune signature with Alzheimer’s 
disease
Davina J. Hensman Moss1,#, Michael D. Flower1,#, Kitty K. Lo2, James R. C. Miller1, 
Gert-Jan B. van Ommen3, Peter A. C. ’t Hoen3, Timothy C. Stone4, Amelia Guinee5, 
Douglas R. Langbehn6, Lesley Jones4, Vincent Plagnol2, Willeke M. C. van Roon-Mom3, 
Peter Holmans4,* & Sarah J. Tabrizi1,*

There is widespread transcriptional dysregulation in Huntington’s disease (HD) brain, but analysis is 
inevitably limited by advanced disease and postmortem changes. However, mutant HTT is ubiquitously 
expressed and acts systemically, meaning blood, which is readily available and contains cells that are 
dysfunctional in HD, could act as a surrogate for brain tissue. We conducted an RNA-Seq transcriptomic 
analysis using whole blood from two HD cohorts, and performed gene set enrichment analysis using 
public databases and weighted correlation network analysis modules from HD and control brain 
datasets. We identified dysregulated gene sets in blood that replicated in the independent cohorts, 
correlated with disease severity, corresponded to the most significantly dysregulated modules in 
the HD caudate, the most prominently affected brain region, and significantly overlapped with the 
transcriptional signature of HD myeloid cells. High-throughput sequencing technologies and use of 
gene sets likely surmounted the limitations of previously inconsistent HD blood expression studies. 
Our results suggest transcription is disrupted in peripheral cells in HD through mechanisms that parallel 
those in brain. Immune upregulation in HD overlapped with Alzheimer’s disease, suggesting a common 
pathogenic mechanism involving macrophage phagocytosis and microglial synaptic pruning, and raises 
the potential for shared therapeutic approaches.

Huntington’s disease (HD), the most common monogenic neurodegenerative disorder in the developed world1, 
is caused by a CAG repeat expansion in the HTT gene and is characterised by motor, cognitive and psychiatric 
features. Onset occurs around 45 years on average and inversely correlates with CAG repeat length2. The disease 
progresses inexorably and, with the exception of late-onset cases, is uniformly fatal a median of 18 years from 
motor onset3. HD is currently incurable and no treatments slow progression.

HD research has traditionally focused on the brain due to the presence of characteristic mutant huntingtin 
protein aggregates4 and because the prominent symptoms and signs can be linked to neurodegeneration in the 
basal ganglia and cerebral cortex5. However, mutant HTT is ubiquitously expressed6 and mounting evidence sug-
gests it has direct effects in peripheral tissues5,7, though whether these effects are distinct, or parallel those in the 
brain remains unclear. HD patients demonstrate peripheral immune dysfunction presymptomatically8–11, as well 
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as weight loss that leads to cachexia with advancing disease7. There is progressive muscle wasting12, endocrine 
dysfunction13 liver impairment7, and cardiac dysfunction14–16. Mutant HTT protein aggregates can be found in 
the peripheral tissues of HD mice17, as well as advanced patients18. These peripheral features may contribute to 
CNS pathology, disease progression and mortality5,7, and strongly suggest that HD is a systemic disorder. This 
peripheral phenotype provides an opportunity to study mutant huntingtin’s pathogenic mechanisms. In contrast 
to brain tissue, availability of which is limited and from post-mortem subjects with end-stage disease19,20, periph-
eral tissues can be sampled minimally invasively and inexpensively from living patients, enabling longitudinal 
study throughout disease course.

Transcriptional dysregulation is a central feature of HD pathogenesis21. However, studies of gene expression 
changes in HD blood have been inconsistent. Using microarray technology, Borovecki, et al.22 identified 12 upreg-
ulated transcripts, seven of which were also upregulated in brain. However, subsequent studies did not replicate 
these results23–25. Using tag-based serial analysis of gene expression (SAGE), Mastrokolias, et al.25 found 167 genes 
differentially expressed by motor score, 40 of which had previously been reported in at least one microarray study.

In the current study we present a transcriptomic analysis of whole blood in human HD using RNA sequenc-
ing (RNA-Seq). We studied differential expression of individual gene transcripts and enrichment of differential 
expression in gene sets in two independent cohorts from Track-HD26 and Leiden. We then investigated whether 
transcriptional changes seen in blood parallel those from previous studies in HD brain. There was significant 
dysregulation of brain Weighted Gene Correlation Network Analysis (WGCNA) modules in the same direction 
in blood, as well as significant dysregulation of pathways. Immune gene sets were notably upregulated in both 
analyses and this signal overlapped with the transcriptional signature of Alzheimer’s disease (AD) brain.

Results
No differential expression of individual transcripts in HD whole blood between disease stages 
or states. Attempting to identify both HD specific and stage-specific changes in gene expression (mRNA) 
level, we compared premanifest, manifest and control subjects, whilst controlling for age and gender. Premanifest 
gene carriers had a mean total motor score (TMS) of 2 and total functional capacity (TFC) of 13 (Table 1), indicat-
ing no substantial motor signs. Manifest subjects demonstrated motor abnormalities that were unequivocal signs 
of HD. No transcripts were significantly differentially expressed (FDR <  0.05) between premanifest and manifest 
HD in either the Track-HD26 or the independently collected Leiden cohort, or when these cohorts were combined 
(results not shown). As expression changes did not differ significantly between disease stages, all mutant HTT 
gene carriers were combined to increase the analytical power in a comparison of HD and controls. Once again 
there were no individually significant transcripts in independent or combined cohorts, but the differential expres-
sion analysis in the combined cohort is given in Table S1.

Pathways are dysregulated in HD blood compared with controls. We next asked whether networks 
of genes with similar functional annotation were dysregulated in HD relative to controls. Pathway annotations 
were collated from publicly available gene ontology databases to form a set of generic pathways using the same 
method as the recent HD genome-wide association study (GWAS) of modifiers of age at onset27 (see Materials 
and Methods). The number of pathways significantly dysregulated in both Track-HD and Leiden blood data-
sets was significantly higher than would be expected by chance (Table 2). Our findings indicate shared biology 
between the two independent cohorts despite differences in demographic and disease stage; Leiden subjects were 
on average 7 years older and had correspondingly higher TMS (mean 32 versus 14 in Track-HD) and lower TFC 
(mean 8 versus 12 in Track-HD). The significance of the overlap was greatly increased in analyses specifying the 
direction of dysregulation (increased or decreased expression) (Table 2). Therefore, directional analyses were 
used in the combined dataset as the primary analysis.

Cohort Group n
Mean age, 

y ± SD (range)
Gender 

(male/female)
Mean (CAG)n 

length ± SD (range)
Mean TMS ± SD 

(range)
Mean TFC ± SD 

(range)

Track-HD

Premanifest 50 42 ±  9 (22–64) 24/26 43 ±  3 (39–52) 2 ±  2 (0–8) 13 ±  0 (12–13)

Manifest 62 48 ±  10 (23–64) 26/36 44 ±  3 (39–59) 23 ±  11 (5–45) 11 ±  2 (7–13)

HD 112 46 ±  10 (22–64) 50/62 44 ±  3 (39–59) 14 ±  13 (0–45) 12 ±  2 (7–13)

Control 22 45 ±  5 (34–53) 9/13 — — —

Leiden

Premanifest 18 46 ±  10 (29–63) 5/13 42 ±  2 (39–47) 3 ±  2 (0–5) 12 ±  1 (10–13)

Manifest 56 55 ±  11 (35–79) 29/27 44 ±  3 (39–53) 42 ±  30 (6–102) 7 ±  5 (0–13)

HD 74 53 ±  11 (29–79) 34/40 44 ±  3 (39–53) 32 ±  31 (0–102) 8 ±  5 (0–13)

Control 27 43 ±  11 (26–65) 13/14 — — —

Combined
HD 186 48 ±  11 (22–79) 84/102 44 ±  3 (39–59) 21 ±  24 (0–102) 10 ±  4 (0–13)

Control 49 44 ±  9 (26–65) 22/27 — — —

Table 1.  Track-HD and Leiden cohorts for RNA-Seq analysis. Manifest subjects demonstrated motor 
abnormalities that were unequivocal signs of HD. Premanifest gene carriers had a total motor score of 5 or 
lower and a diagnostic confidence score (DCS) less than 4 on the UHDRS, indicating no substantial motor 
signs. The HD group consists of the combined premanifest and manifest subjects. Controls were matched for age 
and gender. Age and clinical scores considered for the analysis were at time of blood collection. SD – standard 
deviation; TFC – Total Functional Capacity; TMS – Total Motor Score.
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Gene set enrichment analysis (GSEA), with a false discovery rate (q-value) threshold of q <  0.05 to correct for 
multiple testing, identified 53 upregulated (Fig. 1 and Table S2) and 14 downregulated pathways (Fig. 2 and Table S3 )  
that are at least nominally significant in both cohorts. Multiple immune-related pathways were upregulated, 
and RNA processing, ATP metabolism and DNA repair were notably downregulated. The 10 most significant 
pathways for each direction of dysregulation are given in Table 3 and the full list of significant pathways in 
Tables S2 and S3. The 10 most dysregulated genes (p <  0.01) from the significantly up or downregulated generic 
pathways (q <  0.05) are listed in Table S4, and a complete list of genes (p <  0.05) in all nominally significant 
pathways (p <  0.05) is given in Table S5. Notably, the significantly upregulated pathways contain some of the 
most differentially expressed transcripts (Table S1), with several more contained in pathways reaching nominal 
significance (p <  0.05) for dysregulation (Table S5). Genes highlighted by MGI pathways appear distinct from 
other pathway databases, likely because they are based on knockout studies in mice.

Pathway dysregulation in HD whole blood overlaps with HD myeloid cells. Through RNA-Seq, 
Miller, et al.28 identified transcriptional dysregulation in unstimulated monocytes from HD cases relative to con-
trols. Their GSEA used the same set of generic pathways used here. We found a significant excess of pathways to 
be significantly (p <  0.05) enriched for dysregulation in both Miller, et al.28 and the combined TRACK-HD and 
Leiden whole blood data (Table S6). This overlap was attributable to a significant excess of pathways enriched for 
upregulation in both datasets. Overlap in downregulated pathways was not significantly larger than expected by 
chance. Pathways significantly (p <  0.05) enriched for up and downregulation in both myeloid and whole blood 
are listed in Tables S7 and S8. Pathways that are significantly enriched for upregulation relate mainly to immunity.

Gene co-expression modules from HD striatum are significantly enriched for dysregulation in 
HD blood. A limitation of using curated pathways from databases is the incomplete or incorrect annotation. 
One way to overcome this is to use gene co-expression, because genes that are co-expressed often have related 
functions. WGCNA identifies clusters (modules) of genes with highly correlated expression, constructing orig-
inal, unbiased gene co-expression networks based on observed data29. HD brain expression modules were gen-
erated by Neueder and Bates30, who applied WGCNA to Hodges, et al.31 data and annotated each module that 
was associated with HD disease status. To further fill the annotation gap and better define functional biological 
pathways, we generated co-expression modules for control brain from the Braineac32 and Gibbs, et al.33 datasets.

GSEA for brain co-expression modules was applied to our combined Track-HD and Leiden blood expres-
sion dataset. Immune- and inflammatory-related brain modules were upregulated in HD blood, and notable 
downregulated modules included synaptic function, proteasomal degradation, mitochondrial function and  
transcription. The 10 most significantly up and downregulated modules in the combined dataset that were also 
nominally significant (p <  0.05) in both independent cohorts are given in Table 4, and the full list of modules 
nominally significant in both datasets in Table S9. A list of genes from the modules in Table S9 that are them-
selves nominally significantly dysregulated (p <  0.05) in the combined dataset is given in Table S10. In addition 
to reinforcing the biological conclusions from our pathway analysis, the significantly dysregulated modules from 
Table 4 also share genes with the top pathways, as shown in Supplementary Figures S1 and S2. We then investi-
gated whether gene sets that are dysregulated in HD brain30 are also disrupted in peripheral blood. Table 5 lists 
the modules that were significantly dysregulated (after correcting for multiple testing of modules) in both HD 
brain30 and in our combined Track-HD and Leiden blood expression dataset. The direction of dysregulation in 
brain is shown by the correlation between the module eigengene and HD status (with a positive correlation cor-
responding to upregulation in the HD brain). Notably, two of the most significantly dysregulated modules in HD 
caudate30 were also significantly dysregulated in the same direction in blood (Table 5), not only in the combined 
dataset, but in each of the Track-HD and Leiden datasets independently; these being module 48 (CNpos2), which 
is upregulated in HD, and module 66 (CNneg1), which is downregulated.

The module membership (kME) of a gene is measured by the correlation of its expression with the eigengene, 
which is representative of all gene expression profiles in the module 34; highly connected ‘hub’ genes have high 

Reference 
dataset

Comparison 
dataset

Direction of 
dysregulation in HD

Number of pathways significant in both datasets (p 
value)

Generic pathways HD brain modules
Control brain 

modules

Leiden Track-HD

Nondirectional 69 (4.6E-02) — —

Downregulated 130 (< 1.0E-03) 4 (1.1E-01) 24 (< 1.0E-03)

Upregulated 219 (< 1.0E-03) 9 (< 1.0E-03) 23 (< 1.0E-03)

Track-HD Leiden

Nondirectional 69 (1.4E-01) — —

Downregulated 130 (1.7E-02) 4 (3.5E-02) 24 (< 1.0E-03)

Upregulated 217 (< 1.0E-03) 10 (< 1.0E-03) 21 (< 1.0E-03)

Table 2.  Overlap analysis of Track-HD and Leiden cohorts shows that a significant excess of pathways 
are associated with HD (p < 0.05) in both datasets. Significance of overlap is greatest when directionality is 
taken into account. There is an excess of significantly enriched pathways and modules in the reference dataset 
conditional on the pathway being enriched (p <  0.05) in the comparison dataset. The generic pathways gene 
set is collated from publicly-available databases including GO and KEGG. HD brain modules are derived from 
Neueder and Bates30. Control brain modules are from the Braineac32 and Gibbs, et al.33 expression datasets.



www.nature.com/scientificreports/

4Scientific RepoRts | 7:44849 | DOI: 10.1038/srep44849

Figure 1. Upregulated pathways in HD versus control blood. Schematic representation of pathways collated 
from publicly available databases that are significantly upregulated in HD versus controls after correction 
for multiple testing (q <  0.05). Modules with similar gene content and functional annotation have been 
consolidated. Nodal shading is inversely proportional to false discovery rate threshold (q value); deep shades 
have low q values and pale shading is close to the 5% threshold. The weight of connecting lines is proportional 
to the number of genes shared between pathways.

Figure 2. Downregulated pathways in HD versus control blood. Schematic representation of pathways 
collated from publicly available databases that are significantly downregulated in HD versus controls after 
correction for multiple testing (q <  0.05). Modules with similar gene content and functional annotation have 
been consolidated. Nodal shading is inversely proportional to false discovery rate threshold (q value); deep 
shades have low q values and pale shading is close to the 5% threshold. The weight of connecting lines is 
proportional to the number of genes shared between pathways.
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kME values. Interestingly, among genes in module 48 (CNpos2), the Neueder and Bates30 HD caudate module 
that was also significantly upregulated in blood, there was a significant (p =  7.6 ×  10–4) correlation between dys-
regulation p-value in the direction of interest (positive) in HD blood and degree of module membership (kME)30. 
This suggests that highly connected “hub” genes in this module may play a role in transcriptional dysregulation 
in HD. A similar, although much stronger, effect was noted in caudate30. There was no significant correlation in 
module 66 (CNneg1). Genes in module 48 (CNpos2) that are dysregulated (p <  0.05) in both blood and caudate 
are shown in Table S11, ranked by their kME value.

Expression changes in HD blood replicate those in HD prefrontal cortex. Labadorf, et al.35 iden-
tified dysregulated expression of immune and developmental genes in human HD postmortem prefrontal cortex 
(BA9). Fold changes in expression of individual genes in the combined Track-HD and Leiden data were compared 
to those observed in Labadorf, et al.35, and were found to be in the same direction for 8,425 out of the 15,834 
genes present in both datasets. This is a highly significant (p <  2.2 ×  10−16) excess (see Materials and Methods), 
suggesting some concordance in signal at the individual gene level. Furthermore, a significant excess of generic 
pathways was found to be significantly (p <  0.05) dysregulated in both datasets, most markedly in the positive 
(p <  0.001) direction, but also negative (p =  0.028), thus showing an overlap in biological signal. Pathways signif-
icantly upregulated in both datasets are mainly related to immune response (Table S12), a pattern also observed 
in the upregulated brain co-expression modules (Table S13). Pathways downregulated in both datasets are shown 
in Table S14, with modules in Table S15. Notably, several modules related to the synapse and neuron projection 
are downregulated in both datasets. The two HD-related caudate modules from Neueder and Bates30 that were 
significantly dysregulated in blood were also significantly dysregulated in the same direction in Labadorf, et 
al.35. Module 48 (CNpos2) was significantly upregulated (p <  1 ×  10−16, Table S13) and module 66 (CNneg1) 
significantly downregulated (p <  1 ×  10−16, Table S15), as are several other significant modules from Neueder 
and Bates30.

Pathways dysregulated in the blood of HD subjects are associated with motor score. We inves-
tigated the effect of disease severity by testing for correlation between gene expression and UHDRS total motor 

Direction of 
dysregulation in HD Pathway

Number of 
dysregulated genes p (combined) q (combined) p (Track-HD) p (Leiden) Description

Upregulated

MGI: 2419 434 3.03E-10 4.32E-06 5.10E-05 3.01E-05 Abnormal Innate 
Immunity

MGI: 3009 432 5.78E-09 4.13E-05 5.96E-06 1.65E-04 Abnormal Cytokine 
Secretion

GO: 50792 117 2.59E-08 1.23E-04 1.12E-02 7.24E-05 Regulation Of Viral 
Process

GO: 9615 208 1.22E-07 4.36E-04 3.06E-02 5.34E-06 Response To Virus

MGI: 2451 278 1.68E-07 4.80E-04 1.26E-02 9.51E-06 Abnormal Macrophage 
Physiology

GO: 19221 308 2.38E-07 5.45E-04 4.60E-05 1.71E-04 Cytokine-Mediated 
Signaling Pathway

GO: 2252 365 3.10E-07 5.45E-04 7.01E-03 1.14E-04 Immune Effector 
Process

MGI: 5025 406 3.44E-07 5.45E-04 5.91E-05 2.02E-04 Abnormal Response To 
Infection

MGI: 1793 372 4.33E-07 5.82E-04 5.93E-05 2.42E-04 Altered Susceptibility To 
Infection

MGI: 8568 305 4.49E-07 5.82E-04 4.79E-05 6.25E-05 Abnormal Interleukin 
Secretion

Downregulated

GO: 8380 282 5.22E-08 7.45E-04 4.25E-05 7.24E-05 RNA splicing

GO: 6397 359 2.38E-07 1.70E-03 1.48E-04 4.14E-04 mRNA processing

GO: 16887 329 1.37E-06 5.48E-03 1.96E-04 3.34E-02 ATPase activity

GO: 6200 333 1.54E-06 5.48E-03 2.42E-04 3.36E-02 ATP catabolic process

GO: 46034 361 5.36E-06 1.53E-02 1.74E-04 4.45E-02 ATP metabolic process

GO: 16607 144 9.06E-06 2.15E-02 4.68E-04 4.61E-03 Nuclear speck

GO: 6281 356 1.66E-05 2.75E-02 2.00E-03 1.18E-04 DNA repair

GO: 16604 271 2.08E-05 2.75E-02 5.59E-03 2.46E-03 Nuclear Body

GO: 4386 135 2.12E-05 2.75E-02 2.83E-02 4.81E-02 Helicase Activity

GO: 375 184 2.40E-05 2.86E-02 1.14E-03 2.05E-03
RNA splicing, via 
transesterification 

reactions

Table 3.  The 10 most significantly up and downregulated ‘generic’ pathways in HD versus control blood 
GSEA. A total of 14,706 Generic pathways, each containing between 3 and 500 genes, were collated from 
publicly-available databases including GO and KEGG. Pathways are significantly dysregulated after multiple 
testing correction (q <  0.05). Enrichment p values in the current study for the Track-HD, Leiden and combined 
datasets are shown.
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score (TMS) in the 112 gene positive Track-HD subjects (Table S16). After correcting for multiple testing, expres-
sion of phosphatidylcholine transfer protein (PCTP) was significantly positively correlated with TMS. However, 
this gene was not found to be significantly correlated with TMS by Mastrokolias et al.25.

We then tested whether generic pathways that were significantly enriched for upregulated (Table S2) 
or downregulated (Table S3) genes, also enriched for genes correlated with TMS in the expected direction 
(Tables S17 and S18) using a similar method to that previously used to test for enrichment of differentially 
expressed genes. Several immune related pathways were positively correlated with TMS, including MGI:2419, the 
most significantly dysregulated pathway in HD blood (Table S2). Downregulated pathways that correlated with 
TMS were related to ATP metabolism and DNA repair.

Similarly, we tested whether modules dysregulated in HD blood relative to controls (Table S9) also correlated 
with TMS in the expected direction (Table S19). Many modules significantly correlated with TMS, including 68 
(CNpos5; p =  5.52 ×  10−7) and 66 (CNneg1; p =  1.05 ×  10−7), which were also dysregulated in the HD caudate30.

Direction of 
dysregulation 
in HD

Brain expression 
gene set Module Brain region Annotation

Number 
of genes p (Combined) p (Track-HD) p (Leiden)

Upregulated

HD 111 FC BA9 Immune response 514 7.8E-12 1.3E-04 7.5E-05

HD 69 (FC4pos1) FC BA4 Inflammatory response 712 3.8E-08 3.1E-05 1.3E-03

Control (Braineac) 712 TCTX Inflammatory response 213 1.4E-07 3.4E-05 8.1E-04

HD 48 (CNpos2)* CN Lipid metabolism/regulation of transcription 1785 2.0E-07 3.9E-03 6.3E-03

Control (Braineac) 110 FCTX Inflammatory response 173 8.9E-07 1.0E-03 2.5E-03

Control (Braineac) 909 White Matter Activation of immune response 265 2.1E-06 1.2E-03 2.5E-02

Control (Braineac) 610 Substantia Nigra Inflammatory response 178 1.2E-05 8.6E-04 5.6E-04

Control (Braineac) 811 Thalamus Inflammatory response 142 1.6E-05 3.9E-03 2.9E-03

Control (Gibbs) 56 Pons Lipoprotein/ immune response /GTPase 
regulator activity 207 2.0E-05 2.4E-04 4.2E-02

Control (Braineac) 911 White Matter Inflammatory response 159 3.0E-05 8.4E-04 1.4E-02

Downregulated

Control (Gibbs) 22 CB Pro-rich region 831 1.8E-08 2.5E-03 2.1E-02

Control (Gibbs) 28 FC Intra-cellular transport/mitochondrion 3178 2.1E-08 6.3E-04 7.7E-05

Control (Braineac) 304 Medulla mRNA metabolic process 1811 2.9E-08 5.0E-15 4.0E-02

HD 66 (CNneg1)* CN Synapse/ion channels 2645 2.7E-07 1.5E-04 2.1E-02

Control (Braineac) 804 Thalamus Regulation of cell morphogenesis 857 1.3E-06 4.0E-02 4.1E-04

Control (Braineac) 522 Putamen Regulation of RNA splicing 64 4.4E-06 6.3E-03 2.7E-04

Control (Gibbs) 74 Pons Transcription/acetylation/protein transport 1183 9.2E-06 3.9E-08 7.4E-04

Control (Braineac) 702 TCTX Antigen processing: ubiquitination and 
proteasome degradation 4602 3.9E-04 1.2E-03 2.5E-02

Control (Gibbs) 48 FC Transcription corepressor/cell morphogenesis 648 4.7E-04 7.8E-03 2.1E-02

Control (Braineac) 202 Hippocampus Mitochondrial membrane 2737 4.8E-04 1.2E-07 1.5E-02

Table 4.  The 10 most significantly up and downregulated WGCNA brain expression modules in HD versus 
control blood. All modules in this table are significantly dysregulated after correction for multiple testing 
(q <  0.05) in the combined blood sample. HD brain modules were defined by Neueder and Bates30, and Control 
brain modules were generated from Braineac32 and Gibbs, et al.33. Neueder and Bates30 module identifiers are 
given in brackets where available. *Denotes the caudate modules that were highly positively and negatively 
Neueder and Bates30. CN – caudate nucleus; FC – frontal cortex; FC BA4 – BA4 region of the frontal cortex; FC 
BA9 – BA9 region of the frontal cortex; CB – cerebellum; TCTX – temporal cortex.

Module 
number

Brain 
Region

Module 
name

Number 
of genes

p 
(combined)

p 
(TRACK) p (Leiden)

cor (HD 
brain)

p (HD 
brain) Description

69 FC_BA4 FC4pos1 712 3.77E-08 3.05E-05 1.32E-03 0.610 3.77E-03 Inflammatory response

48 CN CNpos2 1785 2.03E-07 3.85E-03 6.33E-03 0.724 2.21E-11 Lipid metabolism/
regulation of transcription

64 CN CNpos6 114 3.13E-04 1.18E-02 3.80E-02 0.463 2.28E-04 Inflammatory response

66 CN CNneg1 2644 2.71E-07 1.51E-04 2.13E-02 − 0.800 6.03E-15 Synapse

Table 5.  Brain expression modules significantly dysregulated both in HD brain and HD blood. All 
modules in this table are significantly dysregulated after correction for multiple testing (q <  0.05) in the 
combined blood sample, and are nominally significantly dysregulated (p <  0.05) in both Track-HD and Leiden 
datasets separately. Cor(HD brain) – the correlation between module eigengene and HD status observed by 
Neueder and Bates30 in brain expression data, with a positive correlation corresponding to upregulation in HD. 
p(HD brain) is the p-value for that correlation (corrected for multiple testing of modules).
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Mastrokolias et al.25 listed 170 genes significantly associated with TMS, of which 142 passed quality control 
in our RNA-Seq data. We tested for correlation between these genes and TMS in gene positive subjects from the 
Track-HD cohort (Table S20). 14 genes were nominally significant (p <  0.05), which is significantly higher than 
expected by chance (p =  7.89 ×  10−3). Using the same method as for concordance with Labadorf, et al.35 (see 
Materials and Methods), we compared fold changes in expression of individual genes between Track-HD and 
Mastrokolias et al.25 Strikingly, 101 genes showed consistent direction of effect, as measured by log(FC), signifi-
cantly greater than expected by chance (p =  4.78 ×  10−7). Thus, we conclude that analysis of TMS in the Track-HD 
cohort broadly supported the associations reported in Mastrokolias et al.25.

The Alzheimer’s disease brain transcriptional signature is significantly dysregulated in HD 
blood. In Alzheimer’s disease, an early inflammatory response involving microglia contributes to pathogen-
esis36–38. Given the upregulation of immune-related gene sets in HD, we next asked whether co-expression mod-
ules dysregulated in Alzheimer’s disease (AD) brain were also disrupted in HD blood. Recently the International 
Genomics of Alzheimer’s Disease Consortium (IGAP) identified four modules from the Gibbs, et al.33 brain 
co-expression network that showed enrichment of signal in the GWAS of > 70,000 late-onset Alzheimer’s disease 
(LOAD) and control subjects39. These four modules, each derived from a different brain region, are all involved 
in the immune response and were all significantly upregulated in our combined HD blood dataset (Table S21). 
Module 56, derived from pontine data, was also significantly enriched in both Track-HD and Leiden datasets 
independently. IGAP identified 151 genes that were present in two or more of these modules and showed the 
most significant enrichment with LOAD GWAS signal39. These 151 genes were also significantly enriched for 
upregulation in the combined HD blood dataset (p =  2.50 ×  10−4).

Zhang, et al.40 identified co-expression modules that were differentially connected between LOAD and 
controls. Ten of these were also significantly enriched for upregulation in our HD blood expression dataset 
(Table S22) after correction for multiple testing (q <  0.05), with their most significant module, yellow, being par-
ticularly highly enriched (combined Track-HD and Leiden p <  1 ×  10−16). Notably, this module has immune and 
microglia-specific functions40. This enrichment for modules from the IGAP GWAS39 and Zhang, et al.40 in the 
HD blood transcriptome suggests a shared immune-related mechanism between different neurodegenerative 
diseases, at least including HD and Alzheimer’s disease.

Discussion
HD research has focused on the brain as the most conspicuous clinical features can be clearly linked to progres-
sive degeneration of specific brain regions4,5. However, HD is a systemic condition with peripheral expression 
of mutant huntingtin directly driving abnormalities such as immune dysfunction, metabolic derangement and 
transcriptional dysregulation that contribute to onset, progression, quality of life and mortality5,7.

We conducted RNA-Seq of whole blood in two independent cohorts of HD patients. Using gene set enrich-
ment analysis (GSEA) with publicly-available pathway databases and WGCNA modules from HD and control 
brain datasets, we identified dysregulated genes and gene sets in blood that replicated in both independent 
cohorts and correlated with clinical motor signs (TMS). These correspond to the most significantly dysregulated 
modules in caudate nucleus, the most prominently affected region in HD brain. This suggests mutant huntingtin 
drives a common pathogenic signature in both blood and brain.

RNA-Seq more comprehensively and accurately quantifies mRNA than hybridisation-based microarrays or 
tag-based methods41. Expression of phosphatidylcholine transfer protein (PCTP) significantly correlated with 
TMS (Table S16). This protein transports phospholipids across intracellular membranes, which is of interest given 
the upregulation of lipid metabolic modules identified above (Tables 4 and 5) and increasing evidence for a patho-
logical interaction between mutant huntingtin and membrane phospholipids42. However, PCTP was not signif-
icantly correlated with TMS in Mastrokolias et al.25. It is perhaps unsurprising that there was limited differential 
expression of individual transcripts by disease state (Table S1) or severity in either the independent or combined 
cohorts; the major cell types known to contribute to symptoms are not present in blood and the haematogenous 
cells known to be dysfunctional in HD, such as monocytes and macrophages9,43, constitute only a small propor-
tion of circulating cells44. The variation of gene expression in blood with age, gender, cell type and time of day is 
also likely to contribute44,45. Our results are consistent with previous studies that have shown weak correlation at 
the transcript level between blood and brain46.

Despite these limitations, gene set enrichment analysis identified significantly overlapping dysregulated path-
ways in the Track-HD and Leiden HD blood datasets, even though they differed in age and disease severity. Thus, 
through grouping transcripts into biologically relevant pathways and co-expressed transcripts, we could highlight 
areas of dysfunctional biology in HD. The observed upregulation of immune-related pathways is consistent with 
that previously identified in transcriptional and functional studies5,7,25. HD patients are known to have immune 
dysfunction, both in the central nervous system (CNS) with microglial activation8, and peripherally with elevated 
proinflammatory cytokines in premanifest carriers up to 16 years before predicted onset9,43. The migration of 
phagocytic cells is impaired in HD10,11 and patient-derived monocytes are hyperactive on stimulation, an effect 
reduced by HTT lowering9. Modulation of the peripheral immune system with a type 2 cannabinoid receptor 
(CB2) agonist47 or bone marrow transplantation48 can increase lifespan and reduce motor deficits and synaptic 
loss in HD mouse models.

RNA processing pathways were downregulated, which is congruent with known decreases in miRNAs and 
altered expression of key miRNA processing enzymes in HD49. Consistent with the downregulation of pathways 
involved in energy metabolism that we observe, mitochondrial ATP is known to be reduced in HD brain50 and 
blood51, and PGC-1α, a member of the dysregulated ATP metabolic process pathway (Tables 3, S14 and S18), is 
a key protective regulator of mitochondrial genes that is repressed HD mouse models52,53. Downregulation of 
genes involved in DNA repair is likely to be relevant to somatic expansion that may influence disease onset and 
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progression54. The signature of pathway dysregulation we identified in HD whole blood correlates with TMS in 
HD subjects from Track-HD. It also significantly overlaps with that recently found in unstimulated HD mono-
cytes28. This enrichment was driven primarily by upregulation of immune pathways, as might be expected given 
that Miller, et al.28 isolated myeloid cells.

To overcome the annotation gap commonly observed with publicly-derived pathway databases and to investi-
gate whether gene expression changes from HD brain are also present in blood, we performed GSEA using brain 
co-expression networks derived from HD30 and control32,33 subjects. Several HD brain modules were significantly 
dysregulated in HD blood, suggesting a common signature of transcriptional dysregulation between blood and 
brain.

Brain modules upregulated in blood were enriched for immune-related genes, confirming the results of our 
pathway analysis. Strikingly, two of the modules most significantly dysregulated in HD caudate, 48 (CNpos2) 
and 66 (CNneg1), were also significantly dysregulated in the same direction in both independent blood datasets. 
Compared with other brain regions, the caudate has the largest number of expression changes and the highest 
correlation with HD30. Module 48 (CNpos2), the second most significantly upregulated module in caudate, is 
enriched for transcriptional regulators, chromatin modifiers and genes involved in mRNA processing30. We also 
find this module to be significantly enriched for immune response genes, giving further support to the pathway 
results. Module 66 (CNneg1), the most significantly downregulated module in caudate, contains genes involved 
in neuronal function, particularly synaptic function and plasticity, and ion channels. Around half of its hub genes 
are implicated in synaptic function and all were significantly downregulated in Hodges, et al.31. Though synapses 
are not present in blood, synaptic genes may be dysregulated in circulating cells without significant pathogenic 
impact, or alternatively they may serve distinct functions in blood cells. Indeed, Cai, et al.46 found that the syn-
aptic module was well preserved between brain and blood. We also found that gene expression and pathway 
dysregulation from HD prefrontal cortex35 was replicated in HD blood. The high degree of replication increases 
confidence in the shared signal between blood and brain. A significant proportion of the modules dysregulated 
in HD blood correlated with TMS.

Our demonstration of a transcriptional signature common to both HD blood and brain supports the use of 
blood cells to study aspects of HD biology. HD model systems, such as mice, only recapitulate aspects of disease 
and must be compared to the relevant data in human tissue55,56. Access to brain tissue is very limited and tends to 
be from post-mortem subjects with advanced disease, which affects RNA integrity19,20. Blood, by contrast, is read-
ily available and can be obtained longitudinally from HD subjects. Recently, Mina, et al.57 performed WGCNA on 
the Leiden blood sample, finding modules related to immune response that were associated with TFC and TMS. 
Furthermore, by comparing biological annotations of their HD blood modules with those they derived from 
Hodges, et al.31 brain expression data, they showed a common signature between blood and caudate related to 
immune response. These analyses, using different methodology to ours, lend further support to our conclusions.

In AD, amyloid plaques are surrounded by chronically activated microglia36,37 and GWA studies have iden-
tified immune-related genes as risk factors for LOAD58. Recently Hong, et al.38 showed that early in the dis-
ease process, before plaque formation, microglia and complement activation drive synaptic loss, a process that 
may reflect reactivation of developmental synaptic pruning59. In HD blood we found significant upregulation 
of immune modules associated with AD in the IGAP GWAS39, a subset of genes with shared membership of 
several of these modules, and the most significant immune and microglia-related modules from Zhang, et al.40. 
In a co-expression network generated from prefrontal cortex of 194 HD patients, Zhang, et al.40 found that their 
most significant immune and microglia module was well conserved, though was not significantly dysregulated in 
HD and did not correlate with CAG repeat length. This may be because cortex shows less severe pathology and 
transcriptional dysregulation than caudate21. Overlapping immune upregulation in HD and AD suggests these 
two distinct neurodegenerative diseases share some common pathogenic mechanisms, including macrophage 
function38. Improved understanding of these mechanisms may open the way to therapeutic targets in these cur-
rently incurable diseases.

Materials and methods
All experiments we performed in accordance with the Declaration of Helsinki and approved by the University 
College London (UCL)/UCL Hospitals Joint Research Ethics Committee and the LUMC IRB. Peripheral blood 
samples were donated by genetically-diagnosed HD patients and controls, and all subjects provided informed 
written consent.

Cohorts. The Track-HD cohort consisted of 54 premanifest gene carriers, 63 manifest HD subjects and 23 
controls. These were a representative sample from the Track-HD study (Table 1), preselected to assure a wide 
range of disease risk and severity. Control subjects were age and gender matched to individuals in the pre-
manifest and manifest groups, and selected from spouses or partners to ensure consistency of environments. 
Track-HD enrolled participants at four study sites in London (UK), Paris (France), Leiden (Netherlands), and 
Vancouver (BC, Canada)26. Manifest subjects demonstrated motor abnormalities that were unequivocal signs of 
HD, as evidenced by total motor scores (TMS) over 5 on the Unified Huntington’s Disease Rating Scale (UHDRS). 
Premanifest gene carriers had a burden of pathology score (age x [CAG – 36.5))60 greater than 250, and a TMS of 
5 or lower and a diagnostic confidence score (DCS) less than 4 on the UHDRS61, indicating no substantial motor 
signs26. Age and clinical scores considered for the analysis were at time of blood collection.

The Leiden cohort25 consisted of 18 premanifest gene carriers, 56 manifest HD subjects and 27 age and 
gender-matched controls. Motor onset was determined by an experienced neurologist using the same UHDRS 
standard as in TRACK-HD. All premanifest carriers showed no substantial motor signs, with a TMS of 5 or less 
and a UHDRS diagnostic confidence level less than 4. All controls were free of known medical conditions. Blood 
sample collection and analysis methods, described below, were identical for the two cohorts.
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Sample collection. Whole blood was collected in two PAXGene Blood RNA tubes (PreAnalytix, Qiagen/BD 
Company) per subject, and immediately placed upright at room temperature. They were checked at 5 hours for 
incomplete mixing or separation, and any showing separation were remixed with a further 10 inversions. Tubes 
were stored overnight at − 20 °C and transferred to − 80 °C the following morning. They were sent on dry ice to 
Biorep within 30 days.

RNA preparation. Total RNA extraction was performed using the PAXGene Blood RNA kit (catalog N. 
762174; PreAnalytix, Qiagen/BD Company), following the supplier’s instructions. Each solution in the kit was 
divided into aliquots to process batches of 12 samples. Replicate tubes for each subject were processed on dif-
ferent days. RNA was stored at − 80 °C before proceeding with the quality measurements and further use. RNA 
was collected by centrifugation, washing with 70% ethanol, and resuspended in buffer. Quality measurements of 
total RNA were made using spectrophotometric analysis (Nanodrop), 260/280 ratio denaturing agarose gel, and 
the RNA 6000 Nano kit for the Agilent Bioanalyzer (catalog N. 5067-1511, Agilent Technologies). Samples were 
globin reduced using the GLOBINclearTM method (catalog N. AM1980, ThermoFisher Scientific). Quality control 
measures were made on globin-reduced samples on the Bioanalyzer RNA 6000 Nano kit (Catalog N. 5067-1511, 
Agilent Technologies).

Sequencing. Indexed cDNA sequencing libraries were prepared using the TruSeqTM Poly-A mRNA method 
(Illumina). In short, poly-A mRNA transcripts were captured from total RNA using poly-T beads and cDNA 
generated using random hexamer priming62. Paired-end sequencing of indexed cDNA libraries on a HiSeq 2500 
generated at least 50 M reads per sample. Sequencing was performed using SBS and cluster kits from Illumina. 
Indexed samples were demultiplexed and FASTQ files were generated.

Quality control. Sequencing failed for six Track-HD samples, including four premanifest, one manifest and 
one control subject. Quality control analysis was performed using the RNA-SeQC package63, ensuring meas-
ures including rRNA rate, mapping rate, concordance mapping rate and uniqueness rate were within acceptable 
ranges. Globin depletion was checked by inspecting read counts mapped to HBB, HBA1 and HBA2, confirming 
they made up less than 2% of reads for all samples. Four Track-HD and six Leiden samples failed quality control 
for duplication rate over 75%, GC bias or 5’ bias, and were removed, leaving 48 premanifest, 61 manifest and 21 
control subjects in the Track-HD cohort and 15 premanifest, 54 manifest and 26 control subjects in the Leiden 
cohort.

Gene expression analysis. RNA-Seq data were aligned to the human reference genome hg19 using 
TopHat264. Read counts were summarised using HTSeq, keeping any duplicates and using the Ensembl tran-
script/gene database (http://www.ensembl.org/info/data/ftp/index.html, obtained in gtf format, genome build 
GRCh38.3, gene build updated in June 2015). To remove residual batch effects the R package svaseq was used65. 
Using the cleaned count data, differential expression analysis was conducted using the R package DESeq266. 
Outlier counts were removed using a Cooks distance cutoff of 5 in DESeq2. After filtering by the mean of normal-
ised counts, 18,257 transcripts were detected. Age and gender were used as covariates in the analysis.

Pathway analysis. Enrichment of differential expression among gene sets corresponding to biological 
hypotheses (pathways) was tested using the Gene Set Enrichment Analysis (GSEA) method67. Rather than defin-
ing a list of significant genes, GSEA ranks all genes in order of their differential expression statistic, and tests 
whether the genes in a particular gene set have a higher rank overall than would be expected by chance. The 
analysis is weighted by the differential expression statistic, thus giving more weight to more significant genes. 
Significance of enrichment was obtained by randomly permuting gene-wide association statistics among genes. 
One-sided p-values were calculated separately for differential upregulation and downregulation of expression 
in HD, and these were then converted into the corresponding chi-square statistic for use in the GSEA analysis. 
To avoid making a priori assumptions, we collated a large pathway set from publicly available pathway data-
bases, including Gene Ontology (GO)68, Kyoto Encyclopedia of Genes and Genomes (KEGG)69, Mouse Genome 
Informatics (MGI)70, PANTHER71, BioCarta72, REACTOME73 and NCI74. This resulted in a total of 14,706 func-
tional pathways, many with overlapping members, containing between 3 and 500 genes. To correct for multiple 
testing of pathways we converted the GSEA p-values into q-values75, which can be interpreted as the minimum 
false discovery rate at which that q-value would be counted as significant.

Gene co-expression networks. Weaknesses of relying on public databases to provide pathways for analysis 
include their restriction to prior biological knowledge and the poor annotation of many genes. To overcome this 
annotation gap, we also tested the following sets of gene co-expression modules for enrichment of dysregulation:

1. The set of 124 HD brain expression modules derived by Neueder and Bates30, who applied weighted gene 
correlation network analysis (WGCNA)34 to the Hodges, et al.31 microarray brain expression data set of 44 
human HD and 36 matched control brains. They generated networks for four brain regions; the caudate nu-
cleus (CN), BA4 region of the frontal cortex, which has motor function (FC-BA4), BA9 region of the frontal 
cortex, involved in association and cognitive functions (FC-BA9), and cerebellum (CB).

2. A set of 117 co-expression modules derived from the Gibbs, et al.33 dataset, comprising microarray expres-
sion data from 150 control individuals measured in four brain regions: cerebellum (CB), frontal cortex (FC), 
caudal pons (Pons) and temporal cortex (TCTX). Modules were generated using WGCNA as described in 
ref. 39.

http://www.ensembl.org/info/data/ftp/index.html
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3. We generated a set of 213 co-expression modules from Braineac32, which consists of microarray expression 
data for 12 brain regions from 134 control brains; occipital cortex, frontal cortex, temporal cortex, hip-
pocampus, intralobular white matter, cerebellar cortex, thalamus, putamen, substantia nigra, and medulla 
(inferior olivary nucleus). For each brain region, the array data was normalised in the R statistical-program-
ming environment using the RMA algorithm76. Principal Component Analysis (PCA) and hierarchical 
clustering were used to identify single outlier arrays for removal. In addition, small outlier clusters  
(< 6 arrays) that were distinct from most of the other arrays were removed (i.e. small clusters appearing at 
the top of the dendrogram). Once outlier arrays were removed, the arrays were re-normalized and inspected 
again and re-processed if necessary until a homogenous dataset was produced. WGCNA was performed 
using the R package to derive modules34. Multiple probesets of the same gene were collapsed to a single 
value using the collapseRows() function, using default settings and based on gene annotation provided by 
Affymetrix77. Scale independence and mean connectivity were plotted to derive a soft threshold power of 6. 
Networks were unsigned.

4. The set of 111 co-expression modules from Zhang, et al.40, generated using microarray expression data on 
1,647 postmortem samples from three brain regions of late-onset Alzheimer’s disease (LOAD) and control 
subjects; prefrontal cortex (BA9), primary visual cortex (BA17), and cerebellum.

Concordance of fold change in gene expression between datasets. Labadorf, et al.35 analysed the 
transcriptome of human postmortem prefrontal cortex Brodmann area 9 (BA9) from 20 HD subjects and 49 con-
trols using next-generation high throughput sequencing, identifying dysregulation of immune and developmental 
genes. Of the 15,834 genes common to both the combined Track-HD and Leiden blood dataset and the Labadorf, 
et al.35 prefrontal cortex dataset, 8447 had a fold change > 1 (i.e. upregulated) in blood and 7860 in cortex. Thus, 
if fold changes in the two datasets were assumed to be unrelated, the expected probability that a gene would show 
concordant fold change is equal to ((8447/15834)x(7860/15834)) +  ((7387/15834)x(7974/15834)) =  0.4997. The 
number of genes with concordant fold change in the absence of a relationship between the datasets is thus distrib-
uted as a binomial (15834, 0.4997) distribution. In the actual data, 8425 genes were observed to have concordant 
direction of fold change, significantly higher than the number expected by chance (7912).

We used a similar method to test for concordance of fold change in genes between the Track-HD and 
Mastrokolias et al. datasets.

Data availability. All data is deposited at the European Genome-phenome Archive (EGA) and accessible 
through the authors or the NeurOmics consortium.
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