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ABSTRACT
With the steadily improving sensitivity afforded by current and future galaxy surveys, a
robust extraction of two-point correlation function measurements may become increasingly
hampered by the presence of astrophysical foregrounds or observational systematics. The
concept of mode projection has been introduced as a means to remove contaminants for which
it is possible to construct a spatial map, reflecting the expected signal contribution. Owing to its
computational efficiency compared to minimum-variance methods, the sub-optimal pseudo-C�

(PCL) power spectrum estimator is a popular tool for the analysis of high-resolution data sets.
Here, we integrate mode projection into the framework of PCL power spectrum estimation. In
contrast to results obtained with optimal estimators, we show that the uncorrected projection
of template maps leads to biased power spectra. Based on analytical calculations, we find exact
closed-form expressions for the expectation value of the bias and demonstrate that they can
be recast in a form which allows a numerically efficient evaluation, preserving the favourable
O(

�3
max

)
time complexity of PCL estimator algorithms. Using simulated data sets, we assess

the scaling of the bias with various analysis parameters and demonstrate that it can be reliably
removed. We conclude that in combination with mode projection, PCL estimators allow for a
fast and robust computation of power spectra in the presence of systematic effects – properties
in high demand for the analysis of ongoing and future large-scale structure surveys.

Key words: methods: data analysis – methods: numerical – methods: statistical – cosmology:
observations – large-scale structure of Universe.

1 IN T RO D U C T I O N

In modern cosmology, measurements of the power spectrum (or
its real-space counterpart, the angular correlation function) have
proven a powerful summary statistic and are widely used to
confront theoretical models with observational data, e.g. Smoot
et al. (1992), Hancock et al. (1994), Gundersen et al. (1995),
Netterfield et al. (1997), Hanany et al. (2000), Halverson et al.
(2002), Kovac et al. (2002), Hinshaw et al. (2003), Fowler et al.
(2010), Lueker et al. (2010), Planck Collaboration XV (2014), The
Polarbear Collaboration: P. A. R. Ade et al. (2014), BICEP2/Keck
and Planck Collaborations et al. (2015) for an arbitrary selection
of measurements of the cosmic microwave background (CMB) ra-
diation two-point correlation function, or, e.g. Totsuji & Kihara
(1969), Hermit et al. (1996), Norberg et al. (2001), Blake & Wall
(2002), Zehavi et al. (2002), Tegmark et al. (2004), Croom et al.
(2005), Eisenstein et al. (2005), Coil et al. (2008), Reid et al. (2010),
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Beutler et al. (2011), Kim et al. (2014), Crocce et al. (2016) for con-
straints on galaxy clustering.

A decrease in statistical errors resulting from the increasing cov-
erage or sensitivity of ongoing and future experiments will impose
stricter limits on the level of contamination of the targeted cosmo-
logical signal by secondary sources. Such contaminants may be of
astrophysical origin (e.g. foreground emission or dust extinction,
e.g. Maller et al. 2005) or the result of complications associated
with the data collection and processing procedure (for example,
survey depth fluctuations, varying seeing conditions, image cali-
bration uncertainties; Huterer, Cunha & Fang 2013; Awan et al.
2016). To aid assessment of the possible impact of systematic ef-
fects which may have altered the observed signal, it has become
standard for galaxy surveys to compile libraries of template maps
which describe the spatial variation of survey properties (Scranton
et al. 2002; Ross et al. 2011, 2012, 2016; Leistedt & Peiris 2014;
Leistedt et al. 2015). Several approaches have been proposed which
make use of these maps to correct measurements of the two-point
statistics for systematic effects (Rybicki & Press 1992; Ho et al.
2012; Leistedt & Peiris 2014, see Elsner, Leistedt & Peiris 2016 for
a comparison). In Kalus et al. (2016), the authors derive a template
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cleaning procedure for the popular FKP estimator (Feldman, Kaiser
& Peacock 1994).

In the following, we focus on the mode projection procedure
of Rybicki & Press (1992). Attributing infinite variance to modes
described by a set of templates, specific signal patterns can be
excluded from the analysis, and the computed result hence be-
comes more robust with respect to systematics captured by them
(see e.g. Tegmark et al. 1998, Slosar, Seljak & Makarov 2004, Smith,
Senatore & Zaldarriaga 2009, Elsner & Wandelt 2013, Leistedt et al.
2013 for applications). Unfortunately, mode projection can only be
straightforwardly implemented in case the estimator makes use of
inverse variance-weighted data. Within the field of power spectrum
estimation, this is the case for the maximum likelihood estimator
(Bond, Jaffe & Knox 1998) and the optimal quadratic estimator
(Tegmark 1997). Regrettably, both of them are very expensive to
evaluate numerically, usually prohibitively so for state-of-the-art
high-resolution data (Borrill 1999). Conversely, the much faster
pseudo-C� (PCL) estimator introduced by Hivon et al. (2002) makes
no attempt at exact inverse variance-weighting, trading optimality
for computational speed, and can be applied in only O(

�3
max

)
time

to a data set band-limited at multipole moment �max. The purpose
of this paper is to demonstrate that the concept of mode projection
can be successfully integrated into the framework of PCL estima-
tors, combining the desirable properties of fast and robust power
spectrum estimation.

This article is organized as follows. In Section 2, we review the
concept of mode projection and discuss how it can be implemented
in PCL estimators. Then, we use numerical simulations to verify
our results and systematically study the impact of mode projec-
tion for different analysis parameters (Section 3). We conclude by
summarizing our findings in Section 4.

2 PC L M O D E P RO J E C T I O N

We start this section by providing a detailed review of mode pro-
jection (Rybicki & Press 1992). Straightforwardly integrated into
optimal power spectrum estimators, it was shown to lead to un-
biased results at the cost of an increase in the estimator variance
which is modest compared to other systematics mitigation schemes
(Elsner et al. 2016).

We first consider a contaminant which can be described by a sin-
gle non-vanishing template f and contributes with unknown scalar
amplitude ε to the data vector d,

d = s + εf . (1)

Even if the simple linear model in equation (1) is not fully appro-
priate, we can still use it as a first-order approximation of a Taylor
expansion in f for small values of ε. In the following, we assume the
absence of correlations between stochastic signal realizations s and
the deterministic template f used in the projection in the ensemble
average.

Then, our goal is to find a means to infer the power spectrum of
the targeted cosmological signal s:

Ĉ s
� =

∑
m

1

2� + 1
|s�m|2 , (2)

where we have introduced the ‘hat’ notation to specify an estimated
quantity for a specific realization of the analysed field.

In case an analysis is based on inverse variance-weighted data
only, mode projection is implemented by modifying the data co-
variance matrix C. A rank-one term, constructed from the template,

is added with variance σ . Afterwards, we take the limit to assign
infinite variance to this specific signal direction:

C̃ = lim
σ→∞

(
C + σff †) . (3)

Then, any analysis making use of the data d in form of

d̃ = C̃
−1

d (4)

will be insensitive to a contaminant described by the template.
Guided by equations (3) and (4), we now implement mode pro-

jection within the framework of PCL power spectrum estimation.
Since PCL does not make use of inverse variance-weighted maps,
we apply the PCL estimator to a filtered version of the data. The
filter is linear and can be expressed in terms of a matrix:

F = lim
σ→∞

(
1 + σff †)−1

, (5)

where 1 is the identity matrix. Making use of the Sherman–Morrison
formula, we can take the limit and find an exact expression for the
filter:

F = 1 − ff †

f †f
. (6)

We therefore derive for the pre-processed data vector d̃ = Fd:

d̃ = d − f †d
f †f

f . (7)

From equation (7), the well-known equivalence between mode pro-
jection and a direct subtraction becomes apparent again (Rybicki
& Press 1992), i.e. the data are cleaned by removing a template
contribution with amplitude estimate ε̂ = f †d/f †f .

As a side note, we mention that equation (7) represents the sim-
plest case where all modes are assigned equal weights in the calcula-
tion of the cleaning coefficient ε̂. Relaxing this assumption would re-
quire introducing a weight matrix W such that ε̂ = f †Wd/f †Wf .
For W = C−1, we then recover the maximum likelihood cleaning
approach which is implicitly used in optimal mode projection algo-
rithms. Since it is possible to construct the Cholesky decomposition
W = U†U for any given positive-definite weight matrix, we can
choose to consider the pre-whitened data vector dw = Ud instead,
and absorb all remaining factors of U by redefining fw = Uf , lead-
ing back to equation (7). We can therefore set the weight matrix to
unity in what follows.

As we will demonstrate below, even in the absence of any con-
taminant, applying a power spectrum estimator to d̃ to measure the
statistical properties of s will in general lead to biased results. We
now derive analytical expressions for the expectation value of the
bias introduced by mode projection. We begin our discussion by
analysing the simplest possible case, the projection of a single tem-
plate on the full sky, and then gradually generalize our findings to
take into account the effects of multiple templates and limited sky
coverage. Readers only interested in our main result may skip the
first paragraphs and continue with Section 2.4. In our calculation,
we will assume that the Fourier modes of the field analysed are mu-
tually uncorrelated to sufficient precision in the ensemble average,
i.e. 〈s�m s∗

�′m′ 〉 ∝ δ��′δmm′ .1

1 The same assumption must be made in the derivation of the PCL estimator,
Hivon et al. (2002).
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2.1 Full-sky analysis, single template

We start out considering a full-sky analysis where a single template
has been projected out. Given the filtered data map equation (7)
as input, we derive the mean variance of its spherical harmonic
coefficients:

〈d̃�m d̃∗
�m〉 = 〈s�m s∗

�m〉 − 2

f †f
〈s�m (s†f )f ∗

�m〉

+ 1(
f †f

)2 〈(f †s)f�m (s†f )f ∗
�m〉. (8)

Denoting the power spectrum of the template realization used in
the projection as Ĉ f

� , we obtain for the normalization factor in the
above expression

f †f =
∑

�

(2� + 1)Ĉ f
� , (9)

a measure of the total variance of f. Introducing further C s
� = 〈Ĉ s

� 〉
as the ensemble averaged signal power spectrum, we derive the
following expectation values for the multipole moments (�, m):

〈s�m (s†f )f ∗
�m〉 = C s

� Ĉ f
� , (10)

〈(f †s)f�m (s†f )f ∗
�m〉 =

( ∑
�′

(2�′ + 1)C s
�′ Ĉ f

�′

)
Ĉ f

� . (11)

Projecting a single template on the full sky, the ensemble averaged
power spectrum of the filtered data set d̃ becomes

〈Ĉ d̃
� 〉 =

∑
m

1

2� + 1
〈d̃�m d̃∗

�m〉

= C s
� + b�. (12)

Since we want to use Ĉ d̃
� as a proxy for the signal power spectrum

Ĉ s
� , we conclude that this estimate is biased. The bias b� is given

by

b� = − 2C s
� Ĉ f

�∑
�′ (2�′ + 1)Ĉ f

�′
+

(∑
�′ (2�′ + 1)C s

�′ Ĉ f
�′
)

Ĉ f
�(∑

�′ (2�′ + 1)Ĉ f
�′
)2 . (13)

We therefore obtain a simple recipe to combine mode projection
and PCL power spectrum estimation. Instead of directly analysing
a given data set, we first apply a filter function according to
equation (7). After the power spectrum has been computed, the
result is then corrected by subtracting a bias term:

Ĉ s
� = Ĉ d̃

� − b�, (14)

leading to clustering estimates of the signal which are unbiased in
the ensemble average and have been marginalized over contami-
nants described by the template.

An additional complication in the evaluation of equation (14)
arises from the fact that the bias term in itself is a function of the
signal power spectrum. In the full-sky case, it is still feasible to
compute Ĉ s

� directly by finding the solution to the matrix equation

Ĉ s
� =

∑
�′

[
(1 + B)−1

]
��′ Ĉ

d̃
�′ , (15)

where

B�1�2 = − 2Ĉ f
�1∑

�′ (2�′ + 1)Ĉ f
�′

δ�1�2 + (2�2 + 1)Ĉ f
�2

Ĉ f
�1(∑

�′ (2�′ + 1)Ĉ f
�′
)2 . (16)

It is interesting to note that even though we compute power spectra
on the full sky, B will in general contain off-diagonal entries. We
conclude that applying the filter equation (7) can lead to the coupling
of previously uncorrelated Fourier modes. This behaviour is in line
with the interpretation that mode projection is equivalent to masking
(see Appendix A for a detailed discussion).

We will later see that it is not always possible to find an explicit
expression for equation (16). In practice, it may therefore be most
viable to debias the result iteratively, or, assuming a prior power
spectrum for C s

� .

2.2 Full-sky analysis, multiple templates

To be able to handle multiple (not necessarily linearly indepen-
dent) templates requires a generalization of the filter matrix used to
prepare the data. For a data vector with npix elements, we modify
equation (6) to take a npix × ntemp object f as input, containing a
collection of ntemp templates:

F = 1 − f
(

f † f
)−1

f †, (17)

where the normalization factor now becomes a ntemp × ntemp ma-
trix with entries computed from template auto- and cross-power
spectra:(

f † f
)

ij
=

∑
�

(2� + 1)Ĉ fi×fj

� . (18)

We propose to use the Moore–Penrose inverse for
(

f † f
)−1

in case
this matrix is rank deficient.2

Projecting multiple templates on the full sky, equation (8) now
takes the form

〈d̃�m d̃∗
�m〉 = 〈s�m s∗

�m〉 − 2
∑

ij

(
f † f

)−1

ij
〈s�m (s†f j )f i ∗

�m〉

+
∑

ij
hk

(
f † f

)−1

ij

(
f † f

)−1

hk
〈(f j †s)f i

�m (s†f k)f h ∗
�m 〉,

(19)

and we find for the bias,

b� = −2
∑

ij

(
f † f

)−1

ij
C s

� Ĉ fj×fi

� +
∑

ij
hk

(
f † f

)−1

ij

(
f † f

)−1

hk

×
( ∑

�′
(2�′ + 1)C s

�′ Ĉ
fj×fk

�′

)
Ĉ fi×fh

� , (20)

the generalization of equation (13) to multiple templates. With
this result, we can trivially provide an explicit expression for the
generalized bias matrix equation (16) which can be used with
equation (15) to obtain unbiased signal power spectrum estimates:

B�1�2 = −2
∑

ij

(
f † f

)−1

ij
Ĉ fj×fi

�1
δ�1�2

+
∑

ij
hk

(
f † f

)−1

ij

(
f † f

)−1

hk
(2�2 + 1)Ĉ fj×fk

�2
Ĉ fi×fh

�1
. (21)

2 One might encounter this situation, for example, in case there exists a

i 
= j for which f i ∝ f j. If the pseudo-inverse of
(

f † f
)

is used for the

inversion, such degeneracies are taken into account fully self-consistently
by the algorithm. This property obviates the need to check a potentially large
template library for linear dependences.
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2.3 Cut-sky analysis, single template

We now turn to the more realistic case of a cut-sky analysis. To
allow a transparent discussion of the problems associated with this
complication, we again start by first considering the projection of a
single template before generalizing our results later on.

Denoting afull
�m as the spherical harmonics of a field on the full sky,

a modified set of coefficients acut
�m is then obtained by multiplying

its real space representation with a non-negative mask W:

acut
�m =

∑
�′m′

afull
�′m′

∫
dn Y�′m′ (n) W (n) Y ∗

�m(n)

=
∑
�′m′

afull
�′m′K�m�′m′ . (22)

Here, the coupling kernels K capture how the orthogonality relation
of the spherical harmonics is modified by the mask. We give their
exact definition in Appendix B (equation B2).

A PCL power spectrum estimation algorithm then makes use
of the properties of the coupling kernels to obtain a simplified
expression which relates power spectra on the full sky to cut-sky
spectra with correct properties in the ensemble average:

〈Ĉ full
� 〉 =

∑
�′

M−1
��′ 〈Ĉ cut

�′ 〉, (23)

where we have assumed that the inverse of the coupling matrix M
exists, a function of the mask power spectrum only [see equation
(B3) for a formal definition].

Based on the framework developed for PCL estimators, it is
now possible to compute the mode projection bias (equation 13)
for limited sky coverage. In this case, data and template maps are
both multiplied with the mask prior to the analysis. We find the
expression of the normalization factor equation (9) to be unchanged,
although it is now calculated from cut-sky template pseudo-power
spectra which have not been corrected for the reduced sky fraction.
Computing the remaining terms, however, is more complicated. We
now obtain (cf. equations 10 and 11)

〈s�m (s†f )f ∗
�m〉 =

∑
�1,2,3,4
m1,2,3,4

C s
�2

f�1m1 f ∗
�mw�3m3 w∗

�4m4

×
√

(2� + 1)(2�1 + 1)(2�3 + 1)(2�4 + 1)

×2�2 + 1

4π

(
� �2 �3

0 0 0

)(
�1 �2 �4

0 0 0

)

×
(

� �2 �3

m −m2 m3

)(
�1 �2 �4

m1 −m2 m4

)
, (24)

where the last four objects are Wigner 3j symbols, and

〈(f †s)f�m (s†f )f ∗
�m〉 =

∑
�1,2,3,4,5
m1,2,3,4,5

C s
�3

f�m f ∗
�m f�2m2 f ∗

�1m1
w�4m4 w∗

�5m5

×
√

(2�1 + 1)(2�2 + 1)(2�4 + 1)(2�5 + 1)

×2�3 + 1

4π

(
�1 �3 �4

0 0 0

)(
�2 �3 �5

0 0 0

)

×
(

�1 �3 �4

m1 −m3 m4

)(
�2 �3 �5

m2 −m3 m5

)

= f�m f ∗
�m

∑
�1m1

〈s�1m1 (s†f )f ∗
�1m1

〉. (25)

While the above equations formally are the full solution to the
problem, we note that their brute force evaluation is in fact more ex-
pensive than computing the optimal quadratic estimator with mode
projection, rendering the result useless for all practical purposes.

Luckily, we can substantially speed up the bias calculation in
case of limited sky coverage by leveraging the power of the convo-
lution theorem. Building on the properties of the Wigner 3j symbols
(equation B1), we use a mix of real and spherical harmonic space
representations to transform equation (24), finding

〈s�m (s†f )f ∗
�m〉 = (−1)mf ∗

�m

∫
dn(∑

�2m2

(−1)m2C s
�2

[∫
dn′ f (n′) W (n′) Y ∗

�2m2
(n′)

]
Y�2m2 (n)

)

×W̃ (n) Y ∗
�m(n), (26)

where W and W̃ are modified representations of the mask in pixel
space, computed from its spherical harmonic coefficients, w�m,

W =
∑
�m

w∗
�mY�m, (27)

W̃ =
∑
�m

(−1)mw∗
�mY�m. (28)

A closer analysis of the numerical complexity associated with the
evaluation of equation (26) reveals its significant advantage over the
original equation (24): we derive the result exclusively by a series of
simple multiplications (either in real space or in Fourier space), fol-
lowed by a change of basis via standard spherical harmonic synthe-
sis or analysis steps, for which fast numerical libraries are available
(e.g. Górski et al. 2005; Huffenberger & Wandelt 2010; Reinecke
2011; Reinecke & Seljebotn 2013; Schaeffer 2013). Hence, it can
be computed in a mathematically exact way in only O(

�3
max

)
oper-

ations.
In practice, we evaluate equation (26) as follows. First, using all

maps in their pixel space representation, we multiply the cut-sky
template f with an additional instance of the mask, modified as
described by equation (27), and transform the result into spherical
harmonic basis. Then, after the coefficients of the resulting map have
been multiplied by the signal power spectrum and a phase factor,
the result is transformed back into real space. Next, we compute
the product of this map with another modified version of the mask,
given by equation (28), and again transform it to Fourier space. We
then obtain the final result by multiplying its spherical harmonic
coefficients with the template and another phase factor.

Defining C X
� = ∑

m
1

2�+1 〈s�m (s†f )f ∗
�m〉 as the power spectrum

coefficients computed from equation (26), for the bias on the cut
sky we derive

b� = − 2C X
�∑

�′ (2�′ + 1)Ĉ f
�′

+
(∑

�′ (2�′ + 1)C X
�′

)
Ĉ f

�(∑
�′ (2�′ + 1)Ĉ f

�′
)2 . (29)

We obtain the final result by correcting for the limited sky frac-
tion available to the analysis using the inverse coupling matrix,
equation (23),

b� =
∑

�′
M−1

��′ b�′ , (30)

where b� is the bias of the mask deconvolved power spectra.
As already mentioned in Section 2.1, the evaluation of

equation (29) requires knowledge of the unbiased signal power
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spectrum, necessitating either the use of a prior on C s
� or the it-

erative computation of b�. The convergence of iterative schemes
can be monitored straightforwardly by keeping track of relative
changes in the results of two subsequent iterations. As soon as this
change becomes small compared to, for example, some fraction of
the estimated power spectrum error bar, the algorithm can safely be
terminated.

2.4 Cut-sky analysis, multiple templates

We finally consider the most general case of mode projection with
multiple templates on the cut sky. Building on the results obtained in
the last sections, we start with redefining the normalization matrix(

f † f
)
. Using equation (18), we now compute it from template

pseudo-power spectra which are uncorrected for the effect of the
mask. Following the procedure detailed in Section 2.2, we further
introduce the power spectrum

C Xi×Xj

� =
∑

m

1

2� + 1
〈s�m (s†f i)f j ∗

�m 〉, (31)

an expression which can be straightforwardly computed from equa-
tion (26) using two different templates as inputs. We then derive a
mathematically exact solution for the bias in the most general case,
finding

b� = −2
∑

ij

(
f † f

)−1

ij
C Xj×Xi

� +
∑

ij
hk

(
f † f

)−1

ij

(
f † f

)−1

hk

×
( ∑

�′
(2�′ + 1)C Xj×Xk

�′

)
Ĉ fi×fh

� . (32)

The above equation (32) is the main result of this paper. As discussed
in the previous paragraph, this bias estimate must still be corrected
for the limited sky coverage (equation 30).

3 D I S C U S S I O N A N D V E R I F I C AT I O N

After deriving the analytical expressions to integrate mode projec-
tion into the framework of PCL power spectrum estimation, we now
use simulations to verify our results and assess the scaling of the
bias correction for different input parameters.

3.1 Signal power spectrum

Already in the simplistic case where a single template is projected
on the full sky, it is instructive to determine the behaviour of the
bias term for different input power spectra. Drawing a Gaussian
realization of a template from a flat power spectrum, C f

� = const.,
we show results of a power spectrum analysis with mode projection
of 1000 Gaussian signal simulations for two different cases where
C s

� ∝ (� + 1){0,−2} in Fig. 1. We plot the average relative difference
of power spectra estimated with and without mode projection, an
expression where most of the sample variance cancels. Numerical
results agree well with our analytical bias calculation for both sets
of simulations, demonstrating that it can be reliably removed to
obtain unbiased PCL power spectrum estimates.

As expected, for a flat signal power spectrum we observe a small
negative bias which is constant. Its level can be understood in-
tuitively: recalling that we have a single degree of freedom (the
template amplitude) which allows the removal of power from one
of a total of (�max + 1)2 Fourier modes of the data map, we expect a
bias at a level of 1/(�max + 1)2 ≈ 6 × 10−3 per cent for �max = 128,
in agreement with simulations. This picture changes, however, for
a signal which predominantly contains power at a limited number
of multipoles. For a red signal power spectrum, mode projection
mainly removes power on large scales. In this case, we observe two
qualitatively different regimes. While the bias is negative where the
signal is strongest, it turns positive towards higher multipole mo-
ments. Here, we observe a power transfer, where fluctuations from
the template used in the cleaning procedure are imprinted on the
cleaned signal map.

We note in passing that a similar behaviour is expected in simple
component separation methods used for the analysis of CMB data,
where observations at different frequencies are linearly combined
to remove foreground contaminants (e.g. Bennett et al. 1992, 2003;
Eriksen et al. 2004, see also the discussion in Hinshaw et al. 2007;
Saha et al. 2008).

Owing to the numerical efficiency of the scheme, high-resolution
data sets can be readily analysed on commodity desktop comput-
ers. In Fig. 2, we plot the results of 1000 simulations where we
increased the band limit to �max = 2048, representative for typical
cosmological data sets. In this setting, the full analysis of a single
data set takes less than one wall clock minute on an Intel E5-2687W

Figure 1. The bias introduced by mode projection shows a non-trivial dependence on the shape of signal and template power spectra. Left-hand panel: result
for a flat signal power spectrum, C s

� = const. Right-hand panel: bias comparison for a red signal power spectrum, C s
� ∝ (� + 1)−2. The grey regions indicate

the empirical 2σ standard error of the mean as derived from the simulations.
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Figure 2. The scheme is efficient enough to be applicable to high-resolution
data sets. Same as Fig. 1, but plotting results for an increased maximum
multipole moment of �max = 2048, derived on an off-the-shelf desktop
computer.

Figure 3. The bias increases approximately linearly with the number of
templates projected. Same as Fig. 1, but now projecting 100 instead of a
single template. The observed bias becomes larger by about two orders of
magnitude.

processor with eight CPU cores. Projecting a single template on the
full sky for an input power spectrum C s

� ∝ (� + 1)−2, we observe a
reduced bias compared to our reference analysis (�max = 128), fol-
lowing from the larger total number of independent Fourier modes
in the data.

3.2 Number of templates

Still considering a full sky analysis, we now test the scaling be-
haviour of the PCL power spectrum bias induced by mode projec-
tion with the number of templates used in the cleaning procedure.
To this end, we repeated the analysis of 1000 simulated realizations
of the data set, drawn from C s

� ∝ (� + 1)−2, which we have now
cleaned with 100 randomly generated template maps. The result is
shown in Fig. 3; compared to the single template case, we observe a
bias which is larger by two orders of magnitude. In case they are not
or only mildly correlated, we indeed expect to see an approximately
linear scaling with the number of templates, since the independent
estimation of the cleaning amplitudes allows the removal of power
in one Fourier mode per template. This observation is of particu-

lar relevance to current and next generation surveys, since a robust
analysis may require the projection of the order of hundreds or
thousands of templates. A reliable means to correct for a potentially
large resulting bias is therefore paramount.

3.3 Sky fraction

In a further set of tests, we probe the impact of a limited sky fraction
used for the analysis on the bias of the power spectra computed with
template projection. In the left-hand panel of Fig. 4, we show the
bias for a cut-sky analysis restricted to fsky = 1 per cent. For large
to intermediate sky fractions, we observe a scaling approximately
proportional to 1/fsky. We note that for small sky fractions, however,
this simplified relationship is expected to break down. In the right-
hand panel of Fig. 4, we remove the contribution of 100 templates
while simultaneously restricting the analysis to fsky = 1 per cent.
In that case, the relative bias can become larger than unity. The
agreement between simulations and analytical calculation remains
good.

3.4 Estimator variance

Implementing mode projection into PCL alters the covariance prop-
erties of power spectrum estimates. While a full analysis is beyond
the scope of this paper, we provide a qualitative assessment of
changes in the estimator variance. In general, the statistical proper-
ties of estimates can be characterized using an analytical descrip-
tion, simulations, or resampling methods like bootstrapping. Here,
we analysed the empirical variance of 100 000 full-sky power spec-
tra, computed from signal simulations drawn from C s

� ∝ (� + 1)−2.
We directly compared the debiased results obtained from maps
which have been cleaned by a single template on the one hand,
and the power spectra computed without mode projection on the
other hand. In general, we find an increased variance with a mul-
tipole dependence resembling the general shape of the bias dis-
cussed in the last paragraphs. Interestingly, as visualized in Fig. 5,
changes in the variance depend on the details of the debiasing pro-
cedure. As mentioned in Section 2, the analytical expression used
to debias the results may depend in a non-trivial way on the sig-
nal power spectrum, leaving us with two options to proceed. It is
possible to either use the current (biased) signal estimate Ĉ s

� for
an iterative correction, or to assume a prior power spectrum C s

�

in the calculation. While both approaches lead to unbiased signal
power spectrum estimates in the ensemble average, the estimator
variance will be different. The additional information introduced
by a prior results in a deterministic bias correction, independent
of the signal realization, which in turn leads to a decreased es-
timator variance in multipole regions which are most effectively
cleaned.

For flat signal and template power spectra, we can provide an
order-of-magnitude estimate of the expected increase in variance of
iteratively debiased signal power spectra. Considering the number
of modes removed by projecting n templates, we obtain a rough
estimate of the variance ratio of power spectra computed with and
without mode projection:

Var
(
Ĉ s,MP

�

)
/Var

(
Ĉ s

�

)
∼ 2(�max + 1)2

fsky

[
(�max + 1)2 − n

] , (33)

where fsky is the sky fraction used in the analysis.
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Figure 4. Left-hand panel: the bias is approximately inversely proportional to the sky fraction available to the analysis. Same as Fig. 1, but now restricting
the analysis to fsky = 1 per cent. The larger sample variance leads to an increased scatter. Right-hand panel: projecting a large number of templates on a
comparatively small sky area can lead to bias values in excess of unity. Same as Fig. 1, but marginalizing over 100 templates on fsky = 1 per cent of the sky.

Figure 5. Mode projection induces changes in the estimator variance which depend on the details of the bias removal. Debiasing power spectrum estimates
iteratively increases the estimator variance on all scales (left-hand panel), while the use of a prior power spectrum can result in a multipole range with reduced
variance (right-hand panel).

4 SU M M A RY A N D C O N C L U S I O N S

In modern cosmology, two-point correlation function measurements
play a fundamental role in constraining theoretical models with ob-
servational data. In practical application, however, extracting statis-
tical information about cosmological signals is often hampered by
the presence of contaminants. As a consequence, a number of strate-
gies have been developed to mitigate their impact on the scientific
analysis. Here, we focus on mode projection, an algorithm which
allows one to marginalize over templates constructed to describe
the spatial patterns of possible systematic effects (Rybicki & Press
1992). While it can be straightforwardly implemented into optimal
methods, the application to the popular PCL estimator, so far, has
remained elusive.

In this paper, we have developed a framework to integrate mode
projection into PCL estimation algorithms. We have shown that
a naive projection of templates in general leads to biased power
spectrum estimates. Based on a rigorous mathematical treatment,
we then derived exact closed-form equations for the estimator bias.
Recasting the analytical expressions allowed us to compute them

efficiently, thereby preserving the overall O(
�3

max

)
time complexity

of PCL algorithms.
Applied to a large number of simulations with various input pa-

rameters, we have systematically studied the impact of mode projec-
tion on PCL power spectrum estimates. We identified a non-trivial
dependence of the cleaning procedure on the shape of signal and
template power spectra. We further studied the scaling of the bias
with the band limit of the maps, number of templates projected, and
sky fraction available to the analysis, and discussed the impact of
mode projection on the covariance properties of the power spectrum
estimates. In all cases, we found a good agreement between the bias
observed in simulations and our analytical prediction. We conclude
that the framework presented here allows for a reliable correction
of power spectrum estimates to obtain unbiased results. Possible
future extensions of the algorithm include the generalization to
spin-2 fields to allow more robust measurements of, for example,
the cosmic shear signal (e.g. Bacon, Refregier & Ellis 2000; Kaiser,
Wilson & Luppino 2000; Wittman et al. 2000; Lin et al. 2012;
Kilbinger et al. 2013; Kuijken et al. 2015; Becker et al. 2016),
or the CMB polarization power spectrum (e.g. Kovac et al. 2002;

MNRAS 465, 1847–1855 (2017)



1854 F. Elsner, B. Leistedt and H. V. Peiris

BICEP2 Collaboration et al. 2014; Naess et al. 2014; The Polarbear
Collaboration: P. A. R. Ade et al. 2014; Planck Collaboration XI
2016).

Effective strategies for systematics mitigation are instrumental to
fully exploring the information content of ongoing and future large-
scale structure surveys like the Sloan Digital Sky Survey (York et al.
2000), the Dark Energy Survey (Frieman & Dark Energy Survey
Collaboration 2013), or observations planned with the Dark Energy
Spectroscopic Instrument (Levi et al. 2013), or the Large Synoptic
Survey Telescope (LSST Science Collaboration et al. 2009). The
results of our studies indicate that the combination of mode projec-
tion and PCL power spectrum estimation offers an attractive means
to robustly measure the two-point correlation function in the pres-
ence of contaminants, an important milestone on the way to reliable
clustering estimates.
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APPENDI X A : EQU I VALENCE BETWEEN
M O D E P RO J E C T I O N A N D M A S K I N G

Analysing a specifically designed toy experiment, we now demon-
strate the conceptual equivalence of mode projection and masking.
For a data map with npix pixels, where npix is large, we consider a
template with real space representation (f)i = δij, i.e. only a single
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template pixel with index j is different from zero. We will now show
that the mode projection algorithm yields identical results compared
to a PCL analysis, where pixel j has been masked.

Applying the cleaning procedure equation (7) to obtain the fil-
tered data vector, we find

(d̃)i =
{

0 i = j

di otherwise.
(A1)

To debias mode projection results requires the exact knowledge
of the template power spectrum, a quantity which will depend on
the details of the pixelization scheme in our test case (e.g. pixel
shape, size, position, assumed sub-pixel model). In favour of a fully
analytical treatment of the problem, however, we choose to work
with an approximate expression of the template power spectrum
instead:

Ĉ f
� ≈ 4π

n2
pix

. (A2)

Since maximally localized fields in real space in general do not pos-
sess a well-defined band limit in Fourier space, we further impose
a hard limit at �max, chosen such that the total number of Fourier
modes equals the number of pixels, (�max + 1)2 = npix, finding∑

�

(2� + 1)Ĉ f
� = 4π

npix
. (A3)

The matrix used to debias power spectrum measurements with mode
projection (equations 15 and 16) then takes the simple form

(1 + B)�1�2 =
(

1 − 2

npix

)
δ�1�2 + 2�2 + 1

n2
pix

. (A4)

After a full analysis of the template projection algorithm for this
specific case, we now derive the corresponding equations for a PCL
power spectrum estimator. Masking the input map will set the pixel
with index j to zero while leaving all other entries untouched. Using
identical assumptions as before, the power spectrum of the mask W
= 1 − f is approximately given by

Ĉ w
� ≈

⎧⎨⎩4π
(

1 − 1
npix

)2
� = 0

4π

n2
pix

otherwise.
(A5)

Using this expression, we obtain for the PCL coupling matrix, see
equation (B3) below:

M�1�2 = 2�2 + 1

4π

⎡⎣4π

(
1 − 2

npix

) (
�1 �2 0

0 0 0

)2

+ 4π

n2
pix

∑
�3

(2�3 + 1)

(
�1 �2 �3

0 0 0

)2
⎤⎦

=
(

1 − 2

npix

)
δ�1�2 + 2�2 + 1

n2
pix

. (A6)

Finding identical results for the filtered (mode projection) or
masked (PCL power spectrum estimation) data vector as well as for
the debiasing procedures (equations A4 and A6), we conclude the
full equivalence of the two schemes.

We note in closing that the effect of any binary mask can there-
fore be interpreted as projecting a collection of template maps. In
this case, each template would be non-zero only for a single pixel
which falls inside the masked area. For more general weight maps
which are not restricted to the numerical values zero and one, this
equivalence is no longer true and we have to resort to the more
complicated schemes discussed in Sections 2.3 and 2.4.

A P P E N D I X B : PC L C O U P L I N G K E R N E L S

We start from the Gaunt integral which allows us to express the
product of three spin-0 spherical harmonics in terms of Wigner 3j
symbols (Gaunt 1929):∫

dn Y�1m1 (n) Y�2m2 (n) Y�3m3 (n)

=
[

(2�1 + 1)(2�2 + 1)(2�3 + 1)

4π

]1/2

×
(

�1 �2 �3

0 0 0

)(
�1 �2 �3

m1 m2 m3

)
. (B1)

Given this useful relation, the following Fourier space representa-
tion of the coupling kernel can straightforwardly be obtained from
equation (22) (Hivon et al. 2002):

K�1m1�2m2

=
∑
�3m3

w�3m3 (−1)m2

[
(2�1 + 1)(2�2 + 1)(2�3 + 1)

4π

]1/2

×
(

�1 �2 �3

0 0 0

)(
�1 �2 �3

m1 −m2 m3

)
, (B2)

where we have introduced the spherical harmonic coefficients of
the mask, w�m.

Making use of the orthogonality relations of the Wigner 3j sym-
bols (e.g. Edmonds 1996), the coupling matrix which connects the
ensemble average of full- and cut-sky power spectra is given by

M�1�2 = 2�2 + 1

4π

∑
�3

(2�3 + 1)Ĉ w
�3

(
�1 �2 �3

0 0 0

)2

. (B3)

It is a function of the mask power spectrum Ĉ w
� only.
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