
Manuscript published in Journal of Archaeological Science 2017, 81, 1-12.  

Iridium to provenance ancient silver 
 

Jonathan R. Wood, Michael F. Charlton, Mercedes Murillo-Barroso, Marcos Martinón-Torres  

Institute of Archaeology UCL, 31-34 Gordon Square, London WC1H 0PY, UK.  

 

 

ABSTRACT  
Trace levels of iridium in ancient silver artefacts can provide information on the sources of silver-

bearing ores as well as the technologies used to extract silver. A geographically and chronologically 

disparate legacy dataset, comprised of Near Eastern objects from the Sasanian and Byzantine 

Empires (1st Millennium AD) and coins circulating around the Mediterranean in the mid-1st 

Millennium BC, shows that Ag-Au-Ir log-ratio plots can help identify silver derived from the same 

mining areas, as well as broadly differentiating between the ore types exploited. Combining trace 

element and lead isotope analyses through the Pb crustal age of the ore, further delimits 

interpretations on the compositions and locations of silver ore sources. Furthermore, it is shown 

that silver artefacts of Near Eastern origin have exceptionally high iridium levels, suggesting a unique 

silver-bearing ore source, potentially in the Taurus mountain range of southern Anatolia. The wide 

range of crustal ages identified for ancient Greek coins and Near Eastern objects suggest that the 

addition of exogenous lead as a silver collector during smelting was common practice in the Near 

East as early as 475BCE. The practice of mixing silver from different sources has also been identified 

by triangulating the log-ratio subcomposition plots, Pb crustal ages of the ore from which the silver 

derived and absolute values of trace levels of gold and iridium in silver artefacts. 
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1. INTRODUCTION  
Metal ores are unevenly distributed over large areas, which suggests some kind of long-distance 

transport is required to explain the geographical distribution of artefacts in the archaeological record 

(Pernicka, 2014). Tracing the ore source of ancient metal artefacts can complement any 

investigations based on style and iconography, thereby providing information on the movement of 

the materials that culminated in final deposition of the object.  

Provenancing silver objects has been attempted since the 19th century using elemental analyses and 

more recently using lead isotope ratios (for a review, see Pernicka, 2014). In order to determine the 

trajectory of a silver object from its ore source, a metallurgical signature needs to be identified and 

measured (Randle et al., 1973 ;  Meyers et al., 1975). Establishing a relation between chemical 

analyses on ancient silver objects and mineralogical sources of silver requires not only knowledge of 

the composition of the ores, but also of how the composition changes during smelting and 

cupellation (a selective oxidation process where silver is separated from its less-inert lead host) 

(Pernicka et al., 1998). For example, a silver-bearing ore, such as galena (PbS) or cerussite (PbCO3), 

contains, in addition to lead, a small amount of silver but a large number of impurities. Some of 

these elements are retained in the silver, while others are partially or completely removed into slag 

or fumes during the smelting and refining processes (McKerrel and Stevenson, 1972; Pernicka and 

Bachmann, 1983 ;  L'Heritier et al., 2015). Furthermore, contamination can occur from materials 

used in furnaces, fuel and fluxes. Deliberate additions to the system, such as alloying elements or 

recycled silver from other sources, contain their own associated impurities which can also contribute 

to the final composition of the silver object, thus potentially blurring further the provenance 

signature. Exogenous lead, added as a silver collector during extraction from lead-poor silver-bearing 

ores, affects the lead isotope signature derived from the silver and may render the provenancing of 

archaeological silver even more challenging than for other materials (Murillo-Barroso et al., 2016). 

The complexity of the processes involved in the production and alloying of silver makes determining 

a parent-ore indicator extremely challenging, especially when it is considered that any indicator 

needs to have significant variability between ore sources. In other words, not only does an indicator 

need to survive the smelting, cupellation and alloying operations, but also the variability within a 

single ore source must be small compared to variations in geographically separated ore sources 

(Pollard and Bray, 2015). 

Trace levels of gold in silver have been considered associated solely with silver sources, as they tend 

to be virtually absent in any other material in the system and they are not significantly altered by the 

smelting and cupellation processes (Gitler et al., 2009). Variability in gold concentrations between 

silver artefacts has been applied successfully to differentiate between lead ore types (the main 

source of ancient silver), with an empirical value of 0.1 wt% Au in silver objects being the upper limit 

for galena ore sources (Pernicka, 1981). Iridium (Ir), like gold, is an inert siderophile element (Alard 

et al., 2000). Traces of iridium have been found in ancient silver artefacts, suggesting that this metal 

with its high melting point (2447 °C) and similar atomic size to silver survives the smelting and 

cupellation process (Ogden, 1977). Furthermore, gold and iridium are unlikely to enter the system in 

any significant amount due to alloying (i.e. copper, the main alloying metal is poor in these elements 

and rarely exceeds more than 5 wt% of the silver alloy) or to be associated with any non-

argentiferous lead (a chalcophile) added as a exogenous silver collector in the smelting of lead-poor 

silver-bearing ores. Hence gold and iridium are potential proxies to provenance silver from ore to 

object. 



This paper aims to further this hypothesis through the re-analysis of a legacy dataset of 283 analyses 

on silver objects together with published data on ores. We propose that Ag-Au-Ir log-ratio plots are 

useful to discriminate silver deriving from different ore types, hence contributing to provenance 

studies, and that sometimes iridium levels alone can be very diagnostic of individual sources. In 

addition, we explore new ways of combining this information with lead isotopic data, leading to 

more robust approaches to the identification of exogenous lead additions for silver extraction, silver 

mixing through recycling, and metal fingerprinting generally. 

 

2.  LEGACY DATA AND RE-ANALYSIS  
Although iridium is not measured routinely in archaeometallurgy, some studies have measured 

iridium without using it explicitly as a discriminator (Gale et al., 1980). Other investigations, 

especially those associated with Pieter Meyers, were quite successful at grouping silver artefacts 

using iridium, often with an aim of assessing the authenticity of silver objects in museum collections 

(Harper and Meyers, 1981 ;  Meyers, 1992). Meyers' experimental analysis on Sasanian silver (Harper 

and Meyers, 1981) measured major, minor and some trace elements (including iridium) in 38 objects 

from several museums around the world. Although un-provenanced, these objects are made of 

silver from potentially a single ore source (see Section 2.2). Similarly, a study on ecclesiastical 

Byzantine silver provides compositional data from 69 objects dated between the 4th and 7th 

centuries AD (Meyers, 1992). Several of these objects were later analysed for lead isotopes (LIA) in a 

study with two other artefacts in order to investigate their authenticity as ancient objects (Scott, 

1990). A numismatic study on the Asyut hoard (pre-475BCE) measured iridium concentrations in 283 

coins, 102 of which have associated LIA data (Gale et al., 1980 ;  Stos-Gale and Gale, 2009). The 

mints of some of these coins have been suggested, which provide a potential indication of the ore 

source of silver, since silver from the Athenian mint is generally accepted to have come from the 

mines at Laurion on the Attic peninsula. 

The following re-analysis has simply pooled this data with no particular archaeological question: our 

hypothesis is largely methodological, even if our results may be useful for later archaeological 

discussion (which is not attempted here). We believe this data set includes the majority of analyses 

in which iridium was measured for archaeological silver, some of which have associated LIA 

measurements. The focus is on the ore sources which, in some cases, may have been the same, 

irrespective of the period. Hence, we believe that the use of an archaeologically disparate dataset is 

justified. All compositional legacy data presented in the current study were measured using neutron 

activation analysis (NAA) or inductively coupled plasma mass spectrometry (ICP-MS). All 

compositional and LIA data used can be found in Supplementary Table 1. 

Fig. 1 presents histograms of Au and Ir concentrations for this chronologically and geographically 

disparate dataset. The gold distribution appears to be bi-modal. The gold concentration in silver is 

often used to differentiate silver which originated from non-galena (>0.1 wt% Au) and galena ore 

(<0.1 wt% Au) sources (Pernicka, 1981). Iridium has a skewed distribution with a median value of 44 

ppb. 

A re-analysis of this legacy data has been conducted treating the system as a series of sub-

compositional components, by transforming the data to a log-ratio scale (Aitchison, 1986 ;  

Aitchison, 2005). This approach removes the effects of the constant sum constraint (which compels 

the data to lay between 0 and 100%) in order to eliminate any 'spurious correlations' (Chayes, 1949). 

In essence, it considers from the outset that the interest lies in the relative magnitudes and 



variations of components, instead of in their absolute values. A multivariate analysis was performed 

of the full chemical data set using the Compositions package in R created by van den Boogaart 

(2013), applying Aitchison's geometry (i.e. the centred log-ratio transformation) to the raw 

compositional data. After using the variation matrix to measure the spread in the compositional 

data, the subcomposition Ag-Au-Ir was identified as providing the ratios which best represented the 

full composition. Log-ratio plots (e.g. Fig. 2) were constructed using the raw data of each component 

in the subcomposition, i.e. log(Ag/Ir) and log(Au/Ir). 

2.1 SASANIAN SILVER  
In the original study (Harper and Meyers, 1981), Sasanian compositional data was split into specific 

groups delineated by style, shape and iconography. Four vessel groups were identified: 1) early 

Sasanian bowls or plates, 2) central Sasanian hunting plates, 3) provincial hunting plates, 4) 

provincial bowls or plates with enthronement scenes. The central Sasanian hunting plates were 

produced in the paired-line drapery style, with kings wearing correctly rendered Sasanian crowns, 

indicating that they were made onward from the time of Shapur II (309-379AD) up until the 6th or 

7th century AD. The authors concluded that there existed both a central Sasanian, royal production, 

subject to state controls, and several independent, provincial industries that were the source of a 

related class of vessels. Since it is not the intention of the current re-analysis to investigate phases of 

Sasanian iconography, but to identify the utility of a method on a dataset from a well-defined region 

(as well as to avoid any circular arguments regarding artefacts where both style and composition 

appear to have contributed to their grouping), the central Sasanian hunting plates were placed in 

one group (referred to here as Sasanian-Royal - red points), while all others were placed in another 

(Sasanian - blue points). One analysis from the central Sasanian hunting plates, focussing on an 

ancient repair (with silver), was coded separately (Sasanian-Royal-Repair - purple point). 

Fig. 2a shows a centred ternary diagram for the Ag-Au-Ir subcomposition on a dimensionless scale. 

The data appear to show a one dimensional pattern suggesting that the ratio involving Au and Ag 

has an almost constant value, and that most compositional variance is due to variability of Ag/Ir and 

Au/Ir, i.e. (Au/Ir) = k (Ag/Ir), or log (Au/Ir) = log k + log (Ag/Ir). Furthermore, the central Sasanian 

hunting plates appear to cluster together. 

This association becomes more evident when the data is plotted in terms of Ag-Au-Ir log-ratios (Fig. 

2b). As Sasanian silver potentially derives from one mining area (see Section 2.2), it is proposed that 

the linearity of the plot reflects the variability of the subcomposition within the geological deposit 

from where the silver was extracted. It should be pointed out that this linearity is not a statistical 

artefact. In other words, the ratio of Au/Ir and Ag/Ir does not have to be constant unless there is 

some underlying association between the components. This claim is based on the similar premise 

used to interpret compositions of limestone deposits, where log-ratios of a subcomposition have 

demonstrated successfully that geochemically similar limestones across widely different regions 

have lithostratigraphic equivalence, irrespective of the geographical separation (Thomas and 

Aitchison, 2006), i.e. the subcomposition was shown to discriminate as effectively as the full 

composition (which often has ‘noisy’ components that ultimately contribute little information to the 

problem at hand). As such, it is suggested that the interaction in Fig. 2 identifies variability in dilution 

of chemically distinctive parts of the ore body, which results in systematic patterns of variability of a 

subcomposition retained through the processing operations from ore to object. In other words, the 

variability in the Au-Ag-Ir sub-composition of objects potentially discriminates between mining areas 

within an ore body. 

 



Fig. 2b highlights that: 

• Sasanian silver data is spread out, covering about six orders of magnitude on both axes on the log-

ratio plot, mainly due to differences in the iridium concentrations. 

•Data from the central Sasanian hunting plates (Sasanian-Royal) cover a much narrower range - 

about one order of magnitude. 

The narrow range of the 'royal' Sasanian silver with respect to the other Sasanian silver objects, 

suggests they were made of silver from a specific mining area within a broader geological deposit, 

possibly a 'royal' mine. Furthermore, the composition of the ancient repair of a horse leg from a 

central Sasanian hunting plate (highlighted) suggests that not only was it made from silver that was 

extracted from a different mining area, but also from a different geological deposit, i.e. it is not only 

shifted with respect to the central Sasanian hunting plates, but it also appears to lie above the other 

data. Similarly, two points which lie below the other data (highlighted) are possibly from another 

geological deposit or a mixture of Sasanian silver with silver from another source. 

2.2 BYZANTINE SILVER AND OBJECTS FROM GALENA ORE SOURCES 
Fig. 3 shows that most Byzantine ecclesiastical artefacts appear to overlay the Sasanian data (now in 

grey). 

This suggests that Byzantine silver derived from melting down Sasanian silver objects and/or 

Sasanian and Byzantine silver was mined from the same geological deposit, and in some instances, 

the same mining area. Meyers (1992) proposes an Anatolian source for the Byzantine silver. Mining 

at the Taurus mountain range of Southern Anatolia, although archaeologically unattested for this 

period, is a possible source of silver for both Byzantine and Sasanian silver, since both Empires had 

control over this region (Daryaee, 2009 ;  Oates and Oates, 1959). 

The highland regions of Anatolia are considered as one of the earliest environments in which 

metallurgy developed (Craddock, 1985 ;  Tylecote, 1987) and are often cited as a likely source of raw 

materials such as metal, minerals and wood, critical to the populations in the resource-poorer 

environments of the Levant, Iraq and other areas of Anatolia (Muhly, 1973; Muhly, 1976; Charles, 

1985 ;  Moorey, 1985). For example, the Bolkardag valley of mines is 15 km long with numerous 

porphyritic dikes, due to natural processes and mining activities, irregular caves, cavities and 

tunnels. Massive secondary and detrital deposits of oxidised ores are found in these caves and 

cavities as well as abundant outcroppings (Yener et al., 1991), many showing signs of having been 

worked in antiquity (Yener and Özbal, 1986 ;  Yener and Özbal, 1987). Some layered deposits have 

100–1000 ppm of silver (and sometimes higher than 6000 ppm) as well as gold levels ranging 

between 1 and 100 ppm. The area has been described as polymetallic (Ayhan, 1984), mineralogically 

diverse (Yener et al., 1991) and as a highly complex geological zone (Sayre et al., 1992). Some areas 

of the Taurus mountains (e.g. Taurus 1A) have polymetallic ores rich in lead (10–30%), while others 

(e.g. Esendemirtepe) contain only modest amounts (1.2%) or very low lead concentrations (Yener et 

al., 1991). It has been proposed that mining in this region probably targeted argentiferous cerussite 

(PbCO3) from the Bronze Age (Yener et al., 1991 ;  Meyers, 1992) rather than the more demanding 

exploitation of galena, which tends to lie in deposits below the water table, and is consistently 

accompanied with the problematic sphalerite (ZnS) ores (Yener et al., 1991). The latter reduces the 

silver yield in addition to producing noxious fumes (SO2) when smelted (Wertime, 1968 ;  Wertime, 

1973). 

There is also evidence of silver extraction and cupellation in Iran during the Sasanian period (Meyers, 

2003). However, the LIA signature (Nazafati and Pernicka, 2012) is different to that of the Byzantine 



objects discussed here (suggesting that these Byzantine objects were not recycled from Sasanian 

objects derived from these ores). Furthermore, although LIA analyses have been conducted on 

Sasanian silver - unpublished data from Meyers (Stos-Gale, 2001) - which appear consistent with 

some Iranian deposits (e.g. Nakhlak), the limited number of LIA available makes it difficult to 

determine whether the majority of this silver is commensurate with Iranian ores. Moreover, some of 

this silver also falls within the LIA ore fields of the Taurus mountains. Thus, exploitation of silver 

deposits by the Sasanians in both Anatolia and Iran is highly probable, which further highlights the 

need for an approach which can help differentiate silver with similar LIA signatures. 

Fig. 3 also plots the subcomposition of artefacts thought to be derived from galena ore sources, i.e. a 

group of Thraco-Macedonian coins from Orrescii (ca. 5th Century BC) minted in the vicinity of the 

galena ores of Mt Pangaeum (Gale et al., 1980) and silver from two Islamic silver plates for which a 

galena ore source has been suggested (Meyers, 2003). These data points clearly plot on a similarly 

sloped function, suggesting that the Ag-Au-Ir subcomposition has a similar variability within the 

silver of these lead ores, but with a lower y-offset than the Sasanian and Byzantine data. This is 

predominantly a consequence of the gold concentration, which is typically two orders of magnitude 

lower than found in silver derived from cerussite (see Fig. 1). This may relate to differences in the 

lithostratigraphic levels of the ore types, i.e. cerussite is often found close to the surface as a result 

of oxidation of the underlying galena and is therefore enriched in noble metals. 

The plot in Fig. 3 also supports that 7thC AD Byzantine silver was potentially mined in a different 

area (although within the same geological deposit, hence the same alignment but slight separation) 

than 6thC AD Byzantine silver, that the contested Fisherman's (2-4thC AD?) and Philosopher's plate 

(4-6thC AD?) are consistent with the bulk of the dataset and hence likely Byzantine rather than from 

the Renaissance period (Scott, 1990), and that the Antioch Cross was probably made from silver 

from a completely different geological deposit (Meyers, 1992). 

The log-ratio graph therefore has two main advantages over investigating the raw data alone: the 

clustering of data along discrete 'lines' suggests objects are from the same mining area 

(predominantly due to variations in the iridium concentrations); the intercept of the 'lines' reflect 

the type of ore, i.e. galena, cerussite etc. (predominantly as a consequence of the gold concentration 

in the silver). This suggests silver from ore types that are neither cerussite nor galena (or perhaps 

ores of various purities) would lay on different lines (as suggested by the ancient repair and the 

Antioch Cross). 

2.3 ASYUT HOARD  
Another set of data including trace elements comes from the work of Gale et al. (1980), who 

measured the composition of a number of coins from the Asyut hoard (and one coin from the Wells 

hoard), deposited in Egypt in about 475BCE. This hoard contains about 900 coins (283 elemental 

analyses were conducted of which 102 also have LIA data) and appears to be fairly representative of 

coins circulating around the Mediterranean at that time. The coins mainly come from Athens and 

Aegina, together with coins from Orrescii (plotted in Fig. 3), Thasos, Acanthus, Corinth, Lesbos, 

Samos, Mallus or Caria (Anatolia), Salamis (Cyprus), Lycia (Anatolia), Zankle and Messana (Sicily), 

Cyrenaica (Libya) and Persian sigloi (Sardes). The authors claim that the silver is unlikely to have 

been from mixed sources because of the limited use of coinage at this time - although this has been 

disputed (Jessop-Price, 1980) - and conclude from LIA data that there were three sources of silver: 

Laurion, Siphnos and an unidentified source. 

A large number of the Asyut coins lay between the Sasanian/Byzantine and galena data lines. Fig. 4 

shows the Asyut coin data, with the Sasanian and Byzantine data differentiated by using the gold 



concentration of the silver, i.e. below 0.1%wt Au is considered to be a galena source (red), while 

above 0.1 wt% Au is a non-galena source (blue). The red line is a linear fit through the Orrescii 

(galena) data. The blue line is a linear fit of all the Sasanian and Byzantine (cerussite) data from Fig. 

3. The silver coins which have greater than 0.1 wt% Au are unlikely to be from a galena source and 

therefore must derive from either cerussite or another non-galena ore (such as the complex 

sulphosalt silver ores of Siphnos) or from mixed silver. The cluster between the two lines at 

approximately log(Ag/Ir) = 19 and log(Au/Ir) = 11 contains the majority of the Athenian coins. 

3. Pb CRUSTAL AGE  
Some of the legacy data has associated lead isotope analyses (LIA), allowing a preliminary attempt to 

relate LIA with the trace amounts of iridium in silver. This is explored here through the estimated 

crustal age of the ore, as it combines three lead isotopes into one parameter (207Pb, 206Pb and 

204Pb). It is not considered as a replacement for traditional lead isotope plots (which may allow 

variability in specific ratios to identify differences between objects and ores) but as an alternative 

that allows presenting on one plot the variability within lead isotope measurements alongside trace 

element data. For the data presented here (e.g. the Taurus mountains in Fig. 7), the Pb crustal age 

seems to be able to resolve ore deposits as effectively as the conventional 208Pb/206Pb versus 

207Pb/206Pb plots (see Fig. 1 in Sayre et al., 1992). 

Crustal ages were calculated from lead isotope data using a two-stage evolution model with the 

common Pb isotope composition and the 238U/204Pb of the crust (Stacy and Kramers, 1975; 

Albarède and Juteau, 1984 ;  Desaulty et al., 2011). The calculations were performed using the 

approach outlined by Desaulty et al. (2011) and by applying their parameters to determine the 

model age. Different parameters are used by different groups of researchers, and the same groups 

often update the parameters they use (e.g. Albarède et al., 2012). However, the aim here is not to 

calculate crustal ages per se but to define a value for both the ore source and the associated object - 

both should have the same lead isotope ratios and hence the same calculated crustal age, whether 

or not this corresponds with an accurate geological age. In essence, the calculations are used to 

define a numerical value for both ore and object that allows them be compared, a value which is 

generally related to the crustal age of the ore body. This can lead to some ages producing negative 

values (i.e. future ages). This could mean that these leads have had a more complicated history than 

from the predicted rate of addition of radiogenic lead in the source region, during which they 

acquired extra amounts of radiogenic lead. Alternatively, it could mean that the model or the 

parameters are not refined sufficiently to represent the full range of ages. Nevertheless, for the 

purposes of this paper, the parameters used to calculate crustal ages for both the ores and objects 

were the same. 

Fig. 5 shows a frequency distribution histogram of the Pb crustal ages (Ma) for the artefact dataset 

with associated LIA values. The lower crustal ages are commensurate with Laurion ores (Fig. 8). 

Peaks around 30, 60 and 95Ma suggest other ores sources, but could also suggest mixtures of silver 

sources or exogenous lead, each with their own respective lead isotopic signatures. 

The Orrescii coins and a few of the Byzantine objects plotted in Fig. 3 have associated LIA data. It 

was anticipated that ores from the same geological deposit would have similar crustal ages, as would 

be expected if ore genesis occurs at similar times. This was not found to be the case. Fig. 6 shows 

that the Orrescii coins have Pb crustal ages within about 2 million years (Ma) of each other, strongly 

supporting the assumption that they come from a single mining area within a deposit (probably a 

young deposit in geological terms, and therefore consistent with Laurion). On the other hand, the 

http://www.sciencedirect.com/science/article/pii/S0305440317300341#fig3
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Byzantine silver objects, despite showing a relatively linear interaction on the sub-compositional log-

ratio plot, have a wide range of crustal ages (about 100Ma). 

The differences in crustal ages in the Byzantine objects could possibly be explained by the 

exploitation of different ores: Fig. 7 shows the variation in calculated crustal ages of ores from 

several areas in the Taurus mountains (LIA data from Yener et al., 1991; Wagner et al., 1992 ;  Hirao 

et al., 1995), and it is apparent that just two mining deposits (Taurus 1B and 2A) could account for all 

the variability in the Byzantine silver dataset. In other words, the difference between the Orrescii 

and Byzantine crustal age data could be explained by considering that the tribe of Thraco-

Macedonians who minted the Orrescii coins were more likely to exploit one area, while the 

Byzantine Empire had the potential to exploit multiple deposits. At the same time, the proximity of 

some of these Byzantine data points to each other on the log-ratio plot might lead to the 

expectation that their crustal ages should also be similar (i.e. the same mining area should have the 

same crustal age). The observation that they do not suggests that one of the geological models is not 

appropriate: either the hypothesis that silver objects which group together on the log-ratio plot (Fig. 

3; Fig. 5) are from the same mining area, or that the crustal age represents the deposit from which 

the silver was extracted. This is explored further in the discussion section.  

Regarding the Asyut hoard, the histogram (Fig. 8) shows that the range of crustal ages for Laurion 

ores (from over 15 mining sites at Laurion) correspond well with the range of ages from the Athenian 

coins (LIA data from Stos-Gale et al., 1996 ;  Chalkias et al., 1988). In terms of average crustal ages, 

the Athenian and Orrescii coins are similar. This implies that in order to differentiate between these 

two sources the sub-compositional log-ratio plot is required, which shows that the Orrescii data lie 

on a slope with a lower y-offset than the Laurion data (i.e. Fig. 4) potentially because the purity of 

galena is different at these two locations. 

Pb crustal age (Ma) was plotted against log(Au/Ir) and log(Ag/Ir) on a kernel density plot for the 

Asyut coin data (Fig. 9), where the shading corresponds to the smallest region that contains the 

respective probability. Two regions of higher density can be observed on the Pb crustal age vs. 

log(Au/Ir) plot. The lower region corresponds well with silver from Laurion. The higher crustal age 

zone is more diffuse and absent in the Pb crustal age vs. log(Ag/Ir) plot, which suggests a greater 

spread of crustal ages. Consequently, several sources in the Aegean (and further afield) correspond 

to this range. This is one of the main issues with any inferences based on LIA data alone, i.e. LIA 

fields often overlap (as in Fig. 7). The spread also suggests that the majority of coins are not purely 

from two or three ore sources (Gale et al., 1980). 

4. EXAMINING IRIDIUM LEVELS  
So far we have focussed on the relative magnitudes and variations of our elements of interest as the 

most useful proxy to approach silver provenance. Here we turn briefly to the absolute iridium levels 

in the silver as an indicator that may also be useful in some cases. 

Table 1 shows absolute amounts of iridium (ppb) against the Pb crustal age (Ma) for all the data (n = 

283) and those with associated LIA (n = 102). The data has been separated into four groups based 

entirely on geographical considerations. The artefacts with LIA values are listed individually: 

1) Near Eastern coins and objects: NEast 

This includes the Byzantine objects (7 objects) and coins from the Asyut hoard that have Near East 

associations: Persian sigloi (Sardes) (3 coins), coins from Mallus or Caria (Anatolia) (5 coins) and Lycia 

(Anatolia) (2 coins).  



2) Aegean and Cypriot coins: Aegean 

Coins from the Asyut hoard: Athenian (14 coins), Orrescii (6 Coins), Corinth (9 coins), Lesbos (1 coin), 

Samos (5 coins), Thasos (4 coins), Acanthus (3 coins) and Salamis (Cyprus) (1 coin). 

3) Aeginetan coins: Aeginetan 

These 46 coins (38 with LIA) have been put in a separate group as they do not fall within one group 

based on LIA. Furthermore, with no silver sources of its own, Aegina is likely to have acquired silver 

from several sources (Gale et al., 1980). 

4) Other coins: 

Coins from Zankle (3 coins) and Messana (1 coin) (Sicily). 

Table 1 shows the number of objects or coins which fall above and below the median of the iridium 

concentration for all the artefact data (44 ppb). The median was chosen as it better represents a 

skewed distribution (Fig. 1) than the mean. It can be seen that 135 out of 180 artefacts classified as 

Near Eastern lay above the median, i.e. 75% of all Near Eastern artefacts. The majority of the 

artefacts classified as Aegean, Aeginetan or Other, lay below the median. This is similarly reflected in 

the samples that have associated LIA data (Fig. 10) with 18 of the 102 plotted points (18%) having 

iridium values above 44 ppb Ir, in some cases over an order of magnitude higher. The majority (10 of 

the 18) of these elevated iridium levels are from the Near East group, 4 from the Aegean and 4 from 

the Aeginetan group. This suggests strongly that higher iridium levels are much more frequent in the 

silver-bearing ores of the Near East than those of the Aegean. 

Fig. 10 also shows that several of these high iridium silver artefacts are coincident with ores that are 

about 65 million years old (as shown by the blue vertical dashed line), especially when it is 

considered that each point could have errors calculated in the Pb crustal age as high as ± 30Ma due 

to 0.1% analytical errors propagated from LIA measurements; cf. Stos-Gale (2014). The elevated 

concentration of iridium in some samples is between 10 and 20 times the baseline level. Since such 

elevated levels of iridium in silver artefacts appear to be exceptional, it is possible that this is unique, 

with elevated levels of iridium coming from one single deposit (and possibly one mining area). It is 

proposed here that this mining are is in the Taurus mountain range. In other words, the 7 Byzantine 

objects, 2 Persian sigloi, 1 coin from Mallus or Caria, 1 Athenian coin, 2 coins from Corinth, 4 

Aeginetan coins and 1 coin from Lesbos all derived from the same high-iridium, silver-bearing ore 

source. The Near Eastern artefacts and possibly the coin from Lesbos (which lies off the coast of 

Anatolia) fit well with such a scenario. Similarly, as mentioned earlier, Aegina has no silver deposits 

of its own and could therefore have acquired silver from a number of sources, including Anatolia. 

The two coins from Corinth and the coin from Athens are more problematic since both Corinth and 

Athens supposedly derived their silver from the galena ores of Laurion. However, these three coins 

have gold concentrations greater than 0.1 wt% (Corinthian 0.39 wt% and 0.26 wt%; Athenian 0.24 

wt%), suggesting that they were not produced from a galena ore source, and possibly came from re-

stamped coins of Near Eastern origin. 

Fig. 11 shows traditional LIA ratio plots for ores in the Taurus mountains, Laurion ores, Athenian 

coins and silver objects with iridium values in excess of 44 ppb (Fig. 10). LIA values for some of the 

Sasanian objects have also been plotted, derived from the unpublished data of Meyers (Stos-Gale, 

2001). These analyses were not plotted alongside their iridium values in Fig. 10 because different 

parts of the objects (made from different silver batches) were measured to determine compositions, 

while only one value was presented for the LIA. Nevertheless, from the 10 LIA values available for 



the Sasanian objects described above, 7 are in excess of 44 ppb. The LIA values of these are also 

plotted in Fig. 11. 

As expected, the Athenian coins are commensurate with the ores from Laurion. Silver with elevated 

levels of iridium have similar LIA ratios to ores from the Taurus mountain region, supporting that 

these objects originated from silver mined in this region. 

Fig. 12 presents all data delineated into compositional groups based on gold (High: Au>0.1 wt%; 

Low: Au<0.1 wt%) and iridium (High: Ir > 44 ppb; Low: Ir < 44 ppb) levels. The HighAu-HighIr region 

contains Sasanian and Byzantine silver objects, including those classified as 'Sasanian Royal', as well 

as a number of coins of Near Eastern origin. This group has a wide range of crustal ages (about 

150Ma), with no obvious central tendency. The one point identified as LowAu-HighIr is an individual 

coin that was analysed alongside the Asyut hoard but which has a different archaeological 

provenance (Wells hoard), and is potentially from a different mint (Figueira, 1998), which could 

suggest another ore source (Pb crustal age is 25Ma). The LowAu-LowIr group contains the Orrescii 

coins, the majority of the Athenian coins and a number of coins from Aegean and Aeginetan groups. 

Fig. 13 shows a histogram of the crustal ages for this LowAu-LowIr compositional group, highlighting 

that the majority are commensurate with the crustal ages associated with the ores of Laurion (Fig. 

8). However, some of the coins in this group are aligned with a different population, with a higher 

crustal age (about 60Ma). This could suggest a low gold-low iridium ore source with relatively higher 

crustal ages than Laurion. 

The HighAu-LowIr group contains Sasanian silver objects which were not classified as 'royal', and 

coins with gold concentrations higher than expectable from galena ore sources. It has a wide range 

of crustal ages (about 150Ma), without any obvious central tendency. 

5. DISCUSSION  
The scenario presented is that any ancient silver artefact with elevated levels of iridium, regardless 

of the chronology or find-site, will have silver that came from a single mining area - probably a 

mining area in the Taurus Mountains of southern Anatolia. The conservative lower limit of 44 ppb Ir 

is a reasonable indicator for silver from this source and the results of the meta-analysis indicate that 

most of the silver which ended up in Sasanian and Byzantine objects came from this high-iridium 

silver deposit. If the hypothesis is correct, the results also show that this deposit was being exploited 

at least 1000 years earlier to produce Near Eastern and Greek coins. 

One issue with the Iridium-Pb crustal age plot (Fig. 10) is that not all of the silver laying above the 

iridium horizontal baseline fall on the vertical 65 million year line, as one might expect if all of the 

objects derive from the same silver source. Even considering that some of this data will have errors 

in the Pb crustal age, the very low crustal age of the Athenian-minted coin and the high crustal age 

of one of the Byzantine objects would seem difficult to reconcile with an origin in a single mining 

area. However, this and other issues mentioned above can be resolved by considering that, in those 

cases, exogenous lead from a different source was used as a collector to smelt the silver. This 

possibility is now addressed, while at the same time illustrating further the potential of the approach 

that considers compositional log-ratios alongside LIA data. 

The large scatter in crustal ages observed in Fig. 9 is potentially due to variations in the ages within 

each silver-bearing ore body as well as between ore bodies (as seen, for example, in the variation in 

crustal ages of the Taurus mountain range - Fig. 7). However, another potential source of variability 

is related to the particular technological requirements associated to each ore mineralogy, and 

specifically the need (or not) to add exogenous lead as a silver collector. The Orrescii and Athenian 



coins were probably derived from galena, which does not require lead to be added during the 

processing, as the silver is a trace element within the lead itself. In this case, the silver-bearing ore 

and the lead used to extract the silver will have the same crustal age, thereby resulting in a narrow 

range of crustal ages for the ore source as deduced from the object. This can explain why the 

Athenian and Orrescii coins have a relatively narrow range of crustal ages. A similar argument can be 

applied to pure cerussite sources, because of the intrinsic lead. However, the ores of the Taurus 

mountains are complex and variable, with some of them being more lead-rich than others (Yener et 

al., 1991). If lead was sometimes added to smelt and/or refine Near Eastern silver in order to act as a 

silver collector, the silver-bearing ore could derive from one location while the lead (and therefore 

the signature from which the Pb crustal age is calculated) could derive from another. In this scenario, 

a wide range of crustal ages would be measured even though the silver (and hence the iridium and 

gold) comes from one geological deposit. For example, high-iridium silver ore smelted with lead 

from Taurus 2A would result in silver with a high crustal age, while high-iridium silver ore smelted 

with lead from Taurus 1B would have a crustal age commensurate with the Athenian coin. By the 

same rationale, silver-bearing ore which lays close or on the 65 million year line probably had 

sufficient intrinsic lead to extract the silver, or lead was added from a deposit that was 

approximately the same age as the silver-bearing ore. 

The logical extension of this argument is that the practice of adding lead would not have to have 

been confined to the high-iridium silver deposits identified above, but is more likely to have been 

common practice for those mining and extracting silver from the complex ores of Anatolia (from 

475BCE, and probably much earlier). There is circumstantial evidence for this practice from the 

second millennium BC (Pernicka, 2014). Furthermore, evidence of the addition of lead to smelt 

silver-bearing ores has been found in Spain, where lead from Cartegena was added to silver-bearing 

ores from the Corta Lago mine of Rio Tinto by the Romans (Salkield, 1982). Slag from Phoenician 

levels at the same site suggests that exogenous lead was added even when the ores were sufficiently 

lead-rich to collect silver (Anguilano et al., 2009 ;  Murillo-Barroso et al., 2016). This practice could 

explain why the Aeginetan coins have such a wide range of crustal ages: some silver came to Aegina 

from Laurion where it was stamped into Aeginetan coins (these coins have Pb Crustal ages in line 

with the silver from Laurion, <0.1 wt% Au as expected from galena, and lay on a line on the log-ratio 

plot which reflects the compositional variability of this mining area), while other silver came from 

various mines around Anatolia (including the deposit with high iridium levels) where the practice of 

adding lead to extract silver resulted in a range of crustal ages depending on the lead ore source 

exploited. This would present an almost intractable problem for lead isotope analyses, as 

determining the ore source a priori from an object would not only require knowledge of all the 

silver-bearing ore sources and lead ore sources, but would result in a multitude of scenarios due to 

the permutations of how they were combined (the result of which is perhaps evident in the wide 

spread of crustal ages for the Asyut hoard and Byzantine objects discussed above). The gold and 

iridium log-ratios, however, help us triangulate this issue. 

A further reason for the wide range of crustal ages is the thorny issue of mixed silver. In this 

scenario, however, the linearity of the log-ratio plot would be altered as well as potentially 

exhibiting a wide range of crustal ages. The linearity of the Sasanian and Byzantine data suggests 

that the silver for these objects was not mixed. Similarly, the Orrescii coins and other coins in the 

LowAu-LowIr group appear to exhibit linear relationships, which suggests that the majority are from 

unmixed sources (in this case, also supported by the narrow range of crustal ages). Turning to the 

HighAu-LowIr group (Fig. 12), this group comprises coin data and Sasanian/Byzantine objects, both 

from non-galena sources; the Sasanian/Byzantine objects tend to lay on a line (Fig. 3) while the coin 



data cover a broader range of log-ratio values. Fig. 14a shows the iridium concentration for this 

group vs. Pb crustal age for the data with LIA values (comprising coins from the Asyut hoard). 

It is apparent that for the majority of data in this group, the iridium concentration is relatively 

invariant with crustal age. This suggests that the silver is not mixed and that the wide range of 

crustal ages is a consequence of the exploitation of many ore sources, the addition of lead from 

different locations to extract silver from these sources, or more likely, a combination of both. 

However, a convincing linear interaction is present in the upper part of the plot, which indicates that 

for these coins two sources with different crustal ages and iridium levels were mixed together. These 

data values are presented alongside their gold concentrations (Fig. 14b). Assuming the extreme 

points are the end members of a mixing line suggests that some of the coins which lay in the HighAu-

LowIr group are a mixture of two types of silver: one with about 35 ppb Ir, 0.2 wt% Au and a crustal 

age of 12Ma and another with about 10 ppb Ir, 0.4 wt% Au and a crustal age of 144 Ma. 

Evidence of mixing can also be observed in the HighAu-HighIr group. Although this group is made up 

of Sasanian and Byzantine objects and Near Eastern coins which predominantly lay on a relatively 

linear line on the log-ratio plot (Fig. 12), there are several coins in this group which deviate from this 

'line'. Furthermore, a relatively linear interaction can be observed in Fig. 10, which is shown 

alongside the gold concentration in Fig. 14c. Again, mixing of two types of silver is suggested: one 

with about 35 ppb Ir, 0.35 wt% Au and a crustal age of 8Ma and another with about 365 ppb Ir, 0.8 

wt% Au and a crustal age of 153 Ma. 

The concordance of the iridium and gold values at low crustal ages for both the HighAu-HighIr and 

the HighAu-LowIr groups suggests strongly that one component of the silver mixture is the same for 

both groups (Fig. 14d), i.e. silver with about 35 ppb Ir, 0.2–0.35 wt% Au and a crustal age of between 

8 and 12Ma. In the case of the HighAu-LowIr group, this silver was mixed subsequently with another 

silver which had a lower iridium concentration but a higher gold concentration. Conversely, for the 

HighAu-HighIr group, the silver was mixed with silver which had both higher iridium and gold 

concentrations. Considering that silver with the highest levels of iridium is likely to have come from 

one mining area with a crustal age of 65Ma (see Section 4 above), then the end member of the 

mixing line (with a crustal age of 153Ma) is likely to represent high-iridium silver (hence 65Ma) which 

was smelted using lead from a location with a high crustal age, i.e. exogenous lead dominates the 

LIA signatures from which the crustal age was calculated. Furthermore, it is also suggestive that the 

lead source used as a silver collector was common to both the HighAu-LowIr and HighAu-HighIr 

groups, as the end members have very similar crustal ages (144Ma and 153Ma, respectively). This 

could denote a lead mining area (perhaps Taurus 2A) where lead was extracted and used as a silver 

collector for the smelting of lead-poor silver-bearing ores. 

6. CONCLUSIONS  
One aim of the current work was to re-evaluate the legacy data available in the archaeological 

literature to determine whether iridium is an element that should be more often analysed for during 

archaeometallurgical investigations. The re-analysis indicates that the Ag-Au-Ir log-ratio sub-

compositional plot based on the analysis of silver objects can help identify not only broad geological 

deposits but also mining areas within a deposit from which ancient silver was extracted. Combining 

this sub-compositional plot with LIA data through the Pb crustal age, delimits interpretations of the 

data in some circumstances. In situations where no exogenous lead has been added to act as a silver 

collector at a particular source, the crustal ages for artefacts will tend to fall within a narrow range, 

and the subcompositional data will lay on discrete lines (or clusters) on the log-ratio subcomposition 

plot. This provides a strong signature that may allow the location of the relevant silver ore to be 



determined. Ore analyses are the focus of future work to ground-truth the utility of such signatures. 

When lead is added, the range of crustal ages can be high and it becomes much more difficult to 

delimit the ore source based on LIA, but the Ag-Au-Ir ratios can still be useful to demarcate groups 

that may correspond to silver sources. In any case, the combined approach piloted here, 

incorporating both chemical and isotopic data, helps identify with higher confidence cases where 

lead was added as a collector and/or silver was mixed (e.g. through recycling). This provides useful 

indicators for economic and technological behaviours of great archaeological significance, which 

have generally been assumed rather than proved. For the dataset investigated here, the practice of 

adding lead appears to have been a Near Eastern practice from at least as early as 475BCE and 

mixing silver was common in the Aegean during the same period. 

An unexpected outcome of reanalysing the legacy data was that high levels of iridium appear to be 

confined to Near Eastern artefacts and coincident with ores aged about 65 million years. It is 

proposed that some of the silver-bearing ores mined in the Taurus mountain range had high levels of 

iridium, and this high-iridium signature can be traced in ancient silver objects. 
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FIGURES 

 

Figure 1. Frequency distribution histograms of the iridium (ppb) and gold (wt%) concentrations of the full 
dataset. The bin width was set using the Freedman-Diaconis rule (Freedman and Diaconis, 1981). Note that 
some objects were measured more than once because they had more than one part (e.g. foot, rim etc.). The 
histograms show that the gold concentration is bi-modal and that the iridium concentration has a skewed 

distribution with a median value of 44 ppb. 
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Figure 2. (a) Centred ternary for Sasanian silver data: Sasanian ( ), Sasanian-Royal ( ) and Sasanian-Royal-
Repair ( ). It is often typical to standardise the data in multivariate systems by scaling and centring the dataset 

in order to have a dimensionless, comparable variability. With transformed compositional data scaling is 
unnecessary as it already has a dimensionless scale (van den Boogaart, 2013). (b) Log-ratio plot for Sasanian 
silver data. Note that the clustering of the ‘royal’ silver suggests a mining area within the geological deposit 

while the repair and two points off-set from the relatively linear interaction suggest a different mining area and 
potentially a different ore type (highlighted). The overlap of some of the provincial objects with the royal 

objects could either suggest that these 'royal' mines were not restricted to the royal workshops or that these 
objects have been misidentified as provincial. 
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Figure 3. Log-ratio plot showing the sub-composition for Sasanian (in grey) and Byzantine silver objects as well 
as silver from two potential galena sources - 6 coins from Orrescii c. 5th C BC (Gale et al., 1980), and two early 

Islamic plates (Meyers, 2003). Note that these 'galena' points have a lower y-offset than the 
Sasanian/Byzantine data. The question marks for the Fisherman (2-4thC AD) and Philosopher's (4-6thC AD) 

plates highlight that these two objects were once suspected to be from the Renaissance period. The outlined 
grey box shows the 'Antioch Cross' which is clearly from a different geological deposit to the other objects in 

the Byzantine 7thC group. 
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Figure 4. Log-ratio plot of the Ag-Au-Ir subcomposition showing all the Sasanian, Byzantine and Asyut data 
differentiated by gold concentration. The red line shows a fit just through the Orrescii data which are probably 
from a galena source. The blue line is a fit through both the Byzantine and Sasanian data shown in Fig. 3 which 
are probably from the complex oxidised silver-bearing ores of the Taurus mountains in southern Anatolia. The 

remainder of the points from the Asyut hoard have not been fitted as their ore source is less well identified. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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Figure 5. Frequency distribution histogram of the full dataset with LIA values. Pb crustal ages were calculated 
from the two-stage evolution model (Stacy and Kramers, 1975). The Freedman-Diaconis rule (Freedman and 
Diaconis, 1981) was used to set the bin width. Lower ages are commensurate with the ores from the Laurion 

mining area. Note the three higher frequency crustal ages of around 30, 60 and 95Ma. 
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Figure 6. Log-ratio plot of the subcomposition showing the Byzantine and Orrescii data which have associated 
lead isotope values from which the Pb crustal age was calculated using the two-stage model (Desaulty et al., 

2011). The Orrescii coins have a narrow range of crustal ages, while the Byzantine objects have a range of 
about 100 million years (Ma). The chronological ages of the silver objects/coins are also presented. The 

question marks for the Fisherman (2-4thC AD) and Philosopher's (4-6thC AD) plates highlight that these two 
objects were once suspected to be from the Renaissance period. 
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Figure 7. Beeswarm plot of Pb crustal age of ores from the Taurus mountains in southern Anatolia and Byzantine 
objects (LIA data from Yener et al., 1991; Wagner et al., 1992 ; Hirao et al., 1995). 

 

 

Figure 8. Frequency distribution histogram showing the range of Pb crustal age (Ma) calculated from lead 
isotope ratios from Laurion ores at 15 sites using a two-stage evolution model (Stacy and Kramers, 1975). LIA 
data from Stos-Gale et al., 1996 ;  Chalkias et al., 1988. The Freedman-Diaconis rule (Freedman and Diaconis, 

1981) was used to set the bin width. The crustal age of the ore deposit is commensurate with the Laurion 
cluster observed in Fig. 8 from the Asyut coin data. 
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Figure 9. Kernel density plots for the Asyut coin data, where the shading corresponds to the smallest region 
which contains the respective probability. (top) Pb Crustal Age (Ma) vs Log (Au/Ir): Two regions of high density 
are visible. Note that the central value and spread of data in the lower region is similar to the range of crustal 
ages determined from coins from the Laurion mint and the range of Pb crustal ages from the Laurion ores. The 

higher region has a Pb Crustal Age commensurate with several ore bodies in the Aegean, and further afield. 
(bottom) Pb Crustal Age (Ma) vs Log (Ag/Ir) showing only high density in the lower region of the plot. 

 

 

 



 

Figure 10. Iridium concentration (ppb) vs Pb crustal age (Ma) for all data with LIA values. The dataset is 
disaggregated into 4 groups based on geography (Table 1). The majority of samples which lay above the 

horizontal baseline (determined from the median of the whole dataset) are of Near Eastern origin. A number of 
samples cluster around 65 million years (vertical blue line). The error bar is ±30Ma, determined from the 
analytical error in the LIA measurements (Stos-Gale, 2014). Note the suggestion of linearity in the points 

increasing from lower to higher crustal ages (see Fig. 14). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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Figure 11. LIA ratio plots showing ores from Laurion ( ) and the Taurus Mountains ( ) alongside Athenian coins   
( ) and silver objects with iridium greater that 44 ppb ( ). Error bars show the analytical errors (±0.1%). 

 

 



 

Figure 12. Log-ratio plot of all the data delineated by gold and iridium concentrations: High gold - Au>0.1 wt%; 
Low gold - Au<0.1 wt%; High Iridium - Ir > 44 ppb; Low Iridium - Ir < 44 ppb. 

 

 



 

Figure 13. Frequency distribution histogram of Pb crustal ages (Ma) for LowAu-LowIr group. The Freedman-
Diaconis rule (Freedman and Diaconis, 1981) was used to set the bin width. Lower crustal ages are 

commensurate with Laurion ores. A peak around 60Ma suggests that another silver source is present within 
this group. 
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Figure 14. (a) Iridium concentration (ppb) vs Pb crustal age (Ma) for the HighAu-LowIr group with associated LIA 
values. Note that data in the upper part of the plot exhibit a potential linear relationship. (b) Iridium (ppb) 

(black) and gold (%x10) (red) concentrations vs Pb crustal age (Ma) for the data from the HighAu-LowIr group 
exhibiting linearity in Fig. 14a. (c) Iridium (ppb) (yellow) and gold (%x10) (green) concentrations vs Pb crustal 

age (Ma) for the data from the HighAu-HighIr group exhibiting linearity in Fig. 10. (d) Iridium (ppb) 
concentrations vs Pb crustal age (Ma) for the data from the HighAu-HighIr (yellow) and HighAu-LowIr (black) 
groups. Note the coincidence in the iridium values at low crustal ages suggesting that this end member of the 
mixing line was the same for silver from both groups. Note also that the crustal ages of the high end members 

of both groups are very similar. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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TABLES 

 

 

GROUP Above median (>44 ppb Ir) Below median (<44 ppb Ir) 

 With LIA All With LIA All 

Near East 10/17 (59%) 135/180 (75%) 7/17 (41%) 45/180 (25%) 

Aegean 4/43 (9%) 4/50 (8%) 39/43 (91%) 46/50 (92%) 

Aeginetan 4/38 (11%) 4/46 (9%) 34/38 (89%) 42/46 (91%) 

Other 0/4 (0%) 0/7 (0%) 4/4 (100%) 7/7 (100%) 

     

Table 1. Iridium levels, separated into geographical groups, of the number of samples out of the total number of samples 
(n = 283) and those with LIA values (n = 102), which lay above and below the median of the whole dataset 

(Irmedian = 44 ppb). The data with LIA values are plotted in Fig. 12. 
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