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Abstract

Alzheimer’s disease is the most common form of dementia, accounting for approxi-

mately 60-80% of cases. Pathologically, the disease is characterised by the accumu-

lation of amyloid plaques and neurofibrillary tangles in brain tissue, which give rise

to downstream neurodegeneration and cognitive deficits. Biomarkers, such as volu-

metric measures of neurodegeneration derived from Magnetic Resonance Imaging,

allow the progression of Alzheimer’s disease to be monitored in vivo. Hypothetical

models have been proposed that describe a distinct sequence of biomarker changes,

but also heterogeneity in this sequence across different population subgroups. How-

ever, the quantitative evolution and heterogeneity of these biomarker changes has

yet to be determined.

This thesis investigates the progression and heterogeneity of Alzheimer’s dis-

ease by developing mathematical models of disease progression that characterise

the evolution of biomarker measurements from cross-sectional data. Three key con-

tributions are made. First, the application of data-driven models to sporadic and

dominantly-inherited Alzheimer’s disease to determine the sequence of biomarker

changes in each form of Alzheimer’s disease, and to ascertain the utility of patient

staging systems derived from the models. Second, the development of a simu-

lation framework that produces synthetic neurodegenerative disease datasets, al-

lowing the evaluation of the performance of mathematical models of disease pro-

gression. Third, the formulation of a data-driven subtyping model that uniquely

uncovers population subgroups with distinct biomarker trajectories, enabling the

separation of disease subtype from disease stage. Application of this model to spo-

radic Alzheimer’s disease provides a novel data-driven classification of Alzheimer’s
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disease into subtypes with distinct patterns of regional volume loss, as well as fine-

grained subtyping and staging information.

The models proposed in this thesis have wide potential further application to

advance disease understanding and to provide precise patient staging information

for other diseases and developmental processes.
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Chapter 1

Introduction

1.1 Alzheimer’s disease

1.1.1 Background

Alzheimer’s disease (AD) is a progressive neurodegenerative disease that is charac-

terised by the build up of amyloid plaques and neurofibrillary tangles in brain tissue.

It is the most common cause of dementia, accounting for approximately 60-80% of

cases [1–3], with the term dementia referring to the group of symptoms caused by

various brain disorders, rather than the underlying condition. The symptoms of de-

mentia include memory loss, language difficulties, loss of problem solving abilities,

behavioural problems, and difficulty performing activities of daily living. In the ad-

vanced disease stages there is a loss of bodily functions, which ultimately becomes

fatal. Each different type of dementia is associated with a particular set, severity,

and sequence of symptoms. AD typically presents with short-term memory loss,

with a broader range of symptoms developing as the disease progresses, such as im-

paired communication, disorientation, confusion, and behavioural issues. There is

however considerable overlap between the symptoms of different dementias, which,

together with the possible presence of mixed dementia, complicates differential di-

agnosis. In addition to the devastating personal impact of dementia, the economic

impact is huge, costing an estimated US $818 billion worldwide [4]. The number of

people living with dementia globally was estimated to be 46.8 million in 2015, with

this number being predicted to almost double every 20 years [4]. Currently there
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are no disease modifying treatments available; treatments only mask the symptoms

of dementia temporarily.

1.1.2 History

In 1906 Alois Alzheimer presented the case of Auguste D. [5], a woman admitted to

a mental institution at the age of 51 with progressive cognitive impairment that in-

cluded memory problems and hallucinations [6]. Autopsy examination of her brain

revealed the presence of plaques and neurofibrillary tangles [6, 7]. This particular

type of dementia became known as Alzheimer’s disease following the introduction

of the eponym by Emil Kraeplin in 1910 [6, 8].

AD was initially thought to be a rare form of presenile dementia [6]; it wasn’t

until 1968 that it was shown that the neuropathology of many common senile de-

mentia cases was indistinguishable from that of AD [9], leading to widespread

recognition that AD is in fact a very common brain disorder [10]. From 1975 there

has been a surge in AD research, with the number of publications increasing ex-

ponentially each year [11]. The National Institute of Aging, founded in 1974, and

the Alzheimer’s Association, founded in 1979, greatly increased the scientific and

public awareness of AD [10], as did Robert Katzman’s editorial in 1976 [12], which

brought attention to the disease as an impending public health challenge [10].

1.1.3 Pathology

Aβ plaques (amyloid plaques) and neurofibrillary tangles are the hallmark patholo-

gies that define AD. They are thought to cause damage to neurons (Figure 1.1a)

and neuroglial cells (Figure 1.1b) in the brain, although their precise mechanism of

action remains unclear [13]. Neurons transmit information in the brain; neuroglia

provide support for neurons.

1.1.3.1 Aβ plaques

Aβ plaques are extracellular deposits of Aβ , which can broadly be classified as

dense-core (neuritic, meaning that they consist of deteriorating neuronal material)

or diffuse [14]. Dense-core plaques tend to be surrounded by dystrophic neurites

(axons or dendrites - parts of neurons - shown in Figure 1.1a), reactive astrocytes
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(a) Neuron. (b) Types of neuroglia.

Figure 1.1: Diagram of a neuron1 and neuroglial cells2.

and activated microglial cells (types of neuroglia - see Figure 1.1b), and are as-

sociated with synaptic loss [15–18]. Diffuse plaques are usually non-neuritic and

are not associated with glial activation or synaptic loss [14]. The presence of dense-

core plaques is necessary for the pathological diagnosis of AD [19], whereas diffuse

plaques are relatively common in cognitively normal elderly people [20–22]. The

spatiotemporal pattern of amyloid deposition varies, but general patterns have been

proposed that can be used to stage patients, such as that of Thal et al. in 2002

(Figure 1.2) [23].

1.1.3.2 Neurofibrillary tangles

Neurofibrillary tangles are intraneuronal aggregates of hyperphosphorylated and

misfolded tau [14]. They become extraneuronal following the death of tangle con-

taining neurons [24,25]. Neuropil threads accompany neurofibrillary tangles, which

are segments of axons and dendrites that contain aggregated and hyperphsphory-

lated tau [24]. The spatiotemporal pattern of neurofibrillary tangle progression is

generally quite homogeneous, as described by Braak and Braak in 1991 (Figure

1.3) [26]. However, there are atypical cases. In 2011 Murray et al. [27] proposed

that there are three subtypes of AD based on neurofibrillary tangle distribution: typ-

ical AD, hippocampal sparing AD, and limbic-predominant AD, with typical AD

1Image from User:BruceBlaus at Wikimedia Commons. CC BY 3.0.
2Image from Blausen.com staff (2014). “Medical gallery of Blausen Medical 2014”. WikiJournal

of Medicine 1 (2). DOI:10.15347/wjm/2014.010. ISSN 2002-4436. CC BY 3.0.

https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
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Figure 1.2: Phases of β -amyloidosis proposed by Thal et al. in 2002 [23]. In phase 1 there
are Aβ deposits in the frontal, parietal, temporal, or occipital neocortex (shown
in black). For each phase after phase 1 the red arrows indicate the presence of
new Aβ deposits. Reprinted from [23], Copyright 2002, with permisson from
Wolters Kluwer Health, Inc.

accounting for around 75% of cases.

1.1.3.3 Co-occurring pathologies

Several other pathologies commonly co-occur in AD: cerebral amyloid angiopathy,

where amyloid deposits accumulate on the walls of cortical blood vessels; granuo-

vacuolar degeneration, consisting of intraneuronal clusters of small vacuoles found

in the hippocampal pyramidial neurons; Hirano bodies, which are perineuronal le-

sions found in the hippocampal CA1 region; glial responses in the form of reactive

astrocytes and activated microglial cells; neuronal and synapse loss [14].

1.1.3.4 Associated conditions

Other conditions commonly coexist with AD, such as vascular dementia and Parkin-

son’s disease. Consequently, non AD neuropathological lesions, e.g. ischemic in-

farctions and Lewy bodies, are frequently found alongside AD lesions. In the pres-

ence of mixed pathology it is difficult to disentangle the relative contribution of each

condition to cognitive impairment [31].
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Figure 1.3: Neurofibrillary tangle staging system proposed by Braak and Braak in 1991
[26]. The density of the shading indicates the severity of the neurofibrillary
changes. Reprinted from [26], Copyright 1991, with permisson from Springer.

1.1.4 Genetics

AD consists of two forms: an early onset dominantly-inherited form, which typi-

cally begins before the age of 60, and a late onset sporadic form, for which disease

risk increases with age [32].

1.1.4.1 Dominantly-inherited Alzheimer’s disease

Mutations in three genes: the amyloid precursor protein (APP) gene [33], the pre-

senellin 1 (PSEN1) gene [34], and the presenellin 2 (PSEN2) gene [35, 36], are

known to cause early onset AD. All but one of the ∼200 pathogenic mutations in

these three genes are autosomal-dominant [32], meaning that if you inherit one copy

of the gene you will get the disease. The consequence of this is that a parent with

early onset AD has a 50% chance of passing the condition on to their children. Most

pathogenic AD mutations lead to a common molecular phenotype: an increase in

the ratio of Aβ42 to Aβ40 [37]. Aβ40 and Aβ42 are the two most common isoforms

of Aβ , of which Aβ42 is considered to be the most associated with disease states.



28 Chapter 1. Introduction

1.1.4.2 Sporadic Alzheimer’s disease

Late onset AD is more complex, with disease risk likely resulting from the interac-

tion of a variety of genetic, environmental and lifestyle factors [32]. The most well

established risk gene for AD is the apolipoprotein E (APOE) gene [38]. It is thought

that APOE modifies disease risk by influencing Aβ metabolism. APOE has three

possible isoforms: ε2, ε3 and ε4, of which ε3 is the most common. The ε4-allele of

APOE increases the risk of AD, whereas the ε2-allele is protective [39]. Carrying

either one or two APOE ε4-alleles increases disease risk 3-fold, or 8- to 10-fold,

respectively [32]. Many other genes have been implicated in AD, but none of them

have strong effects [32].

1.1.5 Mechanism

The biological mechanisms that give rise to the pathological hallmarks of AD, amy-

loid plaques and neurofibrillary tangles, are not well understood. It remains to be

determined how the different pathologies propagate and interact, and how they give

rise to downstream neurodegeneration and cognitive deficits.

1.1.5.1 The amyloid hypothesis

The amyloid hypothesis (Figure 1.4), which postulates that Aβ is the causative

agent in AD, was first formalised in 1991 and 1992 [40–43] following the discovery

of fully penetrant pathogenic mutations in the APP gene [33]. These mutations alter

APP metabolism such that relatively more Aβ42 is produced [37,44], demonstrating

that AD can result from an increase in the production of Aβ42. However, 25 years

later, the amyloid hypothesis is still a contentious subject [13].

There is strong evidence that Aβ is the initiating event in dominantly-inherited

AD: mutations in the three major dominantly-inherited AD genes, APP, PSEN1,

and PSEN2, all cause a relative increase in Aβ42 production [37]. Moreover, these

three genes are all mechanistically involved in the production of Aβ : APP encodes

the amyloid precursor protein from which Aβ is generated; PSEN1 and PSEN2

encode presenellin 1 and 2, which are subunits of the β - and γ-secratase complex

that generates Aβ by cleaving APP. The potential role of these genes and other AD
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Figure 1.4: The amyloid cascade hypothesis. Reproduced from [13]. CC BY 4.0.

genes in Aβ -related pathogenesis is summarised in Figure 1.5. There is however

some debate as to whether Aβ42 itself contributes to dominantly-inherited AD, or

whether the pathogenic mechanism is another process related to APP and its pro-

cessing by presenellin [45]. The applicability of the amyloid cascade hypothesis

to sporadic AD is disputed because of the genetic heterogeneity of the disease, but

the major risk allele for sporadic AD, APOE ε4, has been shown to decrease Aβ

clearance, leading to a build up of Aβ [46].

Another major argument in favour of the amyloid hypothesis is that amyloid

plaques are more specific to AD than neurofibrillary tangles, which are involved in

a range of tauopathies. However, the temporal and anatomical discord of amyloid

plaques and tau pathology and neurodegeneration is difficult to explain [48]. Tem-

https://creativecommons.org/licenses/by/4.0/
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Figure 1.5: The possible role of different Alzheimer’s disease genes in Aβ -related
pathogenic processes. Reprinted by permission from Macmillan Publishers
Ltd: Nature Reviews Neuroscience [47], Copyright 2008.

porally, biomarker studies show that amyloid plaque deposition begins long before

tau deposition and neurodegeneration [49]. Anatomically, tau pathology correlates

closely with neuronal loss, but amyloid plaque deposition does not correlate well

with either [14, 29, 50].

A further concern is that the pathogenic mechanism of Aβ has yet to be de-

termined, as has the function of Aβ and APP in the brain [13]. Recent versions of

the amyloid hypothesis propose that the pathogenic process might be the formation

of soluble Aβ42 oligomers [13]. Oligomeric Aβ may have subtle effects on the

efficacy of synapses by decreasing synapse function and number, and may initiate

tauopathy.

Critics of the amyloid hypothesis postulate that AD is a complex multifactorial

disease that is not initiated by Aβ in isolation, with the presence of amyloid being
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a necessary but not a sufficient cause [45].

1.1.5.2 Tau and neurodegeneration

Evidence strongly suggests that dysfunction of tau causes neurodegeneration, how-

ever the exact mechanism by which this happens remains unclear. Dominantly in-

herited mutations in the MAPT gene [51–53], which encodes tau, cause frontotem-

poral dementia (FTD), demonstrating that dysfunction of tau is sufficient to cause

neurodegeneration. Additionally neurofibrillary tangles, which are intraneuronal

aggregates of hyperphosphorylated and misfolded tau, show better correlation with

neurodegeneration than amyloid plaques [14, 29, 50].

1.1.5.3 Propagation of pathology

Increasing evidence suggests that AD pathology, particularly abnormal forms of tau,

propagates in a prion-like manner [13], i.e. that Alzheimer’s pathologies are trans-

mitted from one neuron to another. However, the physical mechanism by which

pathology is transported between neurons has not been identified [54]. The major

alternative hypothesis is that of selective vulnerability, meaning that certain neu-

rons are intrinsically more vulnerable to the pathogenic disease process than oth-

ers [13, 54].

1.1.5.4 Alternative mechanisms

A multitude of other mechanisms have been suggested to be involved in the patho-

genesis of AD, such as immune responses and inflammatory, metabolic, and vas-

cular factors. One suggestion is that there is a complex feedback loop between

different mechanisms that causes AD [45] (Figure 1.6).

1.1.6 Biomarkers

The only direct measurement of AD pathology is through autopsy examination of

the brain. Biomarkers are variables that can be measured in vivo to provide informa-

tion about these pathological changes; these measurements are indirect indicators

that the pathology exists. Disease biomarkers can be divided into a number of dif-

ferent groups. In the case of AD there is particular interest in those biomarkers

that can assess the core pathologies of Aβ -plaque deposition and tau aggregation.
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Figure 1.6: Hypothetical model of Alzheimer’s disease as a complex interaction between
cellular, molecular and genetic imbalances. Reprinted by permission from
Macmillan Publishers Ltd: Nature Neuroscience [45], Copyright 2015.

Tau aggregation is not specific to AD, but is thought to mediate neurodegeneration.

Whilst a stricter definition of the term biomarker is used here, which refers only to

biological indicators of pathology, in the rest of this thesis a broader definition of the

term is used, which encompasses any marker of the disease process. This includes

measurements of higher level cognitive processes obtained from neuropsychologi-

cal tests.

1.1.6.1 Aβ plaque deposition

The two most well validated biomarkers of brain Aβ plaque deposition are cere-

brospinal fluid (CSF) Aβ1−42 and positron-emission tomography (PET) Aβ imag-

ing. CSF Aβ1−42 (Aβ42, Abeta, Aβ ) is a measure of the toxic amyloid-β peptide

implicated in AD. Low concentrations of CSF Aβ1−42 correlate with the clinical

diagnosis of AD and Aβ pathology at autopsy [55–57]. A number of PET Aβ

tracers are available, which allow the spatial pattern of amyloid deposition to be ob-

served non invasively. The earliest tracer was Pittsburgh compound B (PiB), which

binds to fibrillar Aβ , and shows a strong correspondence with Aβ deposition at
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autopsy [58, 59].

1.1.6.2 Neurodegeneration

CSF total tau (t-tau, τ-tau) and phosphorylated tau (p-tau, ρ-tau), fluorodeoxyglu-

cose PET (FDG-PET) and structural magnetic resonance imaging (MRI) all pro-

vide different measures broadly implicated in neurodegeneration. Both CSF t-tau

and p-tau increase in AD [60] and correlate well with neurofibrillary tau tangles at

autopsy [61]. CSF t-tau concentration correlates with the severity of neurodegenera-

tion, which is not specific to AD, whereas CSF p-tau reflects the formulation of AD-

related neurofibrillary tangles [62]. FDG-PET is a measure of brain metabolism,

in particular glucose uptake, and so can be used as an indication of the impaired

synaptic activity associated with AD, with combined imaging and autopsy studies

supporting this hypothesis [63]. The impairment of synapses is thought to begin

before the observation of clinical symptoms but is also common to other neurolog-

ical diseases. Measures of brain atrophy, a downstream consequence of neuronal

cell loss, calculated from structural MRI scans also display a good correlation with

neurodegeneration [64]. MRI based measures of atrophy (rate of volume loss) are

not specific to AD but correlate well with Braak and Braak staging of tau pathology

at autopsy [65, 66], and can be used to determine the regional patterns of neurode-

generation characteristic to AD [67].

The recent development of tau tracers allows non invasive imaging of the pat-

tern of neurofibrillary tangles [68–70]. These imaging techniques are undoubtedly

exciting but require further validation of their reliability, quantitative performance

and binding selectivity before they are widely used in research studies [71].

1.1.6.3 Evolution of Alzheimer’s disease biomarkers

Understanding the quantitative evolution of biomarkers in AD is of great interest for

clinical trials in order to provide outcome measures and strategies for cohort selec-

tion. It is thought that clinical trials to date have taken place too late in the disease

time course [72, 73]. Biomarkers can potentially be used to identify and monitor

the presymptomatic disease stages, during which treatments may be more effective.

Additionally, a quantitative picture of biomarker progression can provide insights



34 Chapter 1. Introduction

into the underlying disease biology by, for example, indicating which is the ini-

tiating disease pathology, or elucidating interactions between different pathogenic

processes.

Numerous hypothetical models of the progression of AD biomarkers have been

proposed [74–79]. The most influential of these hypothetical models was published

in 2010 by Jack et al. (Figure 1.7) [74], and has had a large impact within the

neurology community. This model postulates that AD changes occur in the order:

Aβ , tau-mediated neuronal injury and dysfunction, brain structure, memory, clinical

function. Aβ is measured using CSF Aβ or amyloid PET; tau-mediated neuronal

injury and dysfunction is measured using CSF p-tau, t-tau and FDG-PET; brain

structure is measured using structural MRI; memory and cognition are measured

using various cognitive tests.

Figure 1.7: Hypothetical model of Alzheimer’s disease biomarker progression proposed by
Jack et al. in 2010 [74]. Reprinted from [74], Copyright 2010, with permission
from Elsevier.

Validation of hypothetical models is difficult because of the long disease

time course, which is thought to span several decades [49, 80–82]. This means

that it is challenging to follow subjects longitudinally, particularly during the pre-

symptomatic phase, which can only be observed in large population-based obser-

vational studies. Whilst studies have provided support for some of the features
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of hypothetical models [49, 80, 83, 84], they typically use crude staging measures

based on clinical diagnoses or cognitive test scores. The result is a coarse picture

of biomarker progression, which is unable to provide fine-grained disease staging

information. Studies in dominantly-inherited AD [49] can provide a more fine-

grained picture by identifying subjects who carry a pathogenic APP, PSEN1 or

PSEN2 mutation presymptomatically, and indexing them by their estimated years to

onset, which is based on parental age of onset. However, the applicability of these

results to sporadic AD has yet to be determined.

1.1.7 Diagnostic criteria

1.1.7.1 NINCDS-ADRDA criteria for probable Alzheimer’s disease

A definitive diagnosis of AD requires microscopic examination of brain tissue at

autopsy. The most widely used clinical diagnostic criteria for AD were established

in 1984 by the National Institute of Neurological and Communicative Disorders and

Stroke (NINCDS) and the Alzheimer’s Disease and Related Disorders Association

(ADRDA) [85], commonly referred to as the NINCDS-ADRDA criteria. The crite-

ria distinguish between probable, possible, and definite AD, where only a probable

or possible diagnosis of AD can be made in vivo. The criteria for probable AD

include: dementia established by clinical examination and confirmed by neuropsy-

chological tests; deficits in two or more areas of cognition; progressive worsening

of memory and other cognitive functions; onset between ages 40 and 90, most often

after age 65; additional criteria that rule out other conditions.

1.1.7.2 Updated probable Alzheimer’s disease criteria

More recent diagnostic criteria for probable AD include the use of biomarker evi-

dence of AD as a supportive feature [86–89]. The criteria proposed by McKhann

et al. in 2011 [88], for example, subdivide the diagnosis of probable AD into prob-

able AD with and without evidence of the AD pathophysiological process, where

the core criteria for probable AD are similar to the NINCDS-ADRDA criteria. Ev-

idence of the AD pathophysiological process is divided into biomarker evidence of

Aβ from PET or CSF, and biomarker evidence of neuronal injury from CSF tau,
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FDG-PET or structural MRI, with evidence of both Aβ and neuronal injury provid-

ing stronger support for the diagnosis.

1.1.7.3 Mild cognitive impairment

A more subtle diagnostic entity, mild cognitive impairment (MCI), has also been

proposed [90]. Although this label is widely used in research studies, the definition

and subcategorisation of the term varies. Criteria for MCI typically consist of sub-

jective memory or cognitive symptoms, objective memory or cognitive impairment,

and unaffected activities of daily living [86]. Often a distinction is made between

amnestic and non-amnestic MCI, depending on the presence of significant memory

complaints. Amnestic MCI is intended to be more specific to AD, however, clinical

follow-up and neuropathological studies show that all of the aforementioned diag-

noses lack specificity for AD [91,92]. In 2011 Albert et al. [93] proposed the use of

two sets of criteria for diagnosing MCI: core clinical criteria that can be used with-

out access to biomarker information, and research criteria for use in research set-

tings and clinical trials. The criteria have four levels of confidence depending on the

presence and strength of biomarker findings. The core clinical and cognitive criteria

include cognitive concerns and objective evidence of cognitive impairment, together

with preserved activities of daily living and severity not reaching the threshold for

a dementia diagnosis. If biomarker measurements are available, three more specific

diagnoses can be made: (A) MCI due to AD with intermediate likelihood, (B) MCI

due to AD with high likelihood, (C) MCI unlikely due to AD. Positive biomarker

evidence of either Aβ or neuronal injury supports (A), positive biomarker evidence

of both Aβ and neuronal injury supports (B), and negative biomarker evidence of

both Aβ and neuronal injury supports (C). Biomarker evidence of Aβ is measured

using CSF or PET; biomarker evidence of neuronal injury is measured using CSF

tau, FDG-PET or structural MRI.

1.1.7.4 Preclinical Alzheimer’s disease

In recent years the development of presymptomatic diagnostic criteria has been ad-

vocated following the accumulation of evidence suggesting that biomarker changes

in AD begin decades before symptom onset [49, 80–82]. Presymptomatic diagnos-
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tic criteria therefore focus on identifying the AD pathophysiological process rather

than the AD dementia syndrome. In 2011 Sperling et al. [94] proposed preclini-

cal criteria consisting of three stages: (1) asymptomatic cerebral amyloidosis, with

evidence of Aβ from PET or CSF, (2) asymptomatic amyloidosis and downstream

neurodegeneration, with additional evidence of markers of neuronal injury from

CSF tau, FDG-PET or structural MRI, (3) amyloidosis, neuronal injury and subtle

cognitive/behavioural decline, with additional evidence of subtle cognitive change.

These preclinical criteria are not well established due to their dependence on hypo-

thetical models of the evolution of biomarker measurements in AD.

1.1.7.5 Neuropathologic Alzheimer’s disease

The growing consensus on the need to distinguish the AD pathophysiological pro-

cess from the AD dementia syndrome has lead to the revision of the neuropathologic

criteria for assessing AD at autopsy. The guidelines proposed by Hyman et al. in

2012 [19] remove the requirement of a history of dementia from the criteria, instead

focussing on the evaluation of three different neuropathologic parameters: (A) Aβ

plaque score (evaluated using Thal et al. 2002 [23]), (B) neurofibrillary tangle stage

(evaluated using Braak and Braak 1991 [26] or Braak et al. 2006 [95]), (C) neuritic

plaque score (evaluated using CERAD proposed by Mirra et al. 1991 [96]). The

presence of both Aβ plaques and neurofibrillary tangles is necessary for the identifi-

cation of AD neuropathologic change. Neuritic plaques are a particular type of Aβ

plaque that consist of a dense Aβ protein core surrounded by dystrophic neurites.

This form of Aβ plaque is the most closely associated with neuronal injury. The

neuropathologic criteria proposed by Hyman et al. also emphasise the importance

of assessing non-AD brain lesions to identify the presence of comorbid conditions.

1.1.8 Treatments

The are currently five FDA-approved drugs for AD, which mask the symptoms of

the disease, but do not modify the underlying disease process. They fall into two

categories: cholinesterase inhibitors and memantine [97]. Cholinesterase inhibitors

slow down the process that breaks down the neurotransmitter acetylcholine; me-
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mantine regulates the activity of glutamate, a neurotransmitter involved in learning

and memory. The major focus of drug companies is developing disease modifying

treatments, with promising targets including Aβ , β -secretase, γ-secretase, tau pro-

tein, inflammation, and insulin resistance [97]. The results of clinical trials to date

have been disappointing, which is thought to be due to treatments being adminis-

tered too late in the disease, at which point irreversible pathogenic processes have

already taken place [72, 73].

1.2 Research problem

1.2.1 Problem statement

The temporal progression of AD is not well understood. There are two key aspects

to this problem.

1. The underlying biological mechanisms that cause AD have not been deter-

mined.

2. The quantitative evolution of biomarkers in AD has yet to be characterised.

The work presented in this thesis focusses on problem 2.

1.2.2 Justification

Despite 110 years of Alzheimer’s research and an exponential growth in the amount

of research since 1975 [11], still relatively little is understood about the causes and

progression of AD.

Although a vast number of molecular, cellular and genetic imbalances have

been implicated in AD, how these imbalances give rise to AD is still unknown

(Problem 1, Section 1.2.1) [45]. In particular, the precise mechanism by which the

two major proteins involved in AD, Aβ and tau, produce downstream neurodegen-

eration and cognitive deficits remains unclear [13], as does the mechanism by which

they spread to different brain regions [13, 54].

At the biomarker level, the quantitative evolution of AD has yet to be deter-

mined (Problem 2, Section 1.2.1). Hypothetical models have been proposed that
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describe how biomarkers evolve with disease progression [74–79], but these mod-

els are not quantitative and their validation to date has typically been at a coarse

scale [83, 84].

1.2.3 Motivation

Better understanding of the causes and progression of AD will facilitate drug de-

velopment. A mechanistic understanding of AD (Problem 1, Section 1.2.1) would

identify the key targets for drug development, and the appropriate window in the

disease for intervention. A quantitative model of biomarker evolution (Problem

2, Section 1.2.1) is essential for precision medicine. Such a model could enable

patient stratification into targeted groups for particular therapies, and provide out-

come measures for clinical trials, which can monitor the effectiveness of different

treatments. If a disease-modifying treatment is discovered, quantitative biomarker

models could be used in the clinic to provide disease staging and prognostic infor-

mation, and to assign patients to different treatments. Besides enabling personalised

medicine, quantitative models of biomarker evolution can provide insights into the

underlying disease mechanisms by indicating which are the earliest pathologies,

and by elucidating interactions between different pathogenic processes.

1.3 Thesis contributions
This thesis investigates the progression and heterogeneity of AD by develop-

ing mathematical models that can characterise the temporal evolution of disease

biomarkers. The models only require cross-sectional or short-term longitudinal ob-

servations to reconstruct the full temporal progression of the disease, meaning that

they can be fit to widely available datasets such as the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) dataset. Three key contributions are made, as follows.

1.3.1 Data-driven models of biomarker changes in sporadic and

dominantly-inherited Alzheimer’s disease

The first contribution of this thesis is the development of data-driven models of

disease biomarker changes for application to sporadic and dominantly-inherited
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AD. These models extend the event-based model (EBM) developed by Fonteijn et

al. [98] to allow for heterogeneity in the control and disease population, and miss-

ing biomarker values. The EBM describes disease progression as a series of events,

where each event corresponds to a new biomarker becoming abnormal. Applica-

tion of these models to sporadic and dominantly-inherited AD reveals the sequence

in which biomarkers become abnormal in each form of AD. This thesis further

explores the utility of the models for patient staging. Specifically, the following

sub-contributions are made.

(a) Adaptation of the EBM in [98] to allow for heteroegenity in the control and

disease populations. Without this adaptation the EBM is not applicable to

sporadic AD due to its reliance on a well-defined control population.

(b) Application of (a) to sporadic AD to determine the sequence in which

biomarkers become abnormal, and to demonstrate the utility of the model

for patient staging. Previous attempts to determine biomarker ordering were

dependent on the use of clinical diagnoses to stage patients, or on the use of

thresholds to define biomarker abnormality.

(c) Adaptation of the EBM in [98] to allow for missing data. Prior to this adap-

tation the EBM was not applicable for modelling the evolution of multimodal

biomarker data collected in dominantly-inherited AD datasets due to small

numbers of subjects with data spanning multiple biomarkers.

(d) Application of (c) to dominantly-inherited AD to determine the sequence of

biomarker abnormality in dominantly-inherited AD. Previous studies estimat-

ing biomarker ordering in dominantly-inherited AD relied on the use of esti-

mated years to onset (based on parental age of onset) to stage participants.

1.3.2 A simulation system for biomarker evolution in neurode-

generative disease

The second contribution of this thesis is the development of a simulation framework

for biomarker evolution in neurodegenerative disease, facilitating the evaluation of
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the performance of data-driven disease progression models. The following sub-

contributions are made.

(a) Development of a simulation framework that can generate synthetic neurode-

generative disease datasets for evaluating the performance of data-driven dis-

ease progression models. In particular, the simulation system can synthesise

heterogeneous neurodegenerative disease populations, including disease sub-

types that have distinct patterns of biomarker evolution.

(b) Application of the simulation framework to perform a stability analysis of

the EBMs developed in Contribution 1.3.1 to ascertain the sensitivity of the

EBM to different types of heterogeneity. A stability analysis of another data-

driven disease progression model - a differential equation model (DEM) - is

performed to compare the robustness of the two data-driven models.

1.3.3 A data-driven model of disease subtypes with distinct pat-

terns of biomarker evolution in frontotemporal dementia

and Alzheimer’s disease

The final contribution of this thesis is the development of a data-driven model of

disease subtypes with distinct patterns of biomarker evolution. This model de-

scribes disease progression as groups of individuals who have a common sequence

of events, where each event corresponds to a biomarker reaching a particular z-score

compared to controls. This model is validated using data from genetic frontotempo-

ral dementia (FTD), which has distinct genetic subtypes. Application of this model

to sporadic AD reveals data-driven subtypes of AD that have distinct sequences in

which biomarker measurements reach different severity levels (modelled as z-scores

relative to a control population). The utility of this subtyping model for patient stag-

ing is further demonstrated. More specifically, the following sub-contributions are

made.

(a) Development of a dynamic clustering technique that allows population sub-

groups with distinct sequences of biomarker changes to be recovered. In this
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model biomarker changes are indexed as z-score events, such that each z-

score event corresponds to a biomarker reaching a particular z-score relative

to a control population. Previous modelling techniques depended on the as-

sumption that all subjects follow a single common pattern of biomarker evo-

lution, or that all subjects are at a single disease stage.

(b) Validation of the dynamic clustering technique using data from genetic FTD.

The sequence of biomarker changes for each genetic subgroup is determined

by fitting a single dynamic cluster to each of the genetic subgroups: GRN,

MAPT and C9orf72 mutation carriers. The ability of the dynamic clustering

model to recover the sequence of each subgroup without prior knowledge of

the group labels is demonstrated.

(c) Application of dynamic clustering to sporadic AD to determine subtypes of

AD with distinct sequences of biomarker changes, and to establish the utility

of these subtypes for patient stratification. Prior studies that clustered AD

biomarker measurements depended on the assumption that subjects were at

a single disease stage, meaning that the temporal evolution of each subtype

could not be determined.

1.4 Structure of this thesis
This chapter (Chapter 1) has provided background information, motivation and

context for the research problem and contributions of this thesis. The rest of this

thesis is structured as follows.

Chapter 2 reviews the state of the art in AD progression modelling. This

chapter critically assesses the range of different progression models that have been

applied to AD to establish which models are the most promising for evaluating the

quantitative evolution of AD biomarkers, and to identify the limitations of current

modelling techniques.

Chapter 3 presents sub-contributions (a) and (b) of contribution 1.3.1. I pro-

pose an adaptation of the EBM [98] for use with multi-modal sporadic disease

datasets. I apply this model to determine the sequence of biomarker abnormality
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in sporadic AD, and further demonstrate the models utility as a patient staging sys-

tem.

Chapter 4 details sub-contributions (c) and (d) of contribution 1.3.1. I develop

an adaptation of the EBM [98] for use with missing data. I apply this model to

determine the order in which biomarkers become abnormal in dominantly-inherited

AD without reliance on the use of estimated years to onset to stage participants.

Chapter 5 formulates a simulation framework for biomarker evolution in neu-

rodegenerative disease (contribution 1.3.2). I use this framework to perform a sta-

bility analysis of the EBM and a DEM of disease progression by fitting the models

to synthetic datasets with different types of heterogeneity.

Chapter 6 presents an initial formulation of the dynamic clustering technique

developed in Chapter 7.

Chapter 7 builds on the work in Chapter 6 to develop a more parsimonious dy-

namic clustering model (contribution 1.3.3) that can elucidate population subgroups

with distinct patterns of biomarker evolution, enabling the identification of data-

driven disease subtypes. This technique is validated by demonstrating the ability

to recover the progression patterns of known genetic subgroups in FTD. Dynamic

clustering is then applied to sporadic AD data to reveal different subtypes of AD

and the sequence in which biomarkers reach various z-scores for each subtype. The

utility of the model for patient staging and stratification is further demonstrated.

Chapter 8 discusses opportunities for further work arising from this thesis, as

well as interesting future directions for data-driven disease progression modelling

in general.

Chapter 9 summarises the work presented in this thesis.





Chapter 2

State of the art in Alzheimer’s disease

progression modelling

This chapter reviews the state of the art in AD progression modelling to provide

context for the contributions of this thesis (Section 1.3, Chapter 1). Section 2.7 is

based on a review article I wrote for Advances in Clinical Neuroscience and Reha-

bilitation, in collaboration with Neil Oxtoby, Jonathan Schott and Daniel Alexander.

2.1 Associated publications
A. L. Young, N. P. Oxtoby, J. M. Schott, and D. C. Alexander. Data-driven models of

neurodegenerative disease. Advances in Clinical Neuroscience and Rehabilitation,

14(5):6–9, 2014

2.2 Introduction
This thesis addresses the problem of characterising the temporal progression of AD

by developing mathematical models that quantify the evolution of disease biomark-

ers. This review examines the range of different progression models that have been

applied to AD. In this review I first summarise the literature on two types of non-

biomarker model: neuropathological models and animal models, which provide

interesting qualitative biological insights but do not directly provide quantitative

measures of disease stage. I then review various biomarker models to establish

what is known about the quantitative evolution of AD biomarkers. I first review
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scalar biomarker models that use single dimension biomarkers and traditional sta-

tistical analysis techniques, which require subjects to be indexed by disease stage. I

then review high dimensional biomarker models, which learn new biomarkers from

high dimensional data but still require subjects to be indexed by disease stage. Fi-

nally, I review the literature on data-driven biomarker models, which develop novel

statistical methodology to allow the temporal progression of biomarkers to be re-

constructed without prior knowledge of each individual’s stage along the disease

time course. These data-driven models provide the basis for the novel techniques

developed in this thesis.

2.3 Neuropathological models
The earliest models of AD progression are those derived from neuropathologi-

cal studies (e.g. [23, 26, 96]). Models of neurofibrillary tangle accumulation and

amyloid deposition have been proposed based on the cross-sectional distribution of

pathology at autopsy. These models typically depend on the assumption that there

is a common pattern of pathology for all subjects, with each subject representing a

particular stage along this single progression pattern.

2.3.1 Neurofibrillary tangle accumulation

The most influential model of neurofibrillary tangle accumulation is that of Braak

and Braak in 1991 (Figure 1.3) [26], which is still used to diagnose pathological

AD at autopsy [19]. Braak and Braak proposed a model that consists of six stages

based on the distribution of neurofibrillary tangles and neuropil threads: stages I-II

are confined to the transentorhinal region, stages III-IV involve both the entorhinal

and transentorhinal layer, stages V-VI consist of isocortical destruction. Braak and

Braak also proposed three stages of amyloid plaque deposition, but they chose to in-

dex their model by neurofibrillary tangle stage as they observed that the distribution

of amyloid plaques varied widely between architectonic units and individuals. In

2006 Braak et al. updated the model to incorporate methodological developments in

neuropathology [95]. This model was subsequently incorporated into neuropatho-

logical AD diagnostic criteria [19].
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The Braak model [26, 95] assumes that there is a common pattern of neurofib-

rillary tangle deposition across subjects. More recently, Murray et al. [27] found

that approximately 25% of AD cases do not follow the stereotypical pattern of neu-

rofibrillary tangle deposition described by the Braak model. By considering cases

with a Braak stage of greater than IV, and constructing an algorithm that classi-

fies AD cases into ‘typical’, ‘hippocampal sparing’ or ‘limbic predominant’, they

found that 11% of the 889 AD cases they analysed were hippocampal sparing, and

14% of cases were limbic predominant. This percentage is somewhat artificial as

their algorithm is based on percentile cut-offs for the ratio of hippocampal to cor-

tical neurofibrillary tangle count, but this study does clearly indicate the presence

of atypical AD pathology. This heterogeneity may represent a pathological spec-

trum ranging from hippocampal sparing to limbic predominant, or three distinct

subgroups. Another interesting finding of this study was that clinical presentation,

age at onset, disease duration and rate of cognitive decline differed between the dif-

ferent AD subtypes. Hippocampal sparing cases more commonly had an atypical

clinical diagnosis, a younger age of onset, a shorter disease duration and a faster

rate of cognitive decline than typical and limbic predominant AD cases.

2.3.2 Amyloid plaque deposition

There are two widely used models of amyloid plaque deposition for neuropatho-

logical AD diagnosis [19]: the Consortium to Establish a Registry for Alzheimer’s

Disease (CERAD) criteria proposed by Mirra et al. in 1991 [96] and the model

proposed by Thal et al. in 2002 [23].

The CERAD criteria are coarse semi-quantitative criteria based on the assess-

ment of neuritic amyloid plaques in the neocortex. The procedure involves taking

samples of brain tissue from three areas of the neocortex: the superior and middle

temporal gyri, the middle frontal gyrus, and the inferior parietal lobule, and rating

them as having either ‘sparse’, ‘moderate’ or ‘frequent’ neuritic amyloid plaques.

The overall plaque density is the maximum plaque density across the three regions

of the neocortex. The age-related CERAD plaque score: 0, A, B or C, where C indi-

cates the most confident evidence of neuropathological AD, is derived by comparing
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the overall plaque density with the expected plaque density for that age group. The

CERAD criteria are used as a measure of dense-core neuritic plaques in modern

pathological AD diagnostic criteria [19].

The model proposed by Thal et al. in 2002 (Figure 1.2) [23] has five stages and

is based on the spatial distribution of Aβ deposits, which include diffuse as well as

neuritic plaques. Phase 1 of their model consists of Aβ deposits in any region of the

neocortex. In the subsequent phases there are additional Aβ deposits in allocortical

regions (phase 2), diencephalic nuclei and the striatum (phase 3), some brainstem

nuclei (phase 4), and finally the cerebellum and other brainstem nuclei (phase 5).

2.3.3 Critical assessment

Neuropathological models provide interesting qualitative insights into the spatial

progression of AD pathology and are essential for the neuropathological confirma-

tion and staging of AD. In particular, they show that the distribution of neurofib-

rillary tangles is more stereotypical across subjects than the distribution of amyloid

plaques. Moreover, they demonstrate that whilst the overall amyloid plaque and

neurofibrillary tangle burden are correlated, their spatial progression patterns are

markedly different, and the relative amount of amyloid plaque and neurofibrillary

tangle pathology varies across individuals.

The utility of neuropathological models for in vivo patient staging is limited

by several factors. First, the models are ex vivo. For application in vivo biomark-

ers would have to be used, which are correlated with, but do not measure exactly

the same pathology. Second, the models are not quantitative, which limits their ac-

curacy. Third, the time scale and spatial resolution of the models is coarse, with

typically six or fewer stages and large brain regions. Finally, each model only mea-

sures a single pathology, so it is not straight forward to integrate the stages from the

two different pathologies.
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2.4 Animal models

Genetically modified mouse models1 have provided insights into the underlying

mechanisms of AD [100].

2.4.1 Transgenic mouse models

In transgenic mouse models a foreign gene is introduced, which can be from an-

other species. In transgenic mice that overproduce mutant APP, Aβ accumulates

into extracellular plaques. This accumulation is accelerated when Aβ42 is prefer-

entially cleaved from APP compared to Aβ40, and leads to earlier and more severe

cognitive decline [100]. Most transgenic Alzheimer’s mouse models show cog-

nitive decficits before extracellular Aβ plaques accumulate. This observation led

to the hypothesis that soluble Aβ oligomers may be the pathogenic mechanism in

AD [100]. Interestingly, APP-overexpressing mice do not develop neurofibrillary

tangles, but do show hyperphosphorylation of tau. Additional gene alterations, such

as mutated human tau, are necessary to induce neurofibrillary tangles in mice [100].

2.4.2 Knockout mouse models

In knockout mouse models a particular gene is removed. These mice do not model

the disease process itself, but are instead used to elucidate the function of specific

genes. Presenellin 1 knockout mice suggest that presenilin and the γ-secretase com-

plex might have additional functions that are not related to the production of Aβ ,

with PS1 knockout mice having developmental defects in the central nervous and

skeletal systems [100]. Another interesting finding is that when APP transgenic

mice are crossed with tau knockout mice, the cognitive deficits associated with

APP and Aβ are prevented [101], even though the absence of tau does not affect

the development of Aβ plaques. This suggests that tau is necessary to mediate the

pathogenic effects of Aβ on cognition.

1An interactive summary of the findings from different mouse models of AD can be found at
www.alzforum.org/research-models.
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2.4.3 Critical assessment

There are several concerns regarding the translatability of animal models [100].

First, the models are based on dominantly-inherited AD, rather than sporadic AD.

Second, the synapse and cell loss in the models is not substantial, so they may only

be representative of the prodromal phase of AD. Third, there is discordance between

the results of preclinical animal models and human clinical trials.

2.5 Scalar biomarker models
The simplest AD biomarker models are those that use scalar biomarkers and tradi-

tional statistical analysis techniques, which require knowledge of a subjects disease

stage in order to position them along the time axis.

2.5.1 Comparing diagnostic groups

There have been a large number of studies comparing biomarkers between diag-

nostic groups (e.g. [102–106]). These studies provide a coarse picture of which

biomarkers are dynamic at each disease stage, with evidence suggesting that CSF

Aβ and PiB-PET become abnormal while subjects are still cognitively normal (CN),

and MRI, FDG-PET and CSF tau are already abnormal in those with mild cognitive

impairment (MCI) [74]. However, the use of clinical diagnoses to stage patients

limits the temporal resolution of these studies, typically to just three stages: CN,

MCI and AD. Iturria-Medina et al. [107] perform a more complex statistical anal-

ysis of the expected biomarker trajectories for subjects at different disease stages,

which takes into account age, gender, education and number of APOE ε4 alleles.

Their results broadly agree with other studies, but suggest that vascular dysregula-

tion may also play an early role in AD. However, the temporal resolution of their

model is still fundamentally limited by the accuracy of the clinical diagnoses.

2.5.2 Using cut points to define biomarker abnormality

Jack et al. [83] have proposed that the sequence in which biomarkers become abnor-

mal can be inferred by observing the proportion of subjects within each diagnostic

group that have abnormal biomarker levels. They used this technique to validate
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the ordering of a subset of the biomarkers (CSF Aβ1−42, CSF tau and hippocampal

volume) proposed by their hypothetical model a year previously (Figure 1.7) [74].

They concluded that CSF Aβ1−42 becomes abnormal first, then CSF tau, and then

hippocampal volume. However, their results are dependent on choosing cut points

defining abnormal biomarker levels, which are not easy to establish [108], and are

likely to affect the sequence of biomarker abnormality predicted by their model.

Moreover, their method does not easily extend to larger numbers of biomarkers.

2.5.3 Indexing by cognitive test scores

An obvious approach to reconstructing fine-grained biomarker trajectories is to in-

dex subjects by their cognitive test scores rather than their clinical diagnoses. Caroli

et al. [109] used such an approach to investigate the dynamics of four AD biomark-

ers: CSF Aβ1−42, CSF tau, hippocampal volume and FDG-PET, as a function of

the Alzheimer’s Disease Assessment Scale-Cognitive subscale (ADAS-cog). They

found that CSF Aβ1−42 was the first to become abnormal and stabilises early on

in the disease time course, whereas CSF tau, hippocampal volume and FDG-PET

become abnormal later in the disease time course and continue to change as the dis-

ease progresses. Sabuncu et al. [110] performed a similar analysis of hippocampal

volume loss and cortical thinning as a function of Mini Mental State Exam (MMSE)

score. They found that hippocampal volume loss and cortical thinning both accel-

erate early on in the disease and have a sigmoidal shape. However, there are two

major limitations to using cognitive test scores as a measure of disease progression.

First, cognitive test scores are known to have floor and ceiling effects, in particular

they can’t be used to measure the presymptomatic disease stages. Second, the accu-

racy of the recovered progression patterns is limited by the accuracy of the cognitive

test scores, which are imprecise and often have practice effects.

2.5.4 Indexing by estimated years to onset

In dominantly-inherited AD it is possible to identify subjects presymptomatically

by genetically screening families known to carry a pathogenic mutation. In those

that carry the genetic mutation, it is also possible to estimate their time to disease
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onset based on their parent’s age of onset. In 2012 Bateman et al. (Figure 2.1) [49]

constructed a model of biomarker changes in dominantly-inherited AD from 128

participants in the Dominantly Inherited Alzheimer Network (DIAN) study. By re-

gressing participants biomarker values against their estimated years to onset, they

found that: CSF Aβ42 levels became abnormal 25 years before expected onset;

Aβ deposition (measured on PiB-PET), CSF tau and hippocampal volume became

abnormal 15 years before expected onset; cerebral hypometabolism (measured on

FDG-PET) and episodic memory (measured using story A from the Logical Mem-

ory subtest of the Wechsler Memory Scale-Revised) became abnormal 10 years

before expected onset; global cognitive impairment (measured using the MMSE

and the Clinical Dementia Rating scale) became abnormal 5 years before expected

onset; participants met the criteria for an AD diagnosis 3 years after expected onset.

However, the applicability of these results to the more common sporadic form of

AD remains to be determined. An additional concern is the validity of estimating

the participants time to onset from their parent’s age of onset.

2.5.5 Indexing by conversion between diagnoses

Several studies have constructed population-level biomarker trajectories by retro-

spectively indexing subjects according to their time to conversion between diagnos-

tic categories. This approach requires that subjects are observed until conversion.

Buchhave et al. [80] performed such an analysis of CSF measures in 137 subjects

with MCI who converted to AD. Their study had a median follow-up time of 9.2

years (range 4.1 to 11.8 years). By indexing subjects according to whether they

were between 0 and 2.5, 2.5 and 5, or 5 and 10 years from conversion they found

that CSF measures of Aβ1−42 were already abnormal between 5 and 10 years before

disease onset. They found that CSF p-tau and t-tau changes also became abnormal

early, but that the changes were more gradual. More advanced statistical models

have also been proposed by Schmidt-Richberg et al. and Guerrero et al. based on

the idea of indexing subjects by time to conversion [111, 112]. These models allow

probabilistic estimation of a new patient’s disease progress and prediction of their

time to conversion between diagnoses. However, all of the aforementioned models
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Figure 2.1: Biomarker changes in dominantly-inherited Alzheimer’s disease estimated by
Bateman et al. in 2012 [49] by regressing against expected years to onset.
Reproduced with permission from [49], Copyright Massachusetts Medical So-
ciety.

are limited by the accuracy of the clinical diagnoses used to stage patients. More-

over, the requirement that a large population are observed until conversion limits

the datasets that these models can be fitted to, as well as their ability to model popu-

lation heterogeneity. The long follow-up requirement further prevents these models

from being applied to new biomarkers.

2.5.6 Critical assessment

Scalar biomarker models are highly relevant clinically as they can be used to amal-

gamate information from well-established disease biomarkers in order to provide

patient staging and prognostic systems. Models to date suggest that CSF Aβ and

PiB-PET become abnormal early in AD, followed by CSF tau, FDG-PET and hip-

pocampal volume, and then cognitive test scores.

The temporal resolution of current models is limited by their dependence on

clinical staging information to determine an individual’s position along the disease
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time course. Positioning subjects based on their clinical diagnosis limits the accu-

racy of the recovered progression pattern to just three stages: CN, MCI and AD.

Alternative techniques for modelling scalar biomarker trajectories either require the

use of cut points to define abnormal biomarker levels, are based on cognitive test

scores and so cannot track the long prodromal period of AD, are only applicable

to dominantly-inherited AD, or require large retrospective studies of subjects who

convert between clinical diagnoses.

2.6 High dimensional biomarker models
More complex AD biomarker models consider high-dimensional data, such as im-

age data, allowing more subtle patterns of disease progression to be uncovered.

However, these models still use statistical analysis techniques that require knowl-

edge of a subject’s disease stage in order to position them along the time axis.

2.6.1 Comparing diagnostic groups

Numerous studies have looked at voxelwise imaging differences, or other derived

measures such as shape changes, between different diagnostic groups and con-

trols [67, 113–120]. Structural MRI studies (e.g. [67, 113–116]) have shown that

the pattern of atrophy mirrors the sequence of neurofibrillary tangle deposition esti-

mated by neuropathological models such as the Braak and Braak model [26], with

the entorhinal cortex and hippocampus being the earliest structures to atrophy. In

PiB-PET studies, PiB retention has been observed in the frontal cortex, the pre-

cuneus and posterior cingulate, the temporal and parietal cortices, the occipital cor-

tex and lateral temporal cortex, and the striatum [118,119]. In FDG-PET studies, it

has been found that cerebral metabolism is reduced, particularly in the temporal and

parietal cortices. The spatial resolution of PiB-PET and FDG-PET is not as high as

structural MRI and so patterns are frequently reported as an overall level of amyloid

deposition or glucose metabolism [118,119]. Diffusion imaging can also be used to

look at white matter microstructure in AD, but is less well established [120]. Whilst

the aforementioned studies are able to provide detailed spatial pictures of AD pro-

gression, their temporal resolution is limited by the requirement that subjects are
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indexed by disease stage.

2.6.2 Prediction of conversion between diagnoses

A multitude of studies have looked at predicting conversion between different diag-

nostic categories using images from various modalities [117, 121] or by combining

different biomarkers [122]. These studies can provide valuable insights into which

regions are the most discriminative for predicting conversion between two diag-

noses at a particular snapshot in the disease time course: X years to conversion.

However, they are typically limited to modelling a single disease stage.

2.6.3 Network models

Network models describe how a disease propagates along structural or functional

brain networks [123–127]. The data they require are high dimensional regional

connectivity patterns, but this dimensionality is reduced by using a mechanistic

approach, which physically constrains the solution, or by considering major com-

ponents of the network, for example by using independent component analysis to

extract intrinsic connectivity networks. In 2009, Seeley et al. [123] performed a

study that compared intrinsic functional and structural networks in healthy subjects

with the atrophy patterns of five neurodegenerative diseases. They found that the in-

trinsic functional and structural networks were correlated with the different atrophy

patterns. Their results suggest that each structural and functional brain network has

a selective vulnerability to a particular neurodegenerative disease. Other network

models [124,125,127] have supported the transneuronal spread hypothesis (i.e. the

prion hypothesis), whereby misfolded proteins physically spread from one neuron

to another along brain networks. One approach [125, 127] is to use mechanistic

network diffusion models and compare predicted atrophy patterns from a particular

seed region with actual atrophy patterns. An alternative approach [124] is to derive

hypotheses about the expected atrophy patterns under different network spreading

mechanisms and compare the predicted patterns to observed atrophy patterns. Net-

work models provide valuable mechanistic insights into AD, which are important

for drug development, but they are not directly applicable for disease staging and
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monitoring. Raj et al. [126] have provided some evidence that network diffusion

models can be used to predict future atrophy and hypometabolism patterns, but the

clinical utility of these predicted patterns has yet to be established. Additionally,

the validity of network models is based on their alignment with a single coarse end

stage disease atrophy pattern, and the use of a group-level functional or structural

network connectivity pattern from healthy subjects.

2.6.4 Critical assessment

High dimensional biomarker models can provide valuable new insights into disease

progression patterns by finding complex relationships within or between different

data types. They are less directly clinically applicable because novel biomarkers

require further validation before being widely used. Models to date have suggested

that the pattern of regional atrophy mirrors the sequence of neurofibrillary tangle

deposition, and that misfolded proteins may spread in a prion-like manner from one

neuron to another.

As with the scalar biomarker models, the temporal resolution of current high-

dimensional biomarker models is limited by their dependence on clinical staging

information to determine an individual’s position along the disease time course.

2.7 Data-driven biomarker models
Traditional statistical analysis techniques estimate biomarker trajectories by assum-

ing a priori knowledge of where each data point lies along the disease time course.

Hence, the majority of studies of neurodegenerative disease biomarker progression

(e.g. [67, 114]) rely on the use of a priori clinical classification as a patient stag-

ing measure and then compare biomarkers across groups. This reliance on clinical

staging limits the temporal resolution of the biomarker progression to only a few

stages, e.g. in AD there are typically just three stages: CN, MCI and AD. Recently

a new family of truly data-driven statistical models (e.g. [81,98,128]) have emerged

that do not require prior knowledge of the stage of each individual along the dis-

ease time course. This is a major advantage, as it allows for a complete picture of

disease progression incorporating the full set of biomarkers, and with much higher
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temporal resolution.

2.7.1 The event-based model

The event-based model (EBM) (Figure 2.2) [98] describes disease progression as a

series of events, where each event corresponds to a particular biomarker becoming

abnormal. The unique property of the EBM is that it directly encodes, and thus esti-

mates from the data, the ordering in which biomarkers become abnormal, or, more

strictly, observably different from normal levels. This sequence of events provides

a simple and intuitive description of disease progression, as well as a natural patient

staging system - at stage X, the first X events have occurred. The EBM has been

applied to recover the sequence of regional neurodegeneration in both dominantly-

inherited AD and Huntington’s disease [98]. Another key strength of the EBM is

its probabilistic formulation, which provides measures of confidence in both the se-

quence of biomarker abnormality events across the population, and an individual’s

model stage. The EBM naturally extends to differential diagnosis by providing a

likelihood of each candidate neurodegenerative disease, which is achieved by fitting

an individual’s set of biomarker measurements to each corresponding biomarker se-

quence. One limitation of the EBM is that it doesn’t incorporate information on the

time between events or the rate of biomarker decline, which somewhat limits its

utility for prognosis and monitoring. Another limitation is its reliance on a well-

defined control population, which means the EBM is not currently applicable to

sporadic AD.

2.7.2 Differential equation models

Differential equation models (DEMs) [81, 82, 110, 129–131] can be used to recon-

struct an average cohort-level biomarker trajectory, which is continuous in con-

trast to the discrete description of the EBM. The models use short-term follow up

biomarker measurements to provide samples of the gradient of a single common

biomarker trajectory and integrate a differential equation to determine a best-fit or

‘average’ trajectory for the cohort. For example, Jack et al. [82] determine the

time taken for amyloid accumulation to go from a normal to an abnormal level by
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Figure 2.2: Sequence of events, S̄, in dominantly-inherited Alzheimer’s disease estimated
by the event-based model proposed by Fonteijn et al. in 2012 [98]. Reprinted
from [98], Copyright 2012, with permission from Elsevier.

fitting a DEM to data from serial amyloid-PET scans, finding that it takes approx-

imately 15 years to go from a normal standard uptake value ratio (SUVR) of 1.5

to an abnormal SUVR of 2.5. Villemagne et al. [81] (Figure 2.3) perform a simi-

lar analysis to determine the time taken for several biomarkers to go from normal

to abnormal, including amyloid-PET, hippocampal atrophy, episodic memory, gray

matter volume and non-memory cognitive domains. DEMs have potential as a dis-

ease staging, monitoring and prognostic tool as they provide the rate of biomarker

decline over the disease time course. Stochastic DEMs [131] can further express de-

viations from this average, providing prognostic information at the individual level.

However, they model each biomarker individually, and so there is no guarantee

of correspondence across disease stage and prognosis estimates between different

biomarkers.

2.7.3 Self-modelling regression

Self-modelling regression approaches [128, 132] bring together data from multiple

biomarkers to estimate biomarker trajectories over a common disease timescale.

Short-term follow up data from each individual provides samples of a common set

of biomarker curves, which are used to estimate the population-level shape and rate
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Figure 2.3: Differential equation model of amyloid deposition proposed by Villemagne
et al. in 2013 [81]. The figure shows the estimated accumulation of amy-
loid plaques (measured using amyloid-PET imaging) with disease progression.
Reprinted from [81], Copyright 2013, with permission from Elsevier.

of biomarker decline, as well as each individual’s position and rate of decline. As

with DEMs, the biomarker curves represent the average biomarker dynamics for a

population. Donohue et al. [128] (Figure 2.4) use self-modelling regression to deter-

mine the trajectories of cognitive test scores, regional brain volumes from MRI, PET

imaging measures, and CSF levels of amyloid-beta and tau. Jedynak et al. [132] for-

mulate a similar model that uses cognitive test scores, CSF amyloid-beta and tau,

and hippocampal volume on MRI to estimate a ‘disease progression score’, which

is a continuous measure of disease stage that can be used as a time proxy. Bilgel

et al. [133] have recently extended the ‘disease progression score’ model to work

with voxelwise imaging data. However, this extension requires that biomarker tra-

jectories are modelled as a linear function of disease stage, limiting the applicability

of the model to multi-modality data where biomarkers may be dynamic at different

points along the disease time course. Self-modelling regression approaches provide

continuous disease staging, monitoring and prognostic measures that incorporate
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information from multiple biomarkers. A key advantage of these models is that

they provide a very complete picture of the disease, which can aid detailed disease

understanding. Potential disadvantages are that they have many more parameters to

estimate than simpler models like the EBM, so may be less stable; and the complex

picture has a less straightforward interpretation than the discrete description, which

may limit clinical utility.

Figure 2.4: Alzheimer’s disease biomarker trajectories estimated using the self-modelling
regression technique proposed by Donohue et al. in 2014 [128]. Reprinted
from [128], Copyright 2014, with permission from Elsevier.

2.7.4 Critical assessment

To date, these data-driven models have shown compelling results that provide valu-

able insights into neurodegenerative disease progression patterns, particularly in

AD. However, they remain an emerging area of research, and all the current mod-

els share a number of limitations and assumptions that are important to consider

when interpreting results. One strong assumption that all the aforementioned mod-

els make is that all subjects follow a common progression pattern. Although some

models allow for subjects to deviate from this common progression pattern, these

deviations are assumed to be small, and none allow for subgroups of subjects that
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follow completely different progression patterns. Such outliers are likely given the

inherent heterogeneity of sporadic disease data sets, which contain some proportion

of subjects with alternative neurodegenerative diseases, as well as mixed patholo-

gies and a wide range of subject demographics. For this reason, practical appli-

cations of data-driven models often focus on more homogeneous population sub-

groups [81,82,128], for example subjects with increased genetic risk of developing

the neurodegenerative disease of interest. Another assumption is the independence

of biomarkers: although the models express temporal correlation of biomarker tra-

jectories over the disease time course, they typically assume independence at any

given time point. In practice, biomarkers often co-vary, for example amyloid-PET

and CSF measures of amyloid-beta are measures of the same underlying pathol-

ogy and are therefore strongly correlated. Failure to model this covariance tends to

cause underestimation of the variance of progression patterns across the population.

Data-driven models further assume that data is available from the full disease time

course when in reality the data points may be sparse at the beginning and end of the

disease progression, which may influence the estimation of biomarker trajectories.

Data-driven models are an emerging area of technology with major potential

benefits to neurodegenerative disease research and clinical practice, and with wide

potential further application to a range of other diseases or developmental processes.

They can provide quantitative multi-modal pictures of the full disease time course

for improved understanding of disease mechanisms to inform drug discovery; they

naturally combine different types of information for earlier and more accurate dif-

ferential diagnosis, and subject-specific prognostic information; they provide fine-

grained staging scores or systems for more precise patient stratification supporting

clinical trials for developing treatments and ultimately treatment deployment.

2.8 Summary

A wide range of models have been applied to AD. Neuropathological models and

animal models have provided important insights into underlying disease mecha-

nisms, but are not directly applicable for patient staging. Biomarker models have
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been developed to allow subjects to be monitored in vivo. Simple scalar biomarker

models are the most directly clinically applicable as they use well established

biomarkers. However, their temporal resolution is limited by their reliance on a

priori knowledge of a subject’s disease stage, typically to just a few stages. High

dimensional biomarker models have the potential to uncover more complex rela-

tionships within or between different data types, but again their temporal resolution

is limited by their reliance on a priori disease staging. Data-driven models have been

developed to allow biomarker trajectories to be recovered without a priori disease

staging information. Such models have the potential to recover complex disease

progression patterns and can be used as a fine-grained patient staging mechanism.

However, they are still an emerging technology, and will require further validation

and refinement before they are translated into a useful clinical tool.



Chapter 3

A data-driven model of biomarker

changes in sporadic Alzheimer’s

disease

This chapter details sub-contributions (a) and (b) of contribution 1.3.1 (see Chap-

ter 1, page 39). The work presented in this chapter was published in Brain and

presented at the Alzheimer’s Association International Conference in 2014. I de-

veloped the methodology, performed the analysis and wrote the manuscript; my

co-authors provided feedback on the methodology and the manuscript.

3.1 Associated publications
A. L. Young, N. P. Oxtoby, P. Daga, D. M. Cash, N. C. Fox, S. Ourselin, J. M.

Schott, and D. C. Alexander. A data-driven model of biomarker changes in sporadic

Alzheimer’s disease. Brain, 137(9):2564–2577, 2014

3.2 Introduction
Existing biomarkers of AD provide complementary information for disease staging

and differential diagnosis. Determining the particular sequence and evolution of

biomarker abnormality potentially provides a mechanism to stage and stratify pa-

tients throughout the full disease time course, and in particular, during the presymp-

tomatic phase. This helps reduce heterogeneity in trial groups, match individuals
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to putative treatments, and monitor treatment outcomes. Whilst new diagnostic cri-

teria now incorporate biomarkers to allow earlier diagnosis [94], the evidence base

for this is relatively limited. A major challenge of current AD research [75] is to

construct models of disease progression that estimate biomarker ordering and dy-

namics directly from real-world datasets enabling quantitative evaluation of patient

state.

The recently introduced event-based model (EBM) [98] provides a generative

model of disease progression that can learn the ordering of biomarker changes from

large cross-sectional (or short-term longitudinal to enable measurement of rates of

atrophy) datasets, as well as providing insights into the uncertainty of the recon-

structed ordering. The EBM defines the disease progression as a sequence of events

at which individual biomarkers become abnormal. The EBM is probabilistic in the

sense that it learns normal and abnormal distributions of biomarker values from the

data, and so does not require a-priori staging or cut points. The EBM further enables

the assignment of each subject to a disease stage. Previous work [98] demonstrated

the EBM’s ability to order biomarkers and generate staging measures derived from

imaging data, in genetically defined disease and control populations (familial AD

and Huntington’s disease). However, the original EBM is not directly applicable to

sporadic disease datasets, which have significant proportions of misdiagnosed cases

in the patient group; and, particularly in AD research, a poorly defined control

group because a significant number (estimated to be a third by the eighth decade)

of apparently healthy elderly individuals have biomarker evidence consistent with

presymptomatic AD [135, 136].

Here I reformulate the EBM for multi-modal data from a heterogeneous spo-

radic disease population. The new EBM accommodates a modest proportion of

misdiagnosed patients as well as allowing for presymptomatic cases contaminat-

ing the control group. I apply this EBM to the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) dataset to obtain characteristic biomarker orderings from various

subgroups, as well as their uncertainty. I demonstrate the fine-grained staging po-

tential of the EBM and its ability both to classify cognitively normal (CN) and AD
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subjects and to predict conversion from mild cognitive impairment (MCI) to AD

and CN to MCI.

3.3 Materials and methods

3.3.1 Data description

3.3.1.1 Subjects

I downloaded data from LONI1 on 5 February 2013, and included all 285 sub-

jects (CN, MCI or AD) that had a CSF examination at baseline, standardised cog-

nitive assessment at baseline2, which included: the Mini Mental State Examina-

tion (MMSE) [85], the Alzheimer’s Disease Assessment Scale-Cognitive Subscale

(ADAS-Cog) [137] (modified 13 item ADAS-Cog, which omits item 13), and the

Rey Auditory Verbal Learning Test (RAVLT) [138] (immediate recall score, i.e. the

sum of trials 1 to 5), and useable 1.5T MRI imaging at baseline and 1 year. Clin-

ical diagnosis (CN/MCI/AD) was also recorded. Other possible biomarkers, e.g.

FDG PET and amyloid PET, were not included in the present analysis because they

limit the number of available subjects: less than half of the subjects with CSF and

MRI data at baseline underwent an FDG PET scan at baseline, and very few had

baseline amyloid PET imaging. CSF measures of Aβ1−42, p-tau and t-tau were per-

formed centrally, as previously described [139]. The CSF t-tau and p-tau data were

log transformed to improve normality. I downloaded APOE genotype, for which

methods have been published previously [140], for each individual from the LONI

website. For validation of the staging system derived from the EBM, I downloaded

the aforementioned set of imaging, clinical and CSF data at 12 and 24 month follow

up time points. CSF values are known to only be comparable when they are all pro-

cessed at the same time. Therefore I downloaded longitudinal CSF data collected

over 4 years that had been reprocessed at the end of the 4 years, so as to obtain

baseline, 12 and 24 month CSF data which were processed in the same batch. As

an outcome measure, I downloaded clinical diagnoses at all available time points up

1www.loni.ucla.edu/ADNI/
2For details see www.adni-info.org/Scientists/Pdfs/adniproceduresmanual12.pdf.
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to 72 months.

3.3.1.2 MRI methods

Details of the MRI methodology have previously been described [141]. Cross-

sectional regional measures of brain volumes known to be affected in AD: the hip-

pocampus, entorhinal cortex, middle temporal gyrus, fusiform, ventricles and whole

brain, as well as total intracranial volume (TIV), were calculated at baseline using

FreeSurfer Version 4.3, which is documented and freely available for download on-

line3. All regional volumes were normalised by dividing by TIV for each subject.

Longitudinal measures of regional volume change between 0 and 12 months

were obtained using the boundary shift integral (BSI): volume change was measured

for the whole brain using the KN-BSI method [142], and for the hippocampus using

the MAPS-HBSI method [143].

3.3.1.3 Event set

The biomarkers available for all the subjects provide the following set of 14

biomarker transition ‘events’, each of which corresponds to a biomarker becom-

ing abnormal, i.e. changing from the ‘control’ to ‘AD’ state

• Three CSF events: Aβ1−42 (Abeta), P-tau and T-tau

• Three cognitive events: ADAS-Cog, RAVLT and MMSE

• Six regional brain volume events: Brain, Ventricles, Hippocampus, Entorhi-

nal, Mid Temporal and Fusiform volumes

• Two rates of atrophy events: rates of Hippocampal and Brain Atrophy

3.3.2 Event sequences

I defined four population subgroups:

• Whole population: all subjects.

• Amyloid positive (Aβ+): subjects with CSF Aβ1−42 < 192 pg/ml. This cut

point was chosen according to the results of Shaw et al. [139] who determined
3http://surfer.nmr.mgh.harvard.edu/
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cut points using a maximum accuracy classification of autopsy confirmed AD

and CN subjects.

• APOE4 positive (APOE4+): subjects with one or more APOE4-ε4 alleles.

• Amyloid positive APOE4 positive (Aβ+APOE4+): subjects who are both

Aβ+ and APOE4+.

3.3.2.1 The event-based model

I estimated the most likely ordering of events and its uncertainty in each sub-

group using the EBM [98]. The EBM treats each biomarker as either ‘normal’,

i.e. non-pathological, or ‘abnormal’, i.e. as seen in AD. The switch from nor-

mal to abnormal is termed an ‘event’. The occurrence of any particular event, Ei,

i = 1 . . . I, is informed by the corresponding measurements xi j of biomarker i in

subject j, j = 1 . . .J. The whole dataset X =
{

xi j|i = 1 . . . I, j = 1 . . .J
}

contains

measurements of each biomarker in each subject. The most likely ordering of the

events is the sequence S that maximises the data likelihood

P(X |S) =
J

∏
j=1

[
I

∑
k=0

(
P(k)

k

∏
i=1

P(xi j|Ei)
I

∏
i=k+1

P(xi j|¬Ei)

)]
, (3.1)

where P(x|Ei) and P(x|¬Ei) are the likelihoods of measurement x given that

biomarker i has or has not become abnormal, respectively, and P(k) is the prior

likelihood of being at stage k, i.e. events E1, . . . ,Ek have occurred, and events

Ek+1, . . . ,EI have yet to occur, which I assume is uniform. This uniform prior as-

sumes no knowledge of any patient’s disease stage a-priori, which imposes the least

information possible on estimated orderings.

In addition to finding the most likely sequence, P(X |S) can be evaluated for any

sequence to establish the relative likelihood of all sequences. This provides insight

into the uncertainty of the ordering. The positional variance diagram [98] (Figure

3.1 A-D) visualises both the maximum likelihood sequence and its uncertainty by

plotting the likelihood that each event appears in each position in the sequence, i.e.

the entry of each position is ∑S∈Sik
P(X |S) where Sik is the set of all sequences with
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event i at position k.

3.3.2.2 Model of the event distribution

Evaluation of Equation (3.1) requires models for each of the event distributions,

P(x|Ei) and P(x|¬Ei). The original EBM in [98] used a familial AD dataset for

which the control group was well defined allowing direct estimation of P(x|¬Ei).

In sporadic AD, however, a significant proportion of the CN control group may

have presymptomatic AD. To counter this, I reformulated the EBM approach so

that the event distributions are estimated by fitting a mixture of two normal distri-

butions (a gaussian mixture model). I fitted this mixture of normal distributions to

each biomarker separately using data from all subjects to obtain the parameters of

the two models. To ensure a robust fit, particularly for biomarkers where the dis-

tributions of the healthy and diseased population overlap significantly, I constrain

the standard deviations so that the standard deviation of P(x|¬Ei) and P(x|Ei) is

less than or equal to that of the CN and AD group respectively. This is a weak

constraint designed simply to guide the mixture model away from physically unre-

alistic solutions. Importantly, whilst this modelling approach can be used to deter-

mine fixed cut points for each biomarker, the model here is not dependent on these

cut-points, using a probability function to determine the most likely sequencing of

event switches.

3.3.2.3 Summary of estimation procedure for the EBM

The model fitting procedure for the EBM is as follows.

1. Fit a mixture model to the data for all subjects to estimate the parameters of

the event distributions, P(x|Ei) and P(x|¬Ei).

For each population subgroup:

2. Find the characteristic event sequence S̄ that maximises the data likelihood

P(X |S) by performing a greedy ascent algorithm.

3. Take Markov Chain Monte Carlo (MCMC) samples of the data likelihood

P(X |S), initialised from the maximum likelihood event sequence S̄, to esti-

mate the uncertainty in the characteristic event sequence.
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3.3.2.4 Implementation of EBM estimation procedure

All experiments were performed using Matlab on a standard workstation (Intel Core

i7, 3.1 GHz, 8GB memory). The event distribution (gaussian mixture model) pa-

rameters were optimised using the ‘fmincon’ constrained optimisation solver with

the ‘sqp’ - sequential quadratic programming - method. All of the gaussian mixture

model fits were assessed visually to ensure the solutions were physically plausible.

To find the characteristic event sequence S̄, I performed 10,000 iterations of a greedy

ascent algorithm (as in [98]), initialised from 25 random start points. I checked that

the start points converged to a single maximum to ensure the global optimum had

been found. I then ran an MCMC algorithm (as in [98]) to draw samples from the

posterior distribution P(S|X). I ran the MCMC algorithm for 100,000 iterations,

checking that the MCMC trace showed good mixing properties. I initialised the

MCMC algorithm at S̄ so a burn-in period was not required.

The computational complexity of the gaussian mixture model fitting is O(I),

where I is the number of biomarker events, and the full optimisation procedure for

each biomarker takes less than 0.2 seconds. The computational time for the greedy

ascent and MCMC algorithms depends on (i) the time taken to compute the data

likelihood P(X |S), and (ii) the number of samples required for the algorithm, i.e.

for the greedy ascent algorithm to reach the maximum likelihood solution, or for

the MCMC chain to sample P(S|X). Calculating the value of P(X |S) involves com-

puting a product over all I biomarker events, summing this over all I + 1 possible

stages in the sequence, and then taking the product over all J subjects, which is of

order O(I2J), as P(xi j|¬Ei) and P(xi j|Ei) can be computed ahead of time. Although

the space of all possible sequences has a size of I!, the maximum pairwise distance

between any pair of sequences is I(I−1)
2 . This means that the number of iterations

required for convergence of the greedy ascent algorithm, and for the MCMC chain

to sample P(S|X), should scale with approximately O(I2). For the set of biomarker

events used here, running 10,000 iterations of the greedy ascent algorithm takes

approximately 1.5 seconds, and taking 100,000 samples for the MCMC algorithm

takes approximately 15 seconds (i.e. computing P(X |S) takes approximately 1.5
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×10−4 seconds).

3.3.2.5 Cross-validation of the event sequence

I performed cross-validation of the maximum likelihood event sequence returned by

the EBM (Figure 3.1 E-H) by re-estimating the event distributions and maximum

likelihood sequence (Figure 3.1 A-D) for 100 bootstrap samples of the data. The

positional variance diagrams for the cross validation results show the proportion of

bootstrap samples in which event i appears at position k of the maximum likelihood

sequence.

3.3.3 Patient staging

Once the characteristic sequence S̄ has been determined using the EBM, the sim-

plest way to assign a stage for a particular subject, which I adopt here, is to find the

stage which is assigned the highest probability by the model, i.e. the stage,

argmaxkP(X j,k|S̄) = argmaxkP(k)
k

∏
i=1

P(xi j|Ei)
I

∏
i=k+1

P(xi j|¬Ei), (3.2)

that maximises the probability of the data given the maximum likelihood event se-

quence. As before, I make no a-priori assumptions about model stage by assuming

the prior, P(k), is uniform. The stage ranges from 0 to I (the number of events).

Thus the idealised model for stage k is that all events up to and including k have oc-

curred and the events after k have not occurred. However, the assignment of stage

k to a particular patient does not mean they fit the model exactly; it is simply the

stage most compatible with their measurements.

3.3.3.1 Longitudinal validation

To assess the consistency of patient staging measures longitudinally (Figure 3.3) I

evaluated each patient’s stage at all follow up time points which met the inclusion

criteria: subjects had to have measurements for all biomarkers, including an MRI

scan 12 months later in order to calculate the BSI over a consistent time frame.

There were two follow up time points which met these criteria: 12 months (Figure

3.3 A) and 24 months (Figure 3.3 B). I compared each subject’s EBM stage at follow
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up with their baseline EBM stage, which was re-evaluated using the reprocessed

CSF measures so as to ensure that the CSF was processed consistently for all time

points.

3.3.3.2 Prediction of conversion

Patient staging derived from the EBM can be used to predict conversion from MCI

to AD or CN to MCI (Table 3.2) by categorising subjects according to their EBM

stage at baseline. I performed a binary classification of subjects into MCI-stable

and MCI-converters, and CN-stable and CN-converters, by thresholding on patient

EBM stage. Stable subjects were defined as those with an MCI or CN diagnosis

who remained with an MCI or CN diagnosis at the end of a 12, 24, 36, 48 or 60

month follow up period. Converters were defined as those with an MCI or CN

diagnosis who were diagnosed with AD or MCI, respectively, at the end of a 12, 24,

36, 48 or 60 month follow up period. I used the EBM stage that maximises balanced

accuracy to classify subjects. Balanced accuracy is the average of the sensitivity and

specificity, which is similar to accuracy but does not depend on disease prevalence.

To test the effect of increasing EBM stage on the probability of conversion from

MCI to AD and CN to MCI (Table 3.3 and Figure 3.4) I used Cox proportional

hazards Models where the event was conversion to AD or MCI respectively and

the input variables were patient EBM stage and demographic factors: age, sex,

education and APOE4 carrier status (presence of an APOE4 allele). Time to event

data for subjects who did not convert was considered censored at their last available

diagnosis. Statistical significance was set at P < 0.05.

3.3.4 Staging using cross-sectional data alone

To demonstrate the EBM’s ability to stage patients using purely cross-sectional

measures I repeated the patient staging by fitting the EBM for a subset of 12 events

(Tables 3.4, 3.5, 3.6, Figures 3.5, 3.6, 3.7, 3.8), excluding atrophy rates. The in-

clusion criteria were the same as used previously except follow up MRI scans at 12

months were not required. As before, patient staging results were evaluated for the

whole population using the maximum likelihood event sequence determined over
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all subjects, but with atrophy rates removed (Figure 3.5 A).

3.4 Results

3.4.1 Subjects

Study subject demographics are summarised in Table 3.1. Of the 285 sub-

jects that met the inclusion criteria, 189 were amyloid positive (Aβ+), 139 were

APOE4 positive (APOE4+), and 123 were amyloid positive and APOE4 positive

(Aβ+APOE4+).

Demographics CN MCI AD
N 92 129 64

All Sex M/F 48/44 (52%) 82/47 (64%) 34/30 (53%)
subjects Age 75 ± 5 73 ± 7 75 ± 8

Education 15.6 ± 2.9 15.9 ± 3 15 ± 3
APOE4 +/- 22/70 (24%) 72/57 (56%) 45/19 (70%)
N 34 96 59

Aβ+ Sex M/F 19/15 (56%) 58/38 (60%) 31/28 (53%)
Age 76 ± 5 73 ±7 74 ± 8
Education 15.8 ± 3.3 15.7 ± 3.1 15 ± 3.1
APOE4 +/- 15/19 (44%) 63/33 (66%) 45/14 (76%)
N 22 72 45

APOE4+ Sex M/F 15/7 (68%) 39/33 (54%) 25/20 (56%)
Age 75 ± 6 73 ± 6 75 ± 7
Education 15.6 ± 3.4 15.8 ± 2.9 14.6 ± 3
APOE4 +/- 22/0 (100%) 72/0 (100%) 45/0 (100%)
N 15 63 45

Aβ+ Sex M/F 10/5 (67%) 35/28 (56%) 25/20 (56%)
APOE4+ Age 77 ± 6 73 ± 6 75 ± 7

Education 15.5 ± 3.8 15.8 ± 2.9 14.6 ± 3
APOE4 +/- 15/0 (100%) 63/0 (100%) 45/0 (100%)

Table 3.1: Baseline demographics for the whole population and population subgroups. Age
and education are in years (mean± standard deviation). Reproduced from [134].
CC BY 3.0.

3.4.2 Event sequences

Figures 3.1 A-D show positional variance diagrams for each population subgroup.

Each positional variance diagram shows the maximum likelihood event sequence

and its uncertainty. Figures 3.1 E-H show positional variance diagrams obtained

https://creativecommons.org/licenses/by/3.0/
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from cross-validation of the maximum likelihood ordering.

The event sequences in all four populations (Figure 3.1 A-D) showed broad

agreement with hypothetical models such as Jack et al. [74]: CSF biomarkers were

shown to be early events, followed by atrophy rates, then cognitive test scores

and hippocampal and entorhinal volume, and finally other regional brain volumes.

Cross-validation (Figure 3.1 E-H) confirmed high confidence in the ordering of

these sets of events: for all populations, the ordering strongly placed CSF and atro-

phy rates before cognitive test scores and hippocampal and entorhinal volume, and

the remaining regional volume changes last.

3.4.2.1 Whole population

The maximum likelihood ordering for the whole population (Figure 3.1 A) showed

some departures from current thinking in neurology [74], although the uncertainty

was high (Figure 3.1 E). First, CSF t-tau occurred prior to p-tau. It might be ex-

pected that p-tau is an earlier marker of AD than t-tau [75], being a more specific

measure of the build up of NFTs than t-tau [62], which measures associated neu-

ronal damage. Second, both t-tau and p-tau occurred before Aβ1−42, whereas amy-

loid plaque deposition is widely considered to be the initiating event in AD [144].

Third, brain atrophy rate came before hippocampal atrophy rate, which is at odds

with the findings of MRI regional atrophy rate studies (e.g. [114]).

3.4.2.2 Aβ+ and APOE4+ subjects

The Aβ+, APOE4+ and Aβ+APOE4+ groups (Figures 3.1 B-D) showed a distinct

ordering of the CSF biomarkers: Aβ1−42, p-tau, t-tau, which replicated the ordering

described by hypothetical models [74,75]. Cross-validation (Figure 3.1 F-H) of the

event sequence in these groups showed a much greater confidence in the ordering

of CSF biomarkers compared to the whole population (Figure 3.1 E), which is more

heterogeneous. In the Aβ+ group (Figure 3.1 B), brain atrophy rate was ordered

before hippocampal atrophy rate, but the ordering was weaker than the whole pop-

ulation. In the APOE4+ and Aβ+APOE4+ groups (Figures 3.1 C-D) hippocampal

atrophy rate clearly occurred before brain atrophy rate.
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Figure 3.1: Positional variance diagrams showing the distribution of event sequences in
population subgroups. (A-D) Positional variance diagrams of the uncertainty in
the maximum likelihood event ordering estimated by taking MCMC (Markov
chain Monte Carlo) samples using the EBM. (E-H) Positional variance dia-
grams from cross-validation of the maximum likelihood event sequence by
bootstrap resampling of the data. These diagrams overestimate the uncertainty,
giving a more conservative picture than the left hand column. Each entry in
the positional variance diagram represents the proportion of MCMC samples,
in A-D, or bootstrap samples, in E-H, in which events appear at a particular po-
sition in the sequence (x-axis). This proportion ranges from 0 in white to 1 in
black. The y-axis orders events by the maximum likelihood sequence. Where
rows have a single black block on the diagonal, such as the top five events in the
diagram for the whole population, the ordering is strong and permutations of
those events are unlikely. Grey blocks, such as the Mini-Mental State Examina-
tion (MMSE) score, entorhinal volume and hippocampal volume in the whole
population, show that permuting the order of the events has little effect on the
likelihood so their ordering is weak. Aβ+ = amyloid+; Abeta = amyloid-β ;
P-tau = phosphorylated tau; T-tau = total tau; RAVLT = Rey Auditory Verbal
Learning Test. Reproduced from [134]. CC BY 3.0.

3.4.3 Patient staging

3.4.3.1 Cross-sectional distribution of stages

Figure 3.2 shows the distribution of patient stages for the whole population. All

patient staging results were evaluated for the whole population using the maximum

likelihood event sequence determined over all subjects (Figure 3.1 A). The distribu-

tions of EBM stages for CN and AD subjects were strongly separated and thresholds

at middle stages classify CN vs. AD with accuracy greater than 99%. The majority

of CN subjects have no biomarker abnormalities, so are assigned stage 0, or abnor-

malities only in CSF, so are assigned stages 1-3. A small number of CN subjects

also showed rates of atrophy events, so are assigned stages 4-6. Most AD subjects

have abnormal CSF, atrophy rate, cognitive symptoms and low hippocampal and

entorhinal volume so are assigned later stages. The majority of AD subjects were

assigned the final stage in the progression, showing that the model configuration

that fits their data best is where all of the events have occurred. The distribution of

MCI stages overlapped with the distribution of stages for CN and AD subjects but

with a greater concentration of subjects around the middle stages, suggesting that

https://creativecommons.org/licenses/by/3.0/
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these subjects show CSF abnormalities, abnormal rates of atrophy, and some cog-

nitive symptoms. To explore the extent to which choice of cognitive test affects the

staging (and event sequence) output, I assessed the effect of adding in an additional

memory test, the Logical Memory II subscale (delayed paragraph recall) from the

Wechsler Memory Scale - Revised. Results (not shown) confirm that using this

additional cognitive test score provides a very similar distribution of patient EBM

stages, with logical memory occurring immediately prior to the RAVLT in the event

sequence.
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Figure 3.2: Proportion of patients in each diagnostic category at each EBM stage. Propor-
tion of cognitively normal in light blue, mild cognitive impairment in black,
and Alzheimers disease in orange. Each EBM stage on the x-axis corresponds
to the occurrence of a new biomarker transition event. Stage 0 corresponds
to no events having occurred and stage 14 is when all events have occurred.
Events are ordered by the maximum likelihood event sequence for the whole
population as shown in Fig. 3.1 A. Reproduced from [134]. CC BY 3.0.

3.4.3.2 Longitudinal consistency

Figure 3.3 compares each subject’s EBM stage at baseline with their EBM stage at

12 and 24 month follow ups. Patient staging showed good longitudinal consistency,

with the EBM stage of each subject generally increasing or remaining stable at each

https://creativecommons.org/licenses/by/3.0/
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follow up (most points are within or above the grey shaded area, which represents

the uncertainty estimated by the EBM, as shown in figure 3.1 A). The small number

of individuals whose EBM stage decreased longitudinally (below the diagonal) by

more than the uncertainty estimated by the EBM (shaded in grey) were all subjects

who improved from an abnormal to a normal score on one or more of the three

cognitive tests (MMSE, RAVLT, and ADAS-Cog) and/or two atrophy rates (brain

atrophy rate and hippocampal atrophy rate) with the exception of one subject (cir-

cled in green) whose CSF Aβ1−42 levels increased from a clearly abnormal level

of 139 pg/ml at baseline to a more borderline level of 207 pg/ml at the 12 month

follow up.
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Figure 3.3: Longitudinal consistency of patient staging in the whole population over a (A)
12-month and (B) 24-month follow-up period. The size of the dot plotted at
each point corresponds to the number of subjects with that particular baseline
and follow-up EBM stage. The largest dot, at (0,0) represents 19 subjects in A
and seven subjects in B, and the smallest dots represent one subject. The grey
shaded area visualizes the uncertainty in the sequence estimated by the EBM
(as shown in Fig. 3.1 A). Subjects whose EBM stage is longitudinally consis-
tent are on or above the line y = x and/or within the grey shaded area. Subjects
whose CSF levels (CSF amyloid-β1−42 and/or phosphorylated tau and/or to-
tal tau) change from an abnormal to a normal level at follow-up are circled in
green. Reproduced from [134]. CC BY 3.0.

3.4.3.3 Prediction of clinical outcomes

Table 3.2 A shows the balanced accuracy, sensitivity, specificity, area under the

ROC curve (AUC), and maximum accuracy threshold EBM stage for classification

of MCI-stable vs. MCI-converters over different follow up durations. The balanced

https://creativecommons.org/licenses/by/3.0/
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accuracy and AUC of the classification were comparable to state of the art classifi-

cation techniques [121]. As the duration of the follow up increased, the maximum

balanced accuracy threshold decreased, i.e. later EBM stages were better at predict-

ing faster conversion times. These optimal stage thresholds suggest that abnormal

CSF measures, atrophy rate, cognitive test scores and hippocampal and entorhinal

volume provide the best prediction of conversion in 2 years or less, whereas just

abnormal CSF, atrophy rate and ADAS-Cog and RAVLT scores is the combination

that best predicts conversion over a period of 3 to 5 years.

The same statistics are shown in Table 3.2 B for classification of CN-stable

vs. CN-converters. Again the threshold EBM stage decreased for increasing follow

up durations, with abnormal CSF t-tau, p-tau and Aβ1−42 levels best predicting

conversion from CN to MCI over a period of 4 years or less, but just abnormal CSF

t-tau and p-tau best predicting conversion over 5 years.

A. MCI-stable vs. MCI-converters
Balanced
Acc. (%)

Sensitivity
(%)

Specificity
(%) AUC

Threshold
Stage N-c/N-s

12 months 67 60 73 0.69 12 30/96
24 months 68 57 80 0.71 12 53/64
36 months 77 86 69 0.78 7 65/48
48 months 78 83 72 0.76 7 70/18
60 months 76 84 69 0.77 7 73/16

B. CN-stable vs. CN-converters
Balanced
Acc. (%)

Sensitivity
(%)

Specificity
(%) AUC

Threshold
Stage N-c/N-s

12 months 84 100 68 0.76 3 2/90
24 months 66 67 66 0.62 3 6/83
36 months 68 63 73 0.62 3 8/73
48 months 66 58 74 0.65 3 12/49
60 months 76 75 76 0.75 2 16/38

Table 3.2: Classification results for discriminating MCI-stable versus MCI-converters and
CN-stable versus CN-converters using patient stage at baseline. CN = cogni-
tively normal; MCI = mild cognitive impairment. Reproduced from [134]. CC
BY 3.0.

Table 3.3 shows the hazard ratio and statistical significance of each variable

in the Cox proportional hazards models. Increasing EBM stage was a significant

https://creativecommons.org/licenses/by/3.0/
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hazard for conversion from both MCI to AD and CN to MCI. Figure 3.4 shows the

estimated probability of remaining CN or MCI depending on baseline EBM stage.

A. MCI to AD progression

HR (CI) p-value
Corrected
HR (CI)

Corrected
p-value

EBM Stage 1.15 (1.09-1.21) 1.58 × 10−7∗ 1.15 (1.09-1.21) 2.06 × 10−7∗

Age 0.99 (0.96-1.03) 0.68 0.99 (0.96-1.02) 0.49
Education 0.98 (0.91-1.05) 0.55 0.98 (0.90-1.05) 0.51
APOE4 Carrier 1.55 (0.97-2.48) 0.065 1.19 (0.73-1.94) 0.49
Male 0.77 (0.49-1.23) 0.28 0.85 (0.50-1.45) 0.55

B. CN to MCI progression

HR (CI) p-value
Corrected
HR (CI)

Corrected
p-value

EBM Stage 1.34 (1.07-1.69) 0.012∗ 1.31 (1.02-1.68) 0.033∗

Age 0.99 (0.90-1.09) 0.84 0.98 (0.89-1.08) 0.67
Education 1.03 (0.88-1.22) 0.69 1.02 (0.86-1.20) 0.83
APOE4 Carrier 3.15 (1.19-8.30) 0.021∗ 2.47 (0.85-7.17) 0.096
Male 1.75 (0.65-4.74) 0.27 1.45 (0.49-4.28) 0.5

Table 3.3: Hazard ratios with 95% confidence intervals (CI) for conversion from MCI to
AD, and CN to MCI, obtained by fitting uncorrected and corrected Cox pro-
portional hazards models. ∗P < 0.05. CN = cognitively normal; MCI = mild
cognitive impairment; AD = Alzheimer’s disease. Reproduced from [134]. CC
BY 3.0.

3.4.4 Staging using cross-sectional data alone

I repeated all analyses for purely cross-sectional measures, i.e. excluding rates of

atrophy, to demonstrate the clinical application of the EBM’s staging system, where

patients need to be staged at one point in time. Table 3.4 gives demographic infor-

mation for the 325 subjects that met the inclusion criteria, of which 216 were Aβ+,

159 were APOE4+, and 141 were Aβ+APOE4+.

Removing atrophy rates had little effect on biomarker ordering (Figure 3.5)

or the cross-sectional distribution (Figure 3.6) and longitudinal consistency (Figure

3.7) of staging. Again, individuals whose EBM stage decreased longitudinally (be-

low the diagonal) by more than the uncertainty estimated by the EBM (shaded in

grey) improved from a clearly abnormal to a more normal score on one or more of

the three cognitive tests (MMSE, RAVLT, and ADAS-Cog) with the exception of

https://creativecommons.org/licenses/by/3.0/
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0 12 24 36 48 60 72

All 129 119 88 64 33 23 13

Stage 0 22 22 18 15 11 8 4

Stage 1-3 12 12 11 10 4 4 2

Stage 4-5 9 9 7 7 3 2 2

Stage 6-10 37 33 28 18 9 6 4

Stage 11-14 49 43 24 14 6 3 1

Number of MCI subjects at risk at each follow up:

0 12 24 36 48 60 72

All 92 91 89 77 58 48 34

Stage 0 47 47 46 42 31 27 20

Stage 1-3 30 29 28 23 17 14 11

Stage 4-5 13 13 13 11 9 7 3

Stage 6-10 2 2 2 1 1 0 0

Stage 11-14 0 0 0 0 0 0 0

Number of CN subjects at risk at each follow up:

Figure 3.4: Estimated probability of remaining (A) MCI or (B) CN for different baseline
EBM stages, obtained by fitting Cox proportional hazards models. These esti-
mated probabilities are shown for the average population demographics (74.1
years of age, 15.6 years of education, APOE4 negative, male sex). Stages are
grouped so that normal (blue) = stage 0, CSF (green) = stages 1-3, atrophy (or-
ange) = stages 4-5, cognition (cyan) = stages 6-10, which includes hippocam-
pal and entorhinal volume as well as cognitive test scores, volume (magenta) =
stages 11-14. The table details the number of subjects at risk at each follow-
up time point. MCI = mild cognitive impairment; CN = cognitively normal.
Reproduced from [134]. CC BY 3.0.

two subjects (circled in green) whose CSF levels (CSF Aβ1−42 and/or p-tau and/or

t-tau) changed from an abnormal to a more normal level at follow up.

The balanced accuracy for predicting conversion (Table 3.5) was slightly re-

duced when the atrophy rates were removed but was still high, giving a maximum

balanced accuracy of 71% (77% with atrophy rates) for conversion from MCI to

AD over 3 years, and 70% (76% with atrophy rates) for conversion from CN to

MCI over 5 years. On average over all follow up durations the balanced accuracy

decreased by 2.6% for predicting conversion from MCI to AD, and increased by

4% for predicting conversion from CN to MCI. Again, increasing EBM stage was a

significant hazard for conversion from both MCI to AD and CN to MCI (Table 3.6

and Figure 3.8).
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Demographics CN MCI AD
N 100 150 75

All Sex M/F 51/49 (51%) 98/52 (65%) 41/34 (55%)
subjects Age 75 ± 5 73 ± 7 75 ± 8

Education 15.7 ± 2.9 15.7 ± 3 15.1 ± 3
APOE4 +/- 22/78 (22%) 83/65 (57%) 52/23 (69%)
N 36 111 69

Aβ+ Sex M/F 20/16 (56%) 69/42 (62%) 38/31 (55%)
Age 76 ± 5 74 ± 7 74 ± 8
Education 15.9 ± 3.3 15.6 ± 3.1 15 ± 3
APOE4 +/- 15/21 (42%) 74/37 (67%) 52/17 (75%)
N 22 85 52

APOE4+ Sex M/F 15/7 (68%) 49/36 (58%) 30/22 (58%)
Age 75 ± 6 73 ± 6 74 ± 8
Education 15.6 ± 3.4 15.6 ± 3 14.8 ± 3
APOE4 +/- 22/0 (100%) 85/0 (100%) 52/0 (100%)
N 15 74 52

Aβ+ Sex M/F 10/5 (67%) 43/31 (58%) 30/22 (58%)
APOE4+ Age 77 ± 6 74 ± 7 74 ± 8

Education 15.5 ± 3.8 15.7 ± 2.9 14.8 ± 3
APOE4 +/- 15/0 (100%) 74/0 (100%) 52/0 (100%)

Table 3.4: As Table 3.1, but without using atrophy rates. Reproduced from [134]. CC BY
3.0.
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Figure 3.5: As Figure 3.1, but without using atrophy rates, i.e. using the subjects in Table
3.4. Reproduced from [134]. CC BY 3.0.
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Figure 3.6: As Figure 3.2, but without using atrophy rates. Events are ordered by the max-
imum likelihood event sequence for the whole population as shown in Figure
3.5. Reproduced from [134]. CC BY 3.0.
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Figure 3.7: As Figure 3.3, but without using atrophy rates. Two additional follow up time
points, at 36 and 48 months, met our inclusion criteria. Here, the largest dot,
at (0,0) represents 17 subjects in (A) and 9 subjects in (B). The largest dot in
(C) is at (12,12) and represents 2 subjects. In (D) all dots represent 1 subject.
Reproduced from [134]. CC BY 3.0.
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A. MCI-stable vs. MCI-converters
Balanced
Acc. (%)

Sensitivity
(%)

Specificity
(%) AUC

Threshold
Stage N-c/N-s

12 months 67 72 62 0.71 8 32/103
24 months 68 68 68 0.71 8 57/68
36 months 71 83 59 0.74 6 69/51
48 months 74 84 65 0.71 5 74/20
60 months 73 84 63 0.74 5 77/16

B. CN-stable vs. CN-converters
Balanced
Acc. (%)

Sensitivity
(%)

Specificity
(%) AUC

Threshold
Stage N-c/N-s

12 months 95 100 91 0.95 4 2/95
24 months 79 67 91 0.78 4 6/86
36 months 70 45 95 0.69 4 9/76
48 months 66 38 94 0.68 4 13/50
60 months 70 76 64 0.75 1 17/39

Table 3.5: As Table 3.2, but without using atrophy rates. Reproduced from [134]. CC BY
3.0.

3.5 Discussion

I have adapted the event-based model for use with multi-modal sporadic disease

datasets to determine the characteristic ordering of biomarker transitions and pro-

vide a staging system for disease monitoring. I use the EBM here to derive char-

acteristic biomarker orderings in AD from various subgroups of the ADNI dataset

and to provide insight into the variability of the ordering. The orderings provide de-

tailed information on the dynamics of large sets of biomarkers across the full dura-

tion of AD progression. They describe a distinct sequence of biomarker transitions

in which CSF measures are the earliest to become abnormal, followed by atrophy

rates, and finally cognitive test scores and regional brain volumes. The recovered

ordering shows less variation in the sequence for Aβ+, APOE4+ or Aβ+APOE4+

individuals than for the whole population, most likely reflecting that the former

are a more homogeneous group with archetypical AD pathology. The results of

the EBM provide entirely data-driven support for hypothetical models of AD pro-

gression, such as [74, 78, 79], without the requirement for determining biomarker

cut-points [108].
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A. MCI to AD progression

HR (CI) p-value
Corrected
HR (CI)

Corrected
p-value

EBM Stage 1.16 (1.10-1.23) 3.34 × 10−7∗ 1.17 (1.10-1.24) 3.55 × 10−7∗

Age 1.00 (0.97-1.03) 0.98 0.99 (0.96-1.02) 0.51
Education 0.98 (0.91-1.06) 0.65 0.98 (0.91-1.06) 0.6
APOE4 Carrier 1.56 (0.98-2.46) 0.059 1.32 (0.82-2.13) 0.25
Male 0.78 (0.49-1.22) 0.27 0.84 (0.50-1.43) 0.52

B. CN to MCI progression

HR (CI) p-value
Corrected
HR (CI)

Corrected
p-value

EBM Stage 1.66 (1.29-2.14) 1.01 × 10−4∗ 1.59 (1.22-2.09) 6.72 × 10−4∗

Age 1.00 (0.91-1.10) 0.99 0.99 (0.90-1.09) 0.83
Education 1.02 (0.88-1.21) 0.76 0.99 (0.84-1.15) 0.85
APOE4 Carrier 3.00 (1.16-7.78) 0.024∗ 2.02 (0.68-6.00) 0.21
Male 2.00 (0.75-5.33) 0.17 1.38 (0.46-4.14) 0.57

Table 3.6: As Table 3.3, but without using atrophy rates. Reproduced from [134]. CC BY
3.0.

The staging system provides a much more detailed evaluation of patient state

than clinical diagnoses. Importantly, it has clear clinical relevance, providing a high

accuracy classification of CN vs. AD subjects, predicting conversion from MCI

to AD and CN to MCI, and being applicable not only to short-term longitudinal

datasets (allowing atrophy measurements), but also to fully cross-sectional datasets

(one visit).

3.5.1 Event sequence

3.5.1.1 Ordering of CSF biomarkers

The ordering of the CSF biomarkers in Aβ+ and APOE4+ individuals supports

the ordering of CSF biomarkers predicted by earlier hypothetical models of AD

progression: CSF Aβ1−42, p-tau, t-tau. Since Aβ+ individuals are likely to have

early AD, this group should represent a much purer AD population than the whole

population and thus the biomarker ordering should reflect the AD ordering more

closely. Similarly, APOE4 carriers would also be predicted to shown this pattern,

given the very strong association between APOE4 and Aβ deposition [145].

https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
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0 12 24 36 48 60 72

All 150 128 93 68 35 23 13

Stage 0 24 23 19 17 12 8 4

Stage 1-3 17 17 15 12 6 4 3

Stage 4-8 46 40 32 22 9 7 5

Stage 9-12 63 48 27 17 8 4 1

Number of MCI subjects at risk at each follow up:

0 12 24 36 48 60 72

All 100 96 93 81 59 49 35

Stage 0 51 48 47 44 31 27 20

Stage 1-3 38 38 37 32 23 18 12

Stage 4-8 11 10 9 5 5 4 3

Stage 9-12 0 0 0 0 0 0 0

Number of CN subjects at risk at each follow up:

Figure 3.8: As Figure 3.4, but without using atrophy rates. These estimated probabilities
are shown for the average population demographics (74.2 years of age, 15.6
years of education, APOE4 negative, male sex). Stages are grouped analo-
gously to Figure 3.4, so that here Normal (blue) = stage 0, CSF (green) = stages
1-3, Cognition (cyan) = stages 4-8, which includes hippocampal and entorhinal
cortex volume as well as cognitive test scores, Volume (magenta) = stages 9-12.
Reproduced from [134]. CC BY 3.0.

In the broader population, however, the results suggest that CSF t-tau and p-tau

may become abnormal prior to Aβ1−42, i.e. that there are a significant proportion

of subjects who have CSF t-tau and p-tau but not Aβ1−42 abnormalities, although

cross-validation shows higher uncertainty. Given the results in the APOE4+ and

Aβ+ populations, it seems likely that these subjects reside predominantly in the

APOE4- and Aβ - populations, and indeed estimation of the ordering using the

APOE4- and Aβ - subject groups alone supports this hypothesis, confirming that

CSF t-tau and p-tau events appear earlier than CSF Aβ1−42 (data not shown). As

discussed by Jack et al. [75, 146], there are several potential explanations for this

finding. First, that tau accumulation is a common feature of aging. Braak et al. [147]

found tau pathology to be present in healthy individuals at autopsy from as early as

20 years of age. These findings are replicated by the study of Kok et al. [148],

which found NFT deposition in a significant proportion of APOE4 negative indi-

https://creativecommons.org/licenses/by/3.0/
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viduals between 30 and 59 years of age. These results, which demonstrate discrep-

ancies between the ordering in APOE4 positive and negative individuals, would be

entirely consistent with these findings, with the pattern observed in the population

as a whole reflecting a mixture of two populations - one already on the path to de-

veloping AD, the other undergoing normal ageing, with t-tau and p-tau a common

early feature in both. A second alternative is that accumulation of tau pathology

may be a very early feature of AD either for some or all subjects. Early tau pathol-

ogy may be more prevalent in APOE4- and Aβ - individuals, or alternatively, as the

subjects recruited for ADNI are age matched, early tau pathology might not be ob-

served in the APOE4+ and Aβ+ populations who would be likely to develop AD at

a younger age, and thus already have abnormal amyloid levels. A third possibility

is that amyloid accumulation does precede tau deposition, but that either current

CSF Aβ1−42 assays are less sensitive than the CSF t-tau and p-tau assays, or do

not detect the very earliest (e.g. oligomeric) abnormal Aβ moieties. Finally, as

CSF t-tau is not specific to AD and is found in other neurodegenerative diseases,

stroke, trauma and encephalitis [149], a further alternative is that individuals have

other, perhaps presymptomatic neurodegenerative diseases, such as frontotemporal

dementia (FTD), or dementia with Lewy bodies (DLB). Such individuals might be

under-represented in the APOE4+ and/or Aβ+ groups, which are enriched for AD,

and thus more prevalent in the APOE4- and Aβ - groups.

3.5.1.2 Ordering of MRI biomarkers

The ordering of MRI biomarkers from the EBM agrees with previous findings

(e.g. [113, 114]), with atrophy rates becoming abnormal prior to overall volume

changes, and volume changes occurring in a distinct sequence, starting in the hip-

pocampus and entorhinal cortex, progressing to other temporal lobe areas, the mid-

dle temporal gyrus and the fusiform gyrus, with resulting overall brain volume loss

and ventricular expansion. Results in APOE4+ subjects also support previous find-

ings [109, 150], suggesting earlier hippocampal and entorhinal volume loss, which

occur prior to MMSE reduction in the APOE4+ population and after MMSE in the

whole population and Aβ+ population.
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One perhaps surprising result of the MRI biomarker ordering is that the in-

creasing whole brain atrophy rate event occurs prior to the hippocampal atrophy

rate event both in the whole and Aβ+ population. In common with any data-driven

model of biomarker changes, the EBM orders events based on when the correspond-

ing measurements become discernibly different between cases and controls. This

may not reflect the order of appearance of underlying pathology as the precision

of the measurements may vary [98]. Thus, this result might simply reflect the in-

creased variability associated with measurement of hippocampal over whole brain

atrophy rates [151]. Other possible factors are that the results are influenced by

subjects who have a mixture of pathologies, where other processes occur alongside

AD which contribute to brain atrophy rate but not hippocampal atrophy rate, such

as vascular disease [152], or other neurodegenerative diseases [153]. Alternatively,

excess whole brain atrophy may be a core feature of all patients with AD, noting

that some individuals with pathologically confirmed AD have relatively hippocam-

pal sparing disease [154].

3.5.1.3 Uncertainty in the event sequence

The uncertainty in the event sequence, as shown by the positional variance diagrams

and cross-validation results, potentially provides useful information about the varia-

tion of biomarker ordering across the population. However, three main factors con-

tribute to the uncertainty. First, natural variation: some events may occur in differ-

ent orders in different individuals. For example, for APOE4+ subjects, hippocampal

volume loss may occur earlier than in APOE4 negative subjects [109, 150]; thus in

the whole population that combines both groups, uncertainty is higher. Second,

sampling density: when events occur in close succession, there are likely to be

fewer of the data points, which are required to determine their ordering, that sep-

arate them. Third, outliers: the dataset may include subjects who do not follow

any typical progression pattern of AD, e.g. subjects with other neurodegenerative

diseases. Although the model fitting procedure I use is somewhat robust to these

outliers, they can still affect the posterior distribution on the ordering, which mani-

fests as uncertainty.
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3.5.1.4 Using the event-based model to define cut points

A major advantage of the EBM is that the ordering of biomarkers is not dependent

on cut points. Instead, the EBM is probabilistic, calculating the probability that

each event has occurred from models of the distributions of normal and abnormal

biomarkers learned from the data rather than assuming an event has occurred when

a certain threshold value is reached. However, for comparison I derived cut point

values, given in Table 3.7, which represent the point at which the biomarker value is

equally likely to be normal or abnormal, and should therefore be similar to existing

biomarker cut points. The resulting cut points for the CSF biomarkers are very

similar to those reported by Shaw et al. [139], which were derived using a maximum

accuracy classification of autopsy confirmed AD vs. healthy controls. Importantly,

the ordering provided by the EBM can be seen not merely to reflect the ordering of

the sensitivity or specificity of these cut points.

3.5.2 Patient staging

A more directly practical output of the EBM is the data-driven staging system it

provides. Here I demonstrate, for the first time, the use of such a patient staging

measure to predict clinical outcomes. The EBM’s staging measure strongly sepa-

rates CN and AD subjects and gives comparable results to state of the art classifi-

cation techniques for prediction of conversion from MCI to AD [121] albeit with

a larger set of biomarkers. The major advantage of the EBM, a generative model,

is that it explicitly provides useful information on what drives the classification un-

like the discriminative models used in [121]. I used the EBM’s staging system to

predict conversion from CN to MCI, as well as MCI to AD, and over different fol-

low up durations. The classification results are supported by the results of the Cox

proportional hazards models, which find EBM stage to be a significant hazard for

conversion from both MCI to AD and CN to MCI. This suggests that the EBM, once

sufficient control/AD data are available, might have clinical application, providing

valuable prognostic information on an individual patient basis, and potentially for

clinical trial stratification.
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Biomarker Cut Point Sensitivity (%) Specificity (%)
Abeta (pg/ml) 189 92 63
P-tau (pg/ml) 25 88 71
T-tau (pg/ml) 80 77 73
Hippo. Atrophy (ml/year) 0.138 72 75
Brain Atrophy (ml/year) 11.9 64 78
RAVLT 33 92 91
ADAS-Cog 17 97 97
MMSE 27 100 97
Hippocampus (% TIV) 0.423 81 82
Entorhinal (% TIV) 0.214 84 83
Mid Temporal (% TIV) 1.19 75 78
Whole Brain (% TIV) 64.6 73 66
Fusiform (% TIV) 1.05 73 73
Ventricles (% TIV) 3.04 48 85

Table 3.7: Cut point values derived using the event distributions estimated by the EBM.
Volume measurements (hippocampus, entorhinal, mid temporal, fusiform,
whole brain, ventricles) are summed over the left and right hemisphere and
total intracranial volume normalized, and are recorded as a percentage of the
total intracranial volume. The sensitivity is the percentage of Alzheimers dis-
ease subjects with abnormal measurements, and specificity is the percentage of
cognitively normal subjects with normal measurements, when subjects are clas-
sified using these cut points. MMSE = Mini-Mental State Examination; RAVLT
= Rey Auditory Verbal Learning Test; TIV = total intracranial volume. Repro-
duced from [134]. CC BY 3.0.

3.5.3 Model assumptions

When interpreting these results, it is important to stress that the EBM is based on

strong assumptions, which are explicitly designed to simplify reality in order to

determine major trends in data. This section summarises the key assumptions made

in the modelling process, their potential influence on results, and possibilities to

relax the assumptions in future work.

3.5.3.1 Event Sequence

The EBM, like other data-driven models [49, 80, 81, 83, 104–106], assumes that all

subjects follow a single progression pattern. While this may be reasonable for the

Aβ+ and APOE4+ groups, the wider sporadic AD is likely to show more variability

in the event sequence due to the inherent disease heterogeneity, driven perhaps by

genetic, e.g. the presence or absence of APOE4 [155], or lifestyle factors. The sin-

https://creativecommons.org/licenses/by/3.0/
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gle sequence the EBM identifies maximises compatibility within the set of subjects.

It is thus important to consider not only the most likely sequence, but also the posi-

tional variance diagram and cross-validation output, which explicitly highlight areas

of uncertainty, aiding interpretation particularly where the data departs from the as-

sumptions, for example in heterogeneous groups. The positional variance diagrams

generated directly from the EBM (Figure 3.1 A-D) underestimate the uncertainty

in the event ordering, as they do not account for uncertainty in the biomarker dis-

tribution models. The cross-validation results (Figure 3.1 E-H), on the other hand,

tend to overestimate the uncertainty, because each iteration considers only a subset

of the data. In the whole-population analysis, both mechanisms show reasonable

stability of the results, which gives some confidence to the conclusions. However,

it is important to remember that the single sequence does not represent all subjects

and the positional variance diagrams are only a crude indicator of heterogeneity of

the event sequence. More sophisticated models that can relax the assumption of a

single event ordering, see for example [156, 157], and/or provide uncertainty esti-

mates by modelling the uncertainty in the biomarker distribution parameters, are

important areas for future study.

3.5.3.2 Patient Staging

Whilst the modelling approach provides a powerful potential means of patient stag-

ing it is important that such staging information is interpreted correctly. While the

idealised model for, say, stage 3 is that all CSF biomarkers are abnormal and all

others are normal, a patient assigned stage 3 need not fit this profile exactly; stage

3 is simply the idealised stage most compatible with a given individual’s biomarker

measurements. This formulation enables the EBM to stage subjects who do not

conform to the maximum likelihood event sequence, which is important given the

heterogeneity of sporadic AD. Despite its idealised nature, the staging system has

clear clinical relevance, as demonstrated by the strong classification performance

and Cox proportional hazards Model results; those results also add confidence to

the event sequence derived from the whole population, which underpins the staging.

The probabilistic nature of the staging system presents opportunities for refinement
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in future work. Here I assign only the most likely stage, but using equation (3.2)

I can quantify the uncertainty in the stage assignment, which may contain useful

additional diagnostic and prognostic information. Moreover, also using equation

(3.2), I can obtain an overall likelihood of conforming to the event sequence, which

should be useful for detecting misdiagnoses or choosing the most likely diagnosis

from a selection of models for different diseases.

3.6 Conclusion
I have developed a data-driven model for determining biomarker ordering in spo-

radic AD (contribution 1.3.1 (a), Chapter 1, page 39). I have used the model with

the ADNI data set to support currently hypothetical models (contribution 1.3.1 (b),

Chapter 1, page 39), but further to highlight uncertainty in those orderings and vari-

ation among different subgroups. I also demonstrate that such a model can provide

a practical and effective staging system for patient prognosis.



Chapter 4

A data-driven model of biomarker

changes in dominantly-inherited

Alzheimer’s disease

This chapter details sub-contributions (c) and (d) of contribution 1.3.1 (see Chapter

1, page 39). The work presented in this chapter forms part of a collaboration led by

Neil Oxtoby to look at biomarker changes in dominantly-inherited AD using two

types of data-driven model: event-based models and differential equation models.

We analysed data from the Dominantly Inherited Alzheimer Network (DIAN): I

performed the event-based model analyses, the results of which are presented in

this chapter; Neil performed the differential equation model analyses (not included

here). I wrote the initial drafts of the event-based model sections of the manuscript,

but Neil and our co-authors contributed to the refinement of the text. This work was

presented at the Alzheimer’s Association International Conference in 2016 and is

currently in preparation for publication.

4.1 Associated publications
N. P. Oxtoby, A. L. Young, D. M. Cash, T. Benzinger, A. M. Fagan, J. C. Morris,

R. J. Bateman, N. C. Fox, J. M. Schott, and D. C. Alexander. Data-driven models

for predicting fine-grained disease progression and symptom onset in dominantly-

inherited Alzheimer’s disease without reliance upon familial age of onset. In Prepa-
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ration

4.2 Introduction
Dominantly-inherited Alzheimer’s disease (DIAD) is a rare early onset form of

AD in which subjects can be identified presymptomatically by the presence of a

pathogenic mutation in one of three genes: amyloid precursor protein (APP), pre-

senellin 1 (PSEN1) or presenellin 2 (PSEN2). As such, it provides a window into

the presymptomatic phase of AD, which is of great interest as it is likely that treat-

ments will be most efficacious if given early.

Quantitative models of AD biomarker changes can provide a detailed picture

of disease progression and a potential mechanism to identify and stage patients

presymptomatically. Previous studies of biomarker changes in DIAD consider

biomarker values as a function of estimated years from onset (EYO) of clinical

symptoms (e.g. [49]), which can be estimated using parental age of onset, or mean

family age of onset. There is considerable uncertainty in this estimate of famil-

ial age of onset because (1) it is difficult to ascertain when an individual became

affected, and (2) there can be substantial differences in actual age of onset within

families and mutations. This uncertainty limits the utility of EYO for estimating

disease progression in presymptomatic DIAD individuals, reducing the resolution

at which biomarker ordering can be determined.

This work uses a data-driven model of disease progression to explore the

sequence of biomarker changes in DIAD without reliance upon EYO. I extend

the event-based model (EBM) for use with missing data, facilitating its applica-

tion to multi-modal DIAD data from the Dominantly Inherited Alzheimer Network

(DIAN). I further explore the utility of this model for patient staging.

4.3 Materials and methods

4.3.1 Data description

For detailed descriptive summaries of the DIAN cohort see [159]. At the sixth data

freeze, the DIAN cohort included 338 individuals with known mutation status and
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a baseline visit, aged 19-66 at baseline with up to four visits each (1.1±1.9 years

in duration), spanning up to 30 years before and up to 21 years after parental age

of symptom onset. Of these, 211 individuals carry DIAD mutations: 163 PSEN1;

17 PSEN2; and 31 APP. Mutation carriers were further subdivided into diagnos-

tic groups: ‘Cognitively Normal’ (CN), ‘Mild Cognitive Impairment’ (MCI), and

‘Alzheimer’s Disease’ (AD). The definition of these diagnostic groups is slightly

different to that of the ADNI cohort in Chapters 3, 5, 6, and 7. Here the definition

is based on the Clinical Dementia Rating (CDR) scale alone: CN is defined as a

global CDR of 0, MCI is defined as a global CDR of 0.5, AD is defined as a global

CDR of ≥ 1. In ADNI the definition is based not only on the CDR, but also on the

Mini Mental State Examination (MMSE) score, and various other clinical criteria1.

AD biomarkers were selected based on specificity to the disease, or if disease

‘signal’ is present, i.e. quantifiable distinction between mutation carriers and non-

carriers. The biomarkers include CSF measures of molecular pathology (amyloid

proteins and neurofibrillary tangles); a cognitive test score (MMSE); regional brain

volumetry from MRI, e.g. hippocampus, middle-temporal region, temporo-parietal

cortex; PiB-PET imaging measures of amyloid accumulation; and FDG-PET imag-

ing measures of glucose hypometabolism. The full set of biomarkers included in

the EBM is listed on the vertical axis of Figure 4.1. Eight biomarkers (regional

MRI volumes of the caudate, entorhinal cortex, pallidum and thalamus, and FDG

standard uptake value ratio (SUVR) measurements in the accumbens, caudate, puta-

men and thalamus) were excluded from the EBM because there were no statistically

significant differences (Bonferroni corrected p-value of p < 0.01
N , where N - the to-

tal number of biomarkers considered for inclusion in the EBM - equals 29) on a

two-sample t-test comparing the sample mean of the non-carriers with the sample

mean of the mutation carriers that have an AD diagnosis. Baseline data for mutation

carriers and non-carriers was used to fit EBMs.

I used stepwise regression to remove the influence of age, years of education,

sex, and head size (total intracranial volume) prior to fitting the models. Individuals

1For details see www.adni-info.org/Scientists/Pdfs/adniproceduresmanual12.pdf.
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with missing genetic, gender, and education data were excluded. I also excluded 21

structural MRI scans from 10 participants due to image artefacts or non-AD pathol-

ogy. Table 4.1 summarises the included participant data and their demographics.

Stepwise regression is a simple statistical method for performing linear regres-

sion when it is not known beforehand if there is a statistical relationship between

the predictor variables and the measured data. Common critiscisms of stepwise re-

gression are that it is used incorrectly - in cases where there are many predictor

variables but not enough data to estimate the coefficients meaningfully, and that it

may not provide the globally optimal model. Here, there are only a few predictor

variables (age, years of education, sex, and head size), so there is enough data to

estimate meaningful coefficients if there is a relationship between the predictor and

the measured data, and a locally optimal model should be sufficient to broadly re-

move the influence of a particular variable. Using stepwise regression means that

the predictor variables are only corrected for when they reach statistical signifi-

cance. Although a lack of statistical significance does not necessarily mean there

is no relationship between the predictor variable and the measured data, only cor-

recting for statistically significant predictors does prevent unnecessary confounds

from being introduced, as well as avoiding the correction model becoming overly

complex. A complex correction model reduces the interpretability of the corrected

values of the measured data (biomarkers).

Demographic NC MC [PSEN1, PSEN2, APP]
n analysed 127 211 [163 (77%), 17 (8%), 31 (15%)]
Female (%) 75 (59%) 117 (55%) [92 (79%), 5 (4%), 20 (17%)]
ApoE4-positive (%) 37 (29%) 61 (29%) [47 (77%), 7 (11.5%), 7 (11.5%)]
ApoE4-negative (%) 90 (71%) 150 (71%) [116 (77%), 10 (7%), 24 (16%)]
Baseline Age (SD) 39 (10) 39 (10) [39 (10), 39 (10), 43 (10)]
Baseline Education (SD) 15 (3) 14 (3) [14 (3), 15 (3), 14 (3)]
Baseline EYO (SD) -7 (12) -7 (10) [-7 (10), -12 (10), -6 (9)]

Table 4.1: Demographics for DIAN participants having cross-sectional data at Data Freeze
6, used to build Event-Based Models of DIAD. Age, education and EYO mea-
sured in years. EYO = estimated years from onset; SD = standard deviation; NC
= non-carriers; MC = mutation carriers.
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4.3.2 Event-based models

I fitted an EBM to determine the most probable sequence of biomarker abnormality

events and the uncertainty in this sequence [98]. Each event represents the transi-

tion of a biomarker from a normal (as seen in non-carriers) to an abnormal level.

The probability a biomarker measurement is normal is modelled as a gaussian dis-

tribution, and estimated using data from non-carriers. The distribution of abnormal

measurements is also modelled as a gaussian distribution, but estimated by fitting a

mixture of two gaussians [98] to data from all mutation carriers: the first gaussian

models the distribution of normal measurements, and is kept fixed to the values es-

timated from non-carriers; the second gaussian models the distribution of abnormal

measurements, and is optimised using data from mutation carriers.

The sequence of events was estimated in various population subgroups: all

191 mutation carriers; 150 PSEN1 mutation carriers; 14 PSEN2 mutation carriers;

and 26 APP mutation carriers. I also considered separate EBM models by APOE4

status: 58 mutation carriers who were APOE4-positive (with one or more APOE4

alleles), and 133 mutation carriers who were APOE4-negative. I accounted for

missing data by imputing biomarker values such that missing measurements had

an equal probability of being normal or abnormal, and thus do not influence the

population sequence. I found the value for imputation by simply computing the

points at which the distribution of normal and abnormal measurements intersect,

and choosing the value that was between the means of the two distributions. The

uncertainty in the event sequence was estimated by taking Markov Chain Monte

Carlo (MCMC) samples from the EBM [98]. Cross-validation of the event sequence

was performed by refitting the biomarker event distributions and the event sequence

for 100 bootstrap samples from each data subset.

I assigned subjects to patient stages based on their most probable position along

the most probable event sequence [134] for all mutation carriers combined. I as-

sessed the efficacy of the patient staging system using only subjects with data avail-

able for all biomarkers (n = 30, total of 42 followup visits), as missing entries cause

uncertainty in a subject’s model stage.
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4.3.3 Implementation

All experiments were performed using Matlab on a standard workstation (Intel Core

i7, 3.1 GHz, 8GB memory). Stepwise regression was implemented using the Matlab

‘stepwiselm’ algorithm. The event distribution (gaussian mixture model) parame-

ters were optimised using the ‘fmincon’ constrained optimisation solver with the

‘sqp’ - sequential quadratic programming - method. All of the gaussian mixture

model fits were assessed visually to ensure the solutions were physically plausible.

To find the characteristic event sequence S̄, I performed 2,500 iterations of a greedy

ascent algorithm (as in [98]), initialised from 25 random start points. I checked

that the start points converged to a single maximum to ensure the global optimum

had been found. I then ran an MCMC algorithm (as in [98]) to draw samples from

the posterior distribution P(S|X). I ran the MCMC algorithm for 100,000 itera-

tions, checking that the MCMC trace showed good mixing properties. I initialised

the MCMC algorithm at S̄ so a burn-in period was not required. Computational

complexity is as in Chapter 3.

4.4 Results

4.4.1 Event sequences

4.4.1.1 All mutation carriers

Figure 4.1 is a positional variance diagram of the maximum likelihood sequence

of biomarker abnormality events (top to bottom), and its uncertainty (left to right),

across all available 211 mutation carriers in the DIAN dataset. Grayscale intensity

represents confidence in each events position within the sequence, and is calculated

from MCMC samples from the EBM [134].

The EBM reveals a distinct sequence of biomarker abnormality in DIAD: re-

gional (cortical then striatal) amyloid deposition on PiB-PET scans; CSF measures

of neuronal injury/neurofibrillary tangles (total tau and phosphorylated tau levels)

and amyloid plaques (Aβ42 and Aβ40/42 ratio); MR measures of volume loss

in the putamen and nucleus accumbens; global cognition (MMSE score). There-

after the ordering in which FDG-PET hypometabolism and other MRI measures
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Figure 4.1: EBM progression of DIAD represented as positional variance diagrams. Left:
EBM estimated on all mutation carriers in the DIAN dataset. Right: cross-
validation through bootstrapping. The vertical ordering (top to bottom) is given
by the maximum likelihood sequence estimated by the model. Grayscale in-
tensity (left to right) represents MCMC-sampled posterior confidence in each
events position.

become abnormal is less certain. The ordering shows high certainty early in the

ordering of these biomarkers (as reflected by the more solid blocks along the diag-

onal), with lower certainty later in the ordering of regional volumes (more diffuse

grey blocks straying from the diagonal). This pattern (left) persists under cross-

validation (right).

4.4.1.2 Population subgroups

I also fit the EBM to subgroups of the mutation carriers in the DIAN data set. Fig-

ure 4.2 shows positional variance diagrams of the biomarker abnormality event se-

quence in APOE4-positive and APOE4-negative participants (those with and with-

out the apolipoprotein-ε4 allele), and Figure 4.3 shows equivalent results for the

three DIAD mutation types in DIAN: PSEN1, PSEN2, and APP. For ease of com-

parison, the sequence ordering on the vertical axes of each plot is chosen to be the

most probable ordering from Figure 4.1 (all mutation carriers).

Broadly speaking, there is good agreement of the event sequences across sub-

groups in Figures 4.2 and 4.3, with some subtle differences between groups: ear-

lier CSF Aβ42 and Aβ40/42 ratio in the APOE4-positive and APP groups; earlier

fusiform volume for the PSEN2 group; earlier putamen volume abnormality for the
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Figure 4.2: As figure 4.1, but for APOE4-positive and APOE4-negative mutation carriers.

APP group. The uncertainty is high in the subgroup orderings, due in part to the

low numbers of participants in these groups, which reduces power to draw concrete

conclusions based on these subtle differences between groups.

4.4.2 Patient staging

Figure 4.4 demonstrates the fine-grained staging capabilities of the EBM. Using

the model for all mutation types (Figure 4.1), each individual in the DIAN dataset

was assigned a disease stage that best reflects their measurements (see Methods

section and [134]). The staging proportions are shown in Figure 4.4 A, differenti-

ated by broad diagnostic groups (CN: Cognitively Normal, global CDR = 0; MCI:

Mild Cognitive Impairment, global CDR = 0.5; AD: probable dementia due to AD,

global CDR ≥ 1). Longitudinal consistency of staging is shown in Figure 4.4 B,

where each individual’s baseline stage is plotted against available follow-up stages
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Figure 4.3: As figure 4.1, but for PSEN1, PSEN2, and APP mutation carriers.

between baseline and months 12/24/36.
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A. B.

Figure 4.4: DIAD: EBM staging results. A. Proportions grouped by diagnostic group: all
noncarriers are at stage zero (black), and advancing disease stage is correlated
strongly with cognitive impairment (green to blue to red). B. Staging consis-
tency across visits within three years of baseline for the n = 30 participants with
complete longitudinal data (18 MCs; 16 PSEN1, 2 APP). Most individuals ad-
vance to a later stage (disease progresses towards the right). Green circles show
the two individuals who regressed to earlier EBM stages, which arises in both
cases due to discordant amyloid measurements between CSF and PiB-PET. The
triangles indicate clinical progressors (CN to MCI in blue; MCI to AD in red).
BL: baseline; M: month; CN: Cognitively Normal (global CDR = 0); MCI:
Mild Cognitive Impairment (global CDR = 0.5); AD: probable dementia due to
DIAD (global CDR ≥ 1).

4.4.2.1 Cross-sectional distribution of stages

The baseline staging in Figure 4.4 A shows good separation of diagnostic groups:

all of the non-carriers are assigned to stage 0 (black), CN mutation carriers (green)

are at earlier model stages, mutation carriers diagnosed with probable AD dementia

(red) are at late model stages, and mutation carriers diagnosed with MCI (blue) are

more spread out across the stages. Within carriers, the model shows high classifica-

tion accuracy for separating those who are CN from those with probable dementia:

a balanced accuracy of 93% is achieved by classifying participants above stage 10

(putamen volume abnormality) as having probable dementia.

4.4.2.2 Longitudinal consistency

The follow-up staging in Figure 4.4 B shows good longitudinal consistency: at 32

of 36 (89%) follow-up time points the model stage is the same or it increased; at

34 of 36 (94%) follow-up time points the stage was either unchanged, it increased,

or it decreased within the uncertainty of the ordering. This included the clinical

converters, which are shown with triangles (CN to MCI in green; MCI to AD in
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red). The remaining two follow-up time points at which the model stage decreased

(green circles in Figure 4.4 B) have inconsistent amyloid levels between CSF and

regional PiB-PET, potentially due to discord between these biomarkers as has been

observed in some individuals [160, 161].

4.5 Discussion

I have reported data-driven estimates of DIAD progression using an event-based

modelling approach without reliance upon the use of familial age of onset as a mea-

sure of disease progression. The model reveals the sequence in which biomarkers

of DIAD become abnormal. The resulting sequence broadly agrees with current

understanding of DIAD, but provides superior detail compared to previous studies.

4.5.1 Event sequences

The EBM finds a distinct ordering of biomarker abnormality events in mutation car-

riers: amyloid deposition measured by PiB-PET, neurofibrillary tangles and amy-

loid plaques in CSF, followed by an AD-characteristic pattern of regional volume

loss on MRI, which is interspersed with declining cognitive test scores and hy-

pometabolism measured by FDG-PET. Although the sequence shows strong agree-

ment across different mutation types (APP, PSEN1, PSEN2), and APOE4 positiv-

ity and negativity, I found some small, subtle differences that warrant further in-

vestigation. For example, there was earlier abnormality in CSF Aβ42 (than CSF

tau) in the APP and APOE4-positive groups, but the reverse was found in other

groups. The latter could be explained by non-monotonic dynamics of CSF Aβ42

in DIAD (an increase followed by a decrease) as suggested by results in previ-

ous investigations [162, 163]. Previous multimodal biomarker studies of DIAD,

e.g. [49, 164, 165], are in general agreement with the EBM sequence: amyloidosis

precedes hypometabolism and atrophy. Importantly, all previous approaches relied

upon a familial age of symptom onset as a proxy for disease progression, which in-

trinsically limits the accuracy of predictions due to the known imprecision in such

estimates [166].
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4.5.2 Patient staging

The staging system provided by the EBM has potential practical utility. In partic-

ular, it provides high classification accuracy for discriminating between presymp-

tomatic and symptomatic DIAD mutation carriers; it correctly assigned all non-

carriers to the ‘completely normal’ category (stage 0); and it showed good longi-

tudinal consistency, with EBM stage generally increasing or remaining stable at

patient follow-up. Thus it may be useful for identifying and monitoring presymp-

tomatic individuals for clinical trials.

The EBM stages correlate strongly with cognitive status: CN participants were

assigned early model stages, symptomatic AD participants late model stages, and

MCI participants were more spread out across the stages. The MCI group in DIAD

were the most heterogeneous, which is in agreement with the EBM results for spo-

radic AD [134], but possibly for different reasons. One contributing factor in DIAD

is that the MCI group may include unaffected mutation carriers whose anxiety about

their mutation status manifested as apparent cognitive abnormality and contributed

to a diagnosis of MCI. In any case, the fine-grained disease staging offered by the

EBM can shed light upon the heterogeneity contained within the MCI diagnostic

stage.

4.6 Conclusion
I have proposed an extension of the EBM to account for missing data (contribution

1.3.1 (c), Chapter 1, page 39), facilitating the application of the EBM in DIAD to

determine the sequence of biomarker changes without reliance upon EYO (contri-

bution 1.3.1 (d), Chapter 1, page 39). I have reported estimates of this sequence in

various population subgroups, and demonstrated the ability of the EBM to provide

fine-grained patient staging.



Chapter 5

A simulation system for biomarker

evolution in neurodegenerative

disease

This chapter details contribution 1.3.2 (see Chapter 1, page 40). The work presented

in this chapter was published in Medical Image Analysis in 2015. I developed the

methodology, performed the analysis and wrote the manuscript; my co-authors pro-

vided feedback on the methodology and the manuscript.

5.1 Associated publications
A. L. Young, N. P. Oxtoby, S. Ourselin, J. M. Schott, and D. C. Alexander. A

simulation system for biomarker evolution in neurodegenerative disease. Medical

Image Analysis, 26(1):47–56, 2015

5.2 Introduction
Data-driven models of disease progression allow longitudinal trends to be recon-

structed from cross-sectional or short-term longitudinal datasets. Basic techniques

to analyse biomarker trajectories involve staging subjects and then comparing

biomarker levels across different disease stages [49,83,84,104–106,109,110,168].

This limits the temporal resolution of the model to the accuracy of the patient stag-

ing. Data-driven models do not require prior knowledge of the stage of a patient
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along the disease, allowing the reconstruction of a much more fine-grained pic-

ture of disease progression. Differential equation models (DEMs) [81,82,110,131]

model short-term longitudinal patient data as a differential cross-section of a com-

mon longitudinal biomarker trajectory; the overall biomarker trajectory is obtained

by integrating all of the subject’s differential cross-sections. Jedynak et al. [132] and

Donohue et al. [128] make a similar set of assumptions to formulate their disease

progression models, again modelling each subject’s biomarker data as a snapshot of

a common progression curve, but further allowing for variation in individual pro-

gression rates. Another data-driven model, the event-based model (EBM) [98, 134]

considers disease progression as a sequence of events at which biomarkers become

abnormal, thereby allowing direct determination of biomarker ordering from en-

tirely cross-sectional data.

However, such data-driven models typically depend on idealised assumptions

about the data that they are modelling. First, that all subjects follow the same pro-

gression pattern. This is not true in general as large cross-sectional datasets will

contain subjects who have different disease subtypes, mixed pathology, have been

misdiagnosed, are yet to develop other diseases, or who are aging healthily. Such

outliers are particularly prevalent in presymptomatic populations where the diag-

nostic outcome is unknown. Second, a set of parameters that define normal and

abnormal biomarker levels. This is difficult to determine due to the high propor-

tions of presymptomatic subjects in typical control populations (for example, a sig-

nificant proportion of cognitively normal (CN) elderly subjects have been found to

have biomarker changes consistent with AD [135, 136]), and misdiagnosis in dis-

eased populations. Third, that the underlying disease time course is well sampled.

In reality, presymptomatic subjects may not go on to develop the neurodegenera-

tive disease being investigated and therefore the early disease stages might be under

sampled or misrepresented, and diseased subjects may not be representative of the

very late disease stages where the population thins and severe illness can make data

hard to collect.

Here I present a simulation system to generate synthetic biomarker datasets
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that represent the heterogeneity of sporadic neurodegenerative diseases. Although

still based on a model of disease progression, it encapsulates many more variables

than the simpler models that are parsimonious enough to fit to current data sets.

Thus it provides a platform to evaluate the effect of more brutal simplifications

necessary to obtain robust fitting results from working models. I demonstrate this

simulation system by evaluating the performance of the EBM and a DEM in deter-

mining the sequence of biomarker abnormality from simulated data.

5.3 Materials and methods

5.3.1 Generative model of data

I assume the following generative model of sporadic disease datasets (Figure 5.1). A

set of subjects with: follow-up time points, ~f , from a follow-up distribution P(~f );

disease subtypes, s, from a subtype distribution P(s); each set of follow-up time

points correspond to a set of time points along the disease, ~t, from a time point

distribution P(~t|~f ). At each time point a subset, ~e, of the biomarkers included in

the study are measured for a particular subject according to a biomarker collection

distribution P(~e|~f ), i.e. a subset of the biomarkers included in the study are mea-

sured in the subset of subjects that have a particular follow-up visit. Each subject

has a set of biomarker measurements, ~x~e, at each time point t ∈~t. The collected

biomarker measurements are simulated from a trajectory evolution function z(t,~θ)

with parameters ~θ from a trajectory parameter distribution P(~θ |s, t), and measure-

ment noise ε perturbation from a measurement noise distribution P(ε). The data for

each collected biomarker for each patient for each time point is then x = z(t,~θ)+ε;

biomarkers that are not collected are recorded as missing data. Each subject is given

a particular diagnosis d from a diagnosis distribution P(d|~xe).

5.3.2 Simulating sporadic Alzheimer’s disease

5.3.2.1 ADNI dataset

I downloaded baseline and follow-up data from all subjects in ADNI-1 giving a

set of 819 subjects, (229 CN, 398 mild cognitive impairment (MCI), 192 AD). I
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Figure 5.1: Generative model of sporadic disease datasets used by the simulation system.
Reproduced from [167]. CC BY 4.0.

included the following set of biomarker data: CSF Aβ1−42, CSF t-tau, CSF p-tau;

the Mini Mental State Examination (MMSE) [85]; baseline MRI volumes of whole

brain, hippocampus and ventricles; FDG-PET. I selected these biomarkers to repre-

sent the different types of measurements that are routinely collected in AD research,

and to include biomarkers that become dynamic during the pre-symptomatic and

symptomatic phases of AD. MRI volumes were corrected for differences in head

size by regressing against total intracranial volume (TIV). FDG-PET uptake values

were averaged over the angular gyrus, inferior temporal gyrus, and posterior cin-

gulate gyrus. For simplicity I only model baseline CSF, as modelling longitudinal

CSF requires a new set of measurements for each time point to be modelled, as all

the CSF measurements are re-processed once a new follow up is completed.

5.3.2.2 Generic Alzheimer’s disease simulation model

I start from a generic model of AD, adapting the settings to perform a stability

analysis of the EBM and DEM. I develop a generic model of AD that is based on

the following assumptions:

https://creativecommons.org/licenses/by/4.0/
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• At baseline a set of time points ~t0 are sampled from a uniform baseline time

point distribution P(t0)=Unif(0, tr), where tr is the range of the initial subject

time points.

• The follow-up time points are sampled sequentially from a set of possible

follow-up times under the assumption that a proportion, r f , of subjects drop

out per year.

• The time points are assumed to follow a normal distribution centred around

the time after follow-up, i.e. P(t| f ) = Norm( f + t0,σt).

• The subtype distribution is P(s) =Cat(ps,m), where ps is the probability that a

subject is assigned subtype s. By default there is only one disease subtype and

so all subjects follow the typical AD set of biomarker trajectories. Alternative

subtypes are used to simulate subjects that do not follow the typical AD se-

quence of biomarker abnormality, e.g. subjects with other neurodegenerative

diseases or who are aging normally.

• The collected subset of biomarkers, ~e, is sampled sequentially for the avail-

able time points by modelling an initial proportion of subjects, pe, in which

the biomarker is collected and a drop out rate per year, re, i.e. of the subjects

that remain in the study, only a proportion of these have a measurement for a

particular biomarker.

• The trajectory evolution function is sigmoidal, as has been hypothesized by

Jack et al. [74], with parameters ~θ = (a,r,c,g), where a is the trajectory min-

imum, r the range (difference between trajectory maximum and minimum

value), c the centre point and g the gradient. To make the magnitude of

the gradient a more intuitive quantity, I re-parameterise g so that it is the

biomarker ‘transition time’. I define this as τ = 4
g , i.e. it is the time taken for

the tangent to the sigmoid at the centre point, c, to transition from the mini-

mum biomarker value, a, to the maximum biomarker value, a+ r. Hence, I
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have

z(t,~θ) = a+
r

1+ exp
(
−4

τ
(t− c)

) ,

with parameters ~θ = (a,r,c,τ).

• The trajectory parameters are normally distributed according to the trajectory

parameter distributions:

– P(a) = Norm(µa,Σa)

– P(s) = Norm(µr,Σr)

– P(c|s) = Norm(µc,s,Σc)

– P(τ) = Norm(µτ ,Στ)

The parameters µa, µr, µc,s, µτ are the trajectory parameter means; Σa, Σr,

Σc,s, Στ are the inter-subject covariances of the trajectory parameters.

• The measurement noise distribution follows a normal distribution with mean

0 and standard deviation ν , i.e. P(ε) = Norm(0,ν).

• There are three diagnoses, d = {CN,MCI,AD}, as there are in ADNI,

that follow a categorical distribution: P(d|x) = Cat(pCN, pMCI, pAD), where

pCN is the probability that a subject is assigned a CN diagnosis, pMCI is

the probability that a subject is assigned a MCI diagnosis, and pAD is the

probability that a subject is assigned an AD diagnosis. The probability of

each diagnosis pd is evaluated using each subjects biomarker data, x, as

pd ∝ ∏I
i=1 Norm(xi,µd,i,σd,i).

I tested the agreement between data sets generated using the default parameter val-

ues and ADNI by calculating the Bhattacharyya coefficient [169], BC, between sim-

ulated data sets and data from ADNI. The Bhattacharyya coefficient measures the

similarity between two probability distributions, ranging from 0 to 1, where a Bhat-

tacharyya coefficient of 0 corresponds to no overlap.

DB =
1
8

µ
T Σ−1

µ +
1
2

ln

(
det(Σ)√

det(ΣADNI)det(Σsimulated)

)
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where

µ = µADNI−µsimulated,

and

Σ =
ΣADNI +Σsimulated

2
.

The Bhattacharyya coefficient, BC, is BC = exp(−DB).

I find that data sets generated using the default parameters values show good

agreement with the ADNI data set, giving an average Bhattacharyya coefficient

across 25 sample data sets of 0.99 when considering the biomarkers to be indepen-

dent, and 0.83 when considering the dependence between biomarkers.

5.3.2.3 Datasets for event-based model stability analysis

I use the generic AD model to perform a set of simulations to assess how robust the

EBM and DEM are to different choices of parameters.

For these experiments I assume the following set of default parameters (Table

5.1, Figure 5.2). These default parameters are intended as an idealized basis for the

stability analysis, from which each parameter can be varied individually so as to

explore the robustness of the models to variations in a particular parameter, inde-

pendently of other effects. For each experiment I generate synthetic datasets that

have 800 subjects and the biomarker set: CSF Aβ1−42, CSF t-tau, CSF p-tau, FDG,

MMSE, hippocampal volume, brain volume, ventricular volume.

• Baseline time points: tr = 20, i.e. there is a range of 20 years in which a

subject’s baseline visit might lie.

• Follow-ups: There are 11 possible follow-up times, as there are in ADNI, at

0.5, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, and 9 years from baseline. The drop out rate per

year, r f , is estimated from ADNI as 10%.

• Time points: the standard deviation, σt , of the actual time at which each

follow-up is taken is approximated from ADNI as σt = 0.05 for t = 0.5,1,1.5,

and σt = 0.1 for t ≥ 2 (at baseline σt = 0).

• Subtype: ps=1 = 1, i.e. all subjects have the same disease subtype by default.
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• Biomarker collection: The proportion of subjects in which each biomarker

is collected at baseline, pe, and the drop out rate per year, re, are estimated

from ADNI as pe = 100%,85%,55%,50%, and re = 0%,10%,5%,100% for

cognitive test scores, MRI volumes, FDG-PET hypometabolism, and CSF

levels respectively (i.e. only baseline CSF modelled).

• Trajectory parameters: µa is estimated from the mean biomarker value in

CN subjects from ADNI (Table 5.1). µr is estimated as the difference be-

tween the mean biomarker value in AD and CN subjects from ADNI. (Table

5.1) For CSF Aβ1−42 I use only amyloid negative CN subjects, and amy-

loid positive AD subjects (amyloid positive is defined as CSF Aβ1−42 < 192

pg/ml). I chose settings for µc so that the biomarkers become abnormal in the

order: Abeta, P-tau, T-tau, FDG-PET, Hippocampal volume, MMSE, Ventri-

cles, Whole brain volume (Table 5.1). I set µτ to 5 years for all biomarkers

(Table 5.1).

• Trajectory inter-subject covariance: Σa is estimated from the set of 28 amy-

loid negative CN ADNI subjects at baseline that have measurements for all

biomarkers (Table 5.1), I remove the contribution of measurement noise by

subtracting the estimated measurement variance level (see next bullet point).

By default I set Σr = 0, Σc = 0, Στ = 0.

• Measurement noise: I estimate the measurement noise level ν for each

biomarker using baseline and 6 month follow-up measurements in CN sub-

jects from ADNI (Table 5.1) under the assumption that fluctuations in con-

trols over a 6 month period are representative of measurement noise. For

CSF I only have baseline measurements and so I set the measurement noise

to 0, i.e. I model the variance as being purely inter-subject covariance rather

than removing the contribution of measurement noise as I do for the other

biomarkers.

• Diagnosis: I estimate µd and σd for each diagnostic group using the available

data for each biomarker from ADNI.
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In the experiments I vary each of the following parameters of the simulations in

turn, and set the rest of the parameters to their default value, generating 25 synthetic

datasets for each new parameter value, and fitting the EBM to each sample dataset.

Abeta P-tau T-tau FDG Hippo MMSE Vents Brain
µa 243 20 63 6.39 903 29.1 -7400 34300
µr -110 23 63 -1.01 -1630 -5.78 13600 -64000
µc 5 6 7 8 10 12 14 15
µτ 5 5 5 5 5 5 5 5
ν2

µ2
r

0 0 0 0.030 0.006 0.013 0.004 0.022
Abeta 0.058 0.001 -0.004 0.014 -0.001 0.002 0.013 0.007
P-tau 0.150 0.126 0.041 -0.069 -0.015 0.048 -0.106
T-tau 0.178 0.031 -0.084 -0.003 -0.013 -0.068

Σa
µrµT

r
FDG 0.308 0.064 0.008 -0.191 0.109

Hippo 0.198 -0.007 -0.320 0.326
MMSE 0.055 0.009 -0.031

Vents 1.519 -0.896
Brain 0.960

Table 5.1: Default parameter values for the EBM. µa = mean trajectory minimum, µr =
mean trajectory range, µc = mean trajectory centre point (years), µτ = mean
trajectory transition time (years). ν2

µ2
r

= biomarker measurement variance, nor-

malised by the range of the trajectory. Σa
µrµT

r
= covariance of the trajectory min-

imum, normalised by the range of the trajectory. All other covariance matrices
are set to 0 by default. Reproduced from [167]. CC BY 4.0.

5.3.2.4 Datasets for differential equation model stability analysis

For the DEM experiments I initially fitted a DEM to each biomarker using the de-

fault simulation settings for the EBM. However, these experiments show that the

DEM does not perform well for the levels of noise estimated from ADNI. I there-

fore simplify the default settings for the DEM to characterise the types of noise the

DEM is most sensitive to. By default I instead generate a single idealized (zero

noise) biomarker trajectory with the following settings.

• Biomarker collection: pe = 100%, re = 0%.

• Trajectory parameters: µa = 0, µr = 1, µc = 10, µτ = 5.

• Trajectory inter-subject covariance: Σa = 0, Σr = 0,Σc = 0, Στ = 0.

https://creativecommons.org/licenses/by/4.0/
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A" D"

B"
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Figure 5.2: Example simulated FDG-PET, subject diagnosis, and time point data generated
using default parameter values for the EBM (Table 5.1). (A) Simulated base-
line FDG-PET data (curve shows mean trajectory); (B) simulated FDG-PET
follow-up data for cognitively normal subjects (green), mild cognitive impair-
ment subjects (blue), and Alzheimer’s disease subjects (red); (C) same as (B)
but plotted against follow up time rather than time point along the disease.
(D)-(F) Histogram of the number of (D) cognitively normal, (E) mild cognitive
impairment and (F) Alzheimer’s disease subjects, at each time point at baseline.
Reproduced from [167]. CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/
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• Measurement noise: ν = 0.

In the experiments I again vary each of the following parameters of the simulations

in turn, and set the rest of the parameters to their default value, generating 25 syn-

thetic datasets for each new parameter value, and fitting the DEM to each sample

dataset.

5.3.3 The event-based model

The EBM [98] considers disease progression as a sequence of events at which

biomarkers transition from a normal level, i.e. as seen in healthy controls, to an

abnormal level, i.e. as seen in AD subjects. The maximum likelihood (ML) order-

ing of these events can be determined by finding the sequence S that maximizes the

data likelihood

P(X |S) =
J

∏
j=1

[
I

∑
k=0

(
P(k)

k

∏
i=1

P(xi j|Ei)
I

∏
i=k+1

P(xi j|¬Ei)

)]

Here, Ei, i = 1 . . . I, are events, whose occurrence is informed by the correspond-

ing measurements xi j of biomarker i in subject j, j = 1 . . .J via the biomarker

distributions: the likelihood that an event has occurred and thus the correspond-

ing biomarker measurement xi j is abnormal, P(xi j|Ei), or has yet to occur and so

the corresponding biomarker measurement is normal, P(xi j|¬Ei). P(k) is the prior

likelihood of being at stage k, where events E1, . . . ,Ek have occurred, and events

Ek+1, . . . ,EK have yet to occur. I assume no prior knowledge of disease stage

by choosing the prior P(k) to be uniform. I fit a mixture of normal distributions

to determine the mean, µE and µ¬E , and standard deviation, σE and σ¬E , of the

biomarker distributions P(x|E), and P(x|¬E). To guide the fitting in cases where the

biomarker distributions overlap significantly, I constrain the parameters so that the

standard deviation of each distribution is less than or equal to the standard deviation

of biomarker measurements in the AD and control (CN) population respectively.

For missing biomarker values I impute the value of x such that P(x|E) = P(x|¬E).
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5.3.4 Differential equation model

I fit the DEM to each biomarker separately using a similar technique to Villemagne

et al. [81]. I first calculate the rate of change in each subject by fitting a least-square

linear regression to the first three available time points for each participant. For

each simulation I compared fitting a linear model to the first three available time

points (baseline, 0.5 years and 1 year) with fitting a linear model to the three or

more available time points (up to a maximum of 9 years). I found that fitting the

linear model to the first three available time points produced trajectories with the

least error for all experiments, and so I only present results for fitting to the first

three available time points. I fit a quadratic differential equation model (representa-

tive of the sigmoidal biomarker dynamics modelled in the simulations) to the mean

biomarker value of each subject xi, and rate of change of each subject ∂xi
∂ t estimated

from the linear model, i.e. I optimise for A, B and C over all subjects i such that:

∂xi

∂ t
= Ax2

i +Bxi +C

I then integrate this quadratic differential equation model to get the average trajec-

tory across the population:

x(t) =

√
4AC−B2 tan

(
1
2(k+ t)

√
4AC−B2

)
−B

2A

Where k is an unknown constant to be specified by choosing an initial condition.

5.3.5 Evaluation metrics

5.3.5.1 Event-based model biomarker distribution parameters

Defining a ground truth for the biomarker distribution parameters when the

biomarker trajectories are not binary is not straightforward, requiring the portion

of the biomarker trajectory belonging to the ‘normal’ and ‘abnormal’ biomarker

distribution to be defined. However, to explore the effect of the accuracy of the

biomarker distribution on the estimation of the event sequence I ran each of the ex-

periments for two settings: one where I estimated the biomarker distributions and
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another where these were fixed. I fix the biomarker distributions so that µ¬E = µa,

µE = µa + µr, σ¬E = σE =
√

diag(Σa)+ν2, where diag(Σ) is the diagonal of the

covariance matrix Σ. µa,m and µb,m are calculated from the average subject de-

mographics. Whilst these may not be the ‘true’ biomarker distribution parameters,

they provide an estimate of how the EBM behaves for a reasonable setting of the

biomarker distribution parameters.

5.3.5.2 Event-based model Kendall’s tau distance

A key outcome measure I am interested in is the model’s ability to recover the ML

sequence from the simulated data. This can be evaluated by measuring the Kendall’s

tau distance (a measure of the similarity of two sequences) between the recovered

sequence and a ground truth event sequence. The Kendall’s tau distance is the total

number of pairwise disagreements between two sequences, π and π0:

dK(π,π0) = ∑
l≺π j

1 j≺π0 l

Where π and π0 are permutations and l ≺π j means that l precedes j in the per-

mutation π . Here I use the normalized Kendall’s tau distance, i.e. I divide by the

maximum distance, which is the total number of possible pairs: n!
2!(n−2)! , where n is

the number of events in the sequence.

5.3.5.3 Event-based model positional variance diagrams

I use positional variance diagrams (PVDs) to look at the location of variations in

the ML sequence (rather than just the extent, which I measure using the Kendall’s

tau distance) for each simulation. Each entry of the positional variance diagram is

the proportion of samples in which a particular event appears at that position in the

ML sequence.

5.3.5.4 Differential equation model transition time

I compare the transition time of the simulated trajectories across the population with

the ground truth simulation setting of the transition time, µτ .



118 Chapter 5. A simulation system for neurodegenerative disease

5.3.6 Implementation

All experiments were performed using Matlab on a standard workstation (Intel Core

i7, 3.1 GHz, 8GB memory). The event-based model event distribution parameters

and maximum likelihood sequence were estimated using the same procedure as

Chapters 3 and 4. All of the gaussian mixture model fits were assessed visually

to ensure the solutions were physically plausible. Here to find the characteristic

event sequence S̄, I performed 1,000 iterations of a greedy ascent algorithm (as

in [98]), initialised from 5 random start points. Less start points and iterations

were sufficient as the simulated set of events is small (only eight biomarkers). I

checked that the start points converged to a single maximum to ensure the global

optimum had been found. The differential equation model was fitted using the

Matlab ‘polyfit’ function, the integrated model fits were computed analytically.

5.4 Results

5.4.1 Event-based model stability analysis

I performed a stability analysis of the EBM to test how robust the model is to dif-

ferent types of heterogeneity that are likely to exist in sporadic AD datasets. As

outlined in Section 5.3.5.1, I consider two scenarios: (1) estimated event distribu-

tions and (2) fixed event distributions. Scenario (1) is the typical scenario for fitting

the event-based model to sporadic Alzheimer’s disease. In this scenario both the

distribution of normal and abnormal biomarker values (the event distributions) and

the sequence of biomarker abnormality events need to be estimated. Scenario (2) is

a more idealistic scenario in which I fix the event distributions to a reasonable value

using the parameters of the simulated data. Together these two scenarios allow the

effect of the accuracy of the event distributions on the accuracy of the sequence to

be disentangled.

5.4.1.1 Default parameter values

Fitting the EBM to datasets generated using the default parameter values (Figure

5.3) gives a Kendall’s tau distance of 0.11 ± 0.05 when estimating the event dis-

tributions from the data, and 0.01 ± 0.01 for fixed event distributions. Repeating
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this experiment without any missing biomarker values only slightly improves the

Kendall’s tau distance despite the increase in the number of data points; 0.10 ±

0.09 for estimated event distributions, and 0.00 ± 0.01 for fixed event distributions,

showing that imputing the data such that P(x|E) = P(x|¬E) (see Section 5.3.3) is

a valid technique for fitting the EBM to data with missing biomarker values. It is

worth noting that in all the simulations the inter-subject variation setting, which is

estimated from ADNI, may be larger than the actual level of inter-subject variation.

This is because CN subjects in ADNI may originate from a range of underlying

time points along the biomarker trajectories.

A" B"

C" D"

Figure 5.3: Results of applying the EBM to synthetic data with missing values (A)-(B)
and without missing values (C)-(D) generated using the default parameters. In
(A) and (C) the event distributions are estimated, and in (B) and (D) the event
distributions are fixed. Reproduced from [167]. CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/
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5.4.1.2 Experiment 1: Noise levels

I ran five simulations to look at the effect of different levels of: (A) measurement

noise ν , (B) inter-subject covariance of the trajectory minimum Σa, (C) inter-subject

covariance of the trajectory range Σr, (D) inter-subject covariance of the trajectory

centre Σc,s, (E) inter-subject covariance of the trajectory transition time Στ . For

each of the respective simulations I vary the noise level as a proportion p of (A)

the estimated measurement noise from ADNI (see Section 5.3.2.3 and Table 5.1),

and as a proportion p2 of the covariance matrices: (B) the estimated inter-subject

covariance of the trajectory minimum from ADNI (see Section 5.3.2.3 and Table

5.1), (C) the square of the mean of the trajectory range µ2
r estimated from ADNI

(see Section 5.3.2.3 and Table 5.1), (D) the range of the trajectory centre points

squared, 102 years, (E) the range of the baseline time points squared, 202 years.

For simulations (C), (D), and (E) I assume a diagonal covariance matrix. Vary-

ing the measurement noise ν (Table 5.2 A: Experiment A) has little effect on the

Kendall’s tau distance between the sample event sequences and the ground truth

as the estimated measurement noise level is small compared to the inter-subject

covariance of the trajectory minimum (Table 5.1). Varying the inter-subject covari-

ance of the trajectory minimum Σa (Table 5.2 A: Experiment B) has a large effect

on the Kendall’s tau distance for the estimated event distributions, but little effect

for fixed event distributions. This shows that it is difficult to estimate the parameters

of the event distributions for high biomarker inter-subject variance levels. For very

low variance levels on Σa the Kendall’s tau distance increases again for both fixed

and estimated event distributions. This is probably because at very low variance

the event distributions don’t model the biomarker values over the central portion of

the biomarker trajectory, where the trajectory transitions from the minimum to the

maximum value. This makes it ambiguous as to whether the biomarker is normal

or abnormal during the trajectory transition, making it difficult for the EBM to or-

der the biomarkers. The EBM is robust to inter-subject variation in the trajectory

range Σr (Table 5.2 A: Experiment C), giving a similar Kendall’s tau distance to

the default settings for noise levels up to 50% of the range µr. The EBM is quite
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robust to variation in the trajectory centre points Σc,s (Table 5.2 A: Experiment D)

and transition time Στ (Table 5.2 A: Experiment E).

A. Noise Levels
0.01 0.1 0.5 1 2

A 0.10(0.06) 0.09(0.05) 0.11(0.06) 0.10(0.05) 0.12(0.05)
B 0.12(0.06) 0.00(0.01) 0.02(0.02) 0.09(0.05) 0.36(0.16)

Estimated C 0.11(0.05) 0.11(0.06) 0.13(0.06) 0.20(0.17) 0.18(0.17)
D 0.09(0.05) 0.13(0.04) 0.24(0.17) 0.32(0.12) 0.47(0.18)
E 0.10(0.05) 0.09(0.04) 0.15(0.10) 0.26(0.12) 0.40(0.11)
A 0.00(0.01) 0.00(0.01) 0.01(0.02) 0.01(0.01) 0.01(0.02)
B 0.17(0.04) 0(0) 0.00(0.01) 0.00(0.01) 0.07(0.04)

Fixed C 0.00(0.01) 0.01(0.01) 0.03(0.04) 0.11(0.04) 0.17(0.10)
D 0.00(0.01) 0.01(0.01) 0.05(0.04) 0.09(0.05) 0.17(0.05)
E 0.01(0.02) 0.01(0.01) 0.01(0.02) 0.10(0.06) 0.19(0.06)

B. Trajectory Parameters
1 5 10 15 20

Estimated A 0.44(0.21) 0.19(0.04) 0.09(0.04) 0.08(0.15) 0.20(0.22)
B 0.03(0.02) 0.11(0.05) 0.19(0.04) 0.24(0.05) 0.30(0.12)

Fixed A 0.38(0.22) 0.09(0.04) 0.01(0.01) 0(0) 0.01(0.01)
B 0.00(0.01) 0.00(0.01) 0.01(0.03) 0.04(0.04) 0.05(0.03)

C. Time Sampling
0 1 2.5 5

Estimated 0.12(0.06) 0.10(0.06) 0.11(0.07) 0.10(0.04)
Fixed 0(0) 0.00(0.01) 0(0) 0.00(0.01)

D. Subtypes
0 0.25 0.5 0.75 1

Estimated 0.10(0.04) 0.17(0.20) 0.50(0.36) 0.91(0.06) 0.96(0.05)
Fixed 0.01(0.01) 0.04(0.04) 0.45(0.39) 0.95(0.04) 1.00(0.01)

Table 5.2: Mean (standard deviation of the mean in brackets) Kendall’s tau distance be-
tween ground truth event sequence and event sequence returned by the EBM for
synthetic data with varying: (A) noise levels, (B) trajectory parameters, (C) time
sampling, (D) subtypes. In all tables each column is a new parameter value, and
‘estimated’ and ‘fixed’ refer to whether the event distributions are estimated by
the EBM or fixed to known values. Bold values represent the default parameters
of the EBM. In part (A), experiments A-E represent varying: A. measurement
noise; B. inter-subject covariance of trajectory minimum; C. inter-subject co-
variance of trajectory range; D. inter-subject covariance of trajectory centre; E.
inter-subject covariance of trajectory transition time. In part (B), experiments
A-B represent varying: A. trajectory centre points, B. trajectory transition times.
Reproduced from [167]. CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/
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5.4.1.3 Experiment 2: Trajectory parameters

I performed two experiments to test the robustness of the EBM to different values

of the trajectory parameters: (A) varying the centre points of the trajectories, µc,

and (B) varying the transition time of the trajectories µτ . In (A) I assume an evenly

spaced set of trajectory centre points over a segment of the disease time course. I

vary the duration of this segment as a fraction of 10 years. The trajectory centre

points are centred about the middle point along the disease time course (10 years).

In (B) I vary the transition time as a fraction of the overall range of the disease

time course (20 years), keeping the transition time the same for all biomarkers. The

EBM has difficulty estimating the event sequence for both fixed and estimated event

distributions when the trajectory centres are close together (Table 5.2 B: Experiment

A), and for longer transition times (Table 5.2 B: Experiment B), which violate the

assumption of the EBM that an event has either occurred or not occurred. For

estimated event distributions the EBM also has difficulty ordering the events when

the trajectory centres are spread over the full disease time course (Table 5.2 B:

Experiment A). This is because the portion of the trajectory where the biomarker is

normal (for early biomarkers) or abnormal (for late biomarkers) is not observed. As

in the previous experiments, fixing the event distributions improves the estimation

of the event sequence.

5.4.1.4 Experiment 3: Time sampling

In this experiment I look at how under-sampling of the disease time course affects

the ability of the EBM to recover the sequence of biomarker abnormality. I assume

that the time points are sampled from a mixture of three Gaussian distributions,

with means at 5 years, 10 years and 15 years respectively. I vary the standard

deviation of these distributions, assuming that all of the gaussians have the same

standard deviation. This allows simulation of CN, MCI and AD subjects being at

entirely different points along the disease time course. The EBM is robust to under-

sampling of the disease time course (Table 5.2 C), giving a similar Kendall’s tau

distance to the default settings for all simulations.
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5.4.1.5 Experiment 4: Subtypes

To explore the effect of including a set of subjects that follow a different event

sequence I modelled two disease subtypes, varying the fraction of subjects that

belong to each subtype. For both subtypes the trajectory centre points are evenly

spaced from a minimum of 5 years to a maximum of 15 years. In subtype 1 the

biomarkers become abnormal in the same order as the default settings: Abeta, P-tau,

T-tau, FDG-PET, hippocampal volume, MMSE, ventricles, whole brain volume. In

subtype 2 the biomarkers become abnormal in the reverse sequence. This sequence

has a Kendall’s tau distance of 1 from the sequence of subtype 1. The EBM is robust

up to a proportion of 25% of subjects that follow an alternative event sequence

(Table 5.2 D): at 25% outliers the Kendall’s tau distance is similar to the result for

0% outliers for estimated event distributions, and only slightly increased for fixed

event distributions. Likewise, at 75% outliers, when the majority of subjects are

subtype 2 the Kendall’s tau distance is only slightly worse than for 100% outliers. At

50% outliers the EBM alternates between estimating a sequence similar to subtype

1 and subtype 2.

5.4.2 Differential equation model stability analysis

I performed a stability analysis of the DEM to test how robust the model is to vary-

ing the noise levels on the trajectory parameters.

5.4.2.1 Default parameter values

Fitting a DEM to each biomarker in turn (see Figure 5.4 for estimated synthetic

trajectories for FDG-PET) using the default parameter values for the EBM gives

an average across biomarkers (excluding CSF for which I only modelled baseline

collection) of a mean sample transition time 12.8± 1.1 years and standard deviation

of this sample transition time of 2.2 ± 1.2 years. This is more than double the

simulated trajectory transition time of 5 years. For biomarkers with more data points

available (higher biomarker collection rate, e.g. MMSE) the standard deviation of

the transition time reduces but the mean transition time remains similar, i.e. the

DEM becomes more confident in the biased estimate of the trajectory transition
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time. In subsequent experiments I simplify the default parameter settings for the

DEM to a zero noise case (see Section 5.3.2.4) to characterise the types of parameter

noise that the DEM is most sensitive to.

Figure 5.4: Integrated DEM trajectories for FDG-PET uptake generated using synthetic
data with the default settings for the EBM (Table 5.1). The ground truth tra-
jectory is in red, and the median estimated trajectory is in black with the inter-
quartile range shaded in grey. Reproduced from [167]. CC BY 4.0.

5.4.2.2 Stability of the differential equation model to noise

For the DEM default parameter values (zero noise case) the DEM is able to recover

the trajectory transition time much more accurately (sample transition time is 5.1±

0.0 years for a simulated trajectory with a transition time of 5 years). As with

the EBM, I ran five simulations to look at the effect of different levels of: (A)

measurement noise ν , (B) inter-subject variance of the trajectory minimum Σa, (C)

inter-subject variance of the trajectory range Σr, (D) inter-subject variance of the

trajectory centre Σc,s, (E) inter-subject variance of the trajectory transition time Στ .

I vary the noise level as a proportion p of (A) µr, and a proportion p2 of the variance:

(B) µ2
r , (C) µ2

r , (D) µ2
τ , (E) µ2

τ . The DEM is sensitive to measurement noise (Table

5.3: Experiment A), and variance of the trajectory minimum (Table 5.3: Experiment

B) and range (Table 5.3: Experiment C), with 25% measurement noise giving a

https://creativecommons.org/licenses/by/4.0/
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transition time of around twice as long as the actual transition time. The DEM is less

sensitive to variance of the trajectory transition time (Table 5.3: Experiment E). The

DEM is unaffected by noise in the trajectory centre point (Table 5.3: Experiment

D), as this is removed by differentiating.

0.1 0.25 0.5 1
A 5.9(0.4) 9.8(3.1) 12.7(4.7) 15.0(5.2)
B 7.5(0.2) 11.4(0.5) 13.3(0.5) 14.4(0.7)
C 6.6(0.2) 9.8(0.5) 11.6(0.7) 12.3(1.0)
D 5.1(0.0) 5.1(0.0) 5.1(0.0) 5.1(0.0)
E 5.1(0.0) 5.1(0.1) 5.4(0.3) 8.7(0.9)

Table 5.3: Mean (standard deviation of the mean in brackets) estimated transition time
(years) for DEM fitted to synthetic data with varying: A. measurement noise;
B. inter-subject variance of trajectory minimum; C. inter-subject variance of tra-
jectory range; D. inter-subject variance of trajectory centre; E. inter-subject vari-
ance of trajectory transition time. For all simulations the ground truth transition
time is 5 years. Each column is a new parameter value. Reproduced from [167].
CC BY 4.0.

5.5 Discussion
I have presented a framework for the simulation of sporadic neurodegenerative dis-

ease datasets. I applied the framework to generate synthetic AD data, and thereby

provide insight into the robustness of the EBM and a DEM to the likely variation in

sporadic disease datasets.

5.5.1 Simulation framework

The simulation framework I have presented is simple and flexible. For example, it

is easily extendible to include subjects with a range of demographics, for example

age, gender, and education, or genetic risk factors. Such effects can be modelled

as a transformation of the trajectory parameters. Here I simplify the diagnosis as a

relationship with the biomarker values, however, a more realistic diagnosis proce-

dure could be simulated that is based on, for example, cognitive test results. It is

also possible to add in a screening procedure that post-selects subjects with a sim-

ilar set of demographics to the dataset being simulated, for example age matching

across diagnostic categories. Here I only consider inter-subject variance, however,

https://creativecommons.org/licenses/by/4.0/
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intra-subject variance for longitudinal datasets could also be modelled.

5.5.2 Stability analysis

5.5.2.1 Event-based model stability analysis

The EBM stability analysis shows that the EBM is sensitive to the estimation of the

event distribution parameters. However, when the event distribution parameters are

estimated accurately, the EBM is very robust to the likely heterogeneity in sporadic

disease datasets. I find that the EBM is robust to noise in the trajectory parameters,

different choices of trajectory parameters, under-sampling of the underlying disease

time course, and outliers who follow different event sequences.

5.5.2.2 Differential equation model stability analysis

For all simulations the DEM under estimates the trajectory gradient leading to an

over estimation of the trajectory transition time. For the level of noise estimated

from the ADNI data this over estimate is more than twice as long as the ground

truth trajectory transition time. Whilst this result may be in part due to an over

estimation of the amount of inter-subject variation from ADNI, the stability analysis

of the DEM shows the DEM will severely over-estimate the trajectory transition

time even when the inter-subject variation is much lower. The DEM is very sensitive

to measurement noise and inter-subject variation of the trajectory minimum (normal

biomarker level) and range (difference between a normal and abnormal level). I

further find that using three time points to fit the DEM rather than all available time

points, for which the approximation to the derivative is less valid, gives a better

estimate of the trajectory transition time, even under high noise levels.

5.5.2.3 Limitations

In the set of experiments presented I vary each parameter in turn. However, there

will likely be multiplicative effects of varying these parameters in combination. I

further make a set of assumptions that are specific to hypothetical models of AD,

such as sigmoidal trajectories, and to the design of the ADNI dataset, such as the

proportion of subjects that drop out per year, and the proportion of subjects in which

each biomarker is collected. I also assume that measurement errors are Gaussian,
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which may not be the best choice of noise distribution for all of the biomarkers.

Therefore, although these simulations do provide an insight into the types of effects

which can be expected from different datasets, the simulations should be re-run

with dataset specific parameters to assess the performance of the EBM and DEM

on alternative datasets. I chose the DEM to be similar to [81], however other DEM

approaches (e.g. [131]) may recover a more accurate estimate of the trajectory tran-

sition time for heterogeneous data sets, and should be tested in future work.

5.5.3 Implications for the application and development of data-

driven models

5.5.3.1 The event-based model

The results of the EBM stability analysis show that the EBM is sensitive to the accu-

racy of the estimated biomarker distribution models, P(x|E), and P(x|¬E). There-

fore the application of the EBM is most effective when the biomarkers have distinct

control and case distributions. The results further show that the EBM is robust to

25% outlier corruption, which is higher than the proportion of misdiagnoses I expect

in typical sporadic neurodegenerative disease cohorts. The simulations highlight

several key areas for improvement of the EBM. First, better estimation techniques

for the biomarker distribution parameters should aid recovery of the event sequence

when the control and case distributions are not well defined. Adaptation of the

EBM to take into account the uncertainty in the biomarker distribution parameters,

e.g. by sampling the distribution parameters simultaneously with the ordering, may

also help to ameliorate this problem. Second, although the EBM can estimate the

ML event sequence for a modest proportion of outliers, it is unable to distinguish

other likely event sequences in the data. Future work will look at fitting mixture

models with multiple event sequence modes to the data.

5.5.3.2 Differential equation models

The simulations show that the DEM is sensitive to noise, leading to over estimation

of the trajectory transition time, meaning that the DEM should only be applied to

biomarkers with low measurement noise and inter-subject variance. Alternatively,
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robust fitting techniques need to be developed that can correct for the bias encoun-

tered when fitting a DEM to noisy biomarker trajectories. The simulations further

show that it is important that the duration of follow up for each individual is a good

approximation to the derivative (short with respect to the full disease time course).

This is shown to be more important than the inclusion of lots of follow up time

points, which improves the accuracy of the estimated derivative, suggesting that

follow up data over a longer time period should be discarded when fitting a DEM.

5.6 Conclusion
I have presented a framework for generating synthetic neurodegenerative disease

datasets (contribution 1.3.2 (a), Chapter 1, page 40), which can be used to evaluate

the robustness of data-driven models to likely variations in sporadic disease datasets,

and to directly compare them. I have demonstrated the use of this framework to

evaluate the stability of the EBM and a DEM of disease progression to heterogeneity

in the ADNI dataset (contribution 1.3.2 (b), Chapter 1, page 40). Future work will

use the simulation framework to evaluate the stability of other data-driven models,

such as self-modelling regression approaches [128]. The simulation framework can

further be used as a technique for validating extensions to data-driven models, to

determine model weaknesses, and to highlight areas for improvement.



Chapter 6

Multiple orderings of events in

disease progression

This chapter presents an initial formulation of the dynamic clustering technique

developed in Chapter 7. The work presented in this chapter was presented at the

Information Processing in Medical Imaging conference in 2015, the proceedings

of which were published in Lecture Notes in Computer Science. I developed the

methodology, performed the analysis and wrote the manuscript; my co-authors pro-

vided feedback on the methodology and the manuscript. My co-author Razvan

Marinescu made the visualisations for Figures 6.2, 6.3 and 6.5.

6.1 Associated publications
A. L. Young, N. P. Oxtoby, J. Huang, R. V. Marinescu, P. Daga, D. M. Cash, N. C.

Fox, S. Ourselin, J. M. Schott, and D. C. Alexander. Multiple Orderings of Events in

Disease Progression. In Information Processing in Medical Imaging, volume 9123

of Lecture Notes in Computer Science, pages 711–722, 2015

6.2 Introduction
The sequence in which biomarkers become abnormal provides a simple, intuitive

description of disease progression, giving insights into the underlying disease bi-

ology and a potential mechanism for disease staging. The sequence of biomarker

abnormality in sporadic neurodegenerative diseases, e.g. AD, has been a topic of
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intense debate amongst neurologists [74]. Reconstructing this sequence for spo-

radic neurodegenerative diseases is difficult because the position of subjects with

respect to the full disease time course is unknown. Typically clinical diagnoses are

used as a time proxy, but this limits the temporal resolution of the sequence, e.g.

in AD there are usually only three clinical diagnosis categories: cognitively normal

(CN), mild cognitive impairment (MCI) and AD [85]. Additional complications

arise due to the long disease time course [81] and inherent heterogeneity of sporadic

disease datasets. Many different factors contribute to this heterogeneity [75, 146],

for example genetic disease subtypes, mixed pathology, environmental factors, and

misdiagnosed subjects.

The event-based model (EBM) [98] considers disease progression as a series

of events, where each event corresponds to a new biomarker becoming abnormal.

By considering cross-sectional patient data as snapshots of a single common event

sequence, the EBM is able to probabilistically reconstruct the ordering of events

across subjects, without relying on a-priori disease staging. Taking samples of

the posterior probability of this sequence provides insight into the uncertainty in

this single event ordering. The application of this model has been demonstrated in

dominantly-inherited AD and Huntington’s disease [98] to determine the sequence

in which regional brain volumes become abnormal, and in sporadic AD to deter-

mine the sequence in which cerebrospinal fluid (CSF) markers, cognitive test scores,

and a limited set of regional atrophy and brain volume biomarkers become abnor-

mal [134]. Young et al. [134] found that this sequence is different in APOE4 positive

individuals, with increased genetic risk of AD, compared to the whole population,

suggesting that the whole population contains a proportion of subjects who do not

follow the single ordering of events encoded by the EBM.

The assumption made by the EBM in [98] and [134] of a single ordering of

events in all subjects is a major simplification for heterogeneous sporadic disease

datasets. In this work I relax this assumption by considering a family of models

that allow for multiple and distributed orderings of events. The first is a gener-

alised Mallows model [171], which parameterises the variance in the single order-
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ing, allowing subjects to deviate from the central event sequence. The second is

a Dirichlet process mixture model [172], which allows for subgroups of subjects

that follow different event sequences. Previous work [157] on generalised Mallows

EBMs relied on a well-defined control population and a complete set of biomark-

ers for each subject. Here I re-formulate this model to remove the reliance on a

well-defined control population, allowing the model to be fitted to heterogeneous

sporadic disease datasets, and to handle missing data, providing a multi-modal pic-

ture of disease progression. I formulate a Gibbs sampling technique that further

provides samples of the uncertainty in the model parameters. I additionally intro-

duce a new model: Dirichlet process mixtures of generalised Mallows EBMs, and

develop a Gibbs sampler to estimate its parameters [173]. I apply these models to

determine the sequence in which FDG-PET, CSF markers, cognitive test scores, and

a large set of regional brain volumes become abnormal in sporadic AD.

6.3 Models

6.3.1 The event-based model

The EBM of disease progression [98] consists of a set of events {e1, . . . ,eN}

and an ordering σ = (σ(1), . . . ,σ(N)), where σ(k) = i means that event ei oc-

curs in position k. In practise I only observe a snapshot of the event sequence

for each subject, taken at an unknown stage k. If a subject is at stage k in the

sequence σ the events eσ(1) . . .eσ(k) have occurred and events eσ(k+1) . . .eσ(N)

have yet to occur. This adduces a partition of the event set, or partial ranking,

γk = eσ(1), . . . ,eσ(k)|eσ(k+1), . . . ,eσ(N), where the vertical bar indicates that the first

set of events precedes the second. The occurrence of event ei in subject j is in-

formed by biomarker measurement xi j. The generative model of the biomarker data

is

k j ∼ P(k),

xσ(i), j ∼ p(xσ(i), j|eσ(i)) if i≤ k j,

xσ(i), j ∼ p(xσ(i), j|¬eσ(i)) otherwise.
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p(x|e) and p(x|¬e) are probability density functions on observing biomarker mea-

surement x given that event e has or has not occurred respectively. P(k) is a prior

on the disease stage k.

6.3.2 The generalised Mallows event-based model

I formulate the generalised Mallows EBM by using a generalised Mallows model to

parameterise the variance in a central event sequence π through the spread parame-

ter ~θ = (θ1, . . . ,θN−1). Each subject then has their own latent ordering σ j, which is

assumed to be a sample from a generalised Mallows model. The generative model

of the biomarker data in the EBM is therefore preceded by

π,~θ ∼ P(π,~θ |ν ,~r),

σ j ∼ GM(π,~θ).

GM(π,~θ) = 1
ψ(~θ)

exp
[
−d~θ (π,σ)

]
is a generalised Mallows distribution with

ψ(~θ) = ∏n−1
j=1 ψn− j(θ j) = ∏n−1

j=1
1−e−(n− j+1)θ j

1−e−θ j
. d~θ (π,σ) is the generalised Kendalls

tau distance [171], which penalises the number of pairwise disagreements between

sequences. P(π,~θ |ν ,~r) is a conjugate prior over the generalised Mallows distribu-

tion parameters of the form P(π,~θ |ν ,~r) ∝ exp
(
−ν ∑ j[θ jr j + lnψn− j(θ j)]

)
[174].

6.3.3 Dirichlet process mixtures of generalised Mallows event-

based models

Dirichlet process mixtures of generalised Mallows models assume that each subject

has their own central ordering π j and spread parameters ~θ j, which are sampled from

a discrete distribution G that is drawn from a Dirichlet process [172]. A Dirichlet

process mixture is a generative clustering model where the number of clusters is a

random variable, meaning that the number of clusters is detected automatically de-

pending on the concentration parameter α . The generative model of the biomarker

data in the EBM is now preceded by the process

G∼ DP(α,P(π,~θ |ν ,~r)),
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π j,~θ j ∼ G,

σ j ∼ GM(π j,~θ j),

where DP(α,P(π,~θ |ν ,~r)) is a Dirichlet process [172]. Each data point π j can be

characterised by an association with a cluster label c j ∈ 1, . . . ,C and each cluster c

with a set of generalised Mallows parameters σc and ~θc.

6.4 Inference

6.4.1 The event-based model

Inference in the EBM can be performed by taking Markov Chain Monte Carlo

(MCMC) samples of P(σ |X) = P(X |σ)P(σ)
P(X) where

P(X |σ) =
J

∏
j=1

[
K

∑
k=0

P(k)

(
k

∏
i=1

p(xσ(i), j|eσ(i))
N

∏
i=k+1

p(xσ(i), j|¬eσ(i))

)]
. (6.1)

6.4.2 The generalised Mallows event-based model

I use Gibbs sampling to infer the parameters of the generalised Mallows EBM. This

consists of two stages. First, generating a set of sample event sequences σ1:J . I sam-

ple from an augmented model [157], by alternating between sampling a subject’s

ordering σ j and disease stage k j, which are used to deterministically reconstruct

their partial ranking γ j. The Gibbs sampling updates are therefore

σ
( j) ∼ P(σ |~γ = γ j,π,~θ),

k( j) ∼ P(k|~σ = σ j,X j).

Second, sampling the model parameters given the set of sample orderings σ1:J using

the updates

π ∼ P(π|~θ ,ν ,~r,σ1:J),

θk ∼ P(θk|π,ν ,~r,σ1:J).
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6.4.3 Dirichlet process mixtures of generalised Mallows event-

based models

I formulate another Gibbs sampler to infer the parameters of Dirichlet process mix-

tures of generalised Mallows EBMs. I generate a set of candidate sample orderings

σ1:J,1:C, disease stages k1:J,1:C, and partial rankings γ1:J,1:C, which are conditioned

on the parameters for each cluster via the updates

σ
( j,c) ∼ P(σ |~γ = γ jc,πc,~θc),

k( j,c) ∼ P(k|~σ = σ jc,X j).

From these samples I sample the cluster assignment c j of each subject conditioned

on the cluster assignments of the other subjects c− j, where c− j is the set of cluster

assignments for all subjects except subject j, the subject’s sample ordering for each

cluster σ j,1:C, disease stage k j,1:C and their biomarker data X j. I then update the

generalised Mallows model parameters for each cluster, πc and ~θc, from the set of

subject orderings assigned to each cluster, ~σc. So I have the updates

c( j) ∼ P(c|c− j,σ j,1:C,~θ ,α,ν ,~r,X j,k j,1:C),

π
(c) ∼ P(π|~θ = ~θc,ν ,~r,~σc),

θ
(c)
k ∼ P(θk|~π = πc,ν ,~r,~σc).

6.5 Implementation

6.5.1 ADNI dataset

I considered 382 subjects (135 CN subjects, 149 MCI, 98 AD) who had a 1.5T struc-

tural MRI (T1) scan at baseline. I calculated the total volume (left plus right hemi-

sphere) of 82 regions in the Neuromorphometrics parcellation1 for each subject, cor-

recting for head size variance by regressing against total intracranial volume. Seg-

1http://neuromorphometrics.org:8080/
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mentation was performed using the Geodesic Information Flow framework [175].

I retained the 35 regions having significant differences between CN and AD sub-

jects using the Wilcoxon rank sum test with p < 0.01. I downloaded biomarker

values from the ADNI database (adni.loni.usc.edu) for CSF markers (Aβ1−42, tau,

p-tau), cognitive test scores (MMSE, RAVLT, ADAS-Cog), and global FDG-PET

metabolism.

6.5.2 Model fitting

I compare the result of fitting the EBM, generalised Mallows EBM and Dirichlet

process mixtures of generalised Mallows EBMs to the ADNI data set for the set of

42 biomarker abnormality events described. Following previous work [98] I model

the probability that a biomarker is normal, p(x|¬e), as a Gaussian distribution, and

the probability that a biomarker is abnormal, p(x|e), as a uniform distribution cover-

ing the full range of observed values to reflect the range of severity that corresponds

to an abnormal biomarker. I use a mixture model to fit these distributions to the data

to account for a proportion of outliers in the control population, and visually assess

the fit of the Gaussian mixture models. In subjects that had missing data points I

imputed the biomarker values such that p(x|e) = p(x|¬e), i.e. it is equally proba-

ble that the event e has or has not occurred. The prior probability that a subject is

at a particular disease stage P(k) is assumed to be uniform. To fit the generalised

Mallows model I need to sample σ from P(σ |γ,π,~θ). I approximate this by sam-

pling from a generalised Mallows model for each of the event sets in the partial

ranking γ separately; the set of events γe that have occurred and the set of events

γ¬e that have yet to occur. I sample σe ∼ GM(πγe ,
~θγe), and σ¬e ∼ GM(πγ¬e ,

~θγ¬e).

This means that the precedence of events specified by the partial ranking is pre-

served, and that the central ordering of the generalised Mallows model for each

event set, πγe and πγ¬e , has the minimal Kendalls tau distance [171] from the cen-

tral ordering π of the full generalised Mallows model. I sample k from P(k|σ ,X j)

using equation 6.1, i.e. P(k|σ ,X j) ∝ ∏k
i=1 p(xσ(i), j|eσ(i))∏N

i=k+1 p(xσ(i), j|¬eσ(i)).

The remaining sampling updates follow the algorithm in [173]. I sample π exactly

using a stage-wise algorithm, and ~θ using a beta function approximation. I used the
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Beta-Gibbs algorithm [173] to update the Dirichlet process mixture model cluster

assignments c j, weighting the probability each subject belongs to each cluster by

P(X j|σ j,c,k j,c), and the generalised Mallows model parameters πc, ~θc for each clus-

ter. I fix the priors to be ν = 1,~r =~1, α = 1. I initialise π randomly, γe as the set

of events with p(x|e)> p(x|¬e), γ¬e as the set of events with p(x|e)≤ p(x|¬e), and

the Dirichlet process mixture to have 25 clusters. The computational time required

for the generalised Mallows EBM and the Dirichlet process mixture of generalised

Mallows EBM grows rapidly as the number of subjects and biomarkers increases

because of the requirement to update several individual subject parameters at each

iteration, in addition to estimating overall population parameters for each cluster.

For the present experiments each iteration takes around a minute using Matlab on a

standard workstation (Intel Core i7, 3.1 GHz, 8GB memory).

6.6 Results and discussion

6.6.1 The event-based model

Figure 6.1 shows a positional variance diagram of the MCMC samples of the single

ordering of events returned by the EBM. I visualise a few key stages of this sequence

in the top row of Figure 6.3 to show the spatial correspondence of the sequence of

regional volume loss estimated by the model. I find that CSF markers are the first

to become abnormal, followed by cognitive test scores, then memory-related brain

regions, then FDG-PET, and then other AD-related brain regions. This sequence

complements the findings of other studies, but provides a much more detailed pic-

ture of the regional progression of volume changes than has been seen previously in

sporadic AD, and a direct comparison of the sequence of regional changes relative

to a multi-modal set of biomarkers. Fonteijn et al. [98] looked at the regional pro-

gression of volume loss but in familial AD and using atrophy rates. The results in

Young et al. [134] show a multi-modal sequence of biomarker abnormality in spo-

radic disease but for a small set of regional volumes, and hippocampal and whole

brain atrophy rates from short-term longitudinal MRI. Here I show the first multi-

modal sequence of biomarker abnormality in sporadic AD, including a large set of
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regional volumes. I am able to construct this picture from entirely cross-sectional

data, and incorporate biomarkers with missing values.

Figure 6.1: Central ordering estimated by the EBM: Positional variance diagram of the
MCMC samples of the maximum likelihood event sequence σ . The events on
the y-axis are ordered by the maximum likelihood sequence estimated by the
model. Each entry of the positional variance diagram represents the propor-
tion of samples in which a particular event appears in a particular position in
the central ordering, ranging from 0 in white to 1 in black. A black diagonal
corresponds to high certainty in the ordering of events, whereas grey blocks
in the diagram mean that the events permute. Reproduced from [170] with
permission from Springer. The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-19992-4_56.

6.6.2 The generalised Mallows event-based model

The generalised Mallows EBM estimates both the central ordering of the events

and the variance in this single event ordering across the population (Figure 6.3).

Figure 6.3 compares the central ordering π and variance ~θ estimated by the gener-

alised Mallows EBM, i.e. the range of event sequences across the population, with

the central ordering estimated by the EBM. The central event sequence has a similar

ordering to the EBM, but the variance in this central ordering of events increases,

as shown by the increase in the number of orange regions in Figure 6.3. By using

Gibbs sampling I further obtain estimates of the uncertainty in each of the model

parameters, as well as the latent variables included in the model, for example a sub-

ject’s disease stage (Figure 6.4). Fitting the generalised Mallows EBM means that

http://dx.doi.org/10.1007/978-3-319-19992-4_56
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the uncertainty in this stage accounts for the variance in the ordering of the events

across the population.
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Figure 6.2: Key for Figures 6.3 and 6.5, generated using the BrainColorMap software2.
Reproduced from [170] with permission from Springer. The final pub-
lication is available at Springer via http://dx.doi.org/10.1007/
978-3-319-19992-4_56.

6.6.3 Dirichlet process mixtures of generalised Mallows event-

based models

I fitted a Dirichlet process mixture of generalised Mallows EBMs to allow for clus-

ters of subjects that follow different sequences of events, of which each cluster has

its own central ordering πc and variance ~θc. The Dirichlet process mixture model

identifies three main clusters in the data, with an average proportion of 0.48 (±

0.02), 0.24 (± 0.10), and 0.29 (± 0.10) subjects being assigned to each cluster

respectively over the Gibbs samples. Figure 6.5 compares the estimated central

ordering and variance for each of the clusters. The first two clusters look more

AD-like than the third cluster, producing a similar event sequence to the EBM and

generalised Mallows model (Figure 6.3), with CSF biomarkers and memory-related

brain regions becoming abnormal early in the sequence. The third cluster likely

captures outliers that do not fit the AD sequence of events. The ordering of events

for the third cluster consists of only mild cognitive deficits and no CSF abnormali-

ties, perhaps representing a normal aging event sequence, or simply reflecting that

regional volume loss is a noisy measure on a cross-sectional level. The variance

~θc is greater for the clusters of the Dirichlet process mixture model than the gen-

http://dx.doi.org/10.1007/978-3-319-19992-4_56
http://dx.doi.org/10.1007/978-3-319-19992-4_56
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Figure 6.3: Comparison of the central ordering estimated by the event-based model (top)
with the generalised Mallows model (bottom) (see key in Figure 6.2). We
display the results for six stages: stage 6, 12, 18, 24 and 36, where each
stage number corresponds to the number of biomarkers that have become ab-
normal. Each biomarker (brain region, CSF, cognitive test or FDG-PET) is
coloured according to the proportion of the population in which it has be-
come abnormal by a particular stage along the central ordering. This propor-
tion is estimated for the event-based model by the number of MCMC sam-
ples (Figure 6.1), and for the generalised Mallows model by the probability
(calculated using the central ordering π and spread ~θ ) of an event appear-
ing at or before a particular stage. This proportion ranges from 0 in yellow
to 1 in red. Regions not included in the model are shown in grey. At each
stage yellow biomarkers can be interpreted as being normal, red biomark-
ers as being abnormal, and orange biomarkers as varying in whether they
have become abnormal across the population. Reproduced from [170] with
permission from Springer. The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-19992-4_56.

eralised Mallows model (as shown by an increase in the number of orange regions

in Figure 6.5 compared to Figure 6.3), likely because each cluster only contains a

proportion of the population, meaning that there are fewer subjects to fit the model

to, and due to the uncertainty in the cluster assignment of each subject. The Gibbs

sampling technique returns samples of all of the model parameters. For example, I

am able to estimate the uncertainty in the disease stage of each subject for both mod-

els, and the cluster assignment of each subject from the Dirichlet process mixture,

http://dx.doi.org/10.1007/978-3-319-19992-4_56
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Figure 6.4: Estimate of the uncertainty in a subject’s disease stage obtained by using Gibbs
sampling to fit the generalised Mallows EBM. I show an estimate of the prob-
ability of each stage for an example CN subject (green), MCI subject (blue),
and AD subject (red). Each stage corresponds to the number of biomarkers
in the sequence that have become abnormal. Reproduced from [170] with
permission from Springer. The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-19992-4_56.

producing a similar diagram to Figure 6.4.

6.7 Conclusion
I proposed a generalised family of EBMs that relax the assumption of a common

event sequence over the population in different ways. I formulated these models

so that they work for a large multi-modal set of sporadic disease biomarkers, and

developed a Gibbs sampler that provides an estimate of the uncertainty on each

model parameter. I fitted this family of models to the ADNI dataset to determine

the ordering of a much more extensive, multi-modal set of biomarkers than has been

seen previously. I find that the generalised Mallows model estimates a similar event

sequence to the original EBM, but with a larger variation across subjects. Fitting a

Dirichlet process mixture model detects subgroups of the population with different

event sequences.

The models developed in this chapter provide an interesting first attempt at

modelling heterogeneity in biomarker progression patterns. However, a major con-

cern is that the variance parameter ~θ of the generalised Malllows EBMs (and the

variance parameter ~θc of the Dirichlet process mixture of generalised Mallows

EBMs), greatly increases model complexity with no real gain in clinical utility. The

parameter ~θ describes the variance in the progression pattern across the population,

2http://braincolor.mindboggle.info/.

http://dx.doi.org/10.1007/978-3-319-19992-4_56
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Figure 6.5: As Figure 6.3, but for the clusters identified by the Dirichlet process mix-
ture of generalised Mallows event-based models (top to bottom: clusters 1
to 3). Reproduced from [170] with permission from Springer. The final
publication is available at Springer via http://dx.doi.org/10.1007/
978-3-319-19992-4_56.

which will always be very large given that subjects are only observed at a single time

point, and therefore the possible sequences they could have gone through to reach

that point are all of the possible permutations of the events that have occurred at

that time point. Estimating this variance doesn’t provide any additional information

that is clinically useful.

In the subsequent chapter I develop a more parsimonious model of heteroge-

neous biomarker progression patterns.

http://dx.doi.org/10.1007/978-3-319-19992-4_56
http://dx.doi.org/10.1007/978-3-319-19992-4_56




Chapter 7

A data-driven model of disease

subtypes with distinct patterns of

biomarker evolution in

frontotemporal dementia and

Alzheimer’s disease

This chapter details contribution 1.3.3 (see Chapter 1, page 41). My colleague

Razvan Marinescu made the visualisations for Figures 7.1, 7.2, 7.3, 7.4 and 7.5,

and Supplementary Figures A.5 and A.12.

7.1 Introduction
Neurodegenerative diseases, such as AD and frontotemporal lobar degeneration

(FTLD), are often heterogeneous in their pathology, genetics and clinical presen-

tation. The identification of data-driven disease sub-populations and quantification

of their patterns of biomarker evolution can elucidate relationships between differ-

ent biomarker measurements that contribute to this observed heterogeneity, provid-

ing insights into underlying disease mechanisms. Moreover, quantitative models of

the evolution of biomarkers in different disease subtypes can be used for precision

medicine by providing a quantitative tool for patient stratification and prognostica-
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tion, with application in clinical trials and healthcare.

Frontotemporal dementia (FTD) is the clinical presentation of FTLD, a highly

heritable set of neurodegenerative diseases that are characterised by progressive

frontal and temporal lobe atrophy. FTD comprises three major clinical subtypes:

behavioural variant FTD, semantic dementia, and primary progressive aphasia.

Around a third of FTD cases are inherited on an autosomal dominant pair, with

mutations in progranulin (GRN), microtubule-associated protein tau (MAPT) and

chromosome 9 open reading frame 72 (C9orf72) being the most common causes.

FTLD is pathologically heterogeneous, consisting of neuronal inclusions contain-

ing abnormal forms of either tau, TDP-43, or fused in sarcoma (FUS) proteins,

with each of these proteinopathies having further sub classifications. Of the major

familial subgroups, patients with GRN mutations have TDP-43 type A pathology,

patients with MAPT mutations having tauopathies, and patients with expansions in

C9orf72 have type A or type B TDP-43 pathology [176].

AD is characterised pathologically by the accumulation of amyloid plaques and

neurofibrillary tangles in brain tissue. These pathologies are thought to trigger sub-

sequence neuropathological processes leading to downstream neurodegeneration,

affecting the medial temporal lobe structures first, with the progression of atrophy

reflecting the pattern of increase in neurofibrillary tangles. This neurodegeneration

gives rise to the clinical symptoms experienced by a patient, the earliest of which is

typically memory loss. However, the pattern of neurofibrillary tangles observed at

autopsy is heterogeneous, with 25% of patients not having the typical distribution

of neurofibrillary tangles. This observation has lead to the suggestion that there

are three pathological subtypes of AD: typical, hippocampal-sparing, and limbic-

predominant [27]. In hippocampal-sparing AD neurofibrillary tangles are relatively

numerous in the cortex and reduced in the hippocampus, whereas at the other end of

the spectrum, in limbic-predominant AD, neurofibrillary tangle counts are greater

in the hippocampus and reduced in the cortex.

Pathological subtypes at post-mortem can be associated with distinct ante-

mortem biomarker profiles, such as characteristic patterns of brain volume loss on
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magnetic resonance imaging (MRI) [154]. In FTLD, each of the proteinopathies has

shown a fairly distinct atrophy pattern on MRI [177, 178]. In genetic FTD, distinct

patterns of atrophy are observed in the different mutation types [179], in addition

to pathology type [178]. In AD, more severe cortical atrophy has been observed in

patients with hippocampal-sparing AD, compared to more severe medial temporal

lobe atrophy in limbic-predominant AD [154].

Reconstructing patterns of biomarker evolution from in vivo data is challeng-

ing in the presence of heterogeneity in both the disease process and the disease

stage. The majority of previous studies reconstructing longitudinal patterns of

biomarker evolution assume a single common progression pattern across subjects,

and so cannot characterise heterogeneous progression patterns. Estimating longitu-

dinal patterns of biomarker evolution in neurodegenerative diseases is in itself chal-

lenging, as the duration of individual follow-up is short-term, typically a few years,

in comparison to the long time course the diseases emerge over, which is estimated

to be over a decade. One approach to estimating longitudinal biomarker patterns

from cross-sectional data is to regress longitudinal biomarker values against clini-

cal diagnosis [104–106], or some other clinical staging measure [49, 80, 112], such

as a cognitive test score. The temporal resolution of such approaches is limited by

the accuracy of the staging measure, typically to only a few stages. Data-driven

models of disease progression (e.g. [98, 127, 128, 132, 134]) have been proposed

to allow the estimation of fine-grained biomarker evolution patterns by realigning

subject’s biomarker measurements to a data-driven time axis. However, all of these

studies assume that subjects belong to a single biomarker evolution pattern.

Previous attempts to disentangle heterogeneity in the disease process of AD or

FTD [180–186] focus on clustering data from a single static disease stage. Such

studies are fundamentally limited by the quality of the staging measure used to

select subjects, and can only provide insights into disease subtypes at one stage

in the disease process. Additionally, this stage may not be common across all the

subtypes as the choice of disease staging measure may be more sensitive to one

subtype than another.
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The work of Guerrero et al. [112] reconstructs longitudinal disease progres-

sion patterns that incorporate heterogeneity in biomarker trajectories, however the

time axis of their model is not data-driven, instead being indexed by time to clinical

diagnosis. This means that the temporal resolution of their model is limited by the

accuracy of the diagnosis, and that the model can only be applied to subjects who

convert between diagnostic categories, and so requires a large amount of follow-up

data, reducing subject numbers. Additionally their model does not directly propose

a categorisation of the data into subgroups. In Young et al. [170], a data-driven

subtyping model was proposed that describes disease progression as groups of sub-

jects that have distinct orderings of biomarker abnormality events. However, these

biomarker abnormality events constitute a binary switch, from a normal to an abnor-

mal level, meaning that more complex dynamic behaviour of different biomarkers

cannot be estimated.

In this work I present a dynamic clustering model that integrates clustering and

data-driven disease progress estimation to characterise neurodegenerative disease

subtypes with distinct patterns of biomarker evolution. I first validate the technique

by demonstrating the ability of the model to recover known genetic subtypes of FTD

using volumetric MRI data from the Genetic Frontotemporal dementia Initiative

(GENFI). I show that the dynamic clustering model is able to recover the cascade

of volumetric MRI loss for GRN, MAPT and C9orf72 mutation carriers without

knowledge of the genetic labels. In addition, the model provides new insights into

the disease process in the C9orf72 mutation carriers by revealing that this group

is best modelled as two subgroups with distinct patterns of volume loss. I further

apply the dynamic clustering technique to AD using volumetric MRI data from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to determine data-driven

subtypes of AD and their patterns of volume loss. I demonstrate the ability of the

model to provide fine-grained staging and subtyping information that independently

contributes to predicting conversion from mild cognitive impairment (MCI) to AD.
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7.2 Methods

7.2.1 Data description

7.2.1.1 GENFI dataset

I used cross-sectional volumetric MRI data from GENFI1 to fit the dynamic clus-

tering model. Subjects were included from the second data freeze of GENFI which

in total consisted of 365 participants recruited across 13 centres in the United King-

dom, Canada, Italy, Netherlands, Sweden, and Portugal. 324 had a usable volu-

metric T1-weighted MRI scan for analysis (15 participants did not have a scan and

the other participants were excluded as the scans were of unsuitable quality due to

motion, other imaging artefacts, or pathology unlikely to be attributed to FTD). The

324 participants included 144 non-carriers, 129 unaffected carriers, and 51 affected

carriers. Of the 129 unaffected presymptomatic mutation carriers there were 64

GRN, 41 C9orf72, and 24 MAPT carriers. Of the 51 affected symptomatic carriers,

there were 14 GRN, 26 C9orf72, and 11 MAPT carriers. The acquisition and post-

processing procedures for GENFI have been previously described in [187]. Briefly,

cortical and subcortical volumes were generated using a multiatlas segmentation

propagation approach [175], combining cortical regions of interest to calculate grey

matter volumes of the entire cortex, separated into the frontal, temporal, parietal,

occipital, cingulate, and insula cortices. Because the dynamic clustering model

expresses disease progression patterns in terms of z-scores relative to a control pop-

ulation, there is no requirement to pre-select the biomarkers according to whether

they have disease signal. I therefore included all of the regions of interest in the

study.

7.2.1.2 ADNI dataset

I downloaded data from LONI2 on 11 May 2016 and constructed two volumetric

MRI datasets: those with higher (3T) and lower (1.5T) field strength. The inclu-

sion criteria for the 3T and 1.5T datasets were having cross-sectional FreeSurfer

volumes available that passed overall quality control from either a 3T (processed
1www.genfi.org.uk
2www.loni.ucla.edu/ADNI/
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using FreeSurfer Version 5.1) or a 1.5T (processed using FreeSurfer Version 4.3)

MRI scan. The particular regional volumes selected for the study were chosen to

be similar to those in GENFI. The 3T dataset consisted of 793 subjects (183 cog-

nitively normal (CN), 86 significant memory concern (SMC), 243 early mild cog-

nitive impairment (EMCI), 164 late mild cognitive impairment (LMCI), 117 AD),

of which 73 were enrolled in ADNI-1, 99 were enrolled in ADNI-GO, and 621

were enrolled in ADNI-2. The 1.5T dataset consisted of 576 ADNI-1 subjects (180

CN, 274 LMCI, 122 AD). I corrected the volumes for variations in head size by

regressing against total intracranial volume (TIV). I further downloaded age, sex,

education, and APOE genotype from the ADNImerge table. I downloaded follow-

up information to test the association of the dynamic clustering model subtypes

and stages with longitudinal outcomes, consisting of diagnostic follow-up data and

cognitive test scores from the mini-mental state examination (MMSE). I also down-

loaded baseline CSF measurements of Aβ1−42, which I used to identify a control

population.

7.2.1.3 Z-scores

I expressed each regional volume measurement as a z-score relative to a control

population: in GENFI I used data from all non-carriers, in ADNI I used amyloid-

negative CN subjects, defined as those with a CSF Aβ1−42 measurement greater

than 192 pg/mL [139]. This gave a control population of 48 amyloid-negative

CN subjects for the 3T dataset, and 56 amyloid-negative CN subjects for the 1.5T

dataset. I used these control populations to determine whether the effects of age,

sex or education were significant, and if so to regress them out. I then normalised

each dataset relative to its control population, so that the control population had a

mean of 0 and standard deviation of 1. Because regional brain volumes decrease

over time the z-scores become negative with disease progression, so for simplicity

I took the negative value of the z-scores so that the z-scores would increase as the

brain volumes became more abnormal.
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7.2.2 Mathematical modelling overview

7.2.2.1 Mathematical model for dynamic clustering

I formulate a probabilistic generative model of disease progression that consists of

groups of subjects with distinct patterns of biomarker evolution. The biomarker

evolution of each subgroup is described as a series of events, where each event cor-

responds to a biomarker reaching a particular z-score compared to a control group.

This model is based on the event-based model (EBM) in [98, 134, 170], but refor-

mulates the events so that they represent the continuous linear accumulation of a

biomarker from one z-score to another, rather than an instantaneous switch from a

normal to an abnormal level. The resulting model describes the biomarker evolution

of each subgroup as a piecewise linear trajectory, with a constant noise level that is

derived from a control population. For details of the mathematical formulation of

the model and model fitting procedure see Mathematical model and Model fitting.

The model assumes a fixed number of clusters C, for which I estimate the proportion

of subjects f that belong to each cluster, and the order Sc in which biomarkers reach

each z-score for each cluster c = 1 . . .C. I determine the optimal number of clusters

C for a particular dataset through 10-fold cross-validation (see Cross-validation).

7.2.2.2 Uncertainty estimation

In addition to estimating the most probable sequence Sc for each cluster, I can de-

termine the relative likelihood of all sequences for each cluster by evaluating the

probability of each possible sequence. This provides an estimate of the uncertainty

in the ordering Sc, which I summarise by plotting positional variance diagrams of

the probability that each z-score event appears at each position in the sequence for

each cluster. In practise the number of sequences is too large to evaluate all possi-

ble sequences so I use Markov Chain Monte Carlo (MCMC) sampling to provide

an approximation to this uncertainty, as in [98, 134].

7.2.2.3 Cross-validation

I performed 10-fold cross validation of the dynamic clustering results by dividing

the data into 10 folds and re-fitting the model to each subset of the data, with one
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of the folds retained for testing each time. I evaluated the optimal number of clus-

ters using the Cross-Validation Information Criterion [188], i.e. by evaluating the

likelihood of each c-cluster model from c = 1 . . .C on the test data for each fold and

choosing the model with the highest out-of-sample likelihood across all folds.

7.2.2.4 Patient subtyping and staging

I assigned subjects to subtypes and stages predicted by the dynamic clustering

model by evaluating the likelihood that they belonged to each stage of each sub-

type and choosing the combination of subtype and stage with the highest likeli-

hood. When evaluating the likelihood I integrated over the set of MCMC samples

to account for the uncertainty in the model parameters, rather than just evaluating

the likelihood at the maximum likelihood parameters. This means that a patient’s

model stage indicates the average number of z-score events in the sequence that

have occurred. In the experiments I added in a normal-appearing cluster to separate

out subjects with normal-appearing brain volumes, i.e. to avoid the situation where

subjects with normal appearing brain volumes have equal probability of belonging

to the initial stage of any subtype. I classified subjects with a stage of 0 as normal-

appearing, but harsher model stage thresholds can be used for a more conservative

classification.

7.2.2.5 Static clustering

I compared the dynamic clustering model to a static clustering model, which con-

sists of a mixture of gaussians with unknown mean and variance using expectation-

maximisation. The dynamic clustering model depends on a known control popula-

tion so o ensure a fair comparison between static and dynamic clustering I included

a fixed normal-appearing cluster in the static clustering model, with a mean of 0 and

a standard deviation of 1 for all biomarkers. As for the dynamic clustering model,

I evaluated the optimal number of clusters using the Cross-Validation Information

Criterion [188].
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7.2.3 Mathematical model

The dynamic clustering model is formulated as a mixture of linear z-score EBMs.

The linear z-score EBM is based on a continuous generalisation of the EBM in

[98, 134], which I describe first.

The EBM in [98,134] describes disease progression as a series of events, where

each event corresponds to a biomarker transitioning from a normal to an abnormal

level. The occurrence of an event, Ei, for biomarker i = 1 . . . I, is informed by

the measurements xi j of biomarker i in subject j, j = 1 . . .J. The whole dataset

X = {xi j|i = 1 . . . I, j = 1 . . .J} is the set of measurements of each biomarker in each

subject. The most likely ordering of the events is the sequence S that maximises the

data likelihood

P(X |S) =
J

∏
j=1

[
I

∑
k=0

(
P(k)

k

∏
i=1

P(xi j|Ei)
I

∏
i=k+1

P(xi j|¬Ei)

)]
, (7.1)

where P(x|Ei) and P(x|¬Ei) are the likelihoods of measurement x given that

biomarker i has or has not become abnormal, respectively. P(k) is the prior like-

lihood of being at stage k, at which the events E1, . . . ,Ek have occurred, and the

events Ek+1, . . . ,EI have yet to occur. The prior P(k) is assumed to be uniform. The

likelihoods P(x|Ei) and P(x|¬Ei) are modelled as normal distributions.

In this work I reformulate the EBM in (7.1) by replacing the instantaneous

normal to abnormal events with events that represent the linear accumulation of

a biomarker from one z-score to another. The linear z-score EBM consists of a

set of N z-score events Eiz, which indicate the linear accumulation of biomarker

i = 1 . . . I to a z-score zir = zi1 . . .ziRi , i.e. each biomarker is associated with its own

set of z-scores, and so N = ∑i Ri. Each biomarker is additionally associated with a

maximum z-score, zmax, which it accumulates to at the end of stage N. I consider a

continuous time axis, t, which I choose to go from t = 0 to t = 1 for simplicity (the

scaling is arbitrary). At each disease stage k, which has a duration from t = k
N+1

to t = k+1
N+1 , a z-score event Eiz occurs. The biomarkers evolve as time t progresses



152 Chapter 7. A data-driven model of disease subtypes

according to a piecewise linear function fi(t), where

f (t) =



z1
tEz1

t for 0 < t ≤ tEz1

z1 +
z2−z1

tEz2
−tEz1

(t− tEz1
) for tEz1

< t ≤ tEz2

...

zR−1 +
zR−zR−1

tEzR
−tEzR−1

(t− tEzR−1
) for tEzR−1

< t ≤ tEzR

zR +
zmax−zR
1−tEzR

(t− tEzR
) for tEzR

< t ≤ 1

To clarify, the times tEizare determined by the position of the z-score event Eiz in the

sequence S, so if event Eiz occurs in position k in the sequence then tEiz =
k+1
N+1 .

To formulate the model likelihood for the linear z-score EBM I replace (7.1)

with

P(X |S) =
J

∏
j=1

[
N

∑
k=0

(∫ k+1
N+1

k
N+1

(
P(t)

I

∏
i=1

P(xi j|t)

)
dt

)]
, (7.2)

where,

P(xi j|t) = NormPDF(xi j, fi(t),σi).

NormPDF(x,µ,σ) is the normal probability distribution function, with mean µ and

standard deviation σ , evaluated at x. I assume the prior on the disease stage P(t) is

uniform, i.e. P(t) = 1, as in the original EBM.

The overall model, M, is a mixture of linear z-score event-based models, hence

we have

P(X |M) =
C

∑
c=1

fcP(X |Sc)

here, C is the number of clusters (subtypes), and f is the proportion of subjects

assigned to a particular cluster (subtype)

7.2.4 Model fitting

7.2.4.1 Hierarchical estimation

I fit the dynamic clustering model hierarchically by initialising the fitting of the

C cluster model from the C− 1 cluster model, i.e. I solve the clustering problem
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sequentially from C = 1 . . .Cmax, where Cmax is the maximum number of clusters

I would like to fit, initialising each model using the previous model. To fit the C

cluster model using the C− 1 cluster model, I generate C− 1 candidate C cluster

models by going through each of the C− 1 clusters in turn and finding their op-

timal split into two clusters, I then use this two cluster solution together with the

other C− 2 clusters to initialise the fitting of the C cluster model. To optimise the

C cluster model I perform an expectation maximisation algorithm, alternating be-

tween updating the sequences Sc for each cluster and the fraction fc. Of these C−1

candidate C cluster models, I choose the model with the highest likelihood as the

solution to the clustering problem.

7.2.4.2 Two-cluster estimation

To find the optimal split of a cluster into two clusters, I initialise the assignments

of data points to the two clusters randomly, find the optimal model parameters for

these two data subsets, and use these cluster parameters to initialise the fitting of the

two clusters. I repeat this procedure for different random cluster assignments until

the algorithm converges to the maximum likelihood solution.

7.2.4.3 Single cluster estimation

To find the optimal model parameters (the sequence S in which the biomarkers reach

each z-score) for a single cluster I perform a greedy procedure whereby I initialise

the sequence S randomly and then I go through each z-score event e in turn and find

its optimal position in the sequence relative to the other z-score events, i.e. I fix

the order of the subsequence T = S \ e and evaluate the likelihood of the sequence

in which the event e is placed at each possible position in the subsequence T . I

keep updating the sequence S until convergence. Again I optimise the single cluster

sequence S from different random starting sequences until the algorithm converges

to the maximum likelihood solution.

7.2.5 Implementation

All experiments were performed using Matlab on a standard workstation (Intel Core

i7, 3.1 GHz, 8GB memory). For each of the model fitting procedures (hierarchical,
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two-cluster, and single cluster estimation), I repeated the optimisation for 25 start-

ing points to find the maximum likelihood solution, checking that the optimisation

displayed good convergence. I found that all start points converge to a solution that

is within a 1×10−4% tolerance level (as a percentage of the maximum likelihood),

and within the uncertainty estimated by the uncertainty estimation procedure (de-

scribed subsequently), meaning that each solution is sufficiently close to the max-

imum likelihood solution to be used for initialisation of the uncertainty estimation

procedure (MCMC algorithm). I ran an MCMC algorithm (as in [98]) to draw sam-

ples from the posterior P(M|X), taking 1,000,000 MCMC samples and checking

that the MCMC trace showed good mixing properties. I initialised the MCMC al-

gorithm at the optimal solution found using the hierarchical estimation procedure

so a burn-in period was not required. I further performed 10-fold cross-validation

of the model fitting and MCMC results to check that they were reproducible.

The computational complexity of the model fitting varies depending on three

factors. The first factor is the time taken to calculate P(M|X), which is of order

O(INJC), where I is the number of biomarkers, N is the number of biomarker

events, J is the number of subjects, and C is the number of clusters. The second

factor is the maximum number of clusters being fitted Cmax. The total time taken

for the full hierarchical optimisation scales with order O(∑Cmax
c=1 c)≈ O(c2), as each

time there is an additional cluster to estimate the parameters for. The third factor is

the time taken for the expectation maximisation and MCMC algorithms to converge.

As discussed in Chapter 3, although the space of all possible sequences has a size

of N!, where N is the number of biomarker events, the maximum pairwise distance

between any pair of sequences is N(N−1)
2 . This means that the number of iterations

required for convergence of the expectation maximisation algorithm, and for the

MCMC chain to sample P(M|X), should scale with approximately O(N2C). For

the set of biomarker events and number of subjects used here, fitting 5 clusters takes

approximately 3 hours in total, and performing MCMC sampling for all 5 models

takes around 15 hours.
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7.3 Results

7.3.1 Genetic frontotemporal dementia

7.3.1.1 Dynamic clustering of all mutation carriers

Application of the dynamic clustering model to all mutation carriers in GENFI (see

visualisation in Figure 7.1, positional variance diagrams and cross-validation in

Supplementary Figure A.1) suggests that there are three population subgroups (the

profile of in-sample and out-of-sample model likelihood for different numbers of

clusters is shown in Supplementary Figure A.2) with distinct patterns of brain vol-

ume loss: a frontal group, a temporal group, and a subcortical group, which account

for 51%, 27%, and 22% of the data respectively.

The frontal group (Figure 7.1 A) has a progression pattern that begins with mild

(z-score of 1) frontotemporoparietal, cingulate and insula volume loss, followed by

aggressive (z-score escalates from 1 to 3 in quick succession) frontal lobe volume

loss and moderate volume loss (all approaching a z-score of 2 when frontal lobe

volume loss reaches a z-score of 3) in the temporal lobe, parietal lobe, cingulate,

insula, putamen and accumbens. There is relatively less volume loss in the temporal

lobe, hippocampus, amygdala and insula in this group compared to the temporal

group.

The temporal group (Figure 7.1 B) is characterised by volume loss that be-

gins in the hippocampus and amygdala and progresses to the insula, accumbens and

temporal lobe, with relative sparing of the frontal and parietal lobe compared to the

frontal group. The pattern of volume loss in the temporal group is most aggres-

sive (z-score escalating from 1 to 3 in fastest succession) in the temporal lobe and

amygdala, but also progresses quickly in the hippocampus, insula and accumbens.

The subcortical group (Figure 7.1 C) initially have volume loss in the insula,

cerebellum, hippocampus, putamen, pallidum and thalamus, which is followed by

frontal lobe and accumbens volume loss and then temporoparietal lobe volume loss.

10-fold cross-validation of the dynamic clustering results (Supplementary Fig-

ure A.1) shows good agreement across folds.
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A. Frontal
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C. Subcortical
Stage 1 Stage 3 Stage 5 Stage 7 Stage 9 Stage 11 Stage 13 Stage 15 Stage 20 Stage 25

normal

1-sigma

2-sigma

3-sigma

1
Figure 7.1: Dynamic clustering of all mutation carriers in GENFI. Subfigures (A)-(C) show

the progression pattern of each of the three dynamic clusters estimated by the
model. The cumulative probability each region has reached a particular z-score
is shown for different stages along the progression; the cumulative probability
of a region going from a z-score of 0-sigma to 1-sigma ranges from 0 in white
to 1 in red, the cumulative probability of a region going from a z-score of 1-
sigma to 2-sigma ranges from 0 in red to 1 in magenta, and the cumulative
probability of a region going from a z-score of 2-sigma to 3-sigma ranges from
0 in magenta to 1 in blue.

7.3.1.2 Comparison with fitting a single dynamic cluster to each

mutation type

Fitting a single dynamic model to carriers of a mutation in GRN, MAPT and

C9orf72 separately (see visualisation in Figure 7.2, positional variance diagrams

and cross-validation in Supplementary Figure A.3) reveals a distinct sequence of

brain volume loss for each mutation type. The patterns of volume loss in the GRN

and MAPT groups (Figure 7.2 A and Figure 7.2 B) map well onto the frontal and

temporal patterns of volume loss recovered by dynamic clustering of all mutation

carriers (Figure 7.1 A and Figure 7.1 B). However, fitting a single model to the

C9orf72 group (Figure 7.2 C) does not map well onto the subcortical group in Fig-

ure 7.1 C. 10-fold cross-validation of the dynamic clustering results (Supplementary

Figure A.3) for each mutation group shows good agreement across folds.
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A. GRN
Stage 1 Stage 3 Stage 5 Stage 7 Stage 9 Stage 11 Stage 13 Stage 15 Stage 20 Stage 25

normal

1-sigma

2-sigma

3-sigma

B. MAPT
Stage 1 Stage 3 Stage 5 Stage 7 Stage 9 Stage 11 Stage 13 Stage 15 Stage 20 Stage 25

normal

1-sigma

2-sigma

3-sigma

C. C9orf72
Stage 1 Stage 3 Stage 5 Stage 7 Stage 9 Stage 11 Stage 13 Stage 15 Stage 20 Stage 25

normal

1-sigma

2-sigma

3-sigma

1
Figure 7.2: Fitting a single dynamic cluster to each mutation type in GENFI separately.

Subfigures (A)-(C) show the progression pattern obtained by fitting a single
dynamic cluster to each of the three mutation carrier groups separately. Dia-
grams as in Figure 7.1.

7.3.1.3 Dynamic clustering of GRN, MAPT and C9orf72 carrier

groups

I explored the hypothesis that there may be multiple phenotypes within the GRN,

MAPT and C9orf72 carriers by performing dynamic clustering on the GRN, MAPT

and C9orf72 mutation carriers respectively.

In the GRN mutation carrier group I found no evidence of there being more

than one cluster (Supplementary Figure A.4).

In the MAPT group I found that a two cluster model fitted better than a one

cluster model (see Supplementary Figures A.5, A.6 and A.7), with the first cluster

being a temporal cluster accounting for 73% of the data, in good agreement with

that in Figure 7.1 B and Figure 7.2 B, and the second cluster being a slightly fron-

totemporoparietal cluster that accounted for 27% of the data. However, the MAPT

carrier group has only 41 subjects and this cluster has high uncertainty so it is dif-

ficult to conclude much from this second cluster apart from the presence of outliers

within the MAPT carrier group.

By performing dynamic clustering of C9orf72 mutation carriers I found that

the C9orf72 group are best described by two sequences of brain volume loss (see vi-
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sualisation in Figure 7.3, positional variance diagrams and cross-validation in Sup-

plementary Figure A.8, model likelihood in Supplementary Figure A.9): the first

cluster (Figure 7.3 A) maps well onto the subcortical group recovered by dynamic

clustering of all mutation carriers (Figure 7.1 C), the second cluster (Figure 7.3 B)

has a progression pattern that begins with frontotemporoparietal, insula and hip-

pocampal volume loss, and is followed by aggressive frontal and temporal volume

loss and moderate volume loss in the cingulate, insula, putamen and accumbens,

albeit with high uncertainty in the ordering of the frontal, temporal and parietal

volume loss. 10-fold cross-validation of the dynamic clustering results (see Supple-

mentary Figure A.8) for each mutation group shows good agreement across folds.

All of the C9orf72 carriers (both affected and unaffected) that are assigned to the

subcortical cluster in Figure 7.1 C are assigned to the subcortical cluster in Figure

7.3 A.

A. Subcortical
Stage 1 Stage 3 Stage 5 Stage 7 Stage 9 Stage 11 Stage 13 Stage 15 Stage 20 Stage 25

normal

1-sigma

2-sigma

3-sigma

B. Frontotemporoparietal
Stage 1 Stage 3 Stage 5 Stage 7 Stage 9 Stage 11 Stage 13 Stage 15 Stage 20 Stage 25

normal

1-sigma

2-sigma

3-sigma

1
Figure 7.3: Dynamic clustering of C9orf72 mutation carriers. Subfigures (A)-(B) show the

progression pattern of each of the two dynamic clusters estimated by the model.
Diagrams as in Figure 7.1.

Of note is that the uncertainty in the sequence of z-score events estimated by

the positional variance diagram (Supplementary Figure A.8) encompasses the possi-

bility that the pattern of volume loss in Figure 7.3 B (see positional variance diagram

in Supplementary Figure A.8) is the same as the frontal pattern of volume loss in

Figure 7.1 A (see positional variance diagram in Supplementary Figure A.1). This

means that the cluster in Figure 7.3 B could represent a distinct frontotemporopari-

etal pattern of volume loss, or a more frontal pattern of volume loss consistent with

that in Figure 7.1 A. However, performing a post-hoc analysis of asymmetry in af-
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fected mutation carriers assigned to the frontal cluster (Figure 7.1 A) reveals that

there are significant differences between affected C9orf72 and GRN carriers as-

signed to the frontal subtype, with affected GRN carriers having significantly (two

sample t-test) more asymmetric atrophy patterns than affected C9orf72 carriers (p =

1.12× 10−5). Moreover, the asymmetry in the affected C9orf72 carriers assigned to

the frontal cluster was not significantly different (two-sample t-test) from affected

C9orf72 carriers assigned to the temporal, subcortical or normal-appearing cluster.

I performed several further post-hoc analyses to check for differences between

the two C9orf72 groups estimated in Figure 7.3. I classified subjects into fron-

totemporoparietal, subcortical or normal-appearing groups using the model shown

in Figure 7.3, as well as assigning them to a model stage along the progression pat-

tern for their cluster, which corresponds to the average number of z-score events

in the sequence that have occurred. The normal-appearing cluster contains subjects

assigned to model stage 0, which I added to the model to avoid subjects with nor-

mal appearing brain volumes having equal probability of belonging to the initial

stage of either of the two groups. I found no statistically significant differences in

age (two-sample t-test), estimated years from onset (two sample t-test), model stage

(chi-squared test), or scanner field strength (Fisher’s exact test), between affected

or unaffected C9orf72 mutation carriers assigned to the frontotemporoparietal and

subcortical atrophy patterns.

7.3.1.4 Classification of mutation type using dynamic clustering

The frontal, temporal and subcortical patterns of brain volume loss shown in Figure

7.1 can be used to classify subjects. To avoid the situation where subjects with nor-

mal appearing brain volumes have equal probability of belonging to the initial stage

of any of the three groups, I added in a normal-appearing cluster, which consists

of all subjects at stage 0 of the model. Table 7.1 shows the proportion of affected

mutation carriers assigned to each dynamic cluster using in-sample models and out-

of-sample models obtained from 10-fold cross-validation.

I found that the majority of the affected GRN and MAPT carriers are assigned

to the frontal and temporal subtypes respectively (93% of affected GRN carriers
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A.
Normal-
appearing

Frontal
(Figure 7.1 A)

Temporal
(Figure 7.1 B)

Subcortical
(Figure 7.1 C)

GRN 0% (0) 93% (13) 0% (0) 7% (1)
MAPT 0% (0) 9% (1) 91% (10) 0% (0)
C9orf72 0% (0) 46% (12) 27% (7) 27% (7)

B.
Normal-
appearing

Frontal
(Figure 7.1 A)

Temporal
(Figure 7.1 B)

Subcortical
(Figure 7.1 C)

GRN 0% (0) 93% (13) 0% (0) 7% (1)
MAPT 0% (0) 18% (2) 82% (9) 0% (0)
C9orf72 0% (0) 54% (14) 27% (7) 19% (5)

Table 7.1: Proportion of affected mutation carriers in GENFI assigned to each dynamic
cluster using (A) in-sample models, and (B) out-of-sample models obtained from
10-fold cross-validation. Each entry is the percentage (number) of subjects of a
particular mutation type assigned to that cluster.

are assigned to the frontal subtype, 91% of affected MAPT carriers are assigned to

the temporal subtype). In the affected C9orf72 mutation carriers however, I found

that the majority (46%) are assigned to the frontal subtype, with a further 27%

being assigned to each of the temporal and subcortical subtypes. In the unaffected

GRN and MAPT carriers I found that the majority (52% and 58% respectively) are

assigned to the normal-appearing group. In the unaffected C9orf72 carriers only

24% are assigned to the normal-appearing group, with 39%, 32% and 5% of the

unaffected C9orf72 carriers being assigned to the frontal, subcortical and temporal

clusters respectively.

7.3.1.5 Comparison to static clustering

I ascertained the utility of having a dynamic component to the clustering technique

by comparing the results to static clustering, i.e. estimating clusters that have a

single constant mean and standard deviation. To ensure a fair comparison between

static and dynamic clustering I included a fixed normal-appearing cluster in the

static clustering model, with a mean of 0 and a standard deviation of 1 for all

biomarkers, as I did for stage 0 of the dynamic clustering. Figure 7.4 visualises

the static clusters, Supplementary Table A.1 shows the parameter estimates for the
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static clustering, and Table 7.2 shows the proportion of affected mutation carriers

assigned to each static cluster using in-sample models and out-of-sample models

obtained from 10-fold cross-validation.

A. Severe
frontal

B. Severe
temporal

C. Mild
frontotemporal

normal

1-sigma

2-sigma

3-sigma

1Figure 7.4: Static clustering of all mutation carriers in GENFI. Subfigures (A)-(C) show
the progression pattern of each of the three static clusters estimated by static
clustering. Each static cluster consists of a single stage in which each region is
coloured according to its z-score value.

A.

Normal-
appearing

Severe
Frontal
(Figure 7.4 A)

Severe
Temporal
(Figure 7.4 B)

Mild
Frontotemporal
(Figure 7.4 C)

GRN 0% (0) 64% (9) 0% (0) 36% (5)
MAPT 0% (0) 0% (0) 82% (9) 18% (2)
C9orf72 12% (3) 15% (4) 27% (7) 46% (12)

B.

Normal-
appearing

Severe
Frontal
(Figure 7.4 A)

Severe
Temporal
(Figure 7.4 B)

Mild
Frontotemporal
(Figure 7.4 C)

GRN 0% (0) 64% (9) 0% (0) 36% (5)
MAPT 0% (0) 9% (1) 64% (7) 27% (3)
C9orf72 12% (3) 15% (4) 27% (7) 46% (12)

Table 7.2: Proportion of affected mutation carriers in GENFI assigned to each static cluster
using (A) in-sample models, and (B) out-of-sample models obtained from 10-
fold cross-validation. Each entry is the percentage (number) of subjects of a
particular mutation type assigned to that cluster.

Static clustering gives three disease clusters (Figure 7.4): a severe frontal clus-

ter, a severe temporal cluster, and a mild frontotemporal cluster. These clusters are

not dissimilar from the results of dynamic clustering. However, when I classify sub-
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jects into mutation types using static clustering, I see that the third mild frontotem-

poral cluster can represent an early stage of either the severe frontal or the severe

temporal subtype, meaning that it is more difficult to separate out the mutation types

using the static clusters. In the affected GRN and MAPT carriers, 64% and 82% of

affected carriers are assigned to the frontal and temporal clusters respectively, com-

pared with 93% and 91% for the dynamic clustering. 36% and 18% of the affected

GRN and MAPT carriers are assigned to the mild frontotemporal cluster, as the

clusters cannot separate the early stages of a frontal or temporal pattern of volume

loss from a milder, more diffuse, disease process. As with the dynamic clustering, in

the affected C9orf72 group I see heterogeneity in the cluster assignments: 46% are

assigned to the frontotemporal cluster, 15% are assigned to the frontal cluster, 27%

are assigned to the temporal cluster, and 12% are assigned to the normal-appearing

cluster. In the unaffected GRN and MAPT carriers I again find that the majority

(80% and 79% respectively) are assigned to the normal-appearing cluster. In the

unaffected C9orf72 carriers only 49% are assigned to the normal-appearing cluster,

with 49% being assigned to the frontotemporal cluster, and 2% being assigned to

the frontal cluster. Note that the high proportion of unaffected GRN and MAPT car-

riers assigned to the normal-appearing cluster can be achieved using the dynamic

clustering model if desired by simply increasing the model stage threshold that is

considered as normal-appearing. For example, assigning those with model stage

less than 5 to the normal-appearing group results in a proportion of 84% and 83%

(compared to 80% and 79% for static clustering) of the unaffected GRN and MAPT

carriers being assigned to the normal-appearing cluster, whilst still maintaining 93%

and 91% (compared to 64% and 82% for static clustering) of the affected GRN and

MAPT carriers being assigned to the frontal and temporal clusters.

7.3.2 Alzheimer’s disease

7.3.2.1 Dynamic clustering of the ADNI dataset

I applied the dynamic clustering technique to 3T data from ADNI (see visualisation

in Figure 7.5, positional variance diagrams and cross-validation in Supplementary

Figure A.10, model likelihood in Supplementary Figure A.11). I found that the 3T
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ADNI data is best described as three subtypes (Figure 7.5): a temporal subtype that

accounts for 35% of the data, a cortical subtype that accounts for 38% of the data,

and a subcortical subtype that accounts for 27% of the data. The temporal subtype in

Figure 7.5 A starts with atrophy in the hippocampus, amygdala and temporal lobe,

with these three regions also becoming more severe first. The cortical subtype in

Figure 7.5 B starts in the accumbens and cingulate and progresses to cortical regions

in the frontal, temporal, parietal and occipital lobes. The cortical subtype then goes

on to affect the hippocampus, amygdala and putamen, with atrophy in the parietal

and temporal lobe atrophy becoming more severe. The subcortical subtype in Figure

7.5 C begins with atrophy in the pallidum, accumbens and putamen, which goes on

to affect the hippocampus and amygdala, and then progresses to the temporal lobe.

10-fold cross-validation of the results (Supplementary Figure A.10) shows good

agreement across folds. For further validation I repeated the analysis on 1.5T data

from ADNI (see Supplementary Figures A.12, A.13 and A.14). Dynamic clustering

revealed 4 clusters in the 1.5T dataset, including temporal, cortical and subcortical

clusters in good agreement with the 3T data, but also a fourth parietal cluster that

accounted for 4% of the data, which is not seen in any of the 3T cluster models.

The main characteristic of the parietal cluster was aggressive parietal lobe atrophy,

but also severe, but slightly less aggressive, frontal, temporal, and occipital lobe

atrophy.

7.3.2.2 Association with conversion from mild cognitive impair-

ment to Alzheimer’s disease

I tested if model stage and subtype were associated with increased risk of conversion

from MCI to AD by fitting a Cox proportional hazards model with time of AD

diagnosis as the time to event data, and controlling for age, sex, education and

number of APOE4 alleles. Time to event data for subjects who did not convert was

considered censored at their last available diagnosis. I found statistically significant

associations (Table 7.3) between the risk of conversion from MCI to AD and model

stage (p = 2.34 × 10−6), subtype (p = 1.09 × 10−5), and number of APOE4 alleles

(p = 7.65 × 10−5) for the 3T dataset. These findings were reproducible in the 1.5T
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Stage 1 Stage 3 Stage 5 Stage 7 Stage 9 Stage 11 Stage 13 Stage 15 Stage 20 Stage 25

normal

1-sigma

2-sigma

3-sigma

B. Cortical
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normal
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3-sigma

C. Subcortical
Stage 1 Stage 3 Stage 5 Stage 7 Stage 9 Stage 11 Stage 13 Stage 15 Stage 20 Stage 25
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1-sigma

2-sigma

3-sigma

1
Figure 7.5: Dynamic clustering of 3T ADNI dataset. Subfigures (A)-(C) show the pro-

gression pattern of each of the three dynamic clusters estimated by the model.
Diagrams as in Figure 7.1. The cerebellum was not included as a region in the
ADNI analysis and so is shaded in dark grey.

dataset, where I again found statistically significant associations between the risk of

conversion from MCI to AD and model stage (p = 1.53 × 10−5), subtype (p = 6.94

× 10−3), and number of APOE4 alleles (p = 1.07 × 10−3). In both datasets I find

that the temporal subtype is associated with the fastest conversion times, followed

by the cortical, and then the subcortical subtype.

7.3.2.3 Association with decline in cognitive test scores

I tested if model stage and subtype were associated with faster decline in MMSE

score in AD subjects by fitting a linear model predicting decline in MMSE from sub-

type, model stage, MMSE at baseline, age, sex, education and number of APOE4

alleles. I estimated decline in MMSE by fitting a linear model to each individual’s

longitudinal MMSE scores. I found no statistically significant associations with

MMSE decline in the 3T dataset, however in the 1.5T dataset, which has longer

follow-up, I found statistically significant associations between decline in MMSE

and subtype (p = 1.40 × 10−5), model stage (p = 7.19 × 10−3) and age (p = 2.86

× 10−2). Across both the 1.5T and the 3T datasets the average rate of MMSE de-

cline was fastest in the cortical group, followed by the temporal group, and then the

subcortical group.
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Model cluster Model stage Age Sex Education APOE4
N-S-C-T 1.60‡ 1.10‡ 0.98 0.97 0.93 1.76‡

N-S 1.50 1.10∗ 1.02 1.53 0.86 1.91∗

S-C 1.68 1.10∗∗ 0.95 1.12 0.94 1.63∗

C-T 1.67∗ 1.10† 0.97 0.81 0.95 1.78†

N-C 3.58∗∗ 1.06 0.98 0.80 1.02 1.85∗∗

S-T 2.15∗ 1.12‡ 1.00 1.12 0.85∗∗ 1.80∗∗

N-T 2.90∗ 1.12† 1.02 0.86 0.92 1.97†

Table 7.3: Hazards ratios for risk of conversion from MCI to AD in ADNI 3T dataset. Each
row shows a different Cox proportional hazards model. For the first model (N-
S-C-T) it is assumed that the hazard ratio increases multiplicatively from the
Normal Appearing cluster (N) to the Subcortical cluster (S) to the Cortical clus-
ter (C) to the Temporal cluster (T), i.e. the N-S-C-T model predicts that each
cluster has a hazards ratio 1.60 times that of the previous cluster. In the remain-
ing models only two groups are compared at a time to remove the assumption
that there is the same multiplicative increase between each consecutive cluster.
Each column shows the estimated hazard ratio for that variable. Statistical sig-
nificance is indicated as: ∗ = p < 0.05, ∗∗ = p < 0.01, † = p < 1 ×10−3, ‡ = p <
1 ×10−4.

7.4 Discussion

I have demonstrated the use of a data-driven model to uncover disease subtypes

with distinct patterns of biomarker evolution in genetic FTD and AD. I have shown

the ability of the model to recover genetic subgroups of FTD without prior knowl-

edge of their mutation type. The model provides good separation of GRN and

MAPT groups, however, in the C9orf72 group the model predicts that there are two

population subgroups with distinct progression patterns. This result provides new

insights into the disease mechanisms related to the C9orf72 mutation. In AD, the

model predicts that there are three population subgroups with distinct progression

patterns: a temporal pattern, a cortical pattern and a subcortical pattern. Moreover,

I found that these subgroups had distinct characteristics at longitudinal follow-up,

with the temporal subtype being associated with the fastest conversion from MCI

to AD, and the cortical group being associated with the fastest decline in cognitive

test scores.
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7.4.1 Genetic frontotemporal dementia

7.4.1.1 Dynamic clustering of all mutation carriers

Performing dynamic clustering of all mutation carriers reveals that there are three

distinct patterns of volume loss: a frontal pattern, a temporal pattern and a sub-

cortical pattern (Figure 7.1). Comparing these clusters to the clusters obtained by

fitting a single dynamic cluster to each of the mutation types separately (Figure 7.2)

shows that the model can recover the frontal pattern of the GRN group (Figure 7.1

A similar to Figure 7.2 A) and the temporal pattern of the MAPT group (Figure 7.1

B similar to Figure 7.2 B).

In the C9orf72 group as a whole, however, the progression pattern does not

align well with the third subcortical cluster predicted by the model (Figure 7.1 C

different to Figure 7.2 C). Performing dynamic clustering of each of the mutation

carrier groups individually provides insight into the problem by revealing that the

C9orf72 group are in fact best modelled by two clusters (Figure 7.3): one with a

subcortical pattern and one with a frontotemporoparietal pattern. The subcortical

pattern in Figure 7.3 A is in agreement with the subcortical pattern found in all

mutation carriers in Figure 7.1 C.

There is still one cluster that is not recovered by the model: the frontotem-

poroparietal pattern in Figure 7.3 B. This is likely because the frontotemporoparietal

cluster (Figure 7.3 B) is similar to the frontal cluster (Figure 7.1 A), and so does not

improve the model likelihood enough for inclusion in the model. This hypothesis is

supported by the fact that increasing the number of clusters from three to four leads

to the addition of a frontotemporoparietal cluster (data not shown). The hypothesis

is further supported by previous findings, which have shown that the differences be-

tween the neuroimaging signatures of C9orf72 carriers and GRN carriers are small

when asymmetry is not taken into account [179], although previous work has only

considered the C9orf72 group as a whole, rather than as two groups with distinct

progression patterns. It has been shown that GRN mutation carriers have highly

asymmetric atrophy patterns in comparison to C9orf72 mutation carriers. Including

a measure of asymmetry would therefore likely improve the model’s ability to sepa-
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rate the frontal cluster (Figure 7.1 A) and the frontotemporoparietal cluster (Figure

7.3 B).

7.4.1.2 Dynamic clustering of GRN mutation carriers

I found that the GRN mutation carriers are best modelled by a single progression

pattern: the frontal pattern shown in Figures 7.1 A and 7.2 A. This result is in agree-

ment with previous studies, which have found that GRN mutations are associated

with the most severe frontal and parietal lobe atrophy [179], with relative sparing of

the medial temporal lobe.

7.4.1.3 Dynamic clustering of MAPT mutation carriers

The general pattern of atrophy in the MAPT carriers (Figures 7.1 B and 7.2 B) is

in agreement with previous findings, showing severe temporal lobe atrophy, with

relative sparing of the frontal and parietal lobes [179]. By performing dynamic

clustering of the MAPT mutation carriers, I found that the MAPT group are best

modelled as two groups with distinct progression patterns (Supplementary Figures

A.5 and A.6), with 73% of the MAPT carriers following a temporal progression pat-

tern (which shows good correspondence with the general pattern of atrophy shown

in Figures 7.1 B and 7.2 B), and 26% following a frontotemporoparietal pattern,

somewhat similar to that of the C9orf72 subgroup in Figure 7.3 B, but with very

high uncertainty (Supplementary Figure A.6 B). This uncertainty is likely due to

the small number of MAPT carriers (35, of which 24 are unaffected and 11 are

affected), but could also represent variation in the alternative progression pattern.

Whilst this result does suggest that there is heterogeneity within the MAPT group,

the uncertainty is too high to make any conclusions about the ordering within the

second MAPT subgroup.

7.4.1.4 Dynamic clustering of C9orf72 mutation carriers

In the C9orf72 group I found that there are two distinct progression patterns (Fig-

ure 7.3): a subcortical pattern and a frontotemporoparietal pattern. This result is

well aligned with previous work, which suggests that the C9orf72 mutation carri-

ers are the most heterogeneous [179, 189], but in contrast to previous work I am
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able to characterise this heterogeneity as two distinct progression patterns. The

subcortical progression pattern (Figure 7.3 A) is unique to the C9orf72 group, and

resembles previous findings, which have shown significant subcortical involvement

in C9orf72 mutation carriers [189]. The frontotemporoparietal pattern (Figure 7.3

B) is similar to the progression pattern of the GRN group (Figure 7.2 A), which is

interesting as previous studies have shown that it is difficult to differentiate between

C9orf72 and GRN mutation carriers [179, 189] without accounting for asymmetry.

A post-hoc analysis of asymmetry revealed that the GRN group had significantly

more asymmetric atrophy than the C9orf72 mutation carriers that were assigned to

the frontotemporoparietal pattern. This finding suggests that although the affected

regions are similar, the underlying mechanisms in the GRN and C9orf72 groups are

different, with the mechanism in the GRN mutation carriers preferentially affecting

one side of the brain.

7.4.1.5 Classification of mutation type using dynamic clustering

I demonstrated that the model can differentiate between the GRN and MAPT mu-

tation groups (Table 7.1), with 93% of affected GRN carriers being assigned to the

frontal subtype (Figure 7.1 A) and 91% of affected MAPT carriers being assigned to

the temporal subtype (Figure 7.1 B). In the affected C9orf72 mutation carriers how-

ever, I found that the majority (46%) of participants were assigned to the frontal

pattern in Figure 7.1 A, with a further 27% being assigned to the temporal pat-

tern (Figure 7.1 B), and 27% to the subcortical pattern (Figure 7.1 C). Including a

measure of asymmetry would improve the ability to differentiate between the GRN

mutation carriers and the subset of the C9orf72 mutation carriers that are assigned

to the frontal pattern of volume loss in Figure 7.1 A.

7.4.1.6 Comparison to static clustering

I compared the dynamic clustering model to a standard ‘static’ clustering model,

in which each cluster constitutes a static biomarker profile, rather than a temporal

progression pattern. Compared to static clustering, dynamic clustering provides a

much more detailed picture of disease progression, and better separates the differ-

ent genetic frontotemporal dementia subtypes. This is because dynamic clustering
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is able to separate disease subtypes from disease stages, whereas static clustering

produces clusters that are a mixture of disease subtypes and disease stages.

7.4.2 Alzheimer’s disease

7.4.2.1 Dynamic clustering of ADNI dataset

Dynamic clustering of the ADNI dataset reveals that there are three clusters with

distinct patterns of biomarker evolution: a temporal, a cortical and a subcortical

pattern. These clusters are seen in both the 1.5T and the 3T datasets. These three

clusters are somewhat in agreement with previous neuropathological findings [27],

which have defined three subtypes of AD based on the distribution of neurofibril-

lary tangles: typical, hippocampal-sparing and limbic-predominant. The temporal

cluster (Figure 7.5 A and Supplementary Figure A.12 A) resembles the pattern of

atrophy seen in typical AD; the cortical cluster (Figure 7.5 B and Supplementary

Figure A.12 B) is similar to hippocampal-sparing AD; the subcortical cluster re-

flects the atrophy pattern of limbic-predominant AD (Figure 7.5 C and Supplemen-

tary Figure A.12 C). These three distinct patterns of atrophy have been shown on

MRI previously [154, 190], both when groups are defined pathologically [154], or

in a more data-driven manner [190].

In contrast to previous studies, I am able to characterise the earliest sites of

regional volume loss for each subgroup. I find that regional volume loss in the

temporal group (typical AD, Figure 7.5 A and Supplementary Figure A.12 A) is first

detectable in the hippocampus and amygdala, whereas regional volume loss in the

cortical group (hippocampal-sparing AD, Figure 7.5 B and Supplementary Figure

A.12 B) is first detectable in the insula and cingulate, and regional volume loss in

the subcortical group (limbic-predominant AD, Figure 7.5 C and Supplementary

Figure A.12 C) is first detectable in the pallidum and putamen.

When using the 3T data I additionally found that the accumbens area is impli-

cated as one of the earliest detectable sites of regional volume loss in the cortical

and subcortical groups, which I did not find in the 1.5T data. This might be because

small areas, such as the accumbens, are more visible in the 3T data, but this result

requires further validation.
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In the 1.5T dataset I found an additional cluster with a parietal atrophy pat-

tern, accounting for 4% of the data. This cluster may represent outliers who have

posterior cortical atrophy, which is an atypical variant of AD that causes atrophy of

the posterior part of the cerebral cortex, leading to progressive disruption of visual

processing. Parietal atrophy patterns were also found as a possible fourth cluster by

the study of Zhang et al. [190], although their study found that optimal model of

sporadic AD consisted of three clusters.

7.4.2.2 Association with conversion from mild cognitive impair-

ment to Alzheimer’s disease

I found that each of the dynamic clusters of AD was associated with different pa-

tient outcomes. I found significant associations between the risk of conversion from

MCI to AD and subtype in both the 3T and 1.5T datasets. Moreover, I also found

significant associations with model stage and risk of conversion, meaning that the

staging and subtyping information provided by the model could provide comple-

mentary information for both patient staging and stratification.

7.4.2.3 Association with decline in cognitive test scores

In the 1.5T dataset, I found statistically significant associations between decline in

MMSE and subtype (p = 1.40 × 10−5), model stage (p = 7.19 × 10−3) and age

(p = 2.86 × 10−2). Across both the 1.5T and the 3T datasets the average rate of

MMSE decline was fastest in the cortical group, followed by the temporal group,

and then the subcortical group. These results are in agreement with the study of

Zhang et al. [190], which also found that cortical atrophy patterns are associated

with the fastest decline in MMSE score, followed by temporal atrophy patterns and

then subcortical atrophy patterns.

7.5 Conclusion
I have developed a dynamic clustering model that characterises disease subtypes

with distinct biomarker trajectories (contribution 1.3.3 (a), Chapter 1, page 41). I

have demonstrated the ability of the model to recover known genetic subgroups of
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FTD without prior knowledge of their mutation type for GRN and MAPT mutation

carriers (contribution 1.3.3 (b), Chapter 1, page 41). The model further provides

new insights into heterogeneity in the C9orf72 mutation carrier group by revealing

that this group are best modelled by two disease progression patterns: a subcorti-

cal pattern and a frontotemporoparietal pattern. In AD, dynamic clustering predicts

there are three longitudinal patterns of atrophy: temporal, cortical and subcorti-

cal (contribution 1.3.3 (c), Chapter 1, page 41). I further demonstrated that these

patterns are associated with distinct characteristics at longitudinal follow-up. The

dynamic clustering model presented here has wide potential further applications:

for characterising heterogeneity in other diseases, and as a patient staging and strat-

ification mechanism for precision medicine.





Chapter 8

Further work

8.1 Overview
This chapter discusses three broad areas of opportunity for future work: (1) further

applications of the models developed in this thesis; (2) opportunities for technologi-

cal enhancement of the models presented in this thesis; (3) methodological advances

that can be made in the wider spectrum of data-driven models.

8.2 Further applications

8.2.1 Application in neurodegenerative diseases

There are numerous opportunities for further application of the models developed

in this thesis in various neurodegenerative diseases.

8.2.1.1 Alzheimer’s disease

In AD, this thesis has explored the sequence of biomarker changes in both the spo-

radic and dominantly-inherited disease forms. Chapter 3 investigated the sequence

in which a multi-modal set of biomarkers become abnormal in sporadic AD. Chap-

ter 4 performed a similar study using dominantly-inherited AD biomarker data.

Chapter 7 examined the heterogeneity of biomarker trajectories of regional volume

loss in sporadic AD.

The model developed in Chapter 7 was only applied to volumetric MRI data

here. In future it will be interesting to characterise the heterogeneity in the sequence

of biomarker changes for a more multi-modal set of biomarkers that includes CSF
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measures, PIB-PET, FDG-PET, and cognitive test scores. Of particular interest

is the inclusion of cognitive test scores as the subtypes found in Chapter 7 were

shown to have different rates of decline in cognitive test scores. The incorporation

of subscales that measure more specific types of cognitive deficits will determine

whether there are observable differences in the sequence in which different areas of

cognition decline for each subtype.

In Chapter 4 I observed that there were subtle differences in the sequence

of biomarker abnormality in dominantly-inherited AD for different mutation types

(APP vs. PSEN1 and PSEN2) and genetic subgroups (APOE4 positive vs. APOE4

negative). Application of the dynamic clustering model developed in Chapter 7 will

determine whether the dominantly-inherited AD data is better described by multi-

ple trajectories. If so, it will be interesting to see whether the optimal clustering of

dominantly-inherited AD biomarker trajectories corresponds to different mutation

types or genetic subgroups, or whether the relationship is more nuanced.

8.2.1.2 Frontotemporal dementia

In Chapter 7 I developed a dynamic clustering model that finds population sub-

groups with distinct sequences of biomarker changes. Application of the model

to genetic frontotemporal dementia (FTD) revealed that the participants carrying a

C9orf72 mutation are best described by two patterns of regional MRI volume loss:

a subcortical and a frontotemporoparietal pattern.

Further analysis of the C9orf72 group including a more multi-modal set of

biomarker data will provide interesting insights into the underlying disease biology

of these two observed patterns. Of particular interest is the inclusion of neuropsy-

chological test scores and subscales. It is thought that subcortical involvement in the

C9orf72 group causes the neuropsychiatric symptoms that a subset of the C9orf72

mutation carriers present with [189]. A subset of C9orf72 mutation carriers present

with behavioural variant FTD [189]; this group may be better aligned with the fron-

totemporoparietal pattern of volume loss.

Another opportunity for future work is the clustering of sporadic FTD, in

which patients exhibit different patterns of presentation, to uncover data-driven sub-
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groups with distinct patterns of biomarker changes. These data-driven sporadic FTD

subgroups can then be compared with the genetic subgroups established in Chapter

7.

8.2.1.3 Other neurodegenerative diseases

The models proposed in this thesis are equally applicable to other neurodegenerative

diseases. Determining the sequence of biomarker changes in other neurodegenera-

tive diseases, such as Parkinson’s disease, Huntington’s disease, amytrophic lateral

sclerocis, vascular dementia and posterior cortical atrophy will allow a direct com-

parison of the progression of the different diseases and produce a set of models that

can potentially be used for differential diagnosis.

8.2.2 Application to other diseases or processes

The models developed in this thesis potentially generalise to a wider range of

diseases and processes. Examples include chronic obstructive pulmonary disease

(COPD), cancer, multiple sclerosis, normal ageing and developmental processes.

Different diseases can present specific methodological challenges however, for ex-

ample in multiple sclerosis there are both destructive and healing processes, which

violates the assumption typically made by data-driven models of monotonic pro-

gression patterns.

8.3 Methodological developments of the models pre-

sented in this thesis
This section discusses methodological developments that are more specific to the

models presented in this thesis.

8.3.1 Event distributions

All of the models presented here depend on the definition of a distribution of ‘nor-

mal’, and, in the case of the event-based models (EBMs) developed in Chapters 3, 4

and 6, ‘abnormal’ measurements. However, often the exact definition of these dis-

tributions is unclear. For example, the control population may have small numbers

or contain outliers, or it may be difficult to decide what constitutes ‘abnormal’, par-
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ticularly for biomarkers that change slowly over time, which are not well described

as a binary transition from ‘normal’ to ‘abnormal’. Future work will explore mod-

elling the uncertainty in these distributions to establish the effect of the choice of

event distribution parameters on the resulting models of biomarker evolution. An-

other key area for further development is the incorporation of non-gaussian event

distributions, this is particularly important for cognitive tests, which are typically

discrete measures.

8.3.2 Partial sequences

The models presented in this thesis assume that all biomarker events in the sequence

occur. In the case of the EBMs developed in Chapters 3, 4 and 6 this is particularly

problematic as when a biomarker has no signal the distribution of ‘normal’ and ‘ab-

normal’ measurements may overlap. This can lead to the corresponding event erro-

neously appearing early in the sequence. Development of models with partial event

sequences could resolve this problem. In such a model only biomarkers that are

better modelled as two distributions: ‘normal’ and ‘abnormal’ would be included as

events.

With the z-score model developed in Chapter 7 this problem is resolved as

the disease group will have a similar distribution of z-scores to the control group,

and therefore no change in z-score will be observed. However, it is still desirable

to develop models that do not assume all biomarker events occur in order to find

the most parsimonious model of disease progression. In the case of fitting multiple

biomarker trajectories for example, it may be that a specific sub-population, for ex-

ample a set of misdiagnosed patients, is only observed early in the disease because

later in the disease it is easier to filter out those who have been misdiagnosed. In

this case it would be nicer to be able to truncate the set of biomarker events, rather

than assuming that the other events will occur eventually.

8.3.3 Time

A more fundamental limitation of the models proposed in this thesis is that they do

not incorporate time: they are temporal in the sense that the events happen in an
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order, but there is no notion of event duration. In some cases this is desirable as

it allows the models to be fitted to purely cross-sectional datasets, but the majority

of datasets do have some short-term follow-up time points available. When longi-

tudinal follow-up is available it should be possible to determine how long it takes

for each biomarker to transition from one state to the next by observing patients in

which this transition occurs. Future work will develop a mathematical formulation

of this idea to allow the time between each transition to be determined.

8.3.4 Missing data

In Chapter 4 a simple adaptation of the EBM for use with missing data was devel-

oped. This adaptation was based upon the assumption that the data is missing at

random and is not applicable to the z-score models developed in Chapter 7. Fu-

ture work will develop more advanced techniques for handling missing data that

alleviate this assumption, for example using data imputation strategies.

8.3.5 High-dimensional biomarkers

In their current form the proposed models take as input scalar biomarker values.

This means that complex high-dimensional biomarkers, such as those from imaging,

have to be pre-processed to derive scalar measurements, such as regional volumes.

Extension of the models for use with high-dimensional biomarkers would alleviate

this problem and further provide much more spatially detailed pictures of disease

progression. There are two major methodological barriers to developing such a

model. The first is the combinatorial complexity of the problem. The models work

by searching for a sequence of biomarker changes, the space of possible sequences

is N!, where N is the number of biomarker changes being modelled. This com-

plexity becomes intractable for high-dimensional biomarkers. Future work might

develop techniques that reduce the dimensionality of this search space. The second

problem is that high-dimensional biomarkers often have complex correlation struc-

tures that are not modelled here. The recent work of Bilgel et al. [133] proposed a

set of correlation structures for images, which it may be possible to incorporate into

the models.
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8.3.6 Within-subject models

The models developed in this thesis compare biomarker measurements cross-

sectionally between subjects. In order to develop models that are optimal for ap-

plication to longitudinal within-subject data, further adaptations of the models will

need to be made that can estimate intra-subject variability in biomarker measure-

ments.

8.4 Broader technical advances
In this section I discuss technical advances that can be made to a broader range of

data-driven models.

8.4.1 Mixed pathology

Data-driven models to date have modelled a single disease process, or a set of in-

dividual disease processes, where each patient belongs to a single disease. How-

ever, neuropathological studies show that the majority of dementia cases have mixed

pathology. Models that can disentangle different pathological processes therefore

present an interesting opportunity for further methodological development.

8.4.2 Integration of data-driven and mechanistic models

There are several types of mechanistic model that have provided interesting insights

into neurodegenerative disease progression but depend on a priori disease staging

information. Future work could integrate these models with data-driven statistical

methodology to remove their reliance on a priori knowledge of disease stage. This

will allow more complex disease progression patterns to be recovered.

Network models describe disease progression as evolving along structural or

functional networks, starting from a particular region. To infer the region from

which the disease process is initiated, they compare the patterns of atrophy pre-

dicted by network models with different starting regions to the pattern of atrophy

seen in AD [125]. The choice of starting region is therefore dependent only on

how well the network model aligns with a coarse end stage pattern of atrophy, and

more complex disease mechanisms cannot be estimated. Using data-driven mod-
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els, more detailed pictures of disease progression can be recovered for the full dis-

ease time course. Incorporating these data-driven progression patterns into network

modelling approaches could allow more complex models to be fitted. For example,

current network models are typically based on the prion hypothesis, which posits

that disease proteins are physically transmitted between neurons. The alternative

hypothesis is that of selective vulnerability: that some regions are more vulnerable

to disease pathology than others. It has been proposed that there may be a com-

bination of these processes in operation [54]. Data-driven network models may

be able to determine whether one or both of these processes better models disease

progression patterns.

Spatiotemporal models describe the spatial as well as the temporal evolution of

disease progression. However, these models are dependent on a priori knowledge

of disease stage and so their temporal resolution is coarse. The development of

data-driven spatiotemporal models offers the possibility of combining the detailed

spatial pictures of disease progression recovered by spatiotemporal models with the

fine-grained temporal resolution of data-driven models.

8.4.3 Dimensionality reduction

Another potential development of data-driven models is the inclusion of dimension-

ality reduction techniques to take complex data types, such as images, and extract

key information relevant to disease progression at each stage. Sparse learning tech-

niques, for example, could be used to choose a subset of voxels of an MRI image

that are the most sensitive to disease progression at each stage. A particular ad-

vantage of combining sparse learning techniques with data-driven models would

be that at any point in time you could model only the voxels that were relevant to

that particular stage. For example, brain regions that become abnormal late in the

disease would only be modelled at the late disease stages.

8.4.4 Incorporating additional data types

To date, data-driven models have largely considered biomarker measurements

alone. The incorporation of additional data types such as genetics, demographic
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information, lifestyle factors or medical records can potentially make the models

more powerful. Such measurements might be used to reduce heterogeneity in the

biomarker measurements, thereby increasing the power for detecting disease pathol-

ogy compared to a control population. For instance, it has been shown that common

genetic variants have specific influences on the volume of subcortical brain struc-

tures [191]. By having a model of the expected volume of different brain structures

based on a subjects genetic profile, it may be possible to detect more subtle disease-

related changes in volume. Additional data types could also be used to provide

supporting information for a particular diagnosis or staging assignment, for exam-

ple medical records may be indicative of an increased risk for a particular disease.

8.4.5 Validation

The simulation system presented in Chapter 5 provides a basic framework for gener-

ating synthetic data to validate data-driven disease progression models. This frame-

work is used to test the robustness of two data-driven models: the EBM and a

differential equation model. Future work will compare a larger range of data-driven

models, and develop more complex simulation systems that can simulate MRI scans

to validate high-dimensional models. Another important aspect of the validation of

data-driven models is testing their reproducibility, and determining whether they

can be translated for use in new datasets.

8.4.6 Patient staging systems

A promising outcome of data-driven models is the natural patient staging system

they provide: subjects can be matched to their most probable point along the dis-

ease trajectory according to their biomarker measurements. However, these models

are not specifically optimised for patient staging. Further work will explore the de-

velopment of data-driven models that are designed to make optimal patient staging

and diagnostic decisions. There are several open problems in this area. One aspect

is biomarker utility (discussed in detail in the subsequent subsection), i.e. determin-

ing the most useful set of measurements to take in order to make a particular staging

or diagnostic decision. Another aspect is designing an intuitive staging system for
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clinical practice: a rich continuous model may provide more information than is

necessary, for example, confusing the diagnostic process.

8.4.7 Biomarker utility

Complex models can provide biological insights by integrating information from

multimodal biomarkers to build up a detailed picture of the progression of differ-

ent pathologies in relation to one another. For application of a biomarker in clinic

however, the cost of taking different types of measurement needs to be considered.

To date there has been relatively little work on optimising the set of measurements

that are made to inform a particular clinical decision. Data-driven models can pro-

vide a basis on which such an optimisation can be performed. For example, the

fine-grained quantitative models of biomarker evolution generated using data-driven

models can be used to determine the sensitivity of various biomarkers for measuring

changes in disease stage at a particular point along the disease time course. New

mathematical models of biomarker utility can be developed that weight this sensi-

tivity against the cost of acquiring each measurement to decide which biomarker,

or set of biomarkers, is optimal. Similar technical developments can be made that

inform differential diagnosis.

8.5 Summary
The models proposed in this thesis have wide potential application to a range of

diseases and developmental processes. There are several possible methodological

enhancements to the models presented here, of particular interest are the incorpora-

tion of time measures and extension to high dimensional biomarkers. Data-driven

models in general are an emerging technology with a broad range of opportunities

for further work, such as the incorporation of additional data types, optimal design

of patient staging systems, and determination of biomarker utility.





Chapter 9

Summary and conclusion

9.1 Chapter 1. Introduction

AD is a progressive neurodegenerative disorder that is characterised by the accu-

mulation of amyloid plaques and neurofibrillary tangles in brain tissue. These

pathologies are thought to give rise to downstream neurodegeneration and cogni-

tive deficits, however the biological mechanisms of AD are not well understood.

Biomarkers have been developed to allow the pathologies of AD to be monitored in

vivo. These biomarkers include CSF measures of Aβ1−42, phosphorylated tau and

total tau, volumetric MRI measures of neurodegeneration and cognitive test scores.

Understanding the quantitative evolution of biomarkers in AD is key to provid-

ing precision medicine, which will enable more effective clinical trials, as well as

personalised treatment plans once disease-modifying drugs are available. In clin-

ical trials, quantitative models of biomarker progression can be used to identify

and monitor the presymptomatic disease stages, during which treatments may be

more effective. Additionally, a quantitative picture of biomarker progression can

provide insights into the underlying disease biology by, for example, indicating

which is the initiating disease pathology, or elucidating interactions between differ-

ent pathogenic processes. However, reconstructing a detailed quantitative picture of

biomarker progression in AD is difficult due to the coarse disease staging measures,

which typically consist of just three stages, and the long disease time course, which

is thought to span several decades.
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This thesis developed data-driven models of biomarker progression that char-

acterise the quantitative evolution of biomarker measurements without reliance on

a priori knowledge of disease stage. The models developed in this thesis provide

a fine-grained picture of biomarker evolution, and have clinical utility for patient

staging.

9.2 Chapter 2. State of the art in Alzheimer’s disease

progression modelling
Various different progression models have been applied to AD. Neuropathological

models and animal models provide interesting biological insights but do not directly

provide quantitative measures of disease stage, limiting their utility for patient stag-

ing and monitoring. Biomarker models have been developed to allow subjects to

be monitored in vivo. Scalar biomarker models combine information from multi-

ple single dimensional biomarkers. These models are highly relevant clinically as

they integrate measurements from well established biomarkers, however their de-

pendence on a priori knowledge of disease stage limits their temporal resolution.

High dimensional models learn new biomarkers from complex data types, such as

images, but still require subjects to be indexed by disease stage. Data-driven mod-

els [99] develop novel statistical methodology to allow the temporal progression of

biomarkers to be reconstructed without prior knowledge of each individual’s posi-

tion along the disease time course. Such models can recover more detailed disease

progression patterns for fine-grained patient staging. However, data-driven mod-

els are still an emerging technology, and require further validation and refinement

before they are translated into a useful clinical tool.

9.3 Chapter 3. A data-driven model of biomarker

changes in sporadic Alzheimer’s disease
In this chapter I demonstrated the use of a probabilistic generative model to explore

the biomarker changes occurring as AD develops and progresses [134]. I enhanced

the event-based model (EBM) [98] for use with a multi-modal sporadic disease data
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set (contribution 1.3.1 (a), Chapter 1, page 39). This allowed the sequence in which

AD biomarkers become abnormal to be determined without reliance on a-priori

clinical diagnostic information or explicit biomarker cut points. The model also

characterises the uncertainty in the ordering and provides a natural patient staging

system.

I used the EBM to determine the sequence of biomarker abnormality and its

uncertainty in various population subgroups from the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) (contribution 1.3.1 (b), Chapter 1, page 39). I used

patient stages assigned by the EBM to discriminate CN from AD subjects, and pre-

dict conversion from MCI to AD and CN to MCI.

The model predicted that CSF levels become abnormal first, followed by rates

of atrophy, then cognitive test scores, and finally regional brain volumes. In amyloid

positive or APOE4 positive subjects, the model predicted with high confidence that

the CSF biomarkers become abnormal in a distinct sequence: Aβ1−42, p-tau, t-tau.

However, in the broader population t-tau and p-tau were found to be earlier CSF

markers than Aβ1−42, albeit with more uncertainty. The model’s staging system

strongly separated CN and AD subjects, and predicted conversion from MCI to

AD, and from CN to MCI. By fitting Cox Proportional Hazards models, I found

that baseline model stage was a significant risk factor for conversion from both

MCI to AD and CN to MCI.

The results support hypothetical models of biomarker ordering in amyloid pos-

itive and APOE4 positive subjects, but suggest that biomarker ordering in the wider

population may diverge from this sequence. The model provides useful disease

staging information across the full spectrum of disease progression, from CN to

MCI to AD.



186 Chapter 9. Summary and conclusion

9.4 Chapter 4. A data-driven model of biomarker

changes in dominantly-inherited Alzheimer’s dis-

ease
This chapter explored the sequence in which biomarker changes occur in

dominantly-inherited AD. The EBM [98] was enhanced for use with missing data

(contribution 1.3.1 (c), Chapter 1, page 39), facilitating its application to a multi-

modal dominantly-inherited AD dataset from the Dominantly Inherited Alzheimer

Network (DIAN) study.

I estimated the sequence of biomarker abnormality for various population sub-

groups of the DIAN study (contribution 1.3.1 (d), Chapter 1, page 39). I found

that the sequence of biomarker abnormality for all mutation carriers broadly agrees

with previous work: PIB-PET deposition becomes abnormal first, followed by CSF

levels, and then regional volumetric MRI measures, cognitive test scores and FDG-

PET hypometabolism. In comparison to previous work, the sequence estimated

by the EBM does not depend on familial age of onset and provides more detailed

progression patterns than have been seen previously. Although based on small num-

bers, the results for the population subgroups suggest minor subtle differences in the

ordering for different genetic groups. In particular, CSF Aβ1−42 becomes abnormal

before CSF tau in the APP mutation carriers and APOE4-positive group, with the

reverse for the PSEN1 and PSEN2 mutation carriers and APOE4-negative group.

I further demonstrated the utility of the EBM for patient staging in dominantly-

inherited AD: the model separated non-carriers from affected mutation carriers with

a high classification accuracy and showed good longitudinal consistency at follow-

up.

9.5 Chapter 5. A simulation system for biomarker

evolution in neurodegenerative disease
In this chapter I presented a framework for simulating cross-sectional or longitu-

dinal biomarker data sets from neurodegenerative disease cohorts that reflect the
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temporal evolution of the disease and population diversity [167] (contribution 1.3.2

(a), Chapter 1, page 40). The simulation system provides a mechanism for eval-

uating the performance of data-driven models of disease progression, which bring

together biomarker measurements from large cross-sectional (or short term longitu-

dinal) cohorts to recover the average population-wide dynamics.

I demonstrated the use of the simulation framework in two different ways (con-

tribution 1.3.2 (b), Chapter 1, page 40). First, to evaluate the performance of the

EBM for recovering biomarker abnormality orderings from cross-sectional datasets.

Second, to evaluate the performance of a differential equation model (DEM) for re-

covering biomarker abnormality trajectories from short-term longitudinal datasets.

The results highlighted several important considerations when applying data-

driven models to sporadic disease datasets as well as key areas for future work. The

system revealed several important insights into the behaviour of each model. For

example, the EBM is robust to noise on the underlying biomarker trajectory param-

eters, under-sampling of the underlying disease time course and outliers who follow

alternative event sequences. However, the EBM is sensitive to accurate estimation

of the distribution of normal and abnormal biomarker measurements. In contrast, I

found that the DEM is sensitive to noise on the biomarker trajectory parameters, re-

sulting in an over estimation of the time taken for biomarker trajectories to go from

normal to abnormal. This over estimate is approximately twice as long as the actual

transition time of the trajectory for the expected noise level in neurodegenerative

disease datasets.

This simulation framework is equally applicable to a range of other models and

longitudinal analysis techniques.

9.6 Chapter 6. Multiple orderings of events in dis-

ease progression
The EBM [98] relies on the assumption that all subjects follow a single event se-

quence. This is a major simplification for sporadic disease data sets, which are

highly heterogeneous, include distinct subgroups, and contain significant propor-
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tions of outliers.

In this chapter I relaxed this assumption by considering two extensions to the

EBM [170]: a generalised Mallows model, which allows subjects to deviate from

the main event sequence, and a Dirichlet process mixture of generalised Mallows

models, which models clusters of subjects that follow different event sequences,

each of which has a corresponding variance. I developed a Gibbs sampling tech-

nique to infer the parameters of the two models from multi-modal biomarker data

sets.

I applied this technique to data from ADNI to determine the sequence in which

brain regions become abnormal in sporadic AD, as well as the heterogeneity of that

sequence in the cohort. I found that the generalised Mallows model estimates a

larger variation in the event sequence across subjects than the original EBM. Fitting

a Dirichlet process model detected three subgroups of the population with different

event sequences. The Gibbs sampler additionally provided an estimate of the uncer-

tainty in each of the model parameters, for example an individual’s latent disease

stage and cluster assignment.

A major limitation of this work is that the models are overly complex. In par-

ticular, the variance parameter required for the generalised Mallows model hugely

increases the model complexity without any gain in the clinical utility of the models.

In the subsequent chapter I developed a more parsimonious model of heterogeneous

biomarker progression patterns.

9.7 Chapter 7. A data-driven model of disease sub-

types with distinct patterns of biomarker evolu-

tion in frontotemporal dementia and Alzheimer’s

disease
Neurodegenerative diseases are often heterogeneous between and within patholo-

gies, with both different types (between) and the same type (within) of pathology

spreading with different spatial patterns. In frontotemporal dementia (FTD) differ-
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ent between and within pathology subtypes have been described. In AD three within

pathology subtypes have been defined according to the distribution of neurofibril-

lary tangle counts. However, current knowledge of neurodegenerative disease sub-

types is limited to a coarse overall pattern of volume loss in groups of subjects at a

single disease stage; little consideration has been given to the temporal progression

that leads to that pattern.

In this chapter I presented a probabilistic generative model of disease progres-

sion that uncovers population subgroups with distinct patterns of biomarker evolu-

tion (contribution 1.3.3 (a), Chapter 1, page 41). I demonstrated the ability of the

model to recover known genetic subtypes of FTD using volumetric MRI data from

the Genetic Frontotemporal Dementia Initiative (GENFI) (contribution 1.3.3 (b),

Chapter 1, page 41). The results further revealed that subjects with a pathogenic

mutation in chromosome 9 open reading frame 72 (C9orf72) are best described by

two disease progression patterns: a subcortical and a frontotemporoparietal pattern.

Application of the model to AD using volumetric MRI data from ADNI un-

covered three data-driven subtypes: temporal, cortical, and subcortical, comparable

to those observed in neuropathological studies (contribution 1.3.3 (c), Chapter 1,

page 41). In comparison to previous studies, the model characterises the evolution

of these subtypes as the disease progresses, including the earliest sites of regional

volume loss. By fitting a Cox proportional hazards model I found that the time taken

to convert from MCI to AD is significantly different between the different subtypes,

independently of model stage, with the temporal subtype being associated with the

fastest conversion times.

This approach has the potential to facilitate precision medicine by uncovering

disease subtypes and quantifying their corresponding patterns of biomarker evolu-

tion across diseases.

9.8 Chapter 8. Further work

In Chapter 8 I discussed potential opportunities for further work, covering three

main areas: (1) further applications of the models developed in this thesis; (2) op-
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portunities for technological enhancement of the models presented in this thesis;

(3) methodological advances that can be made in the wider spectrum of data-driven

models.

9.9 Conclusion
This thesis has explored the progression and heterogeneity of AD by developing

quantitative models of biomarker evolution. By proposing two adaptations to the

EBM [98], I have been able to characterise the sequence of biomarker changes

in both sporadic and dominantly-inherited AD. In sporadic AD the models pro-

vide support for hypothetical models of disease progression [74], without reliance

on a priori knowledge of disease stage or the use of cut points defining abnormal

biomarker levels. I further demonstrated the ability of the model to stage patients

throughout the full disease time course. In dominantly-inherited AD, I found that

the series of biomarker changes predicted by the models broadly agrees with current

knowledge, but provides a much more detailed picture of disease progression than

previous work. I additionally found that there may be subtle differences between

the PSEN1, PSEN2 and APP carrier groups. I then developed a simulation sys-

tem to validate data-driven models of disease progression and applied this system

to perform a stability analysis of the EBM and a DEM. Finally, I presented a dy-

namic clustering technique that reveals population subgroups with distinct patterns

of biomarker evolution. I demonstrated the ability of this model to recover known

subtypes of genetic FTD. The model further provided interesting biological insights

into the C9orf72 mutation carrier group by revealing that this group are best mod-

elled by two progression patterns: a subcortical and a frontotemporoparietal pattern.

Dynamic clustering of sporadic AD uncovered three data-driven disease subtypes:

temporal, cortical and subcortical, which were found to have different conversion

times between diagnoses. The models proposed in this thesis have made several

novel contributions to AD research and have wide potential further application to

other diseases and developmental processes.
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Chapter 7

Normal-
appearing

Severe
Frontal

Severe
Temporal

Mild
Frontotemporal

Frontal 0.00 (1.00) 4.31 (1.00) 1.87 (1.13) 1.44 (1.06)
Temporal 0.00 (1.00) 1.74 (1.17) 4.43 (1.48) 1.29 (1.15)
Parietal 0.00 (1.00) 2.77 (0.88) 0.89 (0.94) 1.02 (0.88)
Occipital 0.00 (1.00) 0.49 (1.19) 0.38 (0.80) 0.39 (1.07)
Cingulate 0.00 (1.00) 2.67 (0.50) 1.35 (0.96) 0.70 (1.01)
Insula 0.00 (1.00) 2.36 (0.79) 3.81 (0.89) 1.40 (1.01)
Cerebellar 0.00 (1.00) 0.79 (0.74) 0.71 (1.03) 0.35 (0.80)
Hippocampus 0.00 (1.00) 0.92 (0.81) 3.48 (1.26) 1.14 (0.69)
Amygdala 0.00 (1.00) 0.25 (0.88) 4.30 (1.38) 0.68 (0.81)
Caudate 0.00 (1.00) 1.60 (0.88) 1.43 (0.88) 0.37 (1.16)
Putamen 0.00 (1.00) 2.74 (0.80) 2.27 (0.84) 1.08 (1.15)
Pallidum 0.00 (1.00) 1.14 (1.11) 1.18 (0.81) 0.53 (1.37)
Accumbens 0.00 (1.00) 1.85 (0.69) 3.15 (0.85) 0.72 (0.98)
Thalamus 0.00 (1.00) 1.83 (0.62) 1.47 (0.82) 1.15 (1.19)

Table A.1: Parameters for each of the static clusters shown in Figure 7.4. Each entry is the
mean (standard deviation) of the static cluster expressed as a z-score relative to
controls (all non-carriers).
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Figure A.1: Dynamic clustering of all mutation carriers in GENFI: MCMC samples of un-
certainty on top row, 10-fold cross-validation on bottom row. Same result as
Figure 7.1, but displayed as positional variance diagrams showing the order of
z-score events in each dynamic cluster and its uncertainty from MCMC sam-
pling (top row), and 10-fold cross-validation (bottom row). Each entry in the
positional variance diagram represents the proportion of MCMC samples (top
row), or the average of the MCMC samples across the 10 cross-validation folds
(bottom row), in which z-score events appear at a particular position in the se-
quence (x-axis). This proportion ranges from 0 in white to 1 in colour. Each
z-score is represented as a different colour: z=1 in red, z=2 in magenta, and
z=3 in blue. The y-axis keeps the order of events fixed to allow easier com-
parison across clusters. Where rows have a single coloured block, such as the
z=1 parietal lobe event in red in the group 1 positional variance diagram, the
ordering is strong and permutations of those events are unlikely.
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Figure A.2: Model likelihood for each of the dynamic cluster models fitted to all mutation
carriers in GENFI. In black is the in-sample model likelihood evaluated on the
whole dataset, in red is the out-of-sample model likelihood estimated using 10-
fold cross-validation. The out-of-sample model likelihood is used to choose
the appropriate number of clusters.

Figure A.3: Fitting a single dynamic cluster to each mutation type separately: MCMC sam-
ples of uncertainty on top row, 10-fold cross-validation on bottom row. Same
result as Figure 7.2, but displayed as positional variance diagrams. Positional
variance diagrams as in Figure A.1.



194 Appendix A. Supplementary figures and tables for Chapter 7

Figure A.4: As Figure A.2, but for GRN mutation carriers.

A. Temporal
Stage 1 Stage 3 Stage 5 Stage 7 Stage 9 Stage 11 Stage 13 Stage 15 Stage 20 Stage 25

normal

1-sigma

2-sigma

3-sigma

B. Frontotemporoparietal
Stage 1 Stage 3 Stage 5 Stage 7 Stage 9 Stage 11 Stage 13 Stage 15 Stage 20 Stage 25

normal

1-sigma

2-sigma

3-sigma

1
Figure A.5: Dynamic clustering of MAPT mutation carriers. Subfigures (A)-(B) show

the progression pattern of each of the two dynamic clusters estimated by the
model. Diagrams as in Figure 7.1.
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Figure A.6: Dynamic clustering of MAPT mutation carriers: MCMC samples of uncer-
tainty on top row, 10-fold cross-validation on bottom row. Same result as
Figure A.5, but displayed as positional variance diagrams. Positional variance
diagrams as in Figure A.1.
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Figure A.7: As Figure A.2, but for MAPT mutation carriers.

Figure A.8: Dynamic clustering of C9orf72 mutation carriers: MCMC samples of uncer-
tainty on top row, 10-fold cross-validation on bottom row. Same result as
Figure 7.3, but displayed as positional variance diagrams. Positional variance
diagrams as in Figure A.1.
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Figure A.9: As Figure A.2, but for C9orf72 mutation carriers.

Figure A.10: Dynamic clustering of 3T ADNI dataset: MCMC samples of uncertainty on
top row, 10-fold cross-validation on bottom row. Same result as Figure 7.5,
but displayed as positional variance diagrams. Positional variance diagrams
as in Figure A.1.
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Figure A.11: As Figure A.2, but for 3T ADNI dataset.

A. Temporal
Stage 1 Stage 3 Stage 5 Stage 7 Stage 9 Stage 11 Stage 13 Stage 15 Stage 20 Stage 25

normal

1-sigma
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3-sigma

B. Cortical
Stage 1 Stage 3 Stage 5 Stage 7 Stage 9 Stage 11 Stage 13 Stage 15 Stage 20 Stage 25

normal

1-sigma

2-sigma

3-sigma

C. Subcortical
Stage 1 Stage 3 Stage 5 Stage 7 Stage 9 Stage 11 Stage 13 Stage 15 Stage 20 Stage 25

normal

1-sigma

2-sigma

3-sigma

D. Parietal
Stage 1 Stage 3 Stage 5 Stage 7 Stage 9 Stage 11 Stage 13 Stage 15 Stage 20 Stage 25

normal

1-sigma

2-sigma

3-sigma

1
Figure A.12: Dynamic clustering of 1.5T ADNI dataset. Subfigures (A)-(D) show the pro-

gression pattern of each of the four dynamic clusters estimated by the model.
Diagrams as in Figure 7.1. The cerebellum was not included as a region in
the ADNI analysis and so is shaded in dark grey.
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Figure A.13: Dynamic clustering of 1.5T ADNI dataset: MCMC samples of uncertainty
on top two rows, 10-fold cross-validation on bottom two rows. Same result
as Figure A.12, but displayed as positional variance diagrams. Positional
variance diagrams as in Figure A.1.
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Figure A.14: As Figure A.2, but for 1.5T ADNI dataset.
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