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Abstract—Tracking and shape estimation of flexible robots that
navigate through the human anatomy are prerequisites to safe
intracorporeal control. Despite extensive research in kinematic
and dynamic modelling, inaccuracies and shape deformation of
the robot due to unknown loads and collisions with the anatomy
make shape sensing important for intra-operative navigation. To
address this issue, vision-based solutions have been explored. The
task of 2D tracking and 3D shape reconstruction of flexible robots
as they reach deep-seated anatomical locations is challenging,
since the image acquisition techniques usually suffer from low
signal-to-noise ratio (SNR) or slow temporal responses. Moreover,
tracking and shape estimation are thus far treated independently
despite their coupled relationship. This paper aims to address
tracking and shape estimation in a unified framework based
on Markov Random Fields (MRF). By using concentric tube
robots as an example, the proposed algorithm fuses information
extracted from standard monoplane X-ray fluoroscopy with the
kinematics model to achieve joint 2D tracking and 3D shape
estimation in realistic clinical scenarios. Detailed performance
analyses of the results demonstrate the accuracy of the method
for both tracking and shape reconstruction.

I. INTRODUCTION

Continuum robots are emerging surgical platforms that can
navigate through the human anatomy to reach deep-seated
pathological sites [2], [3]. A representative continuum robot
is the concentric tube robot [4], [5]. With diameter similar
to a catheter but with the capability to exercise forces at
its distal end due to its increased stiffness, the concentric
tube robot has been proposed for several applications that
require intracorporeal navigation. For example, Gosline et al.
[6] investigated cardiosurgical applications, Burgner et al. [7]
neurosurgical applications, Hendrick et al. [8] applied it to
transurethral prostate surgery, and Lin et al. [9] to eye surgery.

Safe teleoperation of concentric tube robots during mini-
mally invasive surgery (MIS) requires careful monitoring of
their trajectory within the patient. Their kinematic and dy-
namic modelling [4], [5], [10], however, may lead to inaccurate
tip position and shape estimation due to uncertainties in the
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joint values, mechanical parameters, and forces affecting the
robot’s behaviour. For example, shape deformations caused by
collisions with the anatomy cannot be fully modelled, despite
the body of work investigating the effect of known distal and
distributed forces on the robot’s shape [10], [11]. In fact, the
intraoperative sensing of these forces is not always possible.
Therefore, accurate continuous exteroceptive shape sensing is
required for safe intraoperative control. Finally, shape sensing
is necessary for assistive control such as path planning [12],
[13] and collision detection [14].

A. Related Work

In general, shape sensors can be categorised based on their
operating principles into electromagnetic, optical, and vision-
based. Electromagnetic shape sensors usually provide discrete
measurements of the shape of the robot, such as position of the
tip or a limited number of points along its length [15], [16].
These sensors suffer from environment-related inaccuracies
due to the interference of ferromagnetic materials. Optical
fibres fabricated with FBGs have gained interest for shape
sensing in recent years. Although FBG shape sensors can
provide accurate and fast shape measurements of continuum
robots, their integration with small flexible robots remains a
challenge and adds significant cost [17], [18], [19], [20], [21].

Vision-based sensing can provide accurate shape measure-
ments of the robot without requiring hardware modifications.
Thus far, this sensing technology has mainly been used
for general continuum robots, or implemented using ad hoc
imaging configurations. Work presented in [22] and [23]
demonstrates that vision-based shape sensing of a continuum
robot can have improved results over direct kinematics mod-
elling. Shape estimation using shape-from-silhouette and three
orthogonal cameras is proposed in [24]. In addition, self-
organising maps and stereo vision are employed in [25] to
sense the shape of a continuum robot.

More recently, techniques that rely on intraoperative imag-
ing modalities, such as endoscopy and fluoroscopy, have been
proposed. The pose of a flexible instrument in endoscopic
images is estimated by either marker-based or marker-less
methods using virtual visual servoing [26]. In [27], the shape
of a continuum robot is estimated by tracking it in endoscopic
images while considering its workspace constraints.

Shape estimation of a concentric tube robot is achieved in
[28] by triangulating robot points that are segmented on stereo
images acquired from biplanar X-ray fluoroscopy. Biplanar
fluoroscopy increases, however, the delivered radiation, and
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is generally not clinically preferred. Shape reconstruction of
a robotic catheter using optimal monoplane C-arm position-
ing and appearance priors is presented in [29]. A vision-
based shape sensor of a continuum robot based on optimal
viewpoints of a monoplane C-arm and deformable surface
parametrisation is proposed in [30]. Shape estimation reaches
good accuracy but the method is only evaluated with simulated
data and requires offline learning of the basis functions that
model the deformations. Moreover, both methods proposed in
[29], [30] rely on adaptive positioning of the C-arm to achieve
shape reconstruction. This is not always possible within the
clinical workflow due to the limited workspace in the operating
theatre. The work presented in [31] uses fluoroscopy for pose
estimation of a snake-robot. The algorithm is based on a
computationally intensive intensity-based 2D/3D registration
and the validation is conducted on a benchtop setup without
collisions or 3D ground truth shape of the robot.

B. Contributions
In our preliminary work in [1], accurate intraoperative

tracking of a concentric tube robot in monoplane fluoroscopy
is fused with the robot kinematics, acting as a shape-prior, via
a fast 2D/3D non-rigid registration to achieve intraoperative
shape sensing. Our current paper enhances this work in a
number of ways.

In this paper we propose a continuum robot shape-
estimation algorithm, which is automatic, accurate, and relies
on standard intraoperative monoplane fluoroscopy. In addition,
the algorithm does not require the repositioning of the C-arm,
making it applicable to restricted clinical environments or,
more importantly, those without a robotic C-arm. Furthermore,
our algorithm is general and only requires the joint-to-shape
mapping (i.e. kinematics) of the continuum robot. To illustrate
key steps involved, as an application we use concentric tube
robots. More specifically, we introduce several contributions
beyond our previous work on intraoperative shape sensing [1]:
• The algorithm unifies the tasks of tracking and estimating

the shape of the robot from intraoperative images. In
[1], these tasks were executed separately and the tracking
algorithm relied only on image information; noisy images
led to erroneous shape estimation. The new formulation,
however, solves the two tasks simultaneously as a single
MRF-based energy minimisation problem considering
image and kinematics information concurrently. Thus,
tracking, i.e. image segmentation, and shape reconstruc-
tion are simultaneously improved.

• Regularisation terms based on the mechanical variables of
the robot are introduced to incorporate robot-based priors
into the shape estimation framework.

• Tube endpoints are detected in the images to guide the
unified tracking and shape estimation algorithm.

• The robot is modelled using B-spline curves, which allow
a smoother and more accurate description of its shape
compared to [1].

• Detailed simulation with synthesised X-ray-like images
and experimental evaluations of the algorithm using two
concentric tube robot designs demonstrate the robustness
and clinical value of our method.

The paper is structured as follows: the kinematics of the
continuum robot and the proposed vision-based shape sensing
algorithm are described in Sec. II. The evaluation of the
algorithm in simulation and laboratory experiments is reported
in Sec. III, IV and V. The relative strength of the proposed
method and its potential pitfalls are discussed in Sec. VI and
final conclusions are presented in Sec. VII. Table I lists the
nomenclature.

II. VISION-BASED SHAPE SENSING FOR CONTINUUM
ROBOTS

This section proposes shape sensing of concentric tube
robots by unifying robot tracking and shape reconstruction
into a single energy minimisation problem. It will define every
term of the overall energy that will be minimised, i.e. its three
components:

Etrack&rec = Etracking + Eshape + Efusion (1)

where Etracking relates to tracking, i.e. segmentation of the
robot in the fluoroscopic images, Eshape relates to a shape
prior based on the mechanical variables of the robot, and
Efusion unifies the tracking and shape reconstruction. Each
energy component of the framework is described in the
following subsections. A 2D/3D non-rigid registration will
be formulated using an MRF framework in Sec. II-D. This
formulation will then be extended in Sec. II-E to derive
Etrack&rec as a joint energy function resulting from the
tracking and shape reconstruction tasks.

A. Kinematics of Concentric Tube Robots

Concentric tube robots comprise multiple precurved tele-
scoping tubes made from superelastic materials (usually NiTi).
The relative translation and rotation of the tubes give rise to
curvature interactions and control the robot shape and tip pose
(see Fig. 1). Therefore, the joint variables of the robot can be
considered as the relative translations, φ, of the tubes, and the
relative rotations, α. The value of α for each tube varies along
its length due to the exhibited tube twist. The shape based on
the kinematics modelling of the robot is calculated by solving
a Boundary Value Problem (BVP) for this relative twist angle,
α, and for bending and torsional curvature κ = {κx, κy, κz}
as functions of arc length. Based on the twist angles and
curvature, the robot’s centreline is estimated using matrix
exponentials [4] and is defined as Skin. When the kinematic
variables {(φ, α)} are given, the shape is found employing
root-finding similar to [32].

We use the terminology of [4] for variable and fixed robot
sections. Variable curvature sections possess two tubes of
similar bending stiffness, thus, the curvature of the section
depends on their combined curvature as tuned by applying
relative rotations to the tubes. Fixed curvature sections consist
of a single curvature. Finally, outer sections are stiffer than
inner sections, with a stiffness ratio of Γ. Fig. 1 depicts a
robot that has a three fixed curvature sections.
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TABLE I
NOMENCLATURE

Kinematics
φi Relative extension of the ith section or tube
αi Relative rotation of the ith section or tube
Skin Robot shape estimated by kinematics
S̃kin Projections of the B-spline points on the image plane
Γ Stiffness ratio

Tracking & Tubes’ Endpoint Detection
It Image observation at frame t
Hpt Tracking hypothesis at frame t
Ĥpt Position of the robot at frame t
rroi Radius of the sphere for the ROI; set to 15 mm
dist Distance along the normal; set to 4 pixels
ecj Tube endpoint candidates of jth tracking hypothesis
w Neighbourhood cardinality; set to 19
end(j) Tube endpoint of jth tracking hypothesis

3D Robot Model
s Abscissa of the B-spline curve
C(s) B-spline curve at abscissa s
Ni Basis function of the B-spline curve
Pi Position of the control points
M Number of control points; set to 8

Joint Tracking & Shape Reconstruction
V Set of nodes
E Set of edges
xi Label ith

θijproj Pairwise potential for re-projection error
Ωij s values between ith and jth control points
D Re-projection error function
Etrack&rec Overall energy to be minimised
EMRF Energy first order MRF
Eregistration Energy non-rigid registration
Etracking Energy tracking
Eshape Energy shape prior based on robot’s mechanics
Efusion Energy of tracking and shape reconstruction
θztracking Unary: likelihood of the tracking hypotheses
θijshape Pairwise: mechanical variables of the robot
θijzfusion Triplewise: tracking and shape reconstruction
θijcurv Pairwise: curvature of the robot tubes
θijsmooth Pairwise: smoothness of control point displacement
ιc, ιs Curvature and smoothness terms; set to 5 and 100
C Absolute value of the curvature at s
t(z) Curvature of the zth tube of the robot
di Displacement of the ith control points
s2D 2D robot shape estimated by image tracking
oend Endpoints’ distance weight; set to 5

Evaluation Methodology
Sgt Ground truth robot shape during evaluation
Sest Estimated robot shape during evaluation
Srecon Robot shape estimated by vision-based sensing
Skin&vision Shape estimated by [1]
Strack&rec Shape estimated by joint tracking and reconstruction
σ(h) Noise profile of the hth Gaussian distribution
dis(h, j) Displacement of the jth point of the robot shape
v(j) Displacement vector for unknown “force/load”
c Displacement for unknown “force/load”; set to 12

B. Tracking of the Robot in Fluoroscopic Images

The algorithm that robustly tracks the robotic tool in X-
ray fluoroscopic video sequences builds upon the method that
we have developed previously for tracking endovascular tools
[33]. We refer to this algorithm as GSEG and its in-depth
description together with detailed performance evaluation can

Fig. 1. The kinematic parameters of a concentric tube robot comprising a
three fixed curvature sections, i.e. three tubes.

be found in [33]. In this section, GSEG is summarised while
the unification of tracking and shape reconstruction is derived
in Sec. II-E.

The visual appearance of a concentric tube robot in fluo-
roscopic frames is characterised by a continuous curve with
thickness depending on the size of the robot’s cross section,
as can be seen in Fig. 2(a). Therefore, its appearance is
similar to endovascular tools such as catheters and guidewires
making GSEG a suitable algorithm for tracking the robot in
fluoroscopic video sequences. Instead of being purely image
driven, the upgraded GSEG presented in this work is informed
by the robot kinematics to identify the most plausible robot
segmentation in the image (see Sec. II-E).

In summary, the main components of the GSEG are:

• Features that represent straight segments in the image
(SEGlet) and specifically designed for tracking tubular
tools are used. SEGlets are detected by taking into
account temporal information of the tool’s segments and
background structures. Thus, they represent a sparse
sample of the robot in the image [see Fig. 2(a)];

• A tool-tracking formulation is defined based on genera-
tion of tracking hypotheses, i.e. the organisation of the
SEGlets in plausible tool shapes [see Fig. 2(a)];

• A tool model is employed as a regularisation term dur-
ing the evaluation of the tracking hypotheses through
Bayesian inference. To incorporate temporal information
during tracking, the tool model is recursively updated
using a linear Kalman filter where constant velocity is
used to describe the motion of the tool and predict its
position in subsequent frames.

Given a set of tracking hypotheses, the best is selected as
the position of the tool in the current frame. In the original
formulation of GSEG [33], the hypotheses are evaluated in a
Bayesian inference framework. Thus, the hypothesis that max-
imises the posterior probability P (Hpt|It) is the segmented
position of the robot at frame t, i.e. Ĥpt, and is defined as:

Ĥpt = arg max
Hpt

P (Hpt|It) (2)

where the image observation at frame t is It, and Hpt is the
tracking hypothesis. Hypothesis Hpt at time t is generated
by organising and interpolating the detected SEGlets at time
t in a plausible 2D tool shape (please refer to Fig. 2(a) of the
manuscript for an example). Therefore, Hpt is described by
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(a) (b)

Fig. 2. (a) The steps of the tracking algorithm can be summarised as follows: First a cropped fluoroscopic frame of a concentric tube robot within a tissue
model is shown, followed by the detection of the SEGlets and their organization and interpolation in tracking hypotheses. (b) The detection steps of the tube
endpoint for one of the tracking hypotheses is illustrated. This detection allows subsequently the segmentation of each single tube of the robot in the image.

a set of 2D points within the image coordinate system. This
posterior probability of the robot at frame t is defined as:

P (Hpt|It) ∝ P (Hpt)P (It|Hpt) (3)

The prior P (Hpt) is the regularisation term, which measures
the distance between the tracking hypothesis Hpt and the
position of the tool model as predicted from the Kalman filter.

The conditional probability P (It|Hpt) provides the like-
lihood of the tracking hypothesis Hpt given It. This term
is composed by two image measurements of the robot: the
“lineness” model, and the Spline Local Binary Pattern (SLBP)
measurement model [34]. The “lineness” is an image feature
calculated by analysing the eigenvalues of the Hessian matrix
and it exhibits high responses in presence of line-like objects.
Its model is described by a Gaussian distribution of its
response along the robot in the image. The SLBP model is
an intensity measurement based on discrete samples of pixel
intensities within a local area around the tool. More details on
the tracking algorithm can be found in [33].

C. Detection of the Tube Endpoints

Tube endpoints are the tip of each robot tube as illustrated
in Fig. 1 and Fig. 2(b). Depending on the design of the robot,
several endpoints can be present. Detection of tube endpoints
allows the segmentation of each single tube of the robot in the
image (see Fig. 2(b)) and direct linking of robot kinematics
to image information.

Each tube endpoint is detected along the curve of each
tracking hypothesis by considering both kinematics and image
information. The robot’s tubes have different diameters (see
Fig. 2(a)), and this change in width along the robot backbone is
evident in the images and is sufficient to detect each endpoint.

First, a Region Of Interest (ROI) in the image is created
to limit the search area for the endpoint. For this purpose,
points belonging to a sphere of radius rroi centred at the tube
endpoint, as estimated by kinematic analysis, are projected
on the image. The projection of these points generates the
ROI. Only points within the ROI and belonging to a tracking

hypothesis are considered as tube endpoint candidates (see Fig.
2(b)). The set of tube endpoint candidates for each tracking
hypothesis is defined as ec.

Second, for each candidate, the local size/width of the tube
cross section in the image is calculated. The intensity of the
image is sampled for each candidate within distance dist along
the normal to the robot backbone. This set of values represents
the intensity profile of the cross section of the robot around the
candidate points as shown in Fig. 2(b). It includes, however,
background points since the size of the cross section of the
robot is still unknown. Otsu’s thresholding [35] is used to
classify the set of intensity values into the two classes: a robot
class, and a background class. The class with the lowest mean
intensity corresponds to the robot, since the robot appears dark
in X-ray images due to its metallic nature. In general, metallic
objects appear darker than the anatomy. The variance between
the contrast of these two class of objects depends on different
factors, including the patient’s anatomy, C-arm settings and
markers used. Therefore, we do not use a fixed threshold to
segment the tube from the anatomy but an adaptive algorithm,
i.e. Otsu’s thresholding, which handles this unknown variation
in contrast. The cardinality of the set of pixels assigned to
the robot class corresponds to the width measured in pixels
belonging to the tube for that point on the tracking hypothesis.

As a result, for all the candidate points in the ROI, the
width of the robot is now known in pixels. A tube endpoint
is the point that exhibits maximal width difference from its
neighbouring points along the tracking hypothesis. Formally,
this is written as:

end(j) = arg max
k∈ecj

∣∣∣ −w∑
i=k−1

ecj(i)−
w+1∑
i=k

ecj(i)
∣∣∣ (4)

where k is a tube endpoint candidate, w is a constant and
represents the cardinality of the neighbourhood, and j is the
jth tracking hypothesis. An example of detection of the tube
endpoint for a single tracking hypothesis is shown in Fig. 2(b).
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Fig. 3. A graphical representation of the framework that unifies both tracking and non-rigid registration is shown in the centre. On the left, tracking hypotheses
are associated to the tracking node as labels. On the right, a label set composed of 3D displacements is assigned at each control point. In addition, the 3D
robot model is shown together with a close-up of two control points and their possible spatial displacements.

D. Non-Rigid Registration for Shape Reconstruction

This section briefly introduces a new robot-shape modelling
scheme based on B-splines. In addition, a 2D/3D non-rigid
registration algorithm for shape reconstruction of continuum
robots is formulated using an MRF framework. This for-
mulation then leads to the unification of the tracking and
registration tasks as a single energy minimisation problem,
which will be presented in Sec. II-E.

1) 3D Robot Model: The robot shape is modelled by a
3D B-spline curve, which represents the robot centreline. B-
splines are extensively used for modelling flexible interven-
tional tools, such as catheters and guidewires, in 2D tracking
and detection algorithms [36], [37]. This model allows a
reduction of the dimensionality of the representation of the
curve and inherently provides smoothness. B-splines describe
the robot’s shape accurately and robustly. In our case, a
polynomial basis is used, similar to [38], [39]. A linear
combination of control-point positions generates a B-spline,
which is formally defined as:

C(s) =

M∑
i=1

Ni(s)Pi where s ∈ [0, 1] (5)

where M is the number of control points, Pi their positions
and Ni the ith basis function of the B-spline curve. Following
this notation, the points of Skin are interpolated using the
B-spline model. In addition, the control points are equally
distributed along the robot and they do not need to lie on top
of the parameterised curve. An illustration of the 3D robot
model is shown in Fig. 3. It can be seen that control points
1 and 5 are on the curve, while points 2, 3, 4 are away from
the curve.

2) Non-Rigid Registration using MRFs: In order to recon-
struct the 3D shape of the continuum robot, a 2D/3D non-rigid
registration is required to incorporate the information from the
fluoroscopic/projection images into the reconstruction process.
The 2D/3D registration problem can be effectively formulated

as an MRF optimisation problem. First, the underlying graph
structure is described, followed by the introduction of individ-
ual energy terms.

A graph G is defined by a set of discrete variables V , i.e. the
graph nodes, and a set of edges E. Edges connecting two or
more nodes represent dependencies between variables. Each
variable is associated with a control point of the B-spline
representing the 3D robot model, as shown in Fig. 3 by the
green nodes. The variables take values from a finite set of
labels, and, in our context, the set defines a discretisation
of the space of control point displacements (see Fig. 3).
Therefore, the assignment of a label to a particular graph node
corresponds to displacing the control point of the B-spline by
a certain (prescribed) magnitude.

The task of non-rigid registration then becomes a graph
labelling problem wherein one seeks to assign the optimal
displacements to control points such that a registration energy
function is minimised. Here, the energy function corresponds
to the re-projection error, which describes the distance between
the tracked robot in the image plane, i.e. s2D, and the
projection of the points of the B-spline on the image. The
energy of an MRF labelling is defined as a sum of so called
clique potentials:

EMRF =
∑
c∈C

θc(xc) (6)

Each clique c is a subset of nodes that have inter-dependencies
(including unary cliques with only one node), and xc are
the labels assigned to these nodes. The potential function θc

evaluates the labelling on the subset of nodes and returns an
energy, where lower energies correspond to better labelling
according to some task-specific objective. The most commonly
used MRF model is a first-order model that has only unary
and pairwise cliques. It has been shown that for the task of
interventional tool tracking, a pairwise model for which the
tracking energy is solely encoded in pairwise terms yields very
good performance [37]. As the assignment of a label xi to the
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ith node corresponds to displacing the ith control point of the
B-spline, it is clear that unary potentials are not appropriate
as they model the label assignment independently for each
variable. The displacement of a control point has an effect
on points on the spline, which are related to more than one
control point, and, thus, using pairwise terms which model
the simultaneous assignment of two labels, xi and xj , to the
neighboring control points, i and j, is a good compromise
between approximation and performance. The MRF energy
comprising pairwise terms only is then defined as:

Eregistration =
∑

(i,j)∈E

θijproj(xi, xj) (7)

The pairwise term θijproj describes the differences between
the projection of the robot in the image plane, s2D, and the
projection of the points of the B-spline, and is defined as:

θijproj(xi, xj) =
∑
s∈Ωij

D (Cij(xi, xj , s)) (8)

where D is the distance between s2D and the projections of
the B-spline points on the image plane, i.e. S̃kin. Only the
B-spline points with abscissas s being included between the
two control points associated to the ith and jth nodes, namely
Ωij , are considered. A similar notation is also used in [37].
The nodes i and j are displaced by the amount defined by
their corresponding labels, i.e. xi and xj .

Such MRF energies can be efficiently optimised using
discrete optimisation methods based on iterative graph-cuts.
We employ the QPBO algorithm with a fusion move strategy
for multi-labelling problems [40], which has been also used
in [37]. Additionally, we use higher-order clique reduction as
introduced in [41] enabling us to further extend the model with
higher-order clique potentials leading to a unified tracking and
shape reconstruction model, as discussed in the following.

E. Unified Tracking and Shape Reconstruction

It should be noted that the 2D/3D non-rigid registration
as introduced in Sec. II-D2 is inherently ill-posed, as we
are seeking 3D displacements via an energy function based
on 1D measurements obtained from image intensities. In
theory, there are multiple 3D configurations that lead to the
same 2D projection, and the initial estimate of the robot
configuration needs to be sufficiently close to the optimal
solution. This limitation can be overcome by incorporating
additional constraints on the reconstructed shape.

Here, the MRF registration framework is expanded to model
the tracking and shape reconstruction of the robot as a single
energy minimisation problem, which allows the integration of
multiple such constraints. For this purpose, a second-order
MRF framework, which includes unary, pairwise and triple
clique potentials is proposed, enhancing what was presented
in Sec. IIE. This formulation allows the estimation of the best
tracking hypothesis together with the optimal displacements
of the control points, which leads to robust, joint tracking and
reconstruction of the robot shape.

A node that is associated to the tracking result is added
to the set of graph nodes V . This special node will have

its own label set with the number of labels equal to the
number of tracking hypotheses as shown in Fig. 3 by the red
node and red dotted segments. Furthermore, additional edges
are introduced that connect this new node with all pairs of
neighboring control point nodes to form a set of triple cliques
(see blue edges in Fig. 3). These cliques represent the bridge
between tracking and shape reconstruction enabling the joint
formulation. The structure of the graph is summarised in Fig.
3. The corresponding joint energy is defined as:

Etrack&rec =
∑
z∈V

θztracking(xz)

+
∑

(i,j)∈E2

θijshape(xi, xj) (9)

+
∑

(i,j,z)∈E3

θijzfusion(xi, xj , xz)

where E2 and E3 are the sets of edges defining the pairwise
and triple cliques, and the individual potential functions of the
energy are:
• θztracking describes the likelihood of the tracking hypothe-

ses;
• θijshape is the regularisation term based on mechanical

variables of the robot;
• θijzfusion is the term responsible for unifying the tracking

and shape reconstruction.
The first term of (9) relates to Etracking in (1), the second
term to Eshape, whereas the final one to Efusion. Each term
is described in more detail in the following.

1) Tracking Hypotheses: The likelihood of each tracking
hypothesis is evaluated in (3) and is used as the unary potential
of the energy:

θztracking(xz) = 1− P (Hpt|It) (10)

This term introduces the tracking information into the overall
energy, combining 2D image-based with 3D kinematics-based
information.

2) Shape Prior Based on Mechanical Variables: A shape-
prior based on mechanical variables is introduced in the overall
energy as a pairwise potential that constrains the solution space
to plausible robot shapes. For this purpose, a regularisation
term, i.e. θijcurv , penalises configurations of the control points
that generate curvature profiles along the robot shape different
than the ones anticipated by the design specifications of the
robot. In addition, a smoothness term, i.e. θijsmooth, considers
the fact that neighboring control points are characterised by
coherent displacements. The shape prior based on mechanical
variables is defined as:

θijshape(xi, xj) = ιcθ
ij
curv(xi, xj) + ιsθ

ij
smooth(xi, xj) (11)

where ιc and ιs are weights. The regularisation term,
θijcurv(xi, xj), based on the curvature of the robot, is zero or:

θijcurv(xi, xj) =
∑
s∈Ωij

|C (Cij(xi, xj , s))− t(z)| (12)

{ if, the tube:
has fixed curvature, or
has variable curvature, and C (Cij(xi, xj , s)) > t(z)
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(a) (b) (c)

Fig. 4. The first (a), middle (b) and last frame (c) of the synthetic sequence
which is generated in order to recreate realistic fluoroscopic sequences of the
robot within the patient. This is achieved by projecting the 3D robot points
on in-vivo fluoroscopic images recorded during an endovascular procedure.

where C (Cij(xi, xj , s)) describes the absolute value of the
curvature calculated at the abscissa s between the ith and
jth control points, t(z) describes the curvature of the zth

tube of the robot from its design specifications. Finally, the
smoothness term is defined as:

θijsmooth(xi, xj) = ||di − dj ||2 (13)

where di and dj describe the displacements of neighbouring
control points associated with labels xi and xj .

3) Tracking and Registration Fusion: The triple clique term
is responsible for unifying tracking and shape reconstruction,
and is defined as:

θijzfusion(xi, xj , xz) =
∑
s∈Ωij

Dxz
(Cij(xi, xj , s)) (14)

where Dxz is the distance between the tracking hypothesis
associated to the label xz , and S̃kin. Depending on which tube
s it is associated to, the corresponding image segmentation of
the tube from the tracking hypothesis is used. In addition,
since 2D to 3D correspondences between the endpoints of
the tracking hypothesis and S̃kin are known, their distances
are calculated via their Euclidean distances weighted by oend.
Therefore, the modelling of (14) is indeed different than (8),
since a different tracking hypothesis provides the projection
of the robot in the image depending on label xz . This enables
the unification of the tracking and shape reconstruction into a
single formulation.

III. EVALUATION METHODOLOGY

Extensive evaluation of our algorithm through performance
metrics such as reconstruction error of robot shape, tip position
error, tracking error, and tip tracking error, quantifies the
accuracy of our method and demonstrates its value.

The shape reconstruction error, Dist(Sgt, Sest), between
the estimated shape, Sest, and the ground truth shape, Sgt,
is defined as:

Dist(Sgt, Sest) =
1

b+ f

(
b∑

i=1

dmin(Sgt(i), Sest)

+

f∑
j=1

dmin(Sest(j), Sgt)

)
(15)

TABLE II
ROBOT DESIGNS

Robot 1 - Simulations
Section stiffness ratio: Γ = 10

Length
Section Type Curvature [1/mm] Straight [mm] Curved [mm]
(1) variable 1/101 0 75
(2) fixed 1/23 75 55

Robot 2 - Experiments
Section stiffness ratio: Γ = 5.4

Length
Section Type Curvature [1/mm] Straight [mm] Curved [mm]
(1) fixed 1/293 0 160
(2) fixed 1/60 160 100

where dmin(Sgt(i), Sest) is the distance between the ith point
of Sgt to the closest point on Sest, while b and f are the
number of points of Sgt, and Sest, respectively [36]. In the
error evaluation, the estimated shape Sest can be either:

1) The shape Skin, calculated using forward kinematics;
2) The shape Skin&vision, estimated using the method

presented in [1], i.e. by fusing kinematics and vision.
In addition, the algorithm presented in [33] is used to
track the robot;

3) The shape Strack&rec, estimated using the proposed
method, i.e. by unifying tracking and registration;

For Skin and Skin&vision, the points resulting from the shape
estimation are interpolated using a B-spline to generate a
smooth and continuous 3D curve.

The tip position error is the Euclidean distance between the
tip of the estimated shape and the tip of the ground truth shape.
The tracking error is measured with (15), with the difference
that the tracking results (in 2D) are used instead of Sest (in
3D), and the ground truth position of the robot in the image
(in 2D) is used instead of Sgt (in 3D). Finally, the tip tracking
error is the Euclidean distance between the tip of the robot
given by the tracking and the tip of the ground truth position
of the robot in the image.

The proposed algorithm runs on a desktop PC with the
following specifications: i7− 2600 at 3.40GHz and 16GB of
RAM. The generation of all plausible hypothesis completes
in less than 1s, while tracking and shape reconstruction in
approximately 9s, with an unoptimised C++ implementation.

IV. SIMULATIONS

Robot 1, given in Table II, is used to evaluate the proposed
algorithm via two simulation scenarios. The first simulation
scenario evaluates shape reconstruction under noisy kinemat-
ics, and the second scenario evaluates shape reconstruction
when the shape is deformed due to unknown, unmodelled,
virtual forces acting on the robot from the patient’s anatomy.

A. Robustness to Kinematic Uncertainties

In the first scenario, robot centrelines based on 145 discrete
sets of joint variables, which cause the robot to perform a
spiral-like trajectory, are generated. The trajectory is selected
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(a) (b)

Fig. 5. The mean, max and min reconstruction errors for the forward kinematics only, our previous method [1], and the proposed joint method for the first
simulation scenario for 145 robot shapes per each noise case. (a) Shape reconstruction errors, and (b) tip position errors.

(a) (b)

Fig. 6. The mean, max and min reconstruction errors for the forward kinematics only, our previous method [1], and the proposed joint method for the second
simulation scenario for 145 robot shapes per each load scenario. (a) Shape reconstruction errors, and (b) tip position errors.

(a) (b)

Fig. 7. The mean tracking and tip errors for GSEG and the proposed joint method for the (a) first simulation and (b) second simulation scenario for 145
robot shapes per each noise case and load scenario, respectively.

so that it includes short/long robots in both in-plane and out-of-
plane configurations. These centrelines result in robot shapes
that are used as the ground truth shapes. Each of the 145
centrelines is projected on the image plane using a realistic
C-arm camera projection matrix. In order to recreate the flu-
oroscopic sequences of the robot within the patient, synthetic
fluoroscopic sequences are generated. This is achieved by
projecting the 3D robot points resulting from each discrete
set of joint variables into images, which are part of a real in-
vivo fluoroscopic sequence1. The projections do not consider
any physical interactions between the robot and the imaged
patients anatomy. The sequence is 20 s long at 7 fps, leading

1The sequence was recorded during an endovascular procedure, i.e. angio-
plasty of the iliac artery, and includes several anatomical areas such as the
spine.

to 145 discrete frames, each of which is associated with a
single robot shape. The trajectory of the robot and the intensity
profile of the robot’s tubes in the images were tuned in order
to generate synthetic fluoroscopic sequences in which tracking
errors were comparable with the ones measured during in
vivo tracking experiments. Several frames of this sequence
are shown in Fig. 4 as an example. Finally, the projection of
the actual robot centreline into the image is used as ground
truth position of the robot in the images.

The noise for each joint/kinematics variable type is mod-
elled by two Gaussian distributions: N1(0, σ1), N2(0, σ2),
where N1 is applied to the relative extension of the ith tube
or section, φi, while N2 is applied to the relative rotation of
the ith tube, αs

i , and the rotation of the whole robot α0
1. Ten

noise profiles for each Gaussian distribution are generated by
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increasing the values of σ1 and σ2 as follows:

σ(h) = σmin +h

(
σmax − σmin

N

)
, h = 0, · · · , N − 1 (16)

where N = 10, σmin
1 = 1 mm, σmax

1 = 3.7 mm, σmin
2 = 1◦

and σmax
2 = 12◦. These parameters were tuned to reach real-

istic kinematics inaccuracies for the simulations, comparable
(and more challenging) to experimental results shown in the
concentric tube robot kinematics modelling literature [4], [5],
[10]. The mean tip error reported in [4] ranges from 1 mm to
4 mm, while the max tip error ranges from 2 mm to 13 mm.
Other studies measured mean tip errors on the order of 3 mm
and max tip error between 8 mm to 9 mm [5], [10]. The shapes
estimated by solving the forward kinematics for these noisy
kinematic values are denoted as Skin.

The kinematics errors simulated above should not be con-
sidered only as arising from erroneous encoder readings, but
as a result of a variety of mechanical and modelling errors
including discrepancy in straight/curved length, curvature,
relative tube stiffness, non-linear elasticity, unmodeled tube
tolerances, friction etc. Even through several of the mechanical
parameters, e.g. length, curvature, and relative stiffness can
be measured preoperatively to a good degree of precision,
non-linear behaviours, friction and imprecise concentricity are
likely to be the major causes of discrepancy. Therefore, the
performed simulations should be considered as a demonstrator
of the robustness of the algorithm to all those unknown param-
eters that are essentially lumped together into “kinematics/joint
errors”. Given that concentric tube robots are envisioned
as patient-specific devices, demonstrable robustness of the
shape estimation algorithm to all factors will be important in
practical deployment scenarios.

B. Robustness to Unmodelled Robot Deformations

The second simulation is structured similar to the first one,
except that deflections due to increasing forces applied to the
robot are introduced. These “forces” cause the deformation
of each ground truth robot-shape. As in the first scenario,
145 discrete sets of joint variables, which cause the robot
to perform a spiral-like trajectory, are generated together
with the synthetic fluoroscopic sequence composed by in-vivo
data. However, only one Gaussian noise profile for N1(0, σ1),
N2(0, σ2) is used, corresponding to the middle one of the first
simulation, i.e. σ(4). Again, the shapes calculated by solving
the forward kinematics for the noisy kinematic values are Skin.

We model the increasing unknown “force/load” acting on
the robot via a virtual anchor point located at the following
coordinates in the robot frame (150; 150; 100). The position of
the anchor point was chosen in order to generate deformations
of the robot that are outside the image plane of the C-arm.
These deformations are the hardest for vision algorithms to
reconstruct from a single view due to the degenerate nature of
perspective projection.

The unknown “force/load” may represent a collision of the
robot with part of the patient anatomy. A unit vector v(j)
defines the orientation of the deformation of the jth point
of the ground truth robot-shape. This vector is calculated

considering the virtual anchor point, and the jth point of the
robot-shape. The displacement of the jth point of the robot-
shape is:

dis(h, j) = v(j)

[
hjl

c(N − 1)(q − 1)

]
(17)

where l is the length of the robot in [mm], q is the number
of discrete points along the robot-shape, h = 0, ..., N − 1,
with N = 10 load scenarios, and j = 0, ..., q − 1 is the
index of the points along the robot-shape. The index j = 0
describes the robot base while j = q − 1 describes its tip.
Thus, for the load scenario h = 0 the ground truth robot
shape is not affected by any force, while for h = N − 1 the
“force/load” causes a maximum displacement at the tip of the
robot equal to 1

c of its length. In our implementation c = 12,
which allows the investigation of a wide range of potential
deflections and leads to kinematics inaccuracies similar to the
ones experienced in [1] for the same simulation. The formula
is used just to generate the ground truth shapes. In other words,
it is a representation of a deformed shape but not a dynamic
model of the robot.

To ensure that the deformation model does not introduce
non-physical behaviours such as extension or compression of
the tubes, a post-processing step maintains constant the length
of the deflected robot. For elongated robots, this is achieved by
removing points starting from the tip of the deformed shape
until its length is equal to the length of the corresponding
ground truth non-deformed robot, namely l. For shortened
robots, points are added iteratively along the deformed-robot-
backbone tangent until its length equals l. The differences in
length that have to be corrected by the post-processing steps
during the simulations are, on average, 1.6% of the original
robot length l.

C. Results

For each set of noisy kinematics values of the first simu-
lation and for each load scenario of the second simulation,
three shape reconstruction algorithms are compared: (a) The
forward kinematics only; (b) The method presented in [1], i.e.
by fusing kinematics and vision2; (c) The proposed algorithm,
which unifies tracking and registration.

The performance of the three algorithms is quantified and
the reconstruction and tip position errors, in millimetres, for
the first simulation scenario are reported in Fig. 5(a), and Fig.
5(b), respectively. It can be observed that the 3D tip position
errors are in general greater than the shape reconstruction
errors for each scenario. This is due to the fact that the error in
estimating the shape of the robot propagates from the base of
the robot to its most distal point, i.e. the tip, where it reaches its
maximum value. The errors for the second simulation scenario
are shown in Fig. 6. Finally, the 2D robot tracking and tip
tracking errors are reported in Fig. 7(a) and Fig. 7(b).

Overall, the performance in terms of reconstruction and tip
position errors, as well as tracking and tip errors achieved
by the proposed method in both simulation scenarios reached

2In this evaluation, the algorithm presented in [33] is used for tracking the
robot in the fluoroscopic sequences.
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Fig. 8. The experimental setup, composed of a concentric tube robot, a
monoplane C-arm and a tissue model (left). Close-up of the robot and two
fluoroscopic images of the setup (right).

the best accuracy, with an average shape reconstruction error
of 1.22 mm, and tip error of 4.23 mm. The results show the
importance of unifying tracking and registration to perform
shape sensing.

It is also worth noting that when large uncertainties on
the kinematics modelling and unmodelled deformations are
present, the results of the proposed approach were inferior
to the results of our previous work [33]. This is mainly
due to the deterioration of the performance of the tracking
algorithm, as can be observed in Fig. 7(a) and Fig. 7(b). In
fact, the proposed method introduces a dependency between
the tracking and shape reconstruction steps, based on the
kinematics of the robot. In our previous work, these tasks
are executed independently and the tracking is based only on
image information.

In summary, we have demonstrated that our algorithm uni-
fies the tracking and registration tasks successfully to handle
both cases of kinematic noise and unmodelled forces acting
on the robot. The next section will show that tracking also
improves in experimental settings.

V. EXPERIMENTAL EVALUATION

The experimental setup is composed of a concentric tube
robot, a monoplane C-arm and a chicken acting as a tissue
model (see Fig. 8). The tissue model is placed in between
the robot and the C-arm detector to simulate the presence
of human bones and tissue. The design specifications of the
concentric tube robot, which is composed of two tubes of fixed
curvature are reported in Table II as Robot 2.

The monoplane C-arm is a GE Innova 4100 for interven-
tional radiology (GE Medical Systems, Buc, France) and can
be described by a pinhole camera model [42]. The camera
calibration of the C-arm is performed offline to estimate its
intrinsic and extrinsic parameters using a customised cali-
bration grid and known 2D/3D landmarks. This calibration
grid, a checkerboard pattern, has radio-opaque markers at the
corners of the checkerboard boxes and allows the utilisation
of state-of-the-art camera calibration algorithms [43]. Manual
alignment of the robot with the C-arm is performed to coarsely
register their coordinate systems. The origin of the robot in
the C-arm coordinate system is subsequently estimated by
acquiring an X-ray computed tomography image (CT-scan).

TABLE III
OVERALL SHAPE RECONSTRUCTION ERRORS (µ± σ)

Shape Errors [mm] Kinematics Kin&Vision Track&Rec
In Free Space 3.61 ± 0.86 2.85 ± 1.69 2.40 ± 1.09
External Loads 3.79 ± 0.74 2.00 ± 1.16 1.82 ± 1.09

All Experiments 3.67 ± 0.82 2.57 ± 1.57 2.21 ± 1.11

TABLE IV
OVERALL TIP POSITION ERRORS (µ± σ)

Tip Errors [mm] Kinematics Kin&Vision Track&Rec
In Free Space 9.82 ± 4.72 10.38 ± 9.60 7.56 ± 5.07
External Loads 9.17 ± 4.00 7.58 ± 5.15 6.68 ± 4.16

All Experiments 9.61 ± 4.45 9.47 ± 8.44 7.28 ± 4.75

Two data sets are collected to experimentally evaluate the
performance of the proposed algorithm. Each data set is
discretised in motion steps. During every step, monoplane
fluoroscopic images (512× 512 image size) at a fixed C-arm
position of 0◦ RAO (Right Anterior Oblique) are recorded to
capture the robot motions while an X-ray computed tomo-
graphic image (CT-scan) is acquired at the end of each step
for collecting the ground truth via 3D manual segmentation.
Then the robot centrelines, which represent the ground truth
shapes of the robot for the evaluation, are extracted by thinning
the manually segmented mesh. The position of the robot in
each fluoroscopic image is manually annotated to generate
the 2D ground truth positions. The joint values for the robot
kinematics are recorded during every motion step.

A. Evaluation in Free Space

For the first data set, the robot performs in free space a
spiral-like trajectory, which is discretised in 25 motion steps.

B. Evaluation with External Loads

For the second set of data, increasing loads are applied to
the robot in order to simulate unmodelled contact with the
tissues. The trajectory is discretised in 12 steps. In steps #26,
#29, #32 and #35 the robot is unloaded while in #27, #30, #33
and #36 a force equal to 0.5 N is applied at the robot tip. In
the remaining 4 steps, a 1 N force is applied at the robot tip.

C. Results

As for the simulated data, the three shape reconstruction
techniques are compared for each motion step of each data
set. Tracking of the robot is performed in all fluoroscopic
images of both datasets and its results are used as s2D. The
tracking algorithm is manually initialised on the first frame.
The kinematics of the robot is solved using the recorded
kinematics values, generating Skin.

The overall performance of the reconstruction algorithms
in terms of shape reconstruction, and tip position errors,
is reported in Table III, and Table IV, respectively. The
accuracy of the proposed vision-based shape sensing algorithm
is 2.21 mm on the shape estimation and 7.28 mm on the tip.
Thus, the proposed method achieves a great improvement over
the kinematics-only reconstruction of the robot shape, which
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(a) (b)

Fig. 9. Shape estimation results for the experiments in air and phantom of each motion step. The red dotted line separates the data of the air to the phantom
experiment while the light blue dotted rectangle indicates the steps where an external load is applied to the robot. Motion Steps #13-16 correspond to
particularly out of plane robot motions. (a) Shape reconstruction errors, and (b) tip position error.

TABLE V
OVERALL TRACKING ERRORS (µ± σ)

Tracking Errors [px] GSEG Track&Rec
In Air 1.85 ± 2.96 0.42 ± 0.84

External Loads 0.79 ± 1.95 0.42 ± 0.14
All Experiments 1.48 ± 2.70 0.42 ± 0.68

has an accuracy of 3.67 mm and 9.61 mm, respectively. This
amounts to a 40% error reduction for the shape estimation,
and 24% error reduction for the tip. The vision-based shape
sensing algorithm outperforms the method presented in [1]
both in terms of shape reconstruction and tip localisation. In
fact, the overall accuracy of the vision-only method is 2.57 mm
and 9.47 mm for shape and tip, respectively. This leads to an
error reduction for shape and tip of 14% and 23% by the
proposed method compared to our previous work. Finally,
great improvement on the tracking results of the robot in
fluoroscopy is also achieved by the proposed method compared
to the state-of-the-art tracking method GSEG, as 72%, and
80% error reduction is shown for the tracking error, and tip
tracking error, respectively (see Table V, and Table VI).

The detailed shape reconstruction errors, and tip position
errors of the compared reconstruction algorithms are shown
in Fig. 9(a) and in Fig. 9(b), respectively. In addition, qual-
itative results of robot tracking in fluoroscopic images and
the respective shape reconstruction for the air and phantom
experiments are shown in Fig. 10 and in Fig. 11.

It can be observed that for motion steps #18-20 our previous
work [1] is characterised by high errors both in shape and
tip reconstruction as shown in Fig. 9(a) and in Fig. 9(b). In
these steps, the tracking algorithm of [1], which is responsible
for detecting the robot in the fluoroscopic images, fails to
follow the robot’s tube since it is attracted by the neighbour-
ing anatomy. On the other hand, the proposed method can
successfully track the robot in this challenging scenario by
relying on both image information and robot kinematics via
our new unified framework.

VI. DISCUSSION

The results presented in this paper demonstrate that the
proposed method outperforms overall both the kinematics
modelling of the robot and our previous work on vision-based

TABLE VI
OVERALL TIP TRACKING ERRORS (µ± σ)

Tip Tracking Errors [px] GSEG Track&Rec
In Air 13.17 ± 21.79 2.39 ± 5.48

External Loads 7.52 ± 13.97 2.07 ± 2.99
All Experiments 11.23 ± 19.61 2.28 ± 4.77

shape sensing [1]. Few observations on the robustness of the
method should, however, be made.

In the proposed method, the deformation range for the
control points of the spline has to be defined a priori. This
range, which in our implementation reaches a maximum of
6.4 mm, can limit the set of shapes that can be recovered by
the algorithm. Therefore, this has to be tuned considering the
application and the expected kinematics accuracy of the robot,
or adaptively estimated based on the tracking error.

It is worth noting that when there are extreme inaccuracies
in the kinematics modelling of the robot, the unified algo-
rithm may fail. This is caused by the discretisation explained
above and the intrinsic dependency between the tracking and
shape reconstruction step, which relies on the kinematics of
the robot. This issue does not occur if the two tasks are
executed independently, with tracking being based only on
image information as in [1]. This intuition is also supported
by the evaluation results, where it can be observed that the
proposed approach may even underperform with regards to [1]
in terms of shape reconstruction and tip position errors when
the kinematics modelling is significantly poor. In addition,
simulations with values of c less than 12, i.e. corresponding
to larger deformations, would lead to a deterioration of the
shape estimation for the method proposed here. In order to
consider the kinematics uncertainties, the contribution of the
term θztracking could be adaptively increased at the expense
of the other terms of the energy, i.e. θijshape and θijzfusion. This
would make the selection of the label for the tracking node less
dependent on the kinematics modelling and therefore immune
to its inaccuracies. On the other hand, if the kinematics
modelling of the robot is really accurate, the contribution of
the terms θijshape and θijzfusion should be increased with respect
to θztracking . Fine tuning of the energy terms can make the
model flexible in the presence of different uncertainties.

Finally, an important improvement introduced by the pro-
posed method compared to our previous work [1] relies on
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Fig. 10. Tracking of the robot in fluoroscopic images during the in air (frames #1, #14, #82, #126) and external loads (frames #171, #185) experiments:
results of GSEG are reported in the first row while the ones from the proposed method are in the second row. The robot’s tip is manually annotated in yellow.

(a)

(b)

Fig. 11. Ground truth shapes for each motion steps of the experiment in free space (a), and with external loads (b), together with the motion trajectories
of the robot tip (black dotted line) are shown in the first columns. The rest of the plots represent the estimated robot-shapes by kinematics, kinematics and
vision combined [1] (Kin&Vision), and the proposed method with joint tracking and shape reconstruction (Track&Rec).

achieving more accurate and robust tracking of the robot in
fluoroscopic images. This directly reflects on the shape recon-
struction and tip position errors of these methods. The im-
provement is especially significant in fluoroscopic sequences
characterised by the presence of anatomical and background
structures. These conditions usually make tracking a chal-
lenging task to perform. When robot tracking is easy due to
increased contrast, the proposed method could under-perform
compared to our previous work, which does not unify tracking
and kinematics. The behaviour of the algorithm proposed
here, however, can be tuned with an image-contrast-based
weighting term that gives increased confidence to tracking in
easy scenarios.

In case of an occlusion of the robot’s concentric tubes by
other metallic objects, the estimation of the tube width using
our proposed method might be locally affected. This could
be solved by integrating constraints on the estimated width
(as the tubes width is known) and/or smoothing the estimated
width considering the width of its neighbour candidates. In
addition, in case the robot is angled in a direction that is
normal to the imaging plane, reaching an accurate estimation
of the tube endpoint and robot shape can be challenging
due to projective ambiguities, e.g. foreshortening. However,
in practice, the surgeon would operate the robot avoiding
these configurations. In fact, it is dangerous to operate the
surgical robot in a configuration where its shape is difficult to
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assess due to these projective ambiguities, regardless whether
automatic shape estimation is used or not; usually, the effort
is to remain “in plane”. The same observation is valid for the
vessel lumen, which represent the pathway of the endovascular
instruments. Numerous publications have reported automatic
estimation the optimal C-arm position for reducing tool and
anatomy foreshortening and improving visualisation.

Regarding the accuracy of fluoroscope calibration used in
the experimental evaluation, an average reprojection error of
0.43± 0.14 mm was measured. This precision can be justified
by inaccuracies injected during the calibration procedure itself,
and uncertainty in the C-arm motion repositioning following
the acquisition of a complete “CT” image as a ground truth
(the C-arm has to return to 0◦ RAO angle). This continuous
repositioning potentially introduces extrinsic parameter errors
but would not be necessary in a clinical setting. In addition,
it is assumed that the coordinate systems of the robot and
the C-arm can be registered by a 3DoFs displacement-based
registration. This was achieved by visually aligning the two
coordinate systems considering robot’s landmarks in fluoro-
scopic images. Although this simplified registration procedure
may have injected errors on the shape provided by the kine-
matics, the proposed vision-based approach can compensate
for them as the shape estimated is refined considering image
information.

It should be noted that the current implementation of the
algorithm has not been optimised for high speed computation.
However, many components of the algorithm can be paral-
lelised, such as the detection of the SEGlets, the evaluation of
the hypotheses, and their labels. Thus, the computational time
of the algorithm would benefit from using multi-CPU- and
GPU-based implementations. These solutions can be explored
for real-time clinical applications. In addition, limiting the
cardinality of the tracking hypotheses could further reduce
running time.

VII. CONCLUSION

This paper proposes a new approach to vision-based in-
traoperative shape sensing of concentric tube robots. The
method provides accurate continuous robot shape sensing
using monoplane fluoroscopic images, regardless the effect of
unknown forces and kinematic uncertainties. This is achieved
by simultaneously addressing tracking and shape estimation
of the robot, in a unified framework based on MRF. The
clinical value of the work was demonstrated through both
simulations and experiments. The joint framework proved to
be more robust than using kinematics alone or our previous
work published at IROS 2015 [1], especially in cases of
difficult imaging condition where the tracking is challenging.
This work can be easily adapted to biplanar X-ray fluoroscopy
systems where the stereo imaging can provide additional
robustness to the algorithm.
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